JP3953139B2 - Non-sintered nickel electrode for alkaline storage battery - Google Patents

Non-sintered nickel electrode for alkaline storage battery Download PDF

Info

Publication number
JP3953139B2
JP3953139B2 JP10782097A JP10782097A JP3953139B2 JP 3953139 B2 JP3953139 B2 JP 3953139B2 JP 10782097 A JP10782097 A JP 10782097A JP 10782097 A JP10782097 A JP 10782097A JP 3953139 B2 JP3953139 B2 JP 3953139B2
Authority
JP
Japan
Prior art keywords
nickel
active material
plating layer
layer
current collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10782097A
Other languages
Japanese (ja)
Other versions
JPH10302755A (en
Inventor
勝也 河野
伸剛 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10782097A priority Critical patent/JP3953139B2/en
Publication of JPH10302755A publication Critical patent/JPH10302755A/en
Application granted granted Critical
Publication of JP3953139B2 publication Critical patent/JP3953139B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明はニッケル・水素蓄電池、ニッケル・カドミウム蓄電池、ニッケル・亜鉛蓄電池などのアルカリ蓄電池に係り、特に、活物質保持体に活物質を塗着した極板と、この極板と端子とを接続する集電タブとを備えたアルカリ蓄電池の集電タブと活物質保持体の溶接部の改良に関するものである。
【0002】
【従来の技術】
従来、アルカリ蓄電池に使用される正極活物質としては、水酸化ニッケルが知られている。水酸化ニッケルを正極活物質とするニッケル電極は、ニッケル・カドミウム蓄電池を中心にして、ニッケル・水素蓄電池、ニッケル・亜鉛蓄電池などに広く採用されている。このニッケル電極としては、パンチングメタル等の芯体にニッケル粉末を焼結して形成した多孔性基板に含浸により水酸化ニッケルよりなる活物質を含浸充填させる、いわゆる焼結式ニッケル電極が知られている。
【0003】
しかしながら、上記した焼結式ニッケル電極は、多孔性基板(焼結基板)を高多孔度とした場合には機械的強度が弱くなるため、実用的には80%の多孔度とするのが限界であるとともにパンチングメタル等の芯体を必要とすることから、活物質の充填密度が低く、高エネルギー密度のニッケル電極を実現する上で問題がある。また、焼結基板の細孔は10μm以下であるので、活物質の充填工程を何度も繰り返す必要がある溶液含浸法や電着含浸法に限定されるため、充填工程が煩雑であるとともに製造コストも高くなるという問題がある。
【0004】
一方、これらの欠点を改良するために、芯体を有さない多孔性のニッケルスポンジ(あるいは発泡ニッケル)からなる活物質保持体に正極活物質である水酸化ニッケル粉末を直接充填した、いわゆる非焼結式ニッケル電極が主流となってきた。この非焼結式ニッケル電極においては、通常、活物質保持体に正極活物質である水酸化ニッケル粉末を充填した後、所定の厚みになるように圧延する。その後、活物質の一部を剥離して活物質保持体を露出させ、この露出した部分に非焼結式ニッケル電極と端子とを接続する集電タブを抵抗溶接により溶接するようにしている。
【0005】
この種の非焼結式ニッケル電極に用いる集電タブとしは、ニッケルスポンジからなる活物質保持体との溶接性、経済性等を考慮して、一般的には、冷間圧延鋼鈑にニッケルメッキを施したニッケルメッキ鋼鈑が用いられる。このニッケルメッキ鋼鈑のニッケルメッキ層の厚みは2〜3μmである。そして、このようなニッケルメッキ鋼鈑を用いると、抵抗溶接の際の、ニッケルメッキ鋼鈑のニッケルメッキ層が溶接時の発熱で軟化、溶融して活物質保持体の多孔内に浸入、拡散して、融合部が形成されるようになる。そのため、活物質保持体を露出させた部分の多孔度が低ければこのようなニッケルメッキ鋼鈑を用いてもそれなりの溶接強度のものが得られる。
【0006】
【発明が解決しようとする課題】
ところで、近年、この種の非焼結式ニッケル電極に用いるニッケルスポンジ(あるいは発泡ニッケル)において、さらに高多孔度(例えば、その多孔度は95%である)のものが開発された。このような高多孔度のニッケルスポンジを用いると、活物質の充填密度が向上して高容量、高エネルギー密度のニッケル電極が得られるようになる。
【0007】
しかしながら、高多孔度のニッケルスポンジを用いると、活物質保持体を露出させた部分の多孔度も当然高くなる。そのため、集電タブとしてニッケルメッキ層の厚みが2〜3μmのニッケルメッキ鋼鈑を用いると、溶接時の発熱で軟化、溶融して活物質保持体の多孔内に浸入、拡散するニッケル量が比較的少ないため、高多孔度のニッケルスポンジとニッケルメッキ層との融合が充分ではなくなる。その結果、溶接状態が不安定となって、集電タブ外れを生じたり、溶接部の接触抵抗が増大するという問題を生じた。そして、溶接部の接触抵抗が増大すると大電流放電性能が低下するという問題を生じる。
【0008】
そこで、本発明は上記問題点に鑑みてなされたものであり、活物質保持体と集電タブのニッケルメッキ層との融合を強固にして、大電流放電性能を向上させることにある。
【0009】
【課題を解決するための手段およびその作用・効果】 上記の課題を解決するため、本発明は、ニッケルスポンジよりなる活物質保持体を充填した極板の表面から前記活物質保持体の一部の活物質を剥離して同活物質保持体を露出させた剥離部に、5μm−10μmの厚みのニッケルメッキ層をその溶接部に形成した集電タブを溶接して、前記ニッケルメッキ層と前記活物質保持体との溶接による接合部の結合深さが2μm以上となるようにしたことを特徴とするアルカリ蓄電池用非焼結式ニッケル電極を提供するものである。 この非焼結式ニッケル電極においては、集電タブの溶接部にニッケルの内層及び活物質保持体より低融点のニッケル合金からなる上部層の2層からなり、かつ5μm−10μmの厚みのニッケルメッキ層を形成したことにより、融合するニッケル量が多くなるため、活物質保持体のニッケルスポンジと集電タブのニッケルメッキ層との融合が剥離を生じることなく強固になって、大電流放電性能が向上する。
【0011】
本発明の実施にあたっては、前記ニッケルメッキ層をニッケルの内層及び前記活物質保持体より低融点のニッケル合金からなる表面層の2層に形成することが望ましい。 この場合には、溶接時に溶融したメッキ層を形成する金属が容易に多孔質内に入り込むことが可能となるので、活物質保持体と集電タブのニッケルメッキ層との融合が一層強固なものとなる。
【0014】
ニッケルメッキ層と活物質保持体との溶接による結合深さはニッケルメッキ層の厚みに関係するが、ニッケルメッキ層を厚くしすぎるとメッキ層が剥がれ易くなる。そのため、結合深さには必然的に上限値が必要となる。したがって、本発明の実施にあたっては、上記の結合深さを4〜11μmとするのが望ましい。このように結合深さを4〜11μmと規定すると、集電タブと活物質保持体との溶接強度が最適になる。
【0015】
【発明の実施の形態】
以下に、本発明のアルカリ蓄電池用極板をニッケル−水素蓄電池のニッケル正極板に適用した場合の一実施の形態を図に基づいて説明する。なお、図1は本実施形態の集電タブを示す図であり、図1(a)は、後述する参考例1〜4および比較例1の本実施形態の集電タブを示す側面図であり、図1(b)は後述する実施例の本実施形態の集電タブを示す側面図であり、図1(c)はそれらの上面図である。図2は本実施形態のニッケル正極板に図1の集電タブを溶接した状態を示す図である。図3(a)はニッケル正極板に溶接された集電タブを引き剥がす状態を示す図であり、図3(b)はニッケル正極板より引き剥がされた集電タブの裏面を示す図である。図4はニッケル正極板と集電タブとの溶接状態を示す図である。
【0016】
a.集電タブの作製
参考例1
厚み0.08mmの冷間圧延鋼鈑(JIS規格のSPCC鋼鈑)を母材10とし、母材10の表面にニッケル(その融点は約1450℃である)を片面毎に5μmの厚みになるように電解メッキあるいは無電解メッキを行ってニッケルメッキ層11を形成した後、焼鈍する。このように表面にニッケルメッキ層11を形成した母材10を幅3mmで長さが12mmになるように切断して、参考例1の集電タブ10aとする。
【0017】
参考例2
厚み0.08mmの冷間圧延鋼鈑(JIS規格のSPCC鋼鈑)を母材10とし、母材10の表面にニッケル(その融点は約1450℃である)を片面毎に7μmの厚みになるように電解メッキあるいは無電解メッキを行ってニッケルメッキ層12を形成した後、焼鈍する。このように表面にニッケルメッキ層12を形成した母材10を幅3mmで長さが12mmになるように切断して、参考例2の集電タブ10bとする。
【0018】
参考例3
厚み0.08mmの冷間圧延鋼鈑(JIS規格のSPCC鋼鈑)を母材10とし、母材10の表面にニッケル(その融点は約1450℃である)を片面毎に10μmの厚みになるように電解メッキあるいは無電解メッキを行ってニッケルメッキ層13を形成した後、焼鈍する。このように表面にニッケルメッキ層13を形成した母材10を幅3mmで長さが12mmになるように切断して、参考例3の集電タブ10cとする。
【0019】
参考例4
厚み0.08mmの冷間圧延鋼鈑(JIS規格のSPCC鋼鈑)を母材10とし、母材10の表面にニッケル(その融点は約1450℃である)を片面毎に15μmの厚みになるように電解メッキあるいは無電解メッキを行ってニッケルメッキ層14を形成した後、焼鈍する。このように表面にニッケルメッキ層14を形成した母材10を幅3mmで長さが12mmになるように切断して、参考例4の集電タブ10dとする。
【0020】
実施
厚み0.08mmの冷間圧延鋼鈑(JIS規格のSPCC鋼鈑)を母材10とし、母材10の表面にニッケル(その融点は約1450℃である)を片面毎に3μmの厚みになるように電解メッキあるいは無電解メッキを行ってニッケルメッキ層15を形成した後、焼鈍する。その後、3μmの厚みのニッケルメッキ層15を形成した表面にニッケル−リン合金(その重量比がNi:P=89:11となるようにしたニッケル−リン合金で、融点が約880℃のもの)を片面毎に4μmの厚みになるように電解メッキあるいは無電解メッキを行ってニッケル−リン合金層16を形成した後、焼鈍する。このニッケルメッキ層15とニッケル−リン合金層16との2層構造のメッキ層を有する母材10を幅3mmで長さが12mmになるように切断して、実施例の集電タブ10eとする。
【0021】
比較例1
厚み0.08mmの冷間圧延鋼鈑(JIS規格のSPCC鋼鈑)を母材10とし、母材10の表面にニッケル(その融点は約1450℃である)を片面毎に3μmの厚みになるように電解メッキあるいは無電解メッキを行ってニッケルメッキ層15を形成した後、焼鈍する。このように表面にニッケルメッキ層15を形成した母材10を幅3mmで長さが12mmになるように切断して、比較例1の集電タブ10fとする。
【0022】
比較例2
厚み0.08mmの冷間圧延鋼鈑(JIS規格のSPCC鋼鈑)を母材10として、母材10の表面にニッケルを施すことなく、幅3mmで長さが12mmになるように切断して、比較例2の集電タブ10gとする。
【0023】
b.ニッケル正極板の作製
水酸化ニッケル90重量部と、金属コバルト粉末5重量部と、水酸化コバルト粉末5重量部とを混合し、これをメチルセルロース1重量%水溶液20重量部とを混練してスラリーを作製する。このようにして作製したスラリーを、基体目付が600g/m2、厚みが1.5mm、平均繊維径が75μmであるニッケルスポンジからなる活物質保持体20に圧延後の活物質充填密度が約2.9g/cc−voidとなるようにスラリーを充填した後、厚みが約0.67mmになるまで圧延する。
【0024】
ついで、このように活物質21を充填した活物質保持体20の一部の活物質を剥離して活物質保持体を露出させた剥離部22を形成し、この剥離部22に上述のように作製した各集電タブ10a〜10gをスポット溶接にて2点溶接し、溶接部23を形成してニッケル正極板20a〜20gを作製する。なお、溶接点は2点、4点、6点等何点で溶接しても良いが、本実施形態においては2点で溶接してニッケル正極板20a〜20gとした。また、図2は参考例1の集電タブ10aを溶接したニッケル正極板20aを示している。
【0025】
c.電池の作製
上述のように作製した20個づつのニッケル正極板20a〜20gと、水素吸蔵合金をパンチングメタルに塗布した負極板とをそれぞれポリプロピレン製不織布からなるセパレータを介して、最外周が負極板となるようにして卷回してそれぞれ20個づつの渦巻状電極体を作製する。これらの20個づつの渦巻状電極体をAAAサイズの金属製外装缶にそれぞれ挿入した後、外装缶内に電解液として比重1.3の水酸化カリウム水溶液を注入し、外装缶を封口して、公称容量600mAHのニッケル−水素蓄電池をそれぞれ20個づつ作製する。
【0026】
d.実験結果
上記のように作製した各ニッケル正極板20a〜20gをそれぞれ水平な台上に置き、図3(a)に示すように、各集電タブ10a〜10gを垂直方向(図3(a)の矢印のX方向)に引き起こして、各集電タブ10a〜10gを各ニッケル正極板20a〜20gから引き剥がす引き剥がし試験を行い、図3(b)に示すように、各集電タブ10a〜10gの表面に固着したニッケルスポンジAの有無を調べると表1に示すような結果となった。なお、図3は参考例1の集電タブ10aを溶接したニッケル正極板20aを示している。
【0027】
【表1】

Figure 0003953139
【0028】
上記表1より明らかなように、ニッケルメッキ層11,12,13,14,15を設けるもの(実施例、参考例1〜4、および比較例1)は、ニッケルメッキ層を設けないもの(比較例2)より格段に、ニッケルスポンジAが固着した個数が多くなった。また、ニッケルメッキ層の厚みを厚くしたもの(参考例2〜4)はニッケルメッキ層の厚みが薄いもの(参考例1および比較例1)よりニッケルスポンジAが固着した個数が多くなった。さらに、ニッケルメッキ層15の上部にニッケル−リン合金のメッキ層16を設けたもの(実施例)は、ニッケルメッキ層の厚みを厚くしたもの(参考例2〜4)と同様にニッケルスポンジAが固着した個数が多くなった。
【0029】
このことから、ニッケルメッキ層の厚みの下限値は5μmとするのが好ましい。一方、ニッケルメッキ層の厚みが厚いほどニッケルスポンジとの融合性が向上すると考えられるが、ニッケルメッキ層の厚みを15μmとしたもの(参考例4)においてメッキ剥がれが生じたため、その上下値は10μmとするのが好ましい。 ついで、上記のように作製した各ニッケル正極板20a〜20gをエポキシ樹脂で固め、溶接点22,23を中心にして切断した後、硝酸でエッチングして、各集電タブ10a〜10gとニッケルスポンジとの融合状態を観測した。この観測結果は下記の表2に示すようになった。なお、表2において結合深さは、図4に示すように、メッキ層11が溶けてニッケルスポンジ20を構成する繊維25と融合する部分Bの結合深さZを表す。なお、図4は参考例1の集電タブ10aを溶接したニッケル正極板20aを示している。
【0030】
【表2】
Figure 0003953139
【0031】
上記表2より明らかなように、ニッケルメッキ層11,12,13,14,15(実施例、参考例1〜4、および比較例1)の厚みが厚くなるほど、結合深さZが大きくなった。また、ニッケルメッキ層15の上部に低融点のニッケル−リン合金のメッキ層16を設けたもの(実施例)(2層トータルのメッキ層は7μmとなる)は、参考例2のもの(ニッケルメッキ層が7μmのもの)よりも結合深さZが1μm程度大きくなった。さらに、ニッケルメッキ層を設けないもの(比較例2)は結合深さZがほぼ0となった。
【0032】
このことから、ニッケルメッキ層15の上部に低融点のニッケル−リン合金のメッキ層16を設けると、低融点のニッケル−リン合金が低い温度で溶けてニッケルスポンジを形成するニッケル繊維と融合し易くなるため、結合深さZが大きくなるものと考えられる。
【0033】
ついで、上述のようにして作製した各20個づつのニッケル−水素蓄電池を用いて放電特性を測定した。この測定においては、各20個づつのニッケル−水素蓄電池をそれぞれ100%充電後、それぞれ1C、2C、3C、5Cで放電させてその作動電圧(開放状態から負荷を接続して1.00Vになるまでの中間の電圧値)を測定すると、下記の表3に示すような結果となった。
【0034】
【表3】
Figure 0003953139
【0035】
上記表3より明らかなように、高率放電になればなるほどメッキ層が厚い方が作動電圧特性が向上した。また、ニッケルメッキ層15の上部に低融点のニッケル−リン合金のメッキ層16を設けたもの(実施例)(2層トータルのメッキ層は7μmとなる)は、参考例2のもの(ニッケルメッキ層が7μmのもの)よりも作動電圧特性が向上した。このことから、メッキ層の厚みが同じであっても、結合深さZが大きいほど、集電タブ10とニッケルスポンジとの融合性が向上して、融合部分接触抵抗が低下することによるものと考えられる。
【0036】
そして、表2の結合深さZの結果と、表3の高率放電おける作動電圧特性を考慮すると、結合深さZは2μm以上とすることが好ましく、最適には、4〜11μmとすることが好ましい。
【0037】
上述したように、本実施及び比較形態においては、集電タブ10a,10b,10c,10dに活物質保持体のニッケルスポンジ20との融合性が良好なニッケルメッキ層11,12,13,14を設け、かつこのニッケルメッキ層11,12,13,14の厚みを、溶接時において軟化、溶融する量が多く、メッキ剥がれが生じないような厚み(5〜10μm)としているので、高多孔度のニッケルスポンジ20を活物質保持体として用いても、充分な溶接強度が得られるようになる。したがって、高容量で、高エネルギー密度で、かつ大電流放電が可能なニッケル正極が得られるようになる。
【0038】
また、メッキ層を厚みが薄いニッケル(融点は約1450℃)メッキ層15からなる下層とそれより低融点のニッケル−リン合金(融点は約880℃)メッキ層16とからなる上層の2層構造のメッキ層を設けるようにすると、上層のニッケル−リン合金メッキ層16は溶接時に溶融し易くなるため、高多孔度のニッケルスポンジ20内に浸入し易くなり、同じ厚みのニッケルメッキ層を設けたものより、ニッケルスポンジ20と集電タブ10eとの融合が強固なものとなる。
【図面の簡単な説明】
【図1】 本発明の一参考形態の集電タブを示す図であり、図1(a)は、参考例1〜4および比較例1の集電タブを示す側面図であり、図1(b)は実施例の集電タブを示す側面図であり、図1(c)はそれらの上面図である。
【図2】 本実施形態のニッケル正極板に図1の集電タブを溶接した状態を示す図である。
【図3】 図3(a)はニッケル正極板に溶接された集電タブを引き剥がす状態を示す図であり、図3(b)はニッケル正極板より引き剥がされた集電タブの裏面を示す図である。
【図4】 ニッケル正極板と集電タブとの溶接状態を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an alkaline storage battery such as a nickel / hydrogen storage battery, a nickel / cadmium storage battery, or a nickel / zinc storage battery, and in particular, an electrode plate in which an active material is applied to an active material holder, and the electrode plate and the terminal are connected. The present invention relates to an improvement in a welded portion of a current collecting tab and an active material holding body of an alkaline storage battery including the current collecting tab.
[0002]
[Prior art]
Conventionally, nickel hydroxide is known as a positive electrode active material used for alkaline storage batteries. Nickel electrodes using nickel hydroxide as a positive electrode active material are widely used in nickel / hydrogen storage batteries, nickel / zinc storage batteries, etc., mainly in nickel / cadmium storage batteries. As this nickel electrode, a so-called sintered nickel electrode is known in which a porous substrate formed by sintering nickel powder on a core body such as punching metal is impregnated and filled with an active material made of nickel hydroxide by impregnation. Yes.
[0003]
However, the above-described sintered nickel electrode has a low mechanical strength when the porous substrate (sintered substrate) has a high porosity, so that it is practically impossible to have a porosity of 80%. In addition, since a core body such as a punching metal is required, there is a problem in realizing a nickel electrode having a low active material filling density and a high energy density. In addition, since the pores of the sintered substrate are 10 μm or less, it is limited to solution impregnation methods and electrodeposition impregnation methods that require the active material filling process to be repeated many times. There is a problem that the cost becomes high.
[0004]
On the other hand, in order to improve these drawbacks, a so-called non-active material in which nickel hydroxide powder as a positive electrode active material is directly filled in an active material holder made of porous nickel sponge (or foamed nickel) having no core. Sintered nickel electrodes have become mainstream. In this non-sintered nickel electrode, the active material holder is usually filled with nickel hydroxide powder, which is a positive electrode active material, and then rolled to a predetermined thickness. Thereafter, a part of the active material is peeled to expose the active material holder, and a current collecting tab for connecting the non-sintered nickel electrode and the terminal is welded to the exposed part by resistance welding.
[0005]
The current collecting tab used for this type of non-sintered nickel electrode is generally made of nickel on a cold rolled steel sheet in consideration of weldability and economic efficiency with an active material holder made of nickel sponge. A nickel-plated steel plate with plating is used. The thickness of the nickel plating layer of this nickel plating steel plate is 2 to 3 μm. When such a nickel-plated steel plate is used, the nickel-plated layer of the nickel-plated steel plate is softened and melted by the heat generated during welding and enters and diffuses into the pores of the active material holder. As a result, a fusion part is formed. For this reason, if the porosity of the portion where the active material holder is exposed is low, even if such a nickel-plated steel plate is used, a material having a certain welding strength can be obtained.
[0006]
[Problems to be solved by the invention]
By the way, in recent years, a nickel sponge (or nickel foam) used for this kind of non-sintered nickel electrode has been developed with a higher porosity (for example, the porosity is 95%). When such a highly porous nickel sponge is used, the packing density of the active material is improved, and a nickel electrode having a high capacity and a high energy density can be obtained.
[0007]
However, when a highly porous nickel sponge is used, the porosity of the exposed part of the active material holder is naturally increased. Therefore, if a nickel-plated steel plate with a nickel-plated layer thickness of 2 to 3 μm is used as a current collecting tab, the amount of nickel that softens and melts due to heat generated during welding and enters and diffuses into the pores of the active material holder is compared. Therefore, the fusion between the highly porous nickel sponge and the nickel plating layer is not sufficient. As a result, the welding state becomes unstable, causing a problem that the current collecting tab comes off or the contact resistance of the welded portion increases. And when the contact resistance of a welding part increases, the problem that a large current discharge performance falls will arise.
[0008]
Therefore, the present invention has been made in view of the above-described problems, and is to enhance the fusion of the active material holder and the nickel plating layer of the current collecting tab and improve the high current discharge performance.
[0009]
Means for Solving the Problem and Actions / Effects of the Means] In order to solve the above-mentioned problems, the present invention provides a part of the active material holder from the surface of the electrode plate filled with the active material holder made of nickel sponge. A current collecting tab in which a nickel plating layer having a thickness of 5 μm to 10 μm is formed on the welded portion is peeled off from the peeled portion where the active material holding member is exposed by peeling off the active material holder. The present invention provides a non-sintered nickel electrode for an alkaline storage battery, characterized in that the joint depth of the joint by welding with an active material holder is 2 μm or more. In this non-sintered nickel electrode, the welded portion of the current collecting tab is composed of two layers, an inner layer of nickel and an upper layer made of a nickel alloy having a melting point lower than that of the active material holder, and a nickel plating having a thickness of 5 μm to 10 μm By forming the layer, the amount of nickel to be fused increases, so the fusion between the nickel sponge of the active material holder and the nickel plating layer of the current collecting tab becomes strong without causing separation, and the large current discharge performance is achieved. improves.
[0011]
The practice of the present invention, it is desirable to form the nickel plating layer into two layers of a surface layer made of low melting point nickel alloys than the inner layer and the active material holder of a nickel. In this case, the metal that forms the plated layer melted during welding can easily enter the porous body, so that the fusion between the active material holder and the nickel plated layer of the current collecting tab is stronger. It becomes.
[0014]
The bonding depth by welding between the nickel plating layer and the active material holder is related to the thickness of the nickel plating layer. However, if the nickel plating layer is too thick, the plating layer is easily peeled off. Therefore, an upper limit is inevitably required for the coupling depth. Therefore, in the practice of the present invention, it is desirable that the coupling depth is 4 to 11 μm . When the coupling depth is defined as 4 to 11 μm in this way, the welding strength between the current collecting tab and the active material holder is optimized.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Below, one Embodiment at the time of applying the electrode plate for alkaline storage batteries of this invention to the nickel positive electrode plate of a nickel-hydrogen storage battery is described based on figures. 1 is a view showing a current collecting tab of the present embodiment, and FIG. 1A is a side view showing the current collecting tabs of Reference Embodiments 1 to 4 and Comparative Example 1 to be described later. FIG. 1 (b) is a side view showing a current collecting tab of the present embodiment of an example described later, and FIG. 1 (c) is a top view thereof. FIG. 2 is a view showing a state in which the current collecting tab of FIG. 1 is welded to the nickel positive electrode plate of the present embodiment. FIG. 3A is a diagram showing a state where the current collecting tab welded to the nickel positive electrode plate is peeled off, and FIG. 3B is a diagram showing the back surface of the current collecting tab peeled off from the nickel positive electrode plate. . FIG. 4 is a view showing a welded state between the nickel positive electrode plate and the current collecting tab.
[0016]
a. Making current collector tab
Reference example 1
A cold rolled steel plate (JIS standard SPCC steel plate) having a thickness of 0.08 mm is used as a base material 10, and nickel (its melting point is about 1450 ° C.) is formed on the surface of the base material 10 to a thickness of 5 μm on each side. As described above, the nickel plating layer 11 is formed by performing electrolytic plating or electroless plating, and then annealed. The base material 10 having the nickel plating layer 11 formed on the surface in this manner is cut so as to have a width of 3 mm and a length of 12 mm to obtain a current collecting tab 10 a of Reference Example 1.
[0017]
Reference example 2
A cold rolled steel plate (JIS standard SPCC steel plate) having a thickness of 0.08 mm is used as a base material 10, and nickel (its melting point is about 1450 ° C.) is formed on the surface of the base material 10 to a thickness of 7 μm on each side. As described above, the nickel plating layer 12 is formed by electrolytic plating or electroless plating, and then annealed. The base material 10 having the nickel plating layer 12 formed on the surface in this manner is cut so as to have a width of 3 mm and a length of 12 mm to obtain a current collecting tab 10 b of Reference Example 2.
[0018]
Reference example 3
A cold rolled steel plate (JIS standard SPCC steel plate) having a thickness of 0.08 mm is used as a base material 10, and nickel (its melting point is about 1450 ° C.) is formed on the surface of the base material 10 to have a thickness of 10 μm on each side. As described above, after the nickel plating layer 13 is formed by performing electrolytic plating or electroless plating, annealing is performed. The base material 10 having the nickel plating layer 13 formed on the surface in this manner is cut so as to have a width of 3 mm and a length of 12 mm to obtain a current collecting tab 10 c of Reference Example 3.
[0019]
Reference example 4
A cold rolled steel plate (JIS standard SPCC steel plate) having a thickness of 0.08 mm is used as a base material 10, and nickel (its melting point is about 1450 ° C.) is formed on the surface of the base material 10 to have a thickness of 15 μm on each side. As described above, after the nickel plating layer 14 is formed by performing electrolytic plating or electroless plating, annealing is performed. The base material 10 having the nickel plating layer 14 formed on the surface in this manner is cut so as to have a width of 3 mm and a length of 12 mm to obtain a current collecting tab 10 d of Reference Example 4.
[0020]
Example A cold rolled steel plate (JIS standard SPCC steel plate) having a thickness of 0.08 mm is used as a base material 10, and nickel (the melting point is about 1450 ° C.) on the surface of the base material 10 is 3 μm thick on each side. The nickel plating layer 15 is formed by performing electrolytic plating or electroless plating so as to be annealed. Thereafter, a nickel-phosphorus alloy (a nickel-phosphorus alloy whose weight ratio is Ni: P = 89: 11 and having a melting point of about 880 ° C.) is formed on the surface on which the nickel plating layer 15 having a thickness of 3 μm is formed. The nickel-phosphorus alloy layer 16 is formed by performing electrolytic plating or electroless plating so that the thickness of each surface becomes 4 μm on each side, and then annealed. The base material 10 having the two-layered plating layer of the nickel plating layer 15 and the nickel-phosphorus alloy layer 16 is cut so as to have a width of 3 mm and a length of 12 mm to obtain a current collecting tab 10e of the embodiment. .
[0021]
Comparative Example 1
A cold rolled steel plate (JIS standard SPCC steel plate) having a thickness of 0.08 mm is used as the base material 10, and nickel (its melting point is about 1450 ° C.) is formed on the surface of the base material 10 to a thickness of 3 μm on each side. As described above, the nickel plating layer 15 is formed by electrolytic plating or electroless plating, and then annealed. The base material 10 having the nickel plating layer 15 formed on the surface in this manner is cut so as to have a width of 3 mm and a length of 12 mm to obtain a current collecting tab 10 f of Comparative Example 1.
[0022]
Comparative Example 2
A cold rolled steel plate (JIS standard SPCC steel plate) having a thickness of 0.08 mm is used as a base material 10, and the surface of the base material 10 is cut to have a width of 3 mm and a length of 12 mm without applying nickel. The current collecting tab of Comparative Example 2 is 10 g.
[0023]
b. Preparation of Nickel Positive Electrode Plate 90 parts by weight of nickel hydroxide, 5 parts by weight of metallic cobalt powder and 5 parts by weight of cobalt hydroxide powder are mixed, and this is kneaded with 20 parts by weight of a 1% by weight aqueous solution of methylcellulose. Make it. The slurry thus produced has an active material filling density after rolling of about 2 on an active material holder 20 made of nickel sponge having a basis weight of 600 g / m 2 , a thickness of 1.5 mm, and an average fiber diameter of 75 μm. After filling the slurry so as to be .9 g / cc-void, it is rolled until the thickness becomes about 0.67 mm.
[0024]
Next, a part of the active material 20 filled with the active material 21 in this way is peeled to form a peeled portion 22 that exposes the active material holding member, and the peeled portion 22 is exposed as described above. The produced current collecting tabs 10a to 10g are spot-welded at two points to form a welded portion 23 to produce nickel positive plates 20a to 20g. The welding points may be any number of points such as 2, 4, 6, and the like, but in the present embodiment, welding is performed at two points to obtain nickel positive plates 20a to 20g. FIG. 2 shows a nickel positive electrode plate 20a to which the current collecting tab 10a of Reference Example 1 is welded.
[0025]
c. Production of Batteries Each of the 20 positive electrode plates 20a to 20g produced as described above and a negative electrode plate in which a hydrogen storage alloy is applied to a punching metal, each with a separator made of a nonwoven fabric made of polypropylene, the outermost periphery being a negative electrode plate In this way, 20 spiral electrode bodies are produced each. After inserting each of these 20 spiral electrode bodies into an AAA size metal outer can, a potassium hydroxide aqueous solution having a specific gravity of 1.3 was injected into the outer can as an electrolyte, and the outer can was sealed. 20 nickel-hydrogen storage batteries each having a nominal capacity of 600 mAH are produced.
[0026]
d. Experimental Results Each of the nickel positive electrode plates 20a to 20g produced as described above was placed on a horizontal table, and as shown in FIG. 3A, the current collecting tabs 10a to 10g were placed in the vertical direction (FIG. 3A). In the X direction of the arrow of Fig. 3, a peeling test is performed in which each of the current collecting tabs 10a to 10g is peeled off from each of the nickel positive electrode plates 20a to 20g, and as shown in FIG. When the presence or absence of nickel sponge A fixed to the surface of 10 g was examined, the results shown in Table 1 were obtained. FIG. 3 shows a nickel positive electrode plate 20a welded to the current collecting tab 10a of Reference Example 1.
[0027]
[Table 1]
Figure 0003953139
[0028]
As apparent from Table 1 above, the nickel plating layers 11, 12, 13, 14, and 15 (Examples , Reference Examples 1 to 4 and Comparative Example 1) are not provided with the nickel plating layer (Comparison) In Example 2), the number of nickel sponges A fixedly increased. In addition, the number of nickel sponges A to which the nickel plating layer was thickened ( Reference Examples 2 to 4) was larger than that of the nickel plating layer was thin ( Reference Example 1 and Comparative Example 1). Further, in the case where the nickel-phosphorus alloy plating layer 16 is provided on the nickel plating layer 15 ( Example) , the nickel sponge A is formed similarly to the case where the nickel plating layer is thickened ( Reference Examples 2 to 4). The number of fixed parts increased.
[0029]
For this reason, the lower limit of the thickness of the nickel plating layer is preferably 5 μm. On the other hand, the thicker the nickel plating layer is, the better the fusion with the nickel sponge is. However, since the peeling of the plating occurred in the nickel plating layer having a thickness of 15 μm ( Reference Example 4), the upper and lower values were 10 μm. It is preferable that Then, each of the nickel positive plates 20a to 20g produced as described above is hardened with an epoxy resin, cut around the welding points 22 and 23, and then etched with nitric acid, and each of the current collecting tabs 10a to 10g and a nickel sponge is cut. The fusion state was observed. The observation results are as shown in Table 2 below. In Table 2, the bond depth represents the bond depth Z of the portion B where the plating layer 11 melts and fuses with the fibers 25 constituting the nickel sponge 20, as shown in FIG. FIG. 4 shows the nickel positive electrode plate 20a welded to the current collecting tab 10a of Reference Example 1.
[0030]
[Table 2]
Figure 0003953139
[0031]
As apparent from Table 2 above, as the thickness of the nickel plating layers 11, 12, 13, 14 , and 15 (Examples , Reference Examples 1 to 4 and Comparative Example 1) increases, the coupling depth Z increases. . Further, a nickel-phosphorus alloy plating layer 16 having a low melting point provided on the nickel plating layer 15 ( Example) (the total plating layer of the two layers is 7 μm) is the one of Reference Example 2 (Nickel plating) The bonding depth Z is about 1 μm larger than that of the layer having a thickness of 7 μm. Furthermore, the bonding depth Z of the sample without the nickel plating layer (Comparative Example 2) was almost zero.
[0032]
Therefore, when a nickel-phosphorus alloy plating layer 16 having a low melting point is provided on the nickel plating layer 15, the nickel-phosphorus alloy having a low melting point melts at a low temperature and is easily fused with nickel fibers forming a nickel sponge. Therefore, it is considered that the coupling depth Z increases.
[0033]
Next, the discharge characteristics were measured using each of the 20 nickel-hydrogen storage batteries prepared as described above. In this measurement, each of the 20 nickel-hydrogen storage batteries is 100% charged and then discharged at 1C, 2C, 3C, and 5C, respectively, and the operating voltage (from the open state to 1.00 V with the load connected). The intermediate voltage values until the measurement were measured, and the results shown in Table 3 below were obtained.
[0034]
[Table 3]
Figure 0003953139
[0035]
As is clear from Table 3 above, the higher the rate of discharge, the better the operating voltage characteristics when the plating layer is thicker. Further, a nickel-phosphorus alloy plating layer 16 having a low melting point provided on the nickel plating layer 15 ( Example) (the total plating layer of the two layers is 7 μm) is the one of Reference Example 2 (Nickel plating) The operating voltage characteristics were improved more than those with a layer of 7 μm. From this, even if the thickness of the plating layer is the same, the greater the coupling depth Z, the better the fusion between the current collecting tab 10 and the nickel sponge, and the lower the fusion partial contact resistance. Conceivable.
[0036]
And considering the result of the coupling depth Z in Table 2 and the operating voltage characteristics in the high rate discharge in Table 3, the coupling depth Z is preferably 2 μm or more, and optimally 4 to 11 μm. Is preferred.
[0037]
As described above, in the present embodiment and the comparative embodiment, the nickel plating layers 11, 12, 13, and 14 having good fusion properties with the nickel sponge 20 as the active material holder are provided on the current collecting tabs 10 a, 10 b, 10 c, and 10 d. The thickness of the nickel plating layers 11, 12, 13, and 14 is such that the amount of softening and melting during welding is large and does not cause plating peeling (5 to 10 μm). Even if the nickel sponge 20 is used as an active material holder, sufficient welding strength can be obtained. Accordingly, a nickel positive electrode having a high capacity, a high energy density, and capable of discharging a large current can be obtained.
[0038]
Further, the plating layer has a two-layer structure of a lower layer made of a nickel (thinning point is about 1450 ° C.) thin plating layer 15 and a lower layer nickel-phosphorous alloy (melting point is about 880 ° C.) plating layer 16. When the plating layer is provided, the upper nickel-phosphorus alloy plating layer 16 is easily melted at the time of welding, so that it easily enters the high-porosity nickel sponge 20, and the nickel plating layer having the same thickness is provided. As a result, the fusion of the nickel sponge 20 and the current collecting tab 10e becomes stronger.
[Brief description of the drawings]
FIG. 1 is a view showing a current collecting tab according to a reference embodiment of the present invention, and FIG. 1 (a) is a side view showing the current collecting tabs of Reference Examples 1 to 4 and Comparative Example 1; FIG. 1B is a side view showing the current collecting tab of the embodiment, and FIG. 1C is a top view thereof.
2 is a view showing a state in which the current collecting tab of FIG. 1 is welded to the nickel positive electrode plate of the present embodiment.
FIG. 3 (a) is a view showing a state in which the current collecting tab welded to the nickel positive electrode plate is peeled off, and FIG. 3 (b) is a view showing the back surface of the current collecting tab peeled off from the nickel positive electrode plate. FIG.
FIG. 4 is a view showing a welded state between a nickel positive electrode plate and a current collecting tab.

Claims (3)

ニッケルスポンジよりなる活物質保持体を充填した極板の表面から前記活物質保持体の一部の活物質を剥離して同活物質保持体を露出させた剥離部に、ニッケルの内層及び前記活物質保持体より低融点のニッケル合金の表面層の2層からなり、かつ5μm−10μmの厚みのニッケルメッキ層をその溶接部に形成した集電タブを溶接して、前記ニッケルメッキ層と前記活物質保持体との溶接による接合部の結合深さが2μm以上となるようにしたことを特徴とするアルカリ蓄電池用非焼結式ニッケル電極。 An inner layer of nickel and the active layer are separated from the surface of the electrode plate filled with the active material holder made of nickel sponge by peeling a part of the active material holder from the active material holder to expose the active material holder. A current collecting tab comprising two layers of a nickel alloy surface layer having a melting point lower than that of the substance holder and having a nickel plating layer having a thickness of 5 μm to 10 μm formed on the welded portion is welded, and the nickel plating layer and the active layer are welded. A non-sintered nickel electrode for an alkaline storage battery, characterized in that the bonding depth of a joint portion by welding with a substance holding body is 2 μm or more. 前記ニッケルメッキ層をニッケルの内層及び前記活物質保持体より低融点のニッケル‐リン合金の表面層の2層に形成したことを特徴とする請求項1に記載のアルカリ蓄電池用非焼結式ニッケル電極。The inner layer of the nickel plating layer of nickel and the active material holding body than the low melting point of nickel - two layers that formed to said claim 1 for an alkaline storage battery non-sintered according to the surface layer of phosphorus alloy Nickel electrode. 前記ニッケルメッキ層と前記活物質保持体との溶接による接合部の結合深さが4μm−11μmとなるようにしたことを特徴とする請求項1又は2のいずれかに記載のアルカリ蓄電池用非焼結式ニッケル電極。  3. The non-fired alkaline storage battery according to claim 1, wherein a bonding depth of a joint portion by welding between the nickel plating layer and the active material holder is 4 μm to 11 μm. Bonded nickel electrode.
JP10782097A 1997-04-24 1997-04-24 Non-sintered nickel electrode for alkaline storage battery Expired - Fee Related JP3953139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10782097A JP3953139B2 (en) 1997-04-24 1997-04-24 Non-sintered nickel electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10782097A JP3953139B2 (en) 1997-04-24 1997-04-24 Non-sintered nickel electrode for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH10302755A JPH10302755A (en) 1998-11-13
JP3953139B2 true JP3953139B2 (en) 2007-08-08

Family

ID=14468874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10782097A Expired - Fee Related JP3953139B2 (en) 1997-04-24 1997-04-24 Non-sintered nickel electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3953139B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4923986B2 (en) * 2006-11-30 2012-04-25 パナソニック株式会社 battery
SE534901C2 (en) * 2010-04-20 2012-02-07 Nord Lock Ab A method and plant for the production of trays and a tray
CN205985173U (en) * 2016-09-21 2017-02-22 东莞新能源科技有限公司 Utmost point ear structure and battery
JP7354349B1 (en) * 2022-05-16 2023-10-02 Jx金属株式会社 conductor

Also Published As

Publication number Publication date
JPH10302755A (en) 1998-11-13

Similar Documents

Publication Publication Date Title
JP3819570B2 (en) Cylindrical alkaline storage battery using non-sintered electrodes
EP0079666B1 (en) Battery electrodes
JP3527586B2 (en) Manufacturing method of nickel electrode for alkaline storage battery
US3895960A (en) Diffusion-bonded battery electrode plaques
JP3953139B2 (en) Non-sintered nickel electrode for alkaline storage battery
JP2000208144A (en) Battery electrode substrate and manufacture thereof
JP4498772B2 (en) Alkaline storage battery and its manufacturing method
JP2002279964A (en) Alkaline secondary battery and manufacturing method therefor
CN1230795A (en) Electrode for alkaline storage batteries and process for producing the same
JP3649909B2 (en) battery
JP2002025604A (en) Alkaline secondary battery
JPH04123757A (en) Preparation of nickel electrode
JP3738125B2 (en) Alkaline storage battery using non-sintered electrode and method for manufacturing the same
JP2000106169A (en) Electrode manufacturing method and battery
JP2002367607A (en) Non-sintered electrode for alkali storage battery, and alkali storage battery using the same
JP3330263B2 (en) Alkaline secondary battery and manufacturing method thereof
JP2762517B2 (en) Method of manufacturing spiral electrode group for alkaline battery
JP4413294B2 (en) Alkaline secondary battery
JPH10125332A (en) Manufacture of battery electrode
JPH11162447A (en) Cylindrical battery with spiral electrode body and its manufacture
JP3758460B2 (en) Alkaline storage battery and method for manufacturing the same
JP2981538B2 (en) Electrodes for alkaline batteries
JP2005071964A (en) Alkaline accumulator
JPH0713176Y2 (en) Electrode plate for alkaline batteries
JP2002279979A (en) Electrode for battery, and method of manufacturing the electrode

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070424

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees