JP3962558B2 - 半導体装置および発振器 - Google Patents

半導体装置および発振器 Download PDF

Info

Publication number
JP3962558B2
JP3962558B2 JP2001180097A JP2001180097A JP3962558B2 JP 3962558 B2 JP3962558 B2 JP 3962558B2 JP 2001180097 A JP2001180097 A JP 2001180097A JP 2001180097 A JP2001180097 A JP 2001180097A JP 3962558 B2 JP3962558 B2 JP 3962558B2
Authority
JP
Japan
Prior art keywords
diode
semiconductor
layer
semiconductor layer
schottky
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001180097A
Other languages
English (en)
Other versions
JP2002111098A (ja
Inventor
基次 矢倉
ジョン・ケイ・トワイナム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2001180097A priority Critical patent/JP3962558B2/ja
Priority to US09/915,499 priority patent/US20020011604A1/en
Publication of JP2002111098A publication Critical patent/JP2002111098A/ja
Application granted granted Critical
Publication of JP3962558B2 publication Critical patent/JP3962558B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8252Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using III-V technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B9/00Generation of oscillations using transit-time effects
    • H03B9/12Generation of oscillations using transit-time effects using solid state devices, e.g. Gunn-effect devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N89/00Integrated devices, or assemblies of multiple devices, comprising at least one bulk negative resistance effect element covered by group H10N80/00
    • H10N89/02Gunn-effect integrated devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、異なる化合物半導体素子を集積する半導体装置およびそれを用いたミリ波帯・マイクロ帯発振器に関する。
【0002】
【従来の技術】
近年、ミリ波帯・マイクロ波帯を用いたシステムの開発が進められている
特に、ミリ波帯(30GHz〜90GHz)においては、HBT(ヘテロ接合バイポーラトランジスタ)やHEMT(高電子移動度トランジスタ)などのトランジスタを発振素子や増幅器として用い、ショットキーダイオードをバラクターやミキサーに用いることが行われている。さらに、それらの素子を同一基板上に作製し、集積化することが特開平3−64929号公報,特開昭63−129656号公報に開示されている。
【0003】
しかしながら、ミリ波帯において、発振素子にHBTやHEMTを用いる場合、トランジスタの高周波化に対応するためには、エミッタ幅の微細化(1μm以下)やゲート幅の微細化(0.2μm以下)等による寄生容量の低減や寄生抵抗の低減が必要となる。
【0004】
ところが、それら微細化を行なうには、複雑なプロセスを要するので、歩留まりの低下を引き起こしている。さらに、エミッタ幅やゲート幅の微細化を行なうと、電流量が小さくなるから、発振素子として必要な出力パワーを得るのが難しくなるといった問題があった。
【0005】
これらの問題を解決するために、発振素子として、HBTやHEMTを用いる代わりに、負性抵抗を持つダイオードを用いることが考えられる。その一例が、特開平1−112827号公報に開示されている。図5を参照して、その構造と製造方法を説明する。
【0006】
図5(C)に示すように、その構造は、p+−GaAs層805上に、TiW膜806/Au膜807からなる電極が設けられ、n+−GaAs層802上に、Ti808/Au809からなる電極が設けられて、負性抵抗を持つIMPATT(impact ionization avalanche transit time)ダイオードが構成されている。また、半絶縁性GaAs基板801上に、Ti膜810/Au膜811からなるマイクロストリップ・パッチが構成されている。さらに、この一例では、基板801上に他の装置を集積できること、n+−GaAs層802を利用して他の装置を集積できることが開示されている。
【0007】
この一例の製造方法は、まず、図5(A)に示すように、半絶縁性GaAs基板801上に、順次、n+−GaAs層802(濃度1×1019cm-3,厚さ1.5μm),n−GaAs層803(濃度2×1017cm-3,厚さ0.25μm),p−GaAs層804(濃度2×1017cm-3,厚さ0.25μm),p+−GaAs層805(濃度1×1019cm-3,厚さ0.2μm)をエピタキシャル成長する。次に、フォトレジストを塗布し、直径5μmの円をパターニングし、TiW膜806(厚さ100nm)/Au膜807(400nm)からなる電極を形成する。
【0008】
次に、図5(A)に示すように、湿式エッチングによって、上記電極をエッチングマスクとして、p+−GaAs層805,p−GaAs層804,n−GaAs層803,n+−GaAs層802をエッチングし、n+−GaAs層802内で停止する。次に、フォトレジストを塗布し1辺75μmの四角をパターニングし、リフトオフ法によって、図5(B)に示すように、Ti膜808(100nm)/Au膜809(400nm)からなる電極を形成する。このとき、電極808,809は、電極806,807に対してセルフアラインになる。
【0009】
次に、図5(C)に示すように、n+−GaAs層802および基板801の一部(約100nm)を異方性プラズマエッチングする。これによって、IMPATTダイオードが半絶縁基板801上のメサとして隔離される。その後、リフトオフ法によって、Ti膜810(100nm)/Au膜811(400nm)からなるマイクロストリップ・パッチを基板801上に形成する。
【0010】
また、この公報には、以下のような開示もある。マイクロストリップ・パッチ810,811を形成する直前に、基板801の上に他の装置を集積できる。特に、IMPATTダイオードおよびマイクロストリップ・パッチに相当する区域から離して、半絶縁基板801内にイオン注入することで能動装置領域を形成できる。また、これに代えて、n+−GaAs層802をエッチングする工程で、別の写真製版マスクを用いて、IMPATTダイオードおよびマイクロストリップ・パッチに相当する区域から離して、n+型にドープされたGaAs802の領域を、装置を製造するために保存できる。
【0011】
このように作製されたIMPATTダイオードは、HBTやHEMTに比べ、微細化しなくてもミリ波帯に対応できるから、製造プロセスが容易になる。また、発振素子としての出力パワーも大きいなどのメリットがある。
【0012】
【発明が解決しようとしている課題】
しかしながら、上記従来例には、以下の課題がある。
【0013】
(1) 従来例では、IMPATTダイオード以外の能動装置等を半絶縁性基板上に作製する方法としてイオン注入を用いている。しかし、イオン注入された領域を活性化させるためにイオン注入後に、600℃程度の高温な熱処理(アニール)を行なう必要が生じる。この熱処理は、先に作製されたIMPATTダイオード部分のコンタクト抵抗の劣化やエピタキシャル構造の劣化(ヘテロ接合の劣化,濃度プロファイルの劣化)を引き起こすという問題が生じる。
【0014】
(2) IMPATTダイオードのコンタクト層であるn+−GaAs層802は、電極808,809のコンタクト抵抗を低減するために、n+型に高ドープされている。この高濃度のn+−GaAs層802では、n+−GaAs層802を、IMPATTダイオード以外の能動装置作製に利用する際、例えば、MESFETのゲート電極や、ショットキーダイオードのショットキー電極に必要なショットキー特性が得られないという問題がある。
【0015】
このように、上記従来例では、負性抵抗を有するダイオードとショットキーダイオードとを、同一基板上に形成しても特性のバラツキを少なくすることができず、さらに再現性も得られない。
【0016】
そこで、この発明の目的は、製造プロセスが容易でコンタクト抵抗の劣化やエピタキシャル構造の劣化のない負性抵抗を有するダイオードと良好なショットキー特性を持つショットキーダイオードを同一基板上に集積することができる半導体装置およびその製造方法を提供することにある。
【0017】
【課題を解決するための手段】
上記目的を達成するため、この発明の半導体装置は、同一基板上に形成されている第1および第2のダイオードを備え、
上記第1のダイオードは、
順に、第1の高濃度ドーピング半導体で作製された第1の半導体層と、低濃度ドーピング半導体で作製された第2の半導体層と、上記低濃度ドーピング半導体よりもワイドバンドギャップである半導体で作製された第3の半導体層と、第2の高濃度ドーピング半導体で作製された第4の半導体層とが積層された第1の半導体積層部と、
上記第1の半導体層と上記第4の半導体層のそれぞれに形成された電極とを有する負性抵抗ダイオードであり、
上記第2のダイオードは、
順に、上記第1の高濃度ドーピング半導体で作製された第5の半導体層と、上記低濃度ドーピング半導体で作製された第6の半導体層とが積層された第2の半導体積層部と、
上記第5の半導体層と第6の半導体層のそれぞれに形成された電極とを有することを特徴とする。
【0018】
この発明では、負性抵抗を有するダイオード特性を持つエピタキシャル構造の活性層上にショットキー電極が具備されたから、イオン注入技術やIMPATTダイオードのコンタクト層を利用することなく、高温(600℃)な熱処理(アニール)が不必要なプロセスで製造できる。したがって、エピタキシャル構造の劣化,コンタクト抵抗の劣化といった問題も解消でき、損失低減と小型化を実現できる。
【0019】
また、一実施形態の半導体装置は、上記負性抵抗ダイオードと上記ショットキーダイオードとが、伝送線路によって接続され、同一基板上に集積されている。
【0020】
この実施形態では、上記負性抵抗を有するダイオードと上記ショットキーダイオードとが、伝送線路によって接続されて、同一基板上に集積されているから、発振素子となる負性抵抗ダイオード(ガンダイオード)とショットキーダイオードとを同一基板上に作製して線路寸法を短縮できる。したがって、損失低減に非常に有効である。
【0021】
また、他の実施形態の半導体装置は、上記負性抵抗ダイオードがガンダイオードである。
【0022】
この実施形態では、負性抵抗を有するダイオードがガンダイオードであることによって、位相雑音の小さい発振素子とショットキーダイオードを同一基板上に集積できる。
【0023】
また、参考例の半導体装置を製造する製造方法は、負性抵抗を有するダイオード特性を持つエピタキシャル構造のアノードまたはカソードオーミック電極形成用高濃度層をエッチング除去して活性層を露出させる工程と、上記活性層上にショットキー電極を形成する工程とを備えた。
【0024】
この参考例では、負性抵抗を有するダイオード特性を持つエピタキシャル構造のアノードまたはカソードオーミック電極形成用高濃度層をエッチング除去し活性層を露出させ、この活性層上にショットキー電極を形成する。したがって、この参考例では、低濃度の活性層(n−GaAs層)にショットキー電極を形成できるから、良好なショットキー特性を得ることができる。
【0025】
また、他の参考例の半導体装置の製造方法は、少なくとも負性抵抗を有するダイオード特性を持つエピタキシャル構造にヘテロ構造を持ち、アノードオーミック電極とカソードオーミック電極とが具備された少なくとも負性抵抗を有する負性抵抗ダイオードと、少なくとも負性抵抗を有するダイオード特性を持つエピタキシャル構造の活性層上にショットキー電極が具備され、オーミック電極形成用高濃度層にオーミック電極が具備されたショットキーダイオードとが同一基板上に集積されている半導体装置を製造する方法において、カソードオーミック電極形成用高濃度層をエッチング除去し、ワイドバンドギャップ層を露出させる工程と、このワイドバンドギャップ層を選択エッチング除去して活性層を露出させる工程と、上記活性層上にショットキー電極を形成する工程と備えた。
【0026】
この参考例では、カソードオーミック電極形成用高濃度層をエッチング除去して露出させたワイドバンドギャップ層を、選択エッチング除去して活性層を露出させるので、この活性層の厚みをエピタキシャル成長時の厚みで(ウエハ面内で)制御できる。また、ウエハ間での活性層の厚みばらつきも小さくできる。したがって、ショットキーダイオード特性の再現性が得られる。
【0027】
また、参考例の半導体装置の製造方法では、上記負性抵抗ダイオードがガンダイオードである。
【0028】
この参考例では、上記負性抵抗ダイオードがガンダイオードであるから、位相雑音の小さい発振素子となるガンダイオードをショットキーダイオードと同一基板上に集積できる。このガンダイオードは、カソード構造としてヘテロ構造を用いることが多いから、活性層の厚みをウエハ面内で制御することができ、ウエハ間での厚みばらつきも小さくすることができる。このことによって、ショットキーダイオード特性の再現性を容易に得ることができる。
【0029】
また、他の実施形態の発振器は、少なくとも負性抵抗を有するダイオード特性を持つエピタキシャル構造にアノードオーミック電極とカソードオーミック電極が具備された少なくとも負性抵抗を有する負性抵抗ダイオードと、
上記少なくとも負性抵抗を有するダイオード特性を持つエピタキシャル構造の活性層上にショットキー電極が具備され、オーミック電極形成用高濃度層にオーミック電極が具備されたショットキーダイオードと、
伝送線路とが同一基板上に集積された半導体装置を備え、
上記負性抵抗ダイオードを発振素子とし、上記ショットキーダイオードをバラクターダイオードとし、上記伝送線路を出力線路,スタブにした。
【0030】
この実施形態の発振器では、発振素子となる負性抵抗を有するダイオードとショットキーダイオードを同一のウエハで作製して実装したから、線路での損失や実装時の損失(ワイヤボンドの損失等)を小さくできる。したがって、位相雑音が悪くなる等の性能の低下を防ぐことができる。
【0031】
また、一実施形態の発振器は、上記負性抵抗ダイオードがガンダイオードである。
【0032】
この実施形態では、上記負性抵抗ダイオードがガンダイオードであるから、位相雑音の小さい発振素子を得ることができ、発振器の性能が向上する。
【0033】
【発明の実施の形態】
以下、この発明を図面に基づいて説明する。
【0034】
〔第1の実施の形態〕
図1を参照して、この発明の半導体装置の第1実施形態としてのガンダイオード・ショットキーダイオード集積回路の構造を説明し、その後、図2を参照して、第1実施形態の集積回路の製造方法を説明する。
【0035】
図1に示すように、この第1実施形態の集積回路は、ガンダイオードGDが領域Aに形成され、ショットキーダイオードSDが領域Bに形成され、伝送線路CPが領域Cに形成されている。
【0036】
すなわち、領域Aに形成されるガンダイオードGDは、AuGe/Ni/Auからなるカソードオーミック電極108とアノードオーミック電極107を有し、n−GaAsからなる活性層103を有している。一方、領域Bに形成されるショットキーダイオードSDは、AuGe/Ni/Auからなるオーミック電極109と、活性層103と、Ti/Auからなる導電性膜112を有している。なお、上記AuGe/Ni/Auは、AuGe膜上にNi膜,Au膜を順次積層した積層膜であり、上記Ti/Auは、Ti膜上にAu膜を積層した積層膜である。
【0037】
図1に示すように、ガンダイオードGDおよびショットキーダイオードSDの周囲はエッチングされ、素子間の分離領域SAが形成されている。
【0038】
また、C領域には、伝送線路CPが形成されている。この伝送線路CPは、導電性膜112とAu膜113からなる。この伝送線路CP上には、シリコン窒化膜(図示せず)が形成されている。
【0039】
この実施形態のガンダイオード・ショットキーダイオード集積回路は、負性抵抗を有するダイオード特性を持つエピタキシャル構造からなるガンダイオードGDの活性層103上にショットキー電極が形成されている。したがって、従来のようなイオン注入技術やIMPATTダイオードのコンタクト層を利用することなく、高温(600℃)な熱処理(アニール)が不必要なプロセスで、ガンダイオードGDとショットキーダイオードSDとを同一基板上に集積できる。したがって、エピタキシャル構造の劣化,コンタクト抵抗の劣化といった問題も解消でき、損失低減と小型化を実現できる。
【0040】
また、この実施形態は、上記負性抵抗を有するガンダイオードGDと上記ショットキーダイオードSDとが、伝送線路CPによって接続されて、同一のGaAs基板101上に集積されている。すなわち、発振素子となる負性抵抗ダイオード(ガンダイオードGD)とショットキーダイオードSDとを同一基板上に作製して線路寸法を短縮できるから、損失低減に非常に有効である。また、上記負性抵抗ダイオードがガンダイオードであるので、位相雑音の小さい発振素子とショットキーダイオードを同一基板上に集積できることとなる。
【0041】
次に、この第1実施形態のガンダイオード・ショットキーダイオード集積回路の製造工程を、図2(A)〜図2(D)を順に参照して説明し、同時に、詳細な構造を説明する。
【0042】
まず、図2(A)に示すように、MBE(分子線エピタキシャル成長)あるいはMOCVD法(有機金属気相成長)等によって、半絶縁性GaAs基板101上に、アノードオーミック電極形成用高濃度層となるn+−GaAs層102をSiドーピング濃度5×1018cm-3で、厚さ800nmにエピタキシャル成長させる。次に、活性層となるn−GaAs層103を、Siドーピング濃度2×1016cm-3で、厚さ2000nmに、エピタキシャル成長させる。次に、ワイドバンドギャップ層からなるカソード層n−AlXGa1-XAs(X=0.35)層104を、Siドーピング濃度5×1017cm-3で、厚さ50nmに、エピタキシャル成長させる。さらに、n−AlXGa1-XAs層(X=0.35→0)105を、Siドーピング濃度5×1017cm-3で、厚さ20nmに、エピタキシャル成長させる。次に、カソードオーミック電極形成用高濃度層106となるn+−GaAs層106を、Siドーピング濃度5×1018cm-3で厚さ500nmに、エピタキシャル成長させる。
【0043】
次に、ガンダイオードGDのカソードとなる領域をSiN膜またはSiO膜等でマスクし、図2(B)に示すように、n+−GaAs層106,n−AlXGa1-XAs層105,n−AlXGa1-XAs層104をエッチング除去して、活性層103を露出させる。
【0044】
このエッチングでは、GaAsとAlGaAsの選択性のないエッチング法を用いて、時間エッチングを行なってもよいが、その場合、活性層103の厚みが制御できず、更に、その厚みがウエハ面内でもばらつく。この活性層103の厚みのバラツキは、その後、形成されるショットキーダイオードの特性のバラツキとなる。
【0045】
そこで、選択性のあるエッチング法を用いることで、この厚みバラツキを防止できる。具体的には、n+−GaAs層106をエッチング除去した後、n−AlXGa1-XAs層105,n−AlXGa1-XAs層104をフッ酸によってエッチング除去する。フッ酸は、GaAsに対するAlGaAsのエッチング選択比が100以上であるので、活性層103の厚みをウエハ面内でエピタキシャル成長時の厚みに制御できる。さらに、GaAsに比べて、電子親和力が小さいn−AlXGa1-XAs層105またはn−AlXGa1-XAs層104でエッチングを止めることもできる。この場合、ショットキー障壁の大きいショットキーダイオードを形成できる。
【0046】
なお、時間エッチングによって、n−AlXGa1-XAs層105または、n−AlXGa1-XAs層104まで、エッチングを行うこともできるが、クエン酸,硫酸などの酸と過酸化水素水を含むエッチング液を用いることで、AlGaAsに対して、GaAs106を高い選択比でエッチングできる。
【0047】
次に、ガンダイオードGDのカソードとなる領域に形成したSiN膜またはSiO膜マスクを除去せず残したまた、ショットキーダイオードSDのショットキー領域をフォトレジストパターン等でマスクし、活性層103をエッチング除去し、図2(C)に示すように、アノードオーミック電極形成用高濃度層102を露出させる。
このように、ショットキー領域のエッチング時に、ガンダイオードのカソード領域マスクを新たに形成せず、SiN膜またはSiO膜マスクを再利用することにより、ガンダイオードの活性層103の側壁に不規則な段差がなく滑らかなエッチング形状を得ることができる。活性層103の側壁に不規則な段差があると、ガンダイオードの発振に不要な周波数成分が発生し、ひいては、発振パワーの低下や発振効率の低下となる。
【0048】
なお、このとき、この実施形態では採用していないが、活性層103とアノードオーミック電極形成用高濃度層102の間に、例えば、厚さ20nmのInGaP層をエッチングストッパー層として挿入すれば、活性層103を選択的にエッチング除去できる。
【0049】
次に、図2(C)に示すように、ガンダイオードGDのアノードオーミック電極107を形成する領域と、カソードオーミック電極108を形成する領域と、ショットキーダイオードSDのオーミック電極109を形成する領域とに、AuGe(100nm)/Ni(15nm)/Au(100nm)を、蒸着法等によって形成し、390℃の熱処理によるオーミック電極の合金化処理を行なう。これにより、上記アノードオーミック電極107,カソードオーミック電極108,オーミック電極109が形成される。なお、上記AuGe(100nm)/Ni(15nm)/Au(100nm)は、層厚100nmのAuGe層上に、15nmのNi層,100nmのAu層を順次した積層膜である。
【0050】
次に、領域AのガンダイオードGDと領域BのショットキーダイオードSDを素子分離するようにレジストパターニングを行って、レジストマスクを形成し、n+−GaAs層102をエッチングし、図2(D)に示すように、メサ分離する。このとき、メサ分離の替わりに、イオン注入による分離を行なうと、段差がメサ分離に比べ低くなり、その後のレジスト塗布パターニングが容易となる。
【0051】
その後、保護膜となるシリコン酸化膜またはシリコン窒化膜を200nm堆積する(図示せず)。次に、各デバイスの段差部STにおいて、レジストパターニングによって、レジスト110を、Au膜113を含む伝送線路CPが通る場所に残す。その後、そのレジスト110が軟化する温度で熱処理を行ない、リフローさせることで、図2(D)に示すレジスト110を形成する。このレジスト110は、次に作製する伝送線路113が段差部STで断線することを防ぐためのものである。
【0052】
次に、保護膜(図示せず)を、ガンダイオードGDのアノードオーミック電極107,カソードオーミック電極108,ショットキーダイオードSDのオーミック電極109上および活性層103上のショットキー電極形成領域111から、エッチング除去する。
【0053】
次に、コンタクトホールを形成し、蒸着法等によって全面に、Ti(100nm)/Au(100nm)よりなる導電性膜112を堆積する。
【0054】
この導電性膜112は、この後、伝送線路CPをなすAu膜113をメッキによって、形成するための給電メタルの役割を果すだけでなく、ショットキーダイオードSDのショットキー電極の役割も果す。
【0055】
なお、この実施形態では、ショットキー電極と伝送線路CPをなすAu膜113をメッキによって形成するための給電メタルとを、導電性膜112として同時に形成しているが、ショットキー電極をショットキーダイオードSDのオーミック電極109を形成した後に形成することもできる。また、ショットキー電極材料としては、W(タングステン)やMo(モリブデン)などの高融点金属,高融点窒化物,高融点珪化物やAl(アルミニウム)などを用いることもできるが、安定なショットキー障壁を形成できる材料を選ぶことがよい。
【0056】
次に、膜厚15μmよりなるレジストを塗布し、伝送線路113となる領域のパターニングを行った後に、厚さ9μmのAuメッキを行う。
【0057】
その後、レジスト除去し、不要な導電性膜112をエッチング除去し、リフローされたレジスト110を除去して、図1に示すように、伝送線路CPができあがる。
このように作製されたショットキーダイオードSDは、ガンダイオードの活性層が厚く、低濃度なため、単位面積あたりの容量が小さく作製が容易で、容量変化の大きいバラクターを得ることが容易である。
これは、図5のIMPATTダイオード構造も本実施形態のガンダイオード構造もミリ波帯で発振する構造となっているが、ガンダイオードに比べ、IMPATTダイオードの活性層は、厚みが薄く、p型n型の層を用いる必要がある。これは、全く異なる動作原理だからである。このことは、図5のIMPATTダイオードのn−GaAs層803上にショットキー電極を形成し、ダイオードを作製した場合に、単位面積あたりの低容量のバラクターダイオードを得ることが困難であるということである。具体的には、図5では、1.5×10−7(F/cm)、本実施形態では、5×10−8(F/cm)と単位面積あたりの容量が大きい。このことは、低容量のバラクターを得るには、デバイス面積を小さくする必要があるということであるが、作製が困難になる。また、n−GaAs層803の膜厚は、0.25μmと薄いため、耐圧も低く、空乏層も伸びないため、容量変化も小さくなるからである。
【0058】
なお、この実施形態では、伝送線路CPを、コプレーナ線路としたが、マイクロストリップ線路としてもよい。また、Auメッキを用いて伝送線路CPを形成したが、Cuメッキを用いてコスト低減を図ることもできる。
【0059】
また、この実施形態では、伝送線路としてコプレーナ線路を採用したが、特に、ミリ波帯においては、NRD(ノン・ラジエイティブ・ダイエレクトリック)ガイドを採用することで、コプレーナ線路やマイクロストリップ線路に比べて、低損失の伝送線路となり、性能低下を防止できる。
【0060】
また、この第1実施形態の製造工程においては、伝送線路CPが断線しないように、各デバイスの段差部STにレジスト110を形成してリフローしたが、レジスト110のリフローに代えて、図4に示すように、ポリイミド,ベンゾシクロブテン,スピンオングラス等の平坦化膜114を塗布,形成してもよい。
【0061】
この場合、各電極107,108,111,109上に、コンタクトホールマスクを形成した後に、平坦化膜114をドライエッチングによって加工し、コンタクトホールを形成する。その後、各電極107,108,111,109から導電性膜112とAu膜113からなる伝送線路CPを引出し、平坦化膜114上に伝送線路CPを形成することもできる。また、この場合、コンタクトホールマスクを平坦化膜114上に形成するので、1μm以下のフォトリソグラフィが容易となり、微細なコンタクトホールを形成できる。したがって、各デバイスサイズを微細化できる。
【0062】
また、上記第1実施形態では、カソード構造として、AlGaAsを用いたヘテロ構造を用いたが、InGaPを用いてもよい。このInGaPは、AlGaAsに比べて、選択エッチングを容易にできる。また、この選択エッチングにおいて、塩酸系のエッチャントを用いると選択比の高いエッチングを行える。
【0063】
また、上記実施形態では、GaAs/AlGaAs系の半導体を用いたが、その他の負性抵抗を発生する半導体を用いてもよい。例えば、InP/InGaAs系半導体を用いると、GaAs/AlGaAs系に比ベて、高周波でのガンダイオードの効率等の特性が向上する。
【0064】
〔第2の実施の形態〕
次に、図3を参照して、この発明の第2実施形態としてのボルテージコントロールオシレータであるミリ波帯発振器を説明する。この第2実施形態は、上記第1実施形態で説明したようにして、同一基板上に作製されたガンダイオードGDとショットキーダイオードSDとを備えている。
【0065】
この第2実施形態は、図1の領域Aに形成されたガンダイオードGDを、発振素子601としており、図1の領域Bに形成されたショットキーダイオードSDをバラクターダイオードとして用いて、可変容量602としている。また、図1の領域Cに形成した伝送線路CPを、インピーダンスZ0が50Ωの出力線路603としている。そして、可変容量602とλ/4長オープンスタブ604を接続し、共振器を構成している。
【0066】
ミリ波帯(30GHz〜90GHz)では、ガンダイオードGDとショットキーダイオードSDを異なるウエハで作製し、実装して、VCO(ボルテージコントロールオシレータ)を構成すると、線路でのロスや実装時のロス(ワイヤボンドのロス等)が大きくなり、Q値が低くなって位相雑音が悪くなる等の性能の低下につながる。
【0067】
したがって、この第2実施形態の発振器では、発振素子であるガンダイオードGDとショットキーダイオードSDとを、同一基板上に作製し、線路間距離を短縮することによって、ロス低減と小型化を達成した。
【0068】
ここで、ショットキーダイオードSDで構成したバラクターダイオードの容量は、上記ショットキーダイオードSDのデバイス面積によっても変更できる。例えば、第1実施形態で用いた活性層103を用いると、デバイス面積が100μm2であり、バイアスがかかっていない状態で、容量が約50(fF)である。このショットキーダイオードSDにバイアスをかけて、空乏層を延ばすことによって、容量をさらに小さくできる。したがって、デバイス面積を大きくすると、容量も面積に比例して大きくなることから、設計時にデバイス面積を考慮することによって、ショットキーダイオードSDからなる可変容量602の可変範囲を、柔軟に変更できる。
【0069】
さらにまた、上記活性層103の濃度を変えることによっても、可変容量602の容量を調整することもできる。この時、活性層103の濃度をカソード界面からアノード界面に向けて勾配をもたせて高くした構造とすることにより、ガンダイオードの特性をそこなわず、容量変化の大きいショットキーを得ることができる。この場合は、ガンダイオードGDの特性を低下させない範囲での調整となる。ちなみに、負性抵抗を有するダイオードの活性層は、ミリ波帯では約2000nmであり、高周波化したバイポーラトランジスタのコレクタ層(500nm)に比べて、膜厚が厚いから、空乏層の広がりが大きい。これにより、ショットキーダイオードをバラクタダイオードとして用いた場合に、可変容量を大きくできる。
【0070】
〔第3の実施の形態〕
次に、図6を参照して、この発明の第3実施形態を説明する。図6(A)に、発振回路910を備えたミリ波送信機の構成を示し、図6(B)に、発振回路920を備えたミリ波受信機の構成を示す。
【0071】
このミリ波送信機(およびミリ波受信機)は、第2実施形態の ボルテージコントロールオシレータからなる発振器901にミキサー902が接続され、このミキサー902にフィルター903が接続され、アンテナ905とフィルタ903との間に、パワーアンプ904(ローノイズアンプ906)が接続されている。
【0072】
このミキサー902は、第1実施形態において、図1の領域Bに形成されたショットキーダイオードSDからなり、上記フィルター903は、第1実施形態において、図1の領域Cに形成された伝送線路CPからなる。
【0073】
ここで、上記ショットキーダイオードSDを形成する際に、エッチングをコントロールして、活性層103の厚みを薄くすることで、さらに高周波特性を向上させることが可能となり、ミキサー902としての性能も高くなる。
【0074】
なお、図6(A)に示す送信機のパワーアンプ904,図6(B)に示す受信機のローノイズアンプ906としては、別途トランジスタを実装する必要があるが、発振器901からのローカル信号が十分に大きければ、パワーアンプ904,ローノイズアンプ906は必要なくなる。これは、ミリ波帯の送信機と受信機をモノリシック化できるということである。
【0075】
なお、ミリ波帯では、発振器901とミキサー902との間の線路の損失が大きい場合に、ミキサー902を大信号動作させることができなくなるという問題が発生する。したがって、同様に、発振素子であるガンダイオードGDとミキサー902を構成するショットキーダイオードSDとを同一基板上に作製することで、上記線路寸法を短縮することは損失の低減に非常に有効である。
【0076】
【発明の効果】
以上より明らかなように、この発明の半導体装置は、負性抵抗を有するダイオード特性を持つエピタキシャル構造の活性層上にショットキー電極が具備された。このため、イオン注入技術やIMPATTダイオードのコンタクト層を利用することなく、高温(600℃)な熱処理(アニール)が不必要なプロセスで、負性抵抗を有するダイオードとショットキーダイオードを同一基板上に集積できる。したがって、エピタキシャル構造の劣化,コンタクト抵抗の劣化といった問題も解消でき、損失低減と小型化を実現できる。
【0077】
また、一実施形態の半導体装置は、上記負性抵抗を有するダイオードと上記ショットキーダイオードとが、伝送線路によって接続されて、同一基板上に集積されているから、発振素子となる負性抵抗ダイオード(ガンダイオード)とショットキーダイオードとを同一基板上に作製して線路寸法を短縮できる。したがって、損失低減に非常に有効である。
【0078】
また、他の実施形態の半導体装置は、上記負性抵抗ダイオードがガンダイオードであることによって、位相雑音の小さい発振素子とショットキーダイオードを同一基板上に集積できる。
【0079】
また、参考例の半導体装置を製造する方法は、負性抵抗を有するダイオード特性を持つエピタキシャル構造のアノードまたはカソードオーミック電極形成用高濃度層をエッチング除去し活性層を露出させ、この活性層上にショットキー電極を形成する。したがって、この実施形態では、低濃度の活性層(例えばn‐GaAs層)にショットキー電極を形成できるから、良好なショットキー特性を得ることができる。
【0080】
また、参考例の半導体装置の製造方法は、カソードオーミック電極形成用高濃度層をエッチング除去して露出させたワイドバンドギャップ層を、選択エッチング除去して活性層を露出させるので、この活性層の厚みをエピタキシャル成長時の厚みで(ウエハ面内で)制御できる。また、ウエハ間での活性層の厚みばらつきも小さくできる。したがって、ショットキーダイオード特性の再現性が得られる。
【0081】
また、参考例の半導体装置の製造方法は、上記負性抵抗ダイオードがガンダイオードであるから、位相雑音の小さい発振素子となるガンダイオードをショットキーダイオードと同一基板上に集積できる。このガンダイオードは、カソード構造としてヘテロ構造を用いることが多いから、活性層の厚みをウエハ面内で制御することができ、ウエハ間での厚みばらつきも小さくすることができる。このことによって、ショットキーダイオード特性の再現性を容易に得ることができる。
【0082】
また、他の実施形態の発振器では、発振素子となる負性抵抗を有するダイオードとショットキーダイオードを同一のウエハで作製して実装したから、線路での損失や実装時の損失(ワイヤボンドの損失等)を小さくできる。したがって、位相雑音が悪くなる等の性能の低下を防ぐことができる。
【0083】
また、一実施形態の発振器は、上記負性抵抗ダイオードがガンダイオードであるから、位相雑音の小さい発振素子を得ることができ、発振器の性能が向上する。
【図面の簡単な説明】
【図1】 この発明の半導体装置の第1実施形態の構造を示す断面図である。
【図2】 図2(A)〜(D)はこの発明の第1実施形態の半導体装置の製造方法を工程順に説明する断面図である。
【図3】 この発明のミリ波帯発振器としての第2実施形態であるボルテージ・コントロール・オシレータの構成図である。
【図4】 上記第1実施形態の変形例の製造プロセスの一工程を説明する断面図である。
【図5】 図5(A)〜(C)は、従来の半導体装置の構造および製造方法を説明する断面図である。
【図6】 図6(A)は、上記第1実施形態を備えた送信機の構成図であり、図6(B)は、上記第1実施形態を備えた受信機の構成図である。
【符号の説明】
101…半絶縁性GaAs基板、
102…オーミック電極形成用高濃度層(n+−GaAs)、
103…活性層(n−GaAs)、
104…カソード層(n−AlXGa1-XAs)、
105…n−AlXGa1-XAs、
106…カソードオーミック電極形成用高濃度層(n+−GaAs)、
107…アノードオーミック電極、108…カソードオーミック電極、
109…ショットキーダイオードのオーミック電極、
110…リフローされたレジスト、111…ショットキー電極形成領域、
112…導電性膜、113…Au膜、114…平坦化膜、CP…伝送線路、
GD…ガンダイオード、SD…ショットキーダイオード、
601…発振素子、602…バラクターダイオード、603…出力線路、
604…λ/4長オープンスタブ、
801…半絶縁性GaAs基板、802…n+−GaAs層、
803…n−GaAs層、804…p−GaAs層、
805…p+−GaAs層、
806…TiW膜、807…Au膜、808…Ti膜、809…Au膜、
810…Ti膜、811…Au膜、901…発振器、902…ミキサー、
903…フイルター、904…パワーアンプ、905…アンテナ、
906…ローノイズアンプ。

Claims (4)

  1. 同一基板上に形成されている第1および第2のダイオードを備え、
    上記第1のダイオードは、
    順に、第1の高濃度ドーピング半導体で作製された第1の半導体層と、低濃度ドーピング半導体で作製された第2の半導体層と、上記低濃度ドーピング半導体よりもワイドバンドギャップである半導体で作製された第3の半導体層と、第2の高濃度ドーピング半導体で作製された第4の半導体層とが積層された第1の半導体積層部と、
    上記第1の半導体層と上記第4の半導体層のそれぞれに形成された電極とを有する負性抵抗ダイオードであり、
    上記第2のダイオードは、
    順に、上記第1の高濃度ドーピング半導体で作製された第5の半導体層と、上記低濃度ドーピング半導体で作製された第6の半導体層とが積層された第2の半導体積層部と、
    上記第5の半導体層と第6の半導体層のそれぞれに形成された電極とを有することを特徴とする半導体装置。
  2. 同一基板上に形成されている第1および第2のダイオードを備え、
    上記第1のダイオードは、
    順に、第1の高濃度ドーピング半導体で作製された第1の半導体層と、低濃度ドーピング半導体で作製された第2の半導体層と、上記低濃度ドーピング半導体よりもワイドバンドギャップである半導体で作製された第3の半導体層と、第2の高濃度ドーピング半導体で作製された第4の半導体層とが積層された第1の半導体積層部と、
    上記第1の半導体層と上記第4の半導体層のそれぞれに形成された電極とを有する負性抵抗ダイオードであり、
    上記第2のダイオードは、
    順に、上記第1の高濃度ドーピング半導体で作製された第5の半導体層と、上記低濃度ドーピング半導体で作製された第6の半導体層と、上記低濃度ドーピング半導体よりもワイドバンドギャップである半導体で作製された第7の半導体層とが積層された第2の半導体積層部と、
    上記第5の半導体層と第7の半導体層のそれぞれに形成された電極とを有することを特徴とする半導体装置。
  3. 請求項1または2に記載の半導体装置において、
    上記負性抵抗ダイオードである第1のダイオードが、ガンダイオードであることを特徴とする半導体装置。
  4. 請求項1乃至3のいずれか1つに記載の半導体装置において、
    上記負性抵抗ダイオードである第1のダイオードを発振素子とし、
    上記第2のダイオードをバラクターダイオードとし、
    上記基板上に伝送線路が形成されていることを特徴とする発振器。
JP2001180097A 2000-07-28 2001-06-14 半導体装置および発振器 Expired - Fee Related JP3962558B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001180097A JP3962558B2 (ja) 2000-07-28 2001-06-14 半導体装置および発振器
US09/915,499 US20020011604A1 (en) 2000-07-28 2001-07-27 Semiconductor device for milliwave band oscillation, fabricating method therefor and oscillator therewith

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000228805 2000-07-28
JP2000-228805 2000-07-28
JP2001180097A JP3962558B2 (ja) 2000-07-28 2001-06-14 半導体装置および発振器

Publications (2)

Publication Number Publication Date
JP2002111098A JP2002111098A (ja) 2002-04-12
JP3962558B2 true JP3962558B2 (ja) 2007-08-22

Family

ID=26596909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001180097A Expired - Fee Related JP3962558B2 (ja) 2000-07-28 2001-06-14 半導体装置および発振器

Country Status (2)

Country Link
US (1) US20020011604A1 (ja)
JP (1) JP3962558B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4648642B2 (ja) * 2004-03-29 2011-03-09 新日本無線株式会社 ガンダイオード
KR100829117B1 (ko) * 2006-12-01 2008-05-14 연세대학교 산학협력단 Cmos 구조의 무선통신 시스템 및 그 제조 방법
CN102544113B (zh) * 2010-12-09 2015-07-29 中国科学院微电子研究所 一种耿氏二极管及其制备方法
TWI512905B (zh) * 2012-06-13 2015-12-11 Win Semiconductors Corp 化合物半導體元件晶圓整合結構
CN108364950B (zh) * 2018-02-11 2020-11-10 中国工程物理研究院电子工程研究所 外延结构及制作GaAs基单管器件和GaAs基片上集成变频电路的方法
CN110350084B (zh) * 2019-06-06 2021-12-21 西北工业大学 一种基于复合散热阳极的GaN平面耿氏二极管及制备方法

Also Published As

Publication number Publication date
US20020011604A1 (en) 2002-01-31
JP2002111098A (ja) 2002-04-12

Similar Documents

Publication Publication Date Title
US5705847A (en) Semiconductor device
US5614743A (en) Microwave integrated circuit (MIC) having a reactance element formed on a groove
EP2080228B1 (en) Single voltage supply pseudomorphic high electron mobility transistor (phemt) power device and process for manufacturing the same
US7419862B2 (en) Method of fabricating pseudomorphic high electron mobility transistor
WO2002031886A1 (en) Monolithically integrated e/d mode hemt and method for fabricating the same
JP3744381B2 (ja) 電界効果型トランジスタ
US11990537B2 (en) Heterojunction bipolar transistor and power amplifier
JP3962558B2 (ja) 半導体装置および発振器
US6278144B1 (en) Field-effect transistor and method for manufacturing the field effect transistor
JP2004241471A (ja) 化合物半導体装置とその製造方法、半導体装置及び高周波モジュール
JP3923260B2 (ja) 半導体装置の製造方法および発振器
JPH0722310A (ja) 半導体集積回路の製造方法
JP2008511980A (ja) 層構造に多段リセスを形成する方法、及び多段リセスゲートを具備した電界効果トランジスタ
JP3658332B2 (ja) 半導体装置およびその製造方法およびミリ波帯通信装置
US7364977B2 (en) Heterojunction bipolar transistor and method of fabricating the same
JP2000299386A (ja) 半導体回路装置及びその製造方法
JP2000223504A (ja) 電界効果型半導体装置およびその製造方法
JP2006186336A (ja) 電界効果トランジスタ及びその製造方法
US6232159B1 (en) Method for fabricating compound semiconductor device
US6100547A (en) Field effect type semiconductor device and method of fabricating the same
JPWO2003067664A1 (ja) 電界効果トランジスタ及びその製造方法
JP3350426B2 (ja) ヘテロ接合バイポーラトランジスタの製造方法
JPH05129345A (ja) マイクロ波集積回路の製造方法
JPH0677255A (ja) 半導体装置の製造方法
JP2001210722A (ja) 半導体装置およびその製造方法並びにミリ波帯発振器およびミリ波帯通信装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees