JP3953984B2 - 半導体製造装置 - Google Patents

半導体製造装置 Download PDF

Info

Publication number
JP3953984B2
JP3953984B2 JP2003169559A JP2003169559A JP3953984B2 JP 3953984 B2 JP3953984 B2 JP 3953984B2 JP 2003169559 A JP2003169559 A JP 2003169559A JP 2003169559 A JP2003169559 A JP 2003169559A JP 3953984 B2 JP3953984 B2 JP 3953984B2
Authority
JP
Japan
Prior art keywords
gas
substrate
chamber
rectifying
semiconductor manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003169559A
Other languages
English (en)
Other versions
JP2005005594A (ja
Inventor
慎太郎 与川
裕 中野
暁 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MICRO SYSTEM CORPORATION
Original Assignee
MICRO SYSTEM CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MICRO SYSTEM CORPORATION filed Critical MICRO SYSTEM CORPORATION
Priority to JP2003169559A priority Critical patent/JP3953984B2/ja
Publication of JP2005005594A publication Critical patent/JP2005005594A/ja
Application granted granted Critical
Publication of JP3953984B2 publication Critical patent/JP3953984B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体製造装置に関するものであり、特に、チャンバー内に原料ガスと整流ガスとを供給して半導体薄膜を成膜する半導体製造装置に関するものである。
【0002】
【従来の技術】
従来、原料ガスと整流ガスとを供給して半導体薄膜を成膜する半導体製造装置は、たとえば特許第2628404号公報(特許文献1参照)に開示されている。図9は、この公報に開示された半導体製造装置の構成を概略的に示す断面図である。図9を参照して、この半導体製造装置は、窒化ガリウム(GaN)、窒化アルミニウム(AlN)、窒化インジウム(InN)あるいはこれらの混晶のエピタキシャル膜をMOCVD(Metal Organic Chemical Vapor Deposition)法で成長させる装置である。この半導体製造装置は、反応容器101と、サセプタ105と、ヒータ107と、反応ガス噴射管102と、副噴射管103と、排気口104とを備えている。
【0003】
反応容器101内には、基板110を保持するためのサセプタ105が配設されており、このサセプタ105はヒータ107により加熱可能である。サセプタ105上に保持された基板110の上面に、反応ガス噴射管102によって反応ガスを噴射することが可能である。また副噴射管103により、反応容器101内にて図中上側から下側の基板110に向けて不活性ガスを噴射することが可能である。また、反応容器101の内部のガスを排気する排気口104が反応容器101に設けられており、図示しない真空ポンプに連結されている。
【0004】
この装置の成膜時には、反応ガス噴射管102から、水素ガスと、アンモニアガスと、トリメチルガリウム(TMG)またはトリメチルアルミニウム(TMA)ガスとが噴射される。これにより、基板110の表面に反応ガスが供給されて、上記のエピタキシャル膜が成膜される。この成膜時において、基板110の加熱による熱対流で反応ガスが拡散しないように、副噴射管103から不活性ガスが押圧ガスとして噴射されている。
【0005】
【特許文献1】
特許第2628404号公報
【0006】
【発明が解決しようとする課題】
上記の従来例には、以下の問題点がある。
【0007】
まず、上記の従来例では、1バッチ当り1枚処理であるため、装置当りのスループットが低いという問題がある。
【0008】
また、大口径化または多数枚の基板110の同時処理を行おうとすると、1個所からの反応ガス吹出しのため、基板110面内の成膜速度および組成の均一性をコントロールすることが困難となるという問題がある。
【0009】
また、基板110の上方から不活性ガスを押圧ガスとして吹き付けているため、基板110の上方に大きな空間が必要となり、装置が大型化するとともに、基板110の加熱によるガスの熱対流によってチャンバーの壁面に原料ガスによる副生成物が付着しやすくなり、コンタミネーションが生じ易くなるという問題がある。
【0010】
それゆえ、本発明の目的は、基板面内の成膜速度および組成の均一性を保ち、コンタミネーションの発生を抑制するとともに、大口径の基板の処理または多数枚の基板の同時処理が可能な半導体製造装置を提供することである。
【0011】
【課題を解決するための手段】
本発明の半導体製造装置は、チャンバーと、原料ガス吹出し部と、複数の整流ガス吹出し部とを備えている。チャンバーは、基板を内部に保持可能である。原料ガス吹出し部は、基板の上面に沿って原料ガスを流すようにチャンバーの一側に配置されている。複数の整流ガス吹出し部は、基板の上面に対向してチャンバー内に配置され、かつ基板の上面に対して斜めに、かつ下流部に向けて整流ガスを吹出すように構成されている。一側からチャンバーの他側方へ向って配列された複数の整流ガス吹出し部の各々と基板の上面との間隔は一側から他側方へ向かうほど大きくなっており、かつチャンバー内面は整流ガス吹出し部からの整流ガスの吹出し方向に沿うように傾斜している。
【0012】
本発明の半導体製造装置によれば、整流ガス吹出し部が複数個設けられているため、各整流ガス吹出し部からの吹出し量などを独立して制御することが可能となる。よって、大口径の基板の処理または多数枚の基板の同時処理においても、基板面内の成膜速度および組成の均一性を保つことが可能となる。
【0013】
また、整流ガス吹出し部を一側から他側方へ向って複数個配列したことにより、原料ガスの流れの下流側(他側方)に向かうほどガス流量が増加する。そこで、複数の整流ガス吹出し部の各々と基板の上面との間隔を基板の一側(上流側)から他側(下流側)方へ向かうほど大きくすることにより、原料ガスおよび整流ガスの流路を確保することが可能となる。
【0014】
また、基板の上面に対して斜めに整流ガスが吹出されるため、基板の加熱により基板表面を通過中のガスが加熱されて上昇しようとするのを整流ガスで押しとどめながら排気側へ押し流すことができる。これにより、チャンバー内でのガスのスムーズな流れを実現することができる。
【0015】
また、基板の加熱によるガスの熱対流を防止するには基板とチャンバーの上面との間隔を小さくすることが有効な方策であるが、この間隔を小さくするとチャンバーの上面に原料ガスによる副生成物が付着しやすくなり、コンタミネーションが生じ易くなる。本発明では、チャンバーの上面が整流ガス吹出し部からの整流ガスの吹出し方向に沿うように傾斜しているため、整流ガスがチャンバーの内面に沿って流れることになる。このため、原料ガスによる副生成物がチャンバーの内面に付着し難くなり、コンタミネーションの発生を抑制することが可能となる。
【0017】
上記の半導体製造装置において好ましくは、複数の整流ガス吹出し部の各々は、基板の上面に対して45°以下の角度で傾斜している。
【0018】
これにより、上述したようなチャンバー内面への副生成物の付着を効果的に抑制できるとともに、チャンバー内部に滞留するガスを排気側へ効果的に押し流すことができる。
【0019】
上記の半導体製造装置において好ましくは、原料ガスはアンモニアを含んでおり、アンモニアを触媒作用により分解するための触媒部材がさらに備えられている。
【0020】
成膜時においてアンモニアが効率良く分解しないと、成膜される薄膜中に取り込まれる窒素の量が少なくなって、たとえば発光ダイオードを作成する場合には発光輝度が低くなる。本発明では、触媒部材により原料ガス中のアンモニアの熱分解を促進することができるため、反応系中の窒素活性種の濃度を高くすることができ、成膜反応を促進することが可能となる。これにより、成膜される薄膜中に窒素を効率よく取り込むことが可能となるため、たとえば発光ダイオードを作成する場合でも高い発光輝度を得ることができる。
【0021】
上記の半導体製造装置において好ましくは、触媒部材はタングステンよりなっており、かつ少なくとも基板の原料ガス吹出し部側に配置されている。
【0022】
このタングステンは、アンモニアを触媒作用により分解する性質を有するため、このタングステンよりなる触媒部材を原料ガスの流れに対して基板の少なくとも上流側に配置することにより、熱分解された原料ガスを基板表面に供給することが可能となる。
【0023】
上記の半導体製造装置において好ましくは、チャンバーの原料ガスおよび整流ガスに触れる部分の材質はニッケルよりなっている。
【0024】
これにより、チャンバー内の腐食を防止することができるとともに、チャンバーの放熱性を良好にすることができる。
【0025】
【発明の実施の形態】
以下、本発明の実施の形態について図に基づいて説明する。
【0026】
図1は、本発明の一実施の形態における半導体製造装置の構成を概略的に示す断面図である。図1を参照して、本実施の形態における半導体製造装置20は、MOCVD法によって化合物半導体を製造するための装置であり、チャンバー1と、原料ガス導入ノズル(原料ガス吹出し部)2a、2bと、ノズル2cと、複数の整流ガス供給ノズル(整流ガス吹出し部)3bと、排気口4と、サセプタ5と、ターンテーブル6と、ヒータ7と、タングステンリング(触媒部材)8とを主に有している。
【0027】
チャンバー1は内部の反応室内に基板10を保持することができ、基板10として、たとえば4枚の口径2インチのサファイア単結晶基板10がサセプタ5上に載置保持されている。サセプタ5はターンテーブル6上に載置されており、ターンテーブル6により回転可能である。ヒータ7は、ターンテーブル6の下部に配置されており、ターンテーブル6およびサセプタ5を通して成膜反応の起こる任意の温度に基板10を加熱し、温度制御するために設けられている。また、タングステンリング8が、アンモニアガスを触媒作用により分解するための触媒部材として、サセプタ5の外周を取囲むように配置されている。
【0028】
原料ガス導入ノズル2は、有機金属ガスを導入するためのノズル2aと、アンモニアガスを導入するためのノズル2bとを有している。これらの各ノズル2a、2bは、基板10の上面の一方側から他方側(A1点からA2点、B1点からB2点)へ原料ガス(有機金属ガスおよびアンモニアガス)を流すようにチャンバー1の側壁(サセプタ5の横側)に配置されている。また、チャンバー1の側壁には、原料ガスとともに基板10の上面の一方側から他方側へ不活性ガス(たとえば水素ガス、窒素ガス)を導入するためのノズル2cも配置されている。
【0029】
また、排気口4は、サセプタ5上部を通過した使用済みのガスを排気するために設けられており、各ノズル2a、2b、2cの反対側のチャンバー1の側壁に設けられている。
【0030】
複数の整流ガス供給ノズル3bの各々は、ガス流路3aを流れる整流ガス(不活性ガス:たとえば水素ガス、窒素ガス)をチャンバー1内に噴射する部分である。複数の整流ガス供給ノズル3bは、基板10の上面に対向してチャンバー1内面に配置されている。複数の整流ガス供給ノズル3bの各々は、基板10の上面と角度θ1をなす斜め方向に向かって整流ガスを吹出すように、かつチャンバー1内における原料ガスの流れに対して上流側から下流側に向かって整流ガスを吹出すように構成されている。
【0031】
複数の整流ガス供給ノズル3bは、原料ガスの上流側(上記一方側)から下流側(上記他方側)へ向って配列されている。複数の整流ガス供給ノズル3bの各々と基板10の上面との間隔La、Lb、…、Liは上流側から下流側へ向かうほど大きくなっている。つまり、間隔La<間隔Lb<間隔Lc<…<間隔Lh<間隔Liの関係が成り立っている。また、チャンバー1内面1aは整流ガス供給ノズル3bからの整流ガスの吹出し方向に沿うように傾斜している。
【0032】
各整流ガス供給ノズル3bは、基板10の上面に対して45°以下の角度θ1で傾斜していることが好ましい。また、チャンバー内面1aは整流ガス供給ノズル3bの傾斜角度と実質的に同じ角度で傾斜(つまり実質的に平行となるように傾斜)していることが好ましい。
【0033】
また、有機金属ガスとしては、たとえばトリメチルガリウム(TMG)、トリエチルガリウム(TEG)、トリメチルアルミニウム(TMA)、トリエチルアルミニウム(TEA)、トリメチルインジウム(TMI)、トリエチルインジウム(TEI)および他の不純物元素を含む有機金属を用いることができる。
【0034】
また、チャンバーの原料ガスおよび整流ガスに触れる部分の材質はニッケルよりなることが好ましい。また、サセプタ5を取囲むように配置されたタングステンリング8は、アンモニアを触媒作用により分解できる触媒部材であれば良い。アンモニアを分解しやすくするために、予め300℃程度に予備加熱されたアンモニアガスがチャンバー1内に供給されても良い。
【0035】
また、基板10として、サファイア単結晶以外に、炭化シリコン(SiC)、窒化ガリウム(GaN)、シリコン(Si)などの単結晶を用いることもできる。
【0036】
また、チャンバー1内の反応室内の圧力は真空から2気圧まで任意の圧力で制御され得る。本実施の形態では、成膜は主に大気圧で行なわれる。
【0037】
図1に示す半導体製造装置の構成を、図2〜図5を用いて、より具体的に説明する。
【0038】
図2は図1の断面に対応した概略断面図であり、図3は図2のIII−III線に沿う概略断面図である。また、図4は図2および図3の構成で基板側からチャンバー1内の上面側を見上げたときの図であり、図5は原料ガス導入ノズル2a、2b、整流ガス供給ノズル3などの構成を示す概略斜視図である。
【0039】
図2を参照して、原料ガス導入ノズル2a、2bと、不活性ガスを供給するためのノズル2cとのそれぞれに、各ガスを流すためのガス流路が接続されており、各ガス流路はチャンバー1外部へ引き出されている。
【0040】
図3〜図5を参照して、ノズル2aは複数個設けられており、複数個のノズル2aは有機金属ガスを互いに同一方向に吹出すように横1列で、しかも吹出し口がサセプタ5の外周に沿って配置されている。また、ノズル2bおよびノズル2cのそれぞれについてもノズル2aと同様に、複数のノズルがガスを互いに同一方向に吹出すように横1列で、しかも吹出し口がサセプタ5の外周に沿って配置されている。
【0041】
原料ガス導入ノズル2a、2b、不活性ガス供給ノズル2cには、流量制御器(図示せず)が接続されており、各吹出し口からの吹出し量が個別に制御されるようになっている。
【0042】
図4および図5を参照して、複数の整流ガス供給ノズル3bは、整流ガスを互いに同一方向に吹出すように、チャンバー1内の上面にたとえば行列状に配置されている。つまり、図2に示すように原料ガスの上流側から下流側へ向って配列された1列の整流ガス供給ノズル3bが、図3に示すように多数列設けられている。
【0043】
チャンバー1の一側から他側方へ配列された複数の整流ガス吹出しノズル3bの各々と基板上面との間隔はチャンバー1の一側から他側方へ向かうほど大きくなっているが、その程度θ2は図8の模式図に示すようにチャンバー1の一側でのガス流速v1とチャンバー1の他側方でのガス流速v2が等しいか、チャンバー1の一側でのガス流速v1よりチャンバー1の他側方でのガス流速v2が大きいと仮定したとき、tanθ2≦(N21)/(N1Y)の式で表される程度となることが好ましい。ここで、N1は原料ガスの流量、N2は整流ガスの流量、Z1はチャンバーの一側での基板上面からの間隔、Yは基板を載置保持するためのサセプタの直径である。
【0044】
図8において、複数の整流ガス供給ノズル3b、3b、…、3bが線X上に配置される。
【0045】
また、整流ガス供給ノズル3bからは、基板10の上面と角度θ1(図1参照)をなす斜め方向に整流ガスを吹出すようにしているが、角度θ1での基板10に対する仮想押圧作用開始点P(図1参照)を、整流ガス供給ガスノズル3bが配置されたブロック全体を図1の左右方向に移動させて調整するものや上記角度θ1や角度θ2(図8参照)の変更のために整流ガス供給ノズル3bが配置されたブロック全体を他のものと交換するものなどが考えられる。
【0046】
さらに、チャンバー1内の下面に、基板10を載置したサセプタ5が配置され、基板10上面に対向して上面に整流ガス供給ノズル3bを配置するもの(上記実施の形態)の他、上記とは逆にチャンバー1内の上面に、下向きで基板10およびサセプタ5が配置され、下面に整流ガス供給ノズル3bを配置するものや、チャンバー1内の側面に、基板10を載置したサセプタ5および整流ガス供給ノズル3bを対向して配置させるものが考えられる。
【0047】
また、原料ガスおよび整流ガスのガス流れ方向も水平方向だけでなく、上下方向であってもよい。
【0048】
図3を参照して、本実施の形態の半導体製造装置20は、放射温度計9aと、石英ガラス製窓板9cと、複数の放射温度測定用ポート9bとをさらに有している。放射温度計9aはチャンバー1の外部において、基板10の上面と対向する位置に配置され、駆動装置(図示せず)で前後左右に移動可能とされている。複数の放射温度測定用ポート9bは、チャンバー1の外部から内部ヘ貫通してサセプタ5の上面全域相当位置に設けられている。これにより、チャンバー1の外部からガラス製窓板9cおよび放射温度測定用ポート9bを通してチャンバー1内の基板10の放射温度を放射温度計9aによって測定することができる。なお、基板10の熱放射による放射温度は、放射温度計9aでは色で判定される。
【0049】
図4および図5を参照して、上記の放射温度測定用ポート9bは、チャンバー1内の上面1aにたとえば行列状に配置されており、これにより各基板10の各部の放射温度を測定することができる。
【0050】
なお、上記以外の図2〜図5の構成は、図1に示した構成とほぼ同じであるため、同一の構成要素については同一の符号を付し、その説明を省略する。
【0051】
また、サセプタ5上に同時に載せる基板10の枚数を4枚よりも少なくすれば、基板10としてたとえば大口径(3インチ以上)のものをサセプタ5上に載置保持することもできる。これにより、たとえば図6(a)〜(e)に示すように、サセプタ5上には、各種のサイズの基板10を多様な形態で配置することができる。
【0052】
また、図7に示すように複数の半導体製造装置20が隔壁を介して並んで配置されても良い。この場合、たとえば複数の半導体製造装置20の各々に供給されるガスは、単一のガス源から供給されても良い。
【0053】
次に、本実施の形態の半導体製造装置を用いて窒化ガリウム薄膜を製造する場合について説明する。
【0054】
図2および図3を参照して、まず、チャンバー1内を真空に排気する。ノズル2cから不活性ガスとして水素ガスと窒素ガスとの混合ガスをチャンバー1内に供給する。チャンバー1内を上記の混合ガスにより充填した後、ノズル2cから供給される混合ガスのガス流量を維持した状態で、複数の整流ガス供給ノズル3bから全体で15リットル/分の整流ガスをチャンバー1内に供給する。この整流ガスを水素ガスと窒素ガスとの混合ガスとし、複数の整流ガス供給ノズル3bの各々から均一に吹出させる。また、放射温度測定用ポート9bの汚染を防止するために、整流ガス供給ノズル3bとは異なるポート(図示せず)から、窒素ガスと水素ガスとの混合ガスを全部で5リットル/分の流量で供給する。なお、サセプタ5の上方を通過したガスを排気口4から排気する。
【0055】
サセプタ5に単結晶サファイア基板10を載置し、サセプタ5を1200℃まで加熱する。単結晶サファイア基板10の実際の温度をチャンバー1外部に設けた放射温度計9aによりモニターする。
【0056】
上記のガス条件と温度条件とを維持した状態で10分間放置する。この時に、5rpm〜10rpmでサセプタ5をターンテーブル6により回転させる。サセプタ5の回転は成膜終了まで継続する。上記放置時間経過後にサセプタ5の温度を1000℃まで下げる。
【0057】
ノズル2bからアンモニアガスを15リットル/分の流量で、かつノズル2cから水素ガスを6リットル/分の流量で、それぞれチャンバー1内に供給する。この供給状態を維持した状態で、6リットル/分の流量の水素ガスをキャリアガスとして、ノズル2aからトリメチルガリウムを2.2×10-4モル/分でチャンバー1内に供給する。この状態で、基板10上にて窒化ガリウム薄膜の成長が開始され、窒化ガリウム薄膜を1時間成長させる。これにより、約4μmの窒化ガリウム薄膜が単結晶サファイア基板10上に成長する。
【0058】
次に、本実施の形態の半導体製造装置を用いて窒化インジウムガリウム(InGaN)薄膜を製造する場合について説明する。
【0059】
図2および図3を参照して、まず、チャンバー1内を真空に排気する。ノズル2cから水素ガスと窒素ガスとの混合ガスをチャンバー1内に供給する。チャンバー1内を上記の混合ガスにより充填した後、ノズル2cから供給される混合ガスのガス流量を維持した状態で、複数の整流ガス供給ノズル3bから全体で15リットル/分の整流ガスをチャンバー1内に供給する。この整流ガスを水素ガスと窒素ガスとの混合ガスとし、複数の整流ガス供給ノズル3bの各々から均一に吹出させる。また、放射温度測定用ポート9bの汚染を防止するために、整流ガス供給ノズル3bとは異なるポート(図示せず)から、窒素ガスと水素ガスとの混合ガスを全部で5リットル/分の流量で供給する。なお、サセプタ5の上方を通過したガスを排気口4から排気する。
【0060】
サセプタ5に単結晶サファイア基板10を載置し、サセプタ5を1200℃まで加熱する。単結晶サファイア基板10の実際の温度をチャンバー1外部に設けた放射温度計9aによりモニターする。
【0061】
上記のガス条件と温度条件とを維持した状態で10分間放置する。この時に、5rpm〜10rpmでサセプタ5をターンテーブル6により回転させる。サセプタ5の回転は成膜終了まで継続する。上記放置時間経過後にサセプタ5の温度を800℃まで下げる。
【0062】
ノズル2bからアンモニアガスを15リットル/分の流量で、かつノズル2cから窒素ガスを6リットル/分の流量で、それぞれチャンバー1内に供給する。このアンモニアガスと窒素ガスとの供給状態を維持しながら、サセプタ5上を通過したアンモニアガスと窒素ガスとを排気口4からチャンバー1外部へ排気する。この状態で、6リットル/分の流量の窒素ガスをキャリアガスとして、ノズル2aからトリメチルインジウムを9.6×10-5モル/分で、トリメチルガリウムを8.0×10-6モル/分でチャンバー1内に供給する。この状態で、基板10上にて窒化インジウムガリウム薄膜の成長が開始され、窒化インジウムガリウム薄膜を1時間成長させる。これにより、約0.3μmの窒化インジウムガリウム薄膜が単結晶サファイア基板10上に成長する。
【0063】
本実施の形態の半導体製造装置によれば、原料ガス導入ノズル2a、2b、不活性ガス供給ノズル2cがガスを同一方向に吹出すように横一列で、しかも吹出し口がサセプタ5の外周に沿って複数個設けられているため、各原料ガス導入ノズル2a、2bからの吹出し量などを独立して制御することが可能となる。よって、大口径の基板10の処理または多数枚の基板10の同時処理においても、基板10の面内の成膜速度および組成の均一性を保つことが可能となる。
【0064】
また、整流ガス供給ノズル3bを原料ガスの上流側から下流側へ向って複数個配列したことにより、原料ガスの流れの下流側に向かうほどガス流量が増加する。そこで、複数の整流ガス供給ノズル3bの各々と基板10の表面との間隔La、Lb、…、Liを上流側から下流側へ向かうほど大きくすることにより、原料ガスおよび整流ガスの流路を確保することが可能となる。
【0065】
また、基板10の上面に対して斜めに整流ガスが吹出されるため、基板10の加熱により基板10の上面上を通過中のガスが加熱されて上昇しようとするのを整流ガスで押しとどめながら排気側へ押し流すことができる。これにより、チャンバー1内でのガスのスムーズな流れを実現することができる。
【0066】
また、基板10の加熱によるガスの熱対流を防止するには基板10とチャンバー1の上面との間隔を小さくすることが有効な方策であるが、この間隔を小さくするとチャンバー1の内面に原料ガスによる副生成物が付着しやすくなり、コンタミネーションが生じ易くなる。本実施の形態では、チャンバー1内の上面1aが整流ガス供給ノズル3bからの整流ガスの吹出し方向に沿うように傾斜しているため、整流ガスがチャンバー1内の上面1aに沿って流れることになる。このため、原料ガスによる副生成物がチャンバー1内の上面1aに付着し難くなり、コンタミネーションの発生を抑制することが可能となる。
【0067】
また、本実施の形態においては、成膜が大気圧に近い圧力条件、または加圧した圧力条件で行われるため、それにより形成される薄膜では窒素による欠陥を少なくすることができる。
【0068】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【0069】
【発明の効果】
以上説明したように本発明の半導体製造装置によれば、基板面内の成膜速度および組成の均一性を保ち、原料ガスおよび整流ガスの流路の確保とチャンバー内でのガスのスムーズな流れとを可能とし、コンタミネーションの発生を抑制するとともに、大口径の基板の処理または多数枚の基板の同時処理が可能となる。
【図面の簡単な説明】
【図1】 本発明の一実施の形態における半導体製造装置の構成を概略的に示す断面図である。
【図2】 図1の断面に対応した概略断面図である。
【図3】 図2のIII−III線に沿う概略断面図である。
【図4】 図2および図3の構成で基板側からチャンバー内の上面側を見上げたときの図である。
【図5】 原料ガス導入ノズル、整流ガス供給ノズルなどの構成を示す概略斜視図である。
【図6】 サセプタに基板を載置した様子を示す平面図である。
【図7】 複数の反応室を隔壁で仕切った構成を示す概略平面図である。
【図8】 チャンバー1内の空間を模式的に示す図である。
【図9】 従来の半導体製造装置の構成を概略的に示す断面図である。
【符号の説明】
1 チャンバー、1a 上面、2a,2b 原料ガス導入ノズル、2c ノズル、3a ガス流路、3b 整流ガス供給ノズル、4 排気口、5 サセプタ、6 ターンテーブル、7 ヒータ、8 タングステンリング、9a 放射温度計、9b 放射温度測定用ポート、9c 石英ガラス製窓板、10 基板、20 半導体製造装置。

Claims (5)

  1. 基板を内部に保持可能なチャンバーと、
    前記基板の上面に沿って原料ガスを流すように前記チャンバーの一側に配置された原料ガス吹出し部と、
    前記基板の上面に対向して前記チャンバー内に配置され、かつ前記基板の上面に対して斜めに、かつ下流部に向けて整流ガスを吹出すように構成された複数の整流ガス吹出し部とを備え、
    前記一側から前記チャンバーの他側方へ向って配列された複数の前記整流ガス吹出し部の各々と前記基板の上面との間隔は前記一側から前記他側方へ向かうほど大きくなっており、かつ前記チャンバー内面は前記整流ガス吹出し部からの整流ガスの吹出し方向に沿うように傾斜している、半導体製造装置。
  2. 複数の前記整流ガス吹出し部の各々は、前記基板の上面に対して45°以下の角度で傾斜していることを特徴とする、請求項1に記載の半導体製造装置。
  3. 前記原料ガスはアンモニアを含んでおり、
    前記アンモニアを触媒作用により分解するための触媒部材をさらに備えたことを特徴とする、請求項1または2に記載の半導体製造装置。
  4. 前記触媒部材はタングステンよりなっており、かつ少なくとも前記基板の前記原料ガス吹出し部側に配置されていることを特徴とする、請求項に記載の半導体製造装置。
  5. 前記チャンバーの原料ガスおよび整流ガスに触れる部分の材質はニッケルよりなることを特徴とする、請求項1〜のいずれかに記載の半導体製造装置。
JP2003169559A 2003-06-13 2003-06-13 半導体製造装置 Expired - Fee Related JP3953984B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003169559A JP3953984B2 (ja) 2003-06-13 2003-06-13 半導体製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003169559A JP3953984B2 (ja) 2003-06-13 2003-06-13 半導体製造装置

Publications (2)

Publication Number Publication Date
JP2005005594A JP2005005594A (ja) 2005-01-06
JP3953984B2 true JP3953984B2 (ja) 2007-08-08

Family

ID=34094665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003169559A Expired - Fee Related JP3953984B2 (ja) 2003-06-13 2003-06-13 半導体製造装置

Country Status (1)

Country Link
JP (1) JP3953984B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180123634A (ko) * 2017-05-09 2018-11-19 도쿄엘렉트론가부시키가이샤 성막 장치

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4708130B2 (ja) * 2005-09-13 2011-06-22 株式会社フジクラ 成膜装置および透明導電膜の製法
JP5315863B2 (ja) * 2007-12-18 2013-10-16 住友電気工業株式会社 気相処理装置、気相処理方法および基板
US8628616B2 (en) 2007-12-11 2014-01-14 Sumitomo Electric Industries, Ltd. Vapor-phase process apparatus, vapor-phase process method, and substrate
JP5018708B2 (ja) * 2007-12-11 2012-09-05 住友電気工業株式会社 気相処理装置、気相処理方法および基板
US8298338B2 (en) 2007-12-26 2012-10-30 Samsung Electronics Co., Ltd. Chemical vapor deposition apparatus
JP2010232386A (ja) * 2009-03-26 2010-10-14 Univ Of Fukui In系III族元素窒化物の製造方法及びその装置
KR101102329B1 (ko) * 2009-10-26 2012-01-03 주식회사 케이씨텍 가스분사유닛 및 이를 구비하는 유기금속 화학기상증착장치
KR101634553B1 (ko) * 2014-08-06 2016-06-30 가천대학교 산학협력단 통합형 pc 마이크로 디바이스, 그 제조방법 및 이를 이용한 연속적 dna 정제-증폭 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180123634A (ko) * 2017-05-09 2018-11-19 도쿄엘렉트론가부시키가이샤 성막 장치
KR102225930B1 (ko) * 2017-05-09 2021-03-09 도쿄엘렉트론가부시키가이샤 성막 장치
US11208724B2 (en) 2017-05-09 2021-12-28 Tokyo Electron Limited Film forming apparatus

Also Published As

Publication number Publication date
JP2005005594A (ja) 2005-01-06

Similar Documents

Publication Publication Date Title
US6666921B2 (en) Chemical vapor deposition apparatus and chemical vapor deposition method
US8887650B2 (en) Temperature-controlled purge gate valve for chemical vapor deposition chamber
TWI513852B (zh) 化學氣相沉積設備
EP2066496B1 (en) Equipment for high volume manufacture of group iii-v semiconductor materials
EP2038456B1 (en) System and process for high volume deposition of gallium nitride
JP3953984B2 (ja) 半導体製造装置
US20080124453A1 (en) In-situ detection of gas-phase particle formation in nitride film deposition
TW201600635A (zh) Mocvd設備及其中寄生顆粒的清除方法
JP2002316892A (ja) 気相成長装置
US20080092819A1 (en) Substrate support structure with rapid temperature change
US9481943B2 (en) Gallium trichloride injection scheme
JP5443223B2 (ja) 気相成長装置および窒化物系半導体発光装置の製造方法
JP4874842B2 (ja) 気相成長装置
KR101391883B1 (ko) 반도체 제조 장치, 반도체 제조 방법 및 반도체 제조 장치의 클리닝 방법
JP4096678B2 (ja) 半導体結晶膜の成長装置
JP2008243948A (ja) エピタキシャル基板の製造方法
JP2006013326A (ja) 半導体製造装置の温度制御方法
KR100829697B1 (ko) 질화갈륨 기판의 제조 장치 및 방법
JP2008053669A (ja) 温度制御されたプロセスガスを用いた結晶成長法及び結晶成長装置
JP2004063631A (ja) 気相成長装置
TWM633649U (zh) 一種磊晶生長設備
KR20140088653A (ko) 질화갈륨 기판 제조용 성장로의 반응관
JP2003089879A (ja) Cvd装置及びcvd法
JP2001085335A (ja) 半導体気相成長装置
JP2628404C (ja)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070209

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees