JP3956675B2 - Capacitor - Google Patents

Capacitor Download PDF

Info

Publication number
JP3956675B2
JP3956675B2 JP2001349903A JP2001349903A JP3956675B2 JP 3956675 B2 JP3956675 B2 JP 3956675B2 JP 2001349903 A JP2001349903 A JP 2001349903A JP 2001349903 A JP2001349903 A JP 2001349903A JP 3956675 B2 JP3956675 B2 JP 3956675B2
Authority
JP
Japan
Prior art keywords
thickness
capacitor
layer
plating
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001349903A
Other languages
Japanese (ja)
Other versions
JP2003151849A5 (en
JP2003151849A (en
Inventor
久芳 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001349903A priority Critical patent/JP3956675B2/en
Publication of JP2003151849A publication Critical patent/JP2003151849A/en
Publication of JP2003151849A5 publication Critical patent/JP2003151849A5/ja
Application granted granted Critical
Publication of JP3956675B2 publication Critical patent/JP3956675B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はコンデンサに関し、より詳細には、誘電体を有機化合物から構成したコンデンサに関する。
【0002】
【従来の技術】
近年、半導体技術の進歩により、通信あるいは情報処理に関する信号周波数が高くなり、10GHzでの研究開発が行なわれるようになってきた。
【0003】
【発明が解決しようとする課題】
従来、蒸着形の誘電体材料として、ポリユリア、多官能アクリレート等が多用されてきたが、いずれも、信号周波数が100MHzを超えると損失角が2%を大きく超え、バイパスフィルターとしての性能が低下し、ほとんど使用できず、新材料が求められていた。そのため、極性基のないジビニルエーテルをモノマーとして用いることが考えられたが、同様に1GHzを越えた領域でtanδが2%を越え、バイパスフィルターとしての性能が出せないことが分った。
【0004】
【課題を解決するための手段】
以上のことから、極性基を含まないジビニル化合物からなモノマを用い、ポリマー化することで、特性に優れた誘電体の形成を図ることにより、上記課題を解消した。
【0005】
具体的には、点対称構造を有する1,6−ジビニルナフタレン、4,4’−ジビニルビフェニル、4,4’−ジビニルジフェニルチオエーテル、4,4’−ジビニルビフェニルエーテルから単独であるいは併用される。
【0006】
【発明の実施の形態】
以下に本発明を実施例に基づき説明する。
【0007】
(実施例1)
図1は、本発明のコンデンサの第一の実施例の断面図であり、図2は部分欠き斜視図である。
【0008】
図1に示したシート状コンデンサは、厚みが50μmの約10cm角のポリイミドシートの両面に厚み10μmの銅めっき層が形成された両面銅張りフレキシブル基板が、基板として用いられ、以下の工程を通して長さが2.0mmで幅が1.2mmであり、そして厚みが約0.1mmである形状となるように製造される。
【0009】
(1)まず、厚みが50μmのポリイミドからなる基板1の両面の全面に銅からなる予備めっき膜が形成される。前記基板1の両面に、ホトレジスト法により、長さが2.0mmで幅が1.2mmである前記コンデンサの設計に合せ、最終的に切断したときのロスを含めた縦と横のピッチで、両面各々異なるパターンとして形成される。即ち、一方の面は、コンデンサの電極としてのめっき電極となるように、そして反対側の面は、プリント配線基板とのはんだ付けあるいは導電ペーストで接続するためのめっき電極となるように、電極として残したい部分にホトレジスト層を形成する。次に塩化第二鉄溶液等で化学エッチング処理を行い、めっき電極を溶解除去した後に、前記ホトレジスト層を剥離し、水洗い洗浄を行い乾燥する。
【0010】
(2)隣り合う素子に対応するパターンで残った銅めっき層の切断予定線、即ち中央部に、切断したときに基板1が破損しない程度の直径が0.6mmの穴を1個ずつ整列させて開け、スルーホール部2を形成し、残った前記スルーホール部2の前記銅めっき層のばりを除去し、洗浄し乾燥する。前記スルーホール部2を開ける方法はドリル、パンチングやレーザーなどの公知の方法が用いられ、前記ばりを除去する方法は化学エッチングや電気エッチング、レーザーそして研磨などの方法が用いられる。
【0011】
(3)前記両面の銅めっき層上を結ぶ前記スルーホール部2の壁面に沿って、めっき方式により、まず銅のめっきを施し、続いてニッケルめっきと金めっきを施し、めっき電極3とめっき電極4が形成され、洗浄し乾燥される。この時、めっき方式は化学めっきや電気めっき方式が好ましい。真空蒸着方式やスパッタ方式では基板1の熱や湿気による伸び縮みによる機械的ストレスにより、スルーホール部が断線したり、腐食が進行したりしやすいためである。
【0012】
(4)そして、下部電極5とめっき電極3の狭い隙間にポリアミック酸をコーティングし、有機溶剤を加熱除去した後、260℃以上に加熱し縮合反応させ完全にポリイミドに変化させ、樹脂埋め部6が形成され、厚みが約10μmのめっきによる段差を1から3μm程度以内に抑えられる。
【0013】
(5)次に、前記基板1の上面に、前記基板のスルーホール部2およびコンタクトホール9を形成する部分に接着層7や膜誘電体層8が付着するのを遮蔽するメタルマスクを接触させ固定し、真空装置内に固定する。前記真空装置は13.3Paの真空度まで真空引きされた後に、酸素ガスを導入し、酸素ガスが雰囲気ガスの99%以上の濃度となるように操作し、0.05Paの真空度を維持させる。続いて、13.56MHzの高周波を印可して、前記基板表面温度が200℃となるまで逆スパッタ処理し表面の湿気あるいは揮発性有機物を除去する。その後、酸素ガスに替えて酸素濃度が10%の窒素ガスを導入し、二酸化シリコンを厚みが5nmとなるように13.56MHzの高周波を印加して高周波スパッタリング法により形成し、接着層7を形成する。その後、スパッタリングのターゲットを1,6−ジビニルナフタレン(化1)に交換し、ターゲット表面温度が120℃以下を維持するよう冷却しながら高周波スパッタリング法により厚みが1.5μmの誘電体膜6を形成する。この後、大気中に取出し、窒素雰囲気中で100℃から300℃まで昇温させ、最終的に前記1,6−ジビニルナフタレン同志が完全にポリマー化されるのと酸化シリコンとポリマーの末端ビニル基を反応させる。
【0014】
【化1】

Figure 0003956675
【0015】
(6)そして、前記接着層7が形成されていないめっき電極3の真上に、径が約0.1mmで円状の2個ずつ***を開けた厚みが0.1mmの金属製のマスクの位置が合うようにし、かつ前記膜誘電体8から距離を10μm離し、固定する。前記マスクの位置を膜誘電体層8に対して一定速度で移動させるためスクリューネジで移動する台にシールされたパルスモーターと接続する。その状態で真空度が約1Paで酸素分圧が20%の雰囲気中で高周波プラズマを発生させ得られたプラズマ流を前記金属製のマスクの***を通してプラズマ流を拡散透過させ、一定時間後に前記マスクが68μmずれるように前記パルスモーターを駆動し、傾斜角度が1度のコンタクトホール9を得た。このとき、プラズマのパワーを増加すると、形成のための時間は反比例して短くなるので前記パルスモーターの駆動速度は速くする必要がある。コンタクトホール9を形成した後、酸素ガスのリークを停止し、基板1を加熱し、反応生成物を真空乾燥し、その後冷却して大気中に取出す。
【0016】
(7)次にコンタクトホールを隠す金属マスクに切り替え、(5)と同様の条件で二酸化ケイ素の厚み約5nmの金属酸化物層10を形成し大気中に取出す。続いてコンタクトホール9を含む上部電極11を形成するための金属マスクを膜誘電体層8に密着させ、真空度が0.05Paのアルゴン下でアルミニウムの厚み約100nmの上部電極10を形成し、大気中に取出す。
【0017】
(8)この後、全面にスチレンとブタジエンを重量比で1対1に配合し、有機過酸化物を1%添加した塗料を塗布し硬化後、さらに全面に、ジシクロペンタジエンジメタノールジアクリレートを主成分とし、ベンゾインイソプロピルエーテルを3%溶解した紫外線硬化性塗料を平均厚み10μmで塗布し紫外線硬化後に、さらに保護層12を形成する。保護層の形成方法は、真空蒸着方式やグラビアコーティング方式、インクジェット方式、スキージー方式等の方法が利用できる。
【0018】
(9)そして、次に試験台に基板を固定し、裏面のめっき電極にテスト端子を当て、静電容量、損失角、Q値、共振周波数、絶縁抵抗等の必要な電気特性の検査を行う。この時、基準静電容量値に対して±2%の精度のコンデンサが必要な時があり、その場合、静電容量を計測しながら反対面からレーザー光線をレンズで絞って集束光をスキャンし、高精度の静電容量を得るために上部電極11のトリミングを実施する。一般的には、プリント配線基板に組込み後にレーザートリミングを行うことが多い。この時同時に実使用周波数でのQ値が確認される。
【0019】
(10)前記電気特性検査後に基板1の前記コンデンサの形状単位に切断し、外観検査を行った後にテーピング包装されてコンデンサが完成する。基板の切断時に過度の力を加えると電気特性を損なったり、めっき電極の変形やばりの発生が生じ、好ましくない。切断は常に基板の一方向から切断刃を入れ、反対面には受け台を設ける必要がある。さらには切断刃の侵入角度は大きいほどめっき電極にゆがみが生じ易く、45度以下の浅い角度が好ましい。以上の方法で長さ2.0mm、幅1.2mm、厚み約0.1mmで、定格電圧が16Vで10GHzでの静電容量が2pF、損失角が0.006、絶縁抵抗100TΩのコンデンサを製造した。
【0020】
(実施例2)
モノマは、石油留分から精密蒸留された室温で固体の1,6−ジビニルナフタレン(化2)からなるモノマを厚みが5cmに真空中で加圧成型して得たターゲットを−20℃の冷媒で冷却し、0.05Paの窒素雰囲気中で13.56MHzの高周波を印加し、ターゲット表面温度を10℃以下となるように制御し窒素プラズマの再結合部でターゲットを加熱することにより、一定量のレートでモノマを気化させる。
【0021】
【化2】
Figure 0003956675
【0022】
そして気化されたモノマは窒素プラズマ中を通過する際に励起され、一部がラジカル化し、回転する基板に付着し、重合が進行した厚みが0.1μmの誘電体層である有機薄膜31が形成される。続いて、有機薄膜31の表面に加速電圧15kVでエミッション電流が1.5Aの電子線流の電子線から散乱された散乱電子線の一部を取出し、前記有機薄膜31の表面を付着させる面に照射し、電子線重合処理される。
【0023】
次に沸点が150℃〜290℃の範囲のテトラフルオロエチレングリコールとヘキサフルオロプロピレングリコールを重合して得たパーフルオロアルキルエーテルを厚み約70nmで幅0.2mmの帯状に蒸着しオイルマージン部32を形成し、続いて直ちにアルミニウムを厚み30nmで真空蒸着しオイルマージン部で途切れた金属蒸着膜34と35を形成した後、続いて赤外線ヒーターで加熱し、表面温度を高くして再蒸発と加熱分解を生じさせて残留オイル膜の厚みを0〜20nmまで低減させた残留オイル膜33を形成する。
【0024】
前記電子線硬化有機薄膜の二重結合の95%を二重結合同士で反応させ、極表面部の5%の二重結合は酸素プラズマにさらし、酸素とビニル基とをラジカル反応させた。次に積層が保護層42の間は、次のオイルマージン部の位置は同じ位置となるように制御され、所定の積層数だけ繰り返した後、オイルマージン位置を対向幅の分だけ約0.8mmずらし、以降、一層毎にずらし続けて素子層43を形成し、次に先の保護層42を形成した時のオイルマージン位置とは対向幅の分だけずらした位置で残りの保護層42を形成し、最後の層は有機薄膜を形成して止める。
【0025】
このようにして、オイルマージンの位置が積層方向に揃い、一方の保護層の面には積層体の厚みに対し、10%の凹み部37を形成した。またこのとき、二つの保護層の厚みはそれぞれ、0.1mmとし、オイルマージン部から0.2mm外側まではすべての層に金属蒸着膜が形成されかつ、すべての層の有機薄膜層の断面は50μm以内の凸凹の中に揃えた。
【0026】
そして100℃から300℃まで昇温加熱し、重合反応を完了させ、架橋反応を完成させた。その後、その断面から、金属蒸着膜が1μm以上突き出しかつその裏面に酸素とラジカル反応した末端基が反応して取り込まれて接着し、突き出した先端部では厚みが薄くなり先端部での厚みが0μmである有機薄膜とからなる構造となるように、スパッタエッチングあるいは酸素プラズマエッチングを施した。次に、真鍮をアーク溶射法により、真鍮の微粒子を高速で吹き付け、前記積層体の断面から突き出た金属蒸着膜を上下左右に変形させ、前記微粒子を強く食い込ませ厚みが0.1mmとなるように形成した。
【0027】
そして、前記有機薄膜の第一の辺と同じ面である前記電極引出し層の側面を除いた目視可能な表面と、前記有機薄膜の第二の辺から内側の約0.2mmの位置の領域までわたり、銅とニッケルと銀の比率が100対40対3の比率にある、少なくとも粒径が1〜50μmの範囲内で平均粒径が20μmの分布を有する銅とニッケルの合金で上に銀がめっきされた粒子と熱硬化性フェノール樹脂からなり、前記導電性材料層の内側と外側は5mΩ以下で導通させた厚み0.2mmの導電性材料層を形成し、さらにその上に、錫が80%以上で鉛が含まれない溶融はんだめっきを厚み0.02mmで、前記導電性材料層の一対の断面以外の目視可能な表面に形成した。
【0028】
この縦2.5mm、横3.2mm、高さ2.1mmで、静電容量が1.0μFの有機薄膜コンデンサを100個を作った結果、コンデンサとしての電極が対向する部分に相当する積層方向での厚みのむらが±5%以内の極めて均一な有機薄膜が得られ、100kHzにおける損失角が全数0.001と非常に特性がすぐれた結果を得た。また、誘電体や金属蒸着膜厚みの配置を最適化することで、静電容量が2pFで10GHzの損失角が0.013と非常に特性がすぐれた結果を得た。
【0029】
(実施例3)
実施例1において、モノマとして、4,4’−ジビニルビフェニル(化3)を用いて製造した結果、長さ2.0mm、幅1.2mm、厚み約0.1mmで、定格電圧が16Vで10GHzでの静電容量が20pF、損失角が0.004、絶縁抵抗100TΩのコンデンサが得られた。
【0030】
【化3】
Figure 0003956675
【0031】
(実施例4)
実施例1において、モノマとして、1,4−ジビニルベンゼン(化4)を用いて製造した結果、長さ2.0mm、幅1.2mm、厚み約0.1mmで、定格電圧が16Vで10GHzでの静電容量が2pF、損失角が0.010、絶縁抵抗100TΩのコンデンサが得られた。
【0032】
【化4】
Figure 0003956675
【0033】
(実施例5)
実施例1において、モノマとして、4,4’−ジビニルジフェニルチオエーテル(化5)を用いて製造した結果、長さ2.0mm、幅1.2mm、厚み約0.1mmで、定格電圧が16Vで10GHzでの静電容量が2pF、損失角が0.0010、絶縁抵抗100TΩのコンデンサが得られた。
【0034】
【化5】
Figure 0003956675
【0035】
(実施例6)
実施例1において、モノマとして、4,4’−ジビニルジフェニルエーテル(化6)を用いて製造した結果、長さ2.0mm、幅1.2mm、厚み約0.1mmで、定格電圧が16Vで10GHzでの静電容量が2pF、損失角が0.012、絶縁抵抗100TΩのコンデンサが得られた。
【0036】
【化6】
Figure 0003956675
【0037】
(従来例1)
実施例1において、モノマとして、トリシクロデカンジメタノールジアクリレート(化7)を用いて製造した結果、長さ2.0mm、幅1.2mm、厚み約0.1mmで、定格電圧が16Vで10GHzでの静電容量が2pF、損失角が0.089、絶縁抵抗100TΩのコンデンサが得られた。
【0038】
【化7】
Figure 0003956675
【0039】
(従来例2)
実施例1において、膜誘電体として市販の二軸延伸ポリフェニレンサルファイドフィルムを貼って製造した結果、長さ2.0mm、幅1.2mm、厚み約0.1mmで、定格電圧が16Vで10GHzでの静電容量が2pF、損失角が0.025、絶縁抵抗100TΩのコンデンサが得られた。
【0040】
【発明の効果】
点対称構造を有する1,6−ジビニルナフタレンをモノマーとして用い、電子線と熱を併用して厚み0.1μmの誘電体膜を形成することにより、無外装でも連続105℃での酸化分解反応がなく、熱変形温度は260℃以上であり、雰囲気温度が0℃から60℃において、10GHz以下での損失角は0.4%で1MHz以下では損失角が0.1%以下となり、耐電圧が150V/μmの誘電体膜が得られるようになった。このため、低容量のシート状キャパシタでは、100MHz以上でのバイパスコンデンサが、容量の大きい積層コンデンサでは、セラミックコンデンサのC特性と同等のコンデンサが安価に提供できるようになった。また高耐熱性のため、鉛フリー対応のチップ部品として使用できることはもとより、柔軟性に富むために耐屈曲性に優れ、さらに耐薬品性や耐湿性にも優れたコンデンサが得られるようになった。
【図面の簡単な説明】
【図1】本発明のコンデンサの第1の実施例の断面図
【図2】本発明のコンデンサの第1の実施例の部分断面斜視図
【図3】本発明のコンデンサの第2の実施例の断面図
【符号の説明】
1:基板
2:スルーホール部
3:めっき電極
4:めっき電極
5:下部電極
6:樹脂埋め部
7:接着層
8:膜誘電体層
9:コンタクトホール
10:金属酸化物層
11:上部電極
12:保護層
21:スルーホール部
22:めっき電極
23:めっき電極
24:下部電極
25:膜誘電体層
26:コンタクトホール
31:有機薄膜
32:オイルマージン部
33:残留オイル部
34:金属蒸着膜
35:金属蒸着膜
36:オイルマージン部
37:有機薄膜
38:金属蒸着膜
39:金属蒸着膜
40:オイルマージン部
41:第1の辺
42:保護層
43:素子層
44:電極引出し層
45:導電性材料層
46:電極接続層
47:凹み部
48:突き出し部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a capacitor, and more particularly to a capacitor having a dielectric made of an organic compound.
[0002]
[Prior art]
In recent years, with the advance of semiconductor technology, the signal frequency related to communication or information processing has increased, and research and development at 10 GHz has been carried out.
[0003]
[Problems to be solved by the invention]
Conventionally, polyurea, polyfunctional acrylate, etc. have been frequently used as vapor-deposited dielectric materials. However, when the signal frequency exceeds 100 MHz, the loss angle greatly exceeds 2%, and the performance as a bypass filter decreases. It was almost impossible to use, and new materials were demanded. For this reason, it was considered that divinyl ether having no polar group was used as a monomer. Similarly, it was found that tan δ exceeded 2% in a region exceeding 1 GHz, and performance as a bypass filter could not be obtained.
[0004]
[Means for Solving the Problems]
In view of the above, the above-mentioned problems have been solved by forming a dielectric having excellent characteristics by polymerizing a monomer made of a divinyl compound not containing a polar group.
[0005]
Specifically, 1,6-divinylnaphthalene, 4,4′-divinylbiphenyl, 4,4′-divinyldiphenylthioether, and 4,4′-divinylbiphenyl ether having a point-symmetric structure are used alone or in combination.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below based on examples.
[0007]
Example 1
FIG. 1 is a cross-sectional view of a first embodiment of the capacitor of the present invention, and FIG. 2 is a partially cutaway perspective view.
[0008]
The sheet-like capacitor shown in FIG. 1 uses a double-sided copper-clad flexible substrate in which a copper plating layer having a thickness of 10 μm is formed on both sides of an approximately 10 cm square polyimide sheet having a thickness of 50 μm. Is 2.0 mm, the width is 1.2 mm, and the thickness is about 0.1 mm.
[0009]
(1) First, a preliminary plating film made of copper is formed on the entire surface of both surfaces of a substrate 1 made of polyimide having a thickness of 50 μm. According to the design of the capacitor having a length of 2.0 mm and a width of 1.2 mm on both surfaces of the substrate 1 by a photoresist method, at a vertical and horizontal pitch including a loss when finally cut, Both sides are formed as different patterns. That is, one surface is a plating electrode as a capacitor electrode, and the other surface is a plating electrode for soldering to a printed wiring board or connecting with a conductive paste. A photoresist layer is formed on the portion to be left. Next, a chemical etching process is performed with a ferric chloride solution or the like to dissolve and remove the plating electrode, and then the photoresist layer is peeled off, washed with water, washed and dried.
[0010]
(2) The copper plating layer remaining in a pattern corresponding to the adjacent element is cut, that is, in the center, holes each having a diameter of 0.6 mm so that the substrate 1 is not damaged when being cut are aligned one by one. The through-hole part 2 is formed, and the flash of the copper plating layer of the remaining through-hole part 2 is removed, washed and dried. A known method such as drilling, punching or laser is used as a method for opening the through-hole portion 2, and a method such as chemical etching, electric etching, laser or polishing is used as a method for removing the flash.
[0011]
(3) Along with the wall surface of the through-hole part 2 connecting the copper plating layers on both sides, first, copper is plated by a plating method, and then nickel plating and gold plating are performed. 4 is formed, washed and dried. At this time, the plating method is preferably chemical plating or electroplating. This is because, in the vacuum deposition method or the sputtering method, the through-hole portion is easily disconnected or the corrosion progresses due to mechanical stress due to expansion or contraction due to heat or moisture of the substrate 1.
[0012]
(4) The polyamic acid is coated in a narrow gap between the lower electrode 5 and the plating electrode 3 and the organic solvent is removed by heating, and then heated to 260 ° C. or higher to undergo a condensation reaction to completely change to polyimide, and the resin filling portion 6 Is formed, and a step difference due to plating having a thickness of about 10 μm can be suppressed to within about 1 to 3 μm.
[0013]
(5) Next, a metal mask that shields the adhesion layer 7 and the film dielectric layer 8 from adhering to the surface of the substrate 1 where the through hole portion 2 and the contact hole 9 are formed is brought into contact with the upper surface of the substrate 1. Secure and secure in a vacuum device. The vacuum device is evacuated to a vacuum level of 13.3 Pa, and then introduced with oxygen gas, and is operated so that the oxygen gas has a concentration of 99% or more of the atmospheric gas to maintain a vacuum level of 0.05 Pa. . Subsequently, a high frequency of 13.56 MHz is applied, and reverse sputtering treatment is performed until the substrate surface temperature reaches 200 ° C. to remove moisture or volatile organic substances on the surface. Thereafter, nitrogen gas having an oxygen concentration of 10% is introduced instead of oxygen gas, and silicon dioxide is formed by high frequency sputtering so as to have a thickness of 5 nm so as to have a thickness of 5 nm. To do. Thereafter, the sputtering target is replaced with 1,6-divinylnaphthalene (Chemical Formula 1), and a dielectric film 6 having a thickness of 1.5 μm is formed by a high-frequency sputtering method while cooling so that the target surface temperature is maintained at 120 ° C. or lower. To do. Thereafter, it is taken out into the air, heated from 100 ° C. to 300 ° C. in a nitrogen atmosphere, and finally the 1,6-divinylnaphthalene is completely polymerized and silicon oxide and the terminal vinyl group of the polymer. React.
[0014]
[Chemical 1]
Figure 0003956675
[0015]
(6) Then, a metal mask having a thickness of 0.1 mm in which two small circular holes each having a diameter of about 0.1 mm are formed directly above the plating electrode 3 on which the adhesive layer 7 is not formed. The positions are matched and the film dielectric 8 is fixed at a distance of 10 μm. In order to move the position of the mask with respect to the film dielectric layer 8 at a constant speed, the mask is connected to a pulse motor sealed on a stage that is moved by a screw. In this state, the plasma flow obtained by generating high-frequency plasma in an atmosphere having a degree of vacuum of about 1 Pa and an oxygen partial pressure of 20% is diffused and transmitted through the small holes of the metal mask, and after a certain time, the mask The pulse motor was driven so as to shift by 68 μm, and a contact hole 9 having an inclination angle of 1 degree was obtained. At this time, if the plasma power is increased, the time required for the formation is reduced in inverse proportion, so the driving speed of the pulse motor needs to be increased. After the contact hole 9 is formed, oxygen gas leakage is stopped, the substrate 1 is heated, the reaction product is vacuum-dried, and then cooled and taken out into the atmosphere.
[0016]
(7) Next, switch to a metal mask that hides the contact hole, and form a metal oxide layer 10 having a thickness of about 5 nm of silicon dioxide under the same conditions as in (5) and take it out to the atmosphere. Subsequently, a metal mask for forming the upper electrode 11 including the contact hole 9 is brought into close contact with the film dielectric layer 8 to form an upper electrode 10 having an aluminum thickness of about 100 nm under argon having a vacuum degree of 0.05 Pa, Remove to atmosphere.
[0017]
(8) After that, blend styrene and butadiene in a weight ratio of 1: 1 on the entire surface, apply paint with 1% organic peroxide added, cure, and then add dicyclopentadiene dimethanol diacrylate to the entire surface. An ultraviolet curable coating material containing 3% benzoin isopropyl ether as a main component is applied with an average thickness of 10 μm, and after UV curing, a protective layer 12 is further formed. As a method for forming the protective layer, a vacuum deposition method, a gravure coating method, an ink jet method, a squeegee method, or the like can be used.
[0018]
(9) Next, fix the substrate on the test stand, apply the test terminal to the plating electrode on the back, and inspect the necessary electrical characteristics such as capacitance, loss angle, Q value, resonance frequency, insulation resistance, etc. . At this time, a capacitor with accuracy of ± 2% relative to the reference capacitance value is sometimes required. In that case, the laser beam is squeezed with a lens from the opposite side while measuring the capacitance, and the focused light is scanned. Trimming of the upper electrode 11 is performed to obtain a highly accurate capacitance. In general, laser trimming is often performed after incorporation into a printed wiring board. At the same time, the Q value at the actual frequency used is confirmed.
[0019]
(10) After the electrical characteristic inspection, the substrate 1 is cut into shape units of the capacitor, subjected to appearance inspection, and then taped and packaged to complete the capacitor. If an excessive force is applied at the time of cutting the substrate, the electrical characteristics are impaired, and the plating electrode is deformed or flashed, which is not preferable. For cutting, it is necessary to always insert a cutting blade from one direction of the substrate and to provide a cradle on the opposite surface. Furthermore, the larger the penetration angle of the cutting blade is, the more easily the plating electrode is distorted, and a shallow angle of 45 degrees or less is preferable. By the above method, a capacitor having a length of 2.0 mm, a width of 1.2 mm, a thickness of about 0.1 mm, a rated voltage of 16 V, a capacitance at 10 GHz of 2 pF, a loss angle of 0.006, and an insulation resistance of 100 TΩ was manufactured.
[0020]
(Example 2)
The monomer is a target obtained by pressure-molding a monomer consisting of 1,6-divinylnaphthalene (chemical formula 2), which is precisely distilled from petroleum fractions, at room temperature in a vacuum of 5 cm with a -20 ° C refrigerant. By cooling, applying a high frequency of 13.56 MHz in a nitrogen atmosphere of 0.05 Pa, controlling the target surface temperature to be 10 ° C. or less, and heating the target at the recombination part of nitrogen plasma, a certain amount of Vaporize the monomer at the rate.
[0021]
[Chemical 2]
Figure 0003956675
[0022]
The vaporized monomer is excited when it passes through the nitrogen plasma, a part thereof is radicalized, adheres to the rotating substrate, and the organic thin film 31 is formed as a dielectric layer having a thickness of 0.1 μm where polymerization has progressed. Is done. Subsequently, a part of the scattered electron beam scattered from the electron beam of the electron beam current with an acceleration voltage of 15 kV and an emission current of 15 A is taken out on the surface of the organic thin film 31, and the surface of the organic thin film 31 is attached to the surface. Irradiated and electron beam polymerized.
[0023]
Next, perfluoroalkyl ether obtained by polymerizing tetrafluoroethylene glycol and hexafluoropropylene glycol having a boiling point in the range of 150 ° C. to 290 ° C. is vapor-deposited in a strip shape having a thickness of about 70 nm and a width of 0.2 mm. Next, aluminum is immediately vacuum-deposited with a thickness of 30 nm to form metal vapor-deposited films 34 and 35 which are interrupted at the oil margin, followed by heating with an infrared heater, raising the surface temperature, and re-evaporation and thermal decomposition. To form a residual oil film 33 in which the thickness of the residual oil film is reduced to 0 to 20 nm.
[0024]
95% of the double bonds of the electron beam cured organic thin film were reacted with each other, and 5% of the double bonds on the extreme surface portion were exposed to oxygen plasma to cause radical reaction between oxygen and vinyl groups. Next, while the lamination is between the protective layers 42, the position of the next oil margin portion is controlled to be the same position, and after repeating a predetermined number of laminations, the oil margin position is about 0.8 mm corresponding to the opposing width. After that, the element layer 43 is formed by continuing the shifting for each layer, and the remaining protective layer 42 is formed at a position shifted by the opposite width from the oil margin position when the previous protective layer 42 is formed. Then, the last layer is stopped by forming an organic thin film.
[0025]
In this way, the positions of the oil margins were aligned in the stacking direction, and a 10% recess 37 was formed on the surface of one protective layer with respect to the thickness of the stack. At this time, the thicknesses of the two protective layers are each 0.1 mm, metal deposited films are formed on all layers from the oil margin part to the outside of 0.2 mm, and the cross sections of the organic thin film layers of all the layers are Aligned within unevenness within 50 μm.
[0026]
And it heated up from 100 degreeC to 300 degreeC, the polymerization reaction was completed, and the crosslinking reaction was completed. Thereafter, from the cross section, the metal vapor deposition film protrudes by 1 μm or more, and the end group that has reacted with oxygen on the back surface reacts and is taken in and bonded, and the protruding tip part becomes thin and the tip part has a thickness of 0 μm. Sputter etching or oxygen plasma etching was performed so as to obtain a structure composed of an organic thin film. Next, brass is sprayed at a high speed by an arc spraying method, and the metal vapor deposition film protruding from the cross section of the laminate is deformed vertically and horizontally, so that the fine particles are entrapped and the thickness becomes 0.1 mm. Formed.
[0027]
And from the second side of the organic thin film to the region about 0.2 mm inside from the visible side except the side surface of the electrode lead layer that is the same surface as the first side of the organic thin film On the other hand, the ratio of copper, nickel and silver is in a ratio of 100: 40: 3, and an alloy of copper and nickel having a distribution of at least a particle diameter of 1 to 50 μm and an average particle diameter of 20 μm is formed with silver on the top. A conductive material layer having a thickness of 0.2 mm formed of plated particles and a thermosetting phenol resin and having a conductivity of 5 mΩ or less on the inner side and the outer side of the conductive material layer is formed. A molten solder plating containing 0.02% or more of lead and having a thickness of 0.02 mm was formed on a visible surface other than the pair of cross sections of the conductive material layer.
[0028]
As a result of making 100 organic thin film capacitors having a length of 2.5 mm, a width of 3.2 mm, a height of 2.1 mm, and a capacitance of 1.0 μF, the stacking direction corresponding to the portion where the electrodes as the capacitors face each other An extremely uniform organic thin film with a thickness variation of ± 5% or less was obtained, and the loss angle at 100 kHz was 0.001 in total, and the characteristics were very good. In addition, by optimizing the arrangement of the dielectric and metal deposited film thickness, the electrostatic capacity was 2 pF and the loss angle at 10 GHz was 0.013.
[0029]
(Example 3)
In Example 1, as a monomer, it was manufactured using 4,4′-divinylbiphenyl (Chemical Formula 3). As a result, the length was 2.0 mm, the width was 1.2 mm, the thickness was about 0.1 mm, the rated voltage was 16 V, and 10 GHz. A capacitor having a capacitance of 20 pF, a loss angle of 0.004, and an insulation resistance of 100 TΩ was obtained.
[0030]
[Chemical 3]
Figure 0003956675
[0031]
Example 4
In Example 1, as a monomer, it was manufactured using 1,4-divinylbenzene (Chemical Formula 4). As a result, the length was 2.0 mm, the width was 1.2 mm, the thickness was about 0.1 mm, the rated voltage was 16 V, and the frequency was 10 GHz. A capacitor with a capacitance of 2 pF, a loss angle of 0.010, and an insulation resistance of 100 TΩ was obtained.
[0032]
[Formula 4]
Figure 0003956675
[0033]
(Example 5)
In Example 1, as a monomer, it was produced using 4,4′-divinyldiphenylthioether (Chemical Formula 5). As a result, the length was 2.0 mm, the width was 1.2 mm, the thickness was about 0.1 mm, and the rated voltage was 16V. A capacitor with a capacitance of 2 pF at 10 GHz, a loss angle of 0.0010, and an insulation resistance of 100 TΩ was obtained.
[0034]
[Chemical formula 5]
Figure 0003956675
[0035]
(Example 6)
In Example 1, as a monomer, it was produced using 4,4′-divinyldiphenyl ether (Chemical Formula 6). As a result, the length was 2.0 mm, the width was 1.2 mm, the thickness was about 0.1 mm, the rated voltage was 16 V, and 10 GHz. A capacitor with a capacitance of 2 pF, a loss angle of 0.012, and an insulation resistance of 100 TΩ was obtained.
[0036]
[Chemical 6]
Figure 0003956675
[0037]
(Conventional example 1)
In Example 1, as a monomer, it was produced using tricyclodecane dimethanol diacrylate (Chemical Formula 7). As a result, the length was 2.0 mm, the width was 1.2 mm, the thickness was about 0.1 mm, the rated voltage was 16 V, and 10 GHz. A capacitor having a capacitance of 2 pF, a loss angle of 0.089, and an insulation resistance of 100 TΩ was obtained.
[0038]
[Chemical 7]
Figure 0003956675
[0039]
(Conventional example 2)
In Example 1, as a film dielectric, a commercially available biaxially stretched polyphenylene sulfide film was applied, resulting in a length of 2.0 mm, a width of 1.2 mm, a thickness of about 0.1 mm, a rated voltage of 16 V, and 10 GHz. A capacitor with a capacitance of 2 pF, a loss angle of 0.025, and an insulation resistance of 100 TΩ was obtained.
[0040]
【The invention's effect】
By using 1,6-divinylnaphthalene having a point-symmetric structure as a monomer and forming a dielectric film having a thickness of 0.1 μm by using both electron beam and heat, an oxidative decomposition reaction at 105 ° C. can be continuously performed even without an exterior. The heat distortion temperature is 260 ° C. or higher, the loss angle at 10 GHz or lower is 0.4% when the ambient temperature is 0 ° C. to 60 ° C., the loss angle is 0.1% or lower at 1 MHz or lower, and the withstand voltage is A dielectric film of 150 V / μm can be obtained. For this reason, a low-capacity sheet capacitor can provide a bypass capacitor at 100 MHz or higher, and a large-capacity multilayer capacitor can provide a capacitor equivalent to the C characteristic of a ceramic capacitor at low cost. In addition, because of its high heat resistance, it can be used as a lead-free chip component, and since it is flexible, it has excellent bending resistance and also has excellent chemical and moisture resistance.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a first embodiment of the capacitor of the present invention. FIG. 2 is a partial cross-sectional perspective view of the first embodiment of the capacitor of the present invention. Sectional view of [Figure]
1: Substrate 2: Through hole portion 3: Plating electrode 4: Plating electrode 5: Lower electrode 6: Resin buried portion 7: Adhesive layer 8: Film dielectric layer 9: Contact hole 10: Metal oxide layer 11: Upper electrode 12 : Protection layer 21: Through hole 22: Plating electrode 23: Plating electrode 24: Lower electrode 25: Film dielectric layer 26: Contact hole 31: Organic thin film 32: Oil margin part 33: Residual oil part 34: Metal vapor deposition film 35 : Metal vapor deposition film 36: oil margin portion 37: organic thin film 38: metal vapor deposition film 39: metal vapor deposition film 40: oil margin portion 41: first side 42: protective layer 43: element layer 44: electrode lead layer 45: conductive Material layer 46: electrode connection layer 47: recessed portion 48: protruding portion

Claims (1)

極性基を含まないジビニル化合物をポリマー化してなる誘電体を有し、前記ジビニル化合物が点対称構造を有する1,6−ジビニルナフタレン、4,4’−ジビニルビフェニル、4,4’−ジビニルジフェニルチオエーテル、および4,4’−ジビニルビフェニルエーテルからなる群から選択されるコンデンサ。The divinyl compound containing no polar group have a dielectric body formed by polymerization, the divinyl compound has a point symmetrical structure 1,6-vinyl naphthalene, 4,4'-divinyl-biphenyl, 4,4'-divinyl diphenyl thioether And a capacitor selected from the group consisting of 4,4′-divinylbiphenyl ether .
JP2001349903A 2001-11-15 2001-11-15 Capacitor Expired - Fee Related JP3956675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001349903A JP3956675B2 (en) 2001-11-15 2001-11-15 Capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001349903A JP3956675B2 (en) 2001-11-15 2001-11-15 Capacitor

Publications (3)

Publication Number Publication Date
JP2003151849A JP2003151849A (en) 2003-05-23
JP2003151849A5 JP2003151849A5 (en) 2005-07-14
JP3956675B2 true JP3956675B2 (en) 2007-08-08

Family

ID=19162505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001349903A Expired - Fee Related JP3956675B2 (en) 2001-11-15 2001-11-15 Capacitor

Country Status (1)

Country Link
JP (1) JP3956675B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4853193B2 (en) * 2005-09-12 2012-01-11 パナソニック株式会社 Metallized film capacitors

Also Published As

Publication number Publication date
JP2003151849A (en) 2003-05-23

Similar Documents

Publication Publication Date Title
JP6225125B2 (en) Coated electrical assemblies
US5547508A (en) Vacuum deposition and curing of liquid monomers apparatus
JP3070607U (en) Wound capacitor
US6576523B1 (en) Layered product, capacitor and a method for producing the layered product
US8614875B2 (en) Anchor group for monolayers of organic compounds on metal and component produced therewith by means of organic electronics
KR20010114238A (en) Vacuum deposition and curing of oligomers and resins
CN105075408A (en) Coated electrical assembly
EP0339844A2 (en) Multi layer structure and process for making same
JP3956675B2 (en) Capacitor
CN207382679U (en) Capacitance and bury condenser network plate
JP5057067B2 (en) Film for metallized capacitor and capacitor using the same
JPH11147272A (en) Laminate, capacitor, and production of laminate
JP4101241B2 (en) Capacitor including end face electrode layer formed by sputtering and method for manufacturing the same
JP7452534B2 (en) Powder dispersion liquid, method for manufacturing powder dispersion liquid, and method for manufacturing resin-coated substrate
JPH0629147A (en) Laminate for laminated film capacitor
JP2004006495A (en) Stacked film capacitor and its manufacturing method
JPH01171856A (en) Metallized film
KR960002554B1 (en) A method of forming laminate structure for flexibile p.c.b.
KR790001804B1 (en) Insulating film,sheet,or plate material with metallic coating and manufacturing method
JPH10321464A (en) Manufacture of capacitor
JP2004014584A (en) Surface-treated metallic plate
JPH11186096A (en) Organic film capacitor
JP2017199814A (en) Conductive film formation method and circuit board
JP2002100528A (en) Capacitor and method of manufacturing the same
JPS6231913A (en) Lead oxide thin film dielectric material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041112

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees