JP2002279979A - Electrode for battery, and method of manufacturing the electrode - Google Patents

Electrode for battery, and method of manufacturing the electrode

Info

Publication number
JP2002279979A
JP2002279979A JP2001082812A JP2001082812A JP2002279979A JP 2002279979 A JP2002279979 A JP 2002279979A JP 2001082812 A JP2001082812 A JP 2001082812A JP 2001082812 A JP2001082812 A JP 2001082812A JP 2002279979 A JP2002279979 A JP 2002279979A
Authority
JP
Japan
Prior art keywords
nickel
shaped
band
strip
porous body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001082812A
Other languages
Japanese (ja)
Inventor
Takeshi Yoshida
武史 吉田
Kousuke Satoguchi
功祐 里口
Takeo Hamamatsu
太計男 浜松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001082812A priority Critical patent/JP2002279979A/en
Publication of JP2002279979A publication Critical patent/JP2002279979A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode for battery easily manufacturable and superior in capacity by forming a conductive plate, such that even if a collector is welded to a conductive plate, the conductive plate is not bent so that the filled amount of active material of a porous body with three-dimensional net-like structure will not be lowered. SOLUTION: After a groove part 12 is formed in one end part of a band- shaped foam resin 11 at the center part in thickness direction along the longitudinal direction of the foam resin, and a band-shaped conductive metal plate 13 is fixedly inserted into the groove part 12. After carbon powder is applied to the foam resin, a nickel plating is applied thereto, and the band-shaped foam resin 11 is baked at a specified temperature to remove the skelton of the band- shaped foam resin 11. Thus, a nickel porous body 10, having hollow skelton nickel metal and nickel-plated band-shaped metal plate, is formed integrally with each other. After filling an active material slurry into the nickel porous body 10, the nickel porous body is dried, rolled into a specified thickness, and then cut to a specified dimension to provide a nickel positive electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はニッケル・カドミウ
ム電池などの電池に係り、特に、三次元網目状構造を有
する帯状金属多孔体に活物質が充填された電池用電極の
集電構造の改良およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery such as a nickel-cadmium battery, and more particularly to an improvement in a current collecting structure of a battery electrode in which a band-shaped porous material having a three-dimensional network structure is filled with an active material. It relates to the manufacturing method.

【0002】[0002]

【従来の技術】従来、ニッケル・水素蓄電池、ニッケル
・カドミウム蓄電池などのアルカリ蓄電池に使用される
ニッケル電極は、パンチングメタル等の金属芯体にニッ
ケル粉末を焼結して形成した焼結基板にニッケル塩、カ
ドミウム塩等の溶液を含浸し、アルカリ処理により活物
質化したいわゆる焼結式電極が知られている。この焼結
式電極は、焼結基板を高多孔度とした場合には機械的強
度が弱くなるため、実用的には80%程度の多孔度とす
るのが限界であるとともに、パンチングメタル等の金属
芯体を必要とすることから、活物質の充填量が低く、高
エネルギー密度の電極を実現する上で問題があった。ま
た、焼結基板の細孔は10μm以下であるので、活物質
の充填工程を何度も繰り返す必要がある溶液含浸法や電
着含浸法に限定されるため、充填工程が煩雑であるとと
もに製造コストも高くなるという問題があった。
2. Description of the Related Art Conventionally, nickel electrodes used for alkaline storage batteries such as nickel-metal hydride storage batteries and nickel-cadmium storage batteries are formed by sintering nickel powder on a metal core such as punching metal and forming a nickel substrate on a sintered substrate. There is known a so-called sintered electrode in which a solution such as a salt or a cadmium salt is impregnated and converted into an active material by an alkali treatment. When the sintered substrate is made to have a high porosity, the mechanical strength of the sintered electrode becomes weak. Therefore, the porosity of the sintered electrode is limited to about 80% in practice. Since a metal core is required, there is a problem in realizing an electrode having a low filling amount of the active material and a high energy density. In addition, since the pores of the sintered substrate are 10 μm or less, the filling step of the active material is limited to a solution impregnation method or an electrodeposition impregnation method that requires repeating the step many times. There was a problem that the cost was high.

【0003】一方、これらの欠点を改良するために、金
属繊維焼結体や発泡ニッケル(ニッケルスポンジ)など
の三次元網目状構造をもった金属多孔体(活物質保持
体)に活物質スラリーを直接充填した、いわゆる非焼結
式電極が主流となってきた。この種の三次元網目状構造
をもった金属多孔体は、その多孔度が約95%と高多孔
度であるので、活物質を高密度に充填できる。そのた
め、高容量の電池が得られるようになるとともに、この
種の非焼結式電極は活物質をそのまま金属多孔体に充填
するので、面倒な活物質化の処理が必要でなくなり、製
造が容易になるという利点がある。
On the other hand, in order to improve these drawbacks, an active material slurry is applied to a porous metal (active material holding body) having a three-dimensional network structure such as a sintered metal fiber or a foamed nickel (nickel sponge). So-called non-sintered electrodes, which are directly filled, have become mainstream. This kind of porous metal having a three-dimensional network structure has a high porosity of about 95%, so that the active material can be densely filled. As a result, a high-capacity battery can be obtained, and this type of non-sintered electrode fills the porous material with the active material as it is, eliminating the need for cumbersome treatment of the active material and facilitating production. There is an advantage of becoming.

【0004】ところで、この種の三次元網目状構造をも
った多孔体を使用した電極は、一般に高多孔度であるこ
とからその強度が弱く、電極から端子に電流を導くため
の集電リード部を取付けることが困難であった。特に、
大電流放電を必要とする場合には、電極群の電極の端部
に略円板状の集電体を溶接接続することが効果的である
が、焼結式電極ではパンチングメタル等の強固な金属芯
体があるため集電体を固着することは容易である。しか
しながら、非焼結式電極では三次元網目状構造をもった
多孔体を用いるため、強固な金属芯体がなく、略円板状
の集電体を溶接接続することが困難である。
[0004] By the way, an electrode using a porous body having a three-dimensional network structure of this kind generally has a high porosity and therefore has a low strength, and a current collecting lead portion for conducting a current from the electrode to a terminal. Was difficult to install. In particular,
When a large current discharge is required, it is effective to weld and connect a substantially disk-shaped current collector to the end of the electrode of the electrode group. Since there is a metal core, it is easy to fix the current collector. However, since a non-sintered electrode uses a porous body having a three-dimensional network structure, it is difficult to weld and connect a substantially disk-shaped current collector without a strong metal core.

【0005】このため、図3(a)に示すように、金属
多孔体21の長さ方向の一辺を厚み方向にプレスして高
密度部22を形成し、この高密度部22に金属リボン2
3を溶接した電極20が提案されるようになった。この
ように高密度部22に金属リボン23が溶接された電極
20にあっては、金属リボン23は強度を有するため、
この金属リボン23に集電体を溶接することが可能とな
る。しかしながら、上述のように高密度部22を形成し
た後、この高密度部22に金属リボン23を溶接するよ
うにすると、製造工程が増大して生産性が低下するとと
もに、コストも上昇するという問題を生じた。
For this reason, as shown in FIG. 3A, one side in the length direction of the porous metal body 21 is pressed in the thickness direction to form a high-density portion 22, and the high-density portion 22 is
3 has been proposed. As described above, in the electrode 20 in which the metal ribbon 23 is welded to the high-density portion 22, the metal ribbon 23 has strength.
The current collector can be welded to the metal ribbon 23. However, if the metal ribbon 23 is welded to the high-density portion 22 after the high-density portion 22 is formed as described above, the number of manufacturing steps increases, the productivity decreases, and the cost increases. Occurred.

【0006】そこで、金属多孔体の長さ方向の一辺を幅
方向にプレスして高密度化した電極が特開昭62−13
9251号公報にて提案されるようになった。この特開
昭62−139251号公報にて提案された電極30に
おいては、図4(a)に示すように、金属多孔体31の
長さ方向の一辺を幅方向(図4(a)のx方向)にプレ
スして高密度部32を形成するようにしているので、金
属リボンなどの補強材を高密度部32に溶接することな
く、この高密度部32の上部に集電体を直接溶接するこ
とが可能となる。
An electrode in which one side in the length direction of a porous metal body is pressed in the width direction to increase the density is disclosed in JP-A-62-13 / 1987.
No. 9251 was proposed. In the electrode 30 proposed in Japanese Patent Application Laid-open No. Sho 62-139251, as shown in FIG. Direction) to form the high-density portion 32, so that the current collector is directly welded to the upper portion of the high-density portion 32 without welding a reinforcing material such as a metal ribbon to the high-density portion 32. It is possible to do.

【0007】一方、図5(a)に示されるように、導電
性金属板41に金属多孔体42,43を張り合わせた
後、焼結して、導電性金属板41と金属多孔体42,4
3とを一体化させた電極40が特開平10−12533
2号公報にて提案されている。この特開平10−125
332号公報にて提案された電極40においては、金属
多孔体42,43の間に導電性金属板41が存在するた
め、図5(b)に示されるように、この導電性金属板4
1に集電体15を溶接しても、導電性金属板41が屈折
する恐れは生じない。また、金属多孔体42,43の骨
格が導電性金属板41の表面に接合されるので、良好な
電気的接続を得ることができるとともに、電極の強度が
高いことから、ハンドリング性が向上して生産性を向上
させることが可能となる。
On the other hand, as shown in FIG. 5 (a), after a porous metal body 42, 43 is bonded to a conductive metal plate 41, it is sintered, and the conductive metal plate 41 and the porous metal bodies 42, 4 are sintered.
3 is integrated with the electrode 40 disclosed in
No. 2 proposes this. Japanese Patent Application Laid-Open No. H10-125
In the electrode 40 proposed in Japanese Patent Publication No. 332, since the conductive metal plate 41 exists between the metal porous bodies 42 and 43, as shown in FIG.
Even if the current collector 15 is welded to 1, the conductive metal plate 41 will not be bent. In addition, since the skeletons of the porous metal bodies 42 and 43 are joined to the surface of the conductive metal plate 41, good electrical connection can be obtained, and since the strength of the electrodes is high, handling properties are improved. It is possible to improve productivity.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、図3
(a)に示すような方法で製造された電極においては、
生産性が低下するばかりでなく、この電極をセパレータ
を介して対極とともに渦巻状に巻回して渦巻状電極群と
し、この渦巻状電極群の金属リボン23に集電体15を
溶接すると、短絡不良が多いという問題点があった。こ
れは、図3(b)に示すように、高密度部22は金属多
孔体21の厚み方向の一方側に偏在しているため、高密
度部22に溶接された金属リボン23に集電体15を溶
接する際に、溶接時の加圧力により高密度部22の付け
根部が屈曲し、この屈曲した部分Xがセパレータを突き
破って対極と接触するためである。
However, FIG.
In the electrode manufactured by the method shown in (a),
Not only does the productivity drop, but this electrode is spirally wound with a counter electrode through a separator to form a spiral electrode group, and when the current collector 15 is welded to the metal ribbon 23 of the spiral electrode group, short-circuit failure occurs. There was a problem that there were many. This is because the high-density portion 22 is unevenly distributed on one side in the thickness direction of the porous metal body 21 as shown in FIG. This is because the base of the high-density portion 22 is bent by welding pressure when welding the portion 15, and the bent portion X breaks through the separator and comes into contact with the counter electrode.

【0009】また、特開昭62−139251号公報に
て提案された電極にあっては、上述と同様に、この電極
をセパレータを介して対極とともに渦巻状に巻回して渦
巻状電極群とし、この渦巻状電極群の高密度部32に集
電体33を溶接すると、短絡不良が多いという問題点が
あった。これは、高密度部32に集電体15を溶接する
際に、図4(b)に示すように、溶接時の加圧力により
高密度部32が圧縮されて、高密度部32の両端が両側
に突出して突出部32aが形成され、この突出部32a
がセパレータを貫通して対極に接触するためである。
Further, in the electrode proposed in Japanese Patent Application Laid-Open No. 62-139251, similarly to the above, this electrode is spirally wound together with a counter electrode via a separator to form a spiral electrode group. When the current collector 33 is welded to the high-density portion 32 of the spiral electrode group, there is a problem that there are many short-circuit defects. When the current collector 15 is welded to the high-density portion 32, as shown in FIG. 4B, the high-density portion 32 is compressed by the pressing force at the time of welding, and both ends of the high-density portion 32 are compressed. A protruding portion 32a is formed to protrude on both sides, and the protruding portion 32a is formed.
Is to penetrate the separator and contact the counter electrode.

【0010】さらに、特開平10−125332号公報
にて提案された電極にあっては、導電性金属板41に金
属多孔体42,43を張り合わせた後に焼結を行う工程
を有するため、焼結のための設備が必要になるととも
に、製造工程も複雑で、コストが上昇するという問題を
生じた。また、金属多孔体42,43の内部に導電性金
属板41が存在するため、この導電性金属板41の体積
分だけ活物質の充填量が減少して、容量が低下するとい
う問題も生じた。
Furthermore, the electrode proposed in Japanese Patent Application Laid-Open No. 10-125332 has a step of sintering after bonding metal porous bodies 42 and 43 to a conductive metal plate 41. In addition to this, there is a problem that the equipment for the above is required, the manufacturing process is complicated, and the cost is increased. In addition, since the conductive metal plate 41 is present inside the porous metal bodies 42 and 43, the filling amount of the active material is reduced by the volume of the conductive metal plate 41, and the capacity is reduced. .

【0011】そこで、本発明は上記問題点を解決するた
めになされたものであって、三次元網目状構造をもった
多孔体への活物質の充填量が低下しないように導電板を
備えるようにするとともに、この導電板に集電体を溶接
しても導電板が屈曲しないような構造にして、製造が容
易で、容量に優れた電池用電極を提供することを目的と
する。
The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to provide a conductive plate so that a porous body having a three-dimensional network structure is not filled with an active material. In addition, an object of the present invention is to provide a battery electrode which is easy to manufacture and has a high capacity by making the structure such that the conductive plate does not bend even when a current collector is welded to the conductive plate.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するた
め、本発明は三次元網目状構造を有する帯状多孔体に活
物質が充填された電池用電極であって、帯状多孔体の一
端部の長手方向に沿ってこの帯状多孔体の厚み方向の中
央部に集電タブ部となる帯状導電板が該帯状多孔体と一
体的に配設されていることを特徴とする。このように、
帯状導電板が帯状多孔体の厚み方向の中央部に長手方向
に沿って配設されていると、集電体との溶接時の加圧力
が偏在しなくなるとともに、帯状導電板は帯状多孔体よ
りも強度が高いために、この帯状導電板が屈曲すること
が防止できるようになって、内部短絡の発生を未然に防
止することができるようになる。
In order to achieve the above object, the present invention relates to a battery electrode in which a band-shaped porous body having a three-dimensional network structure is filled with an active material, wherein one end of the band-shaped porous body is provided. A band-shaped conductive plate serving as a current collecting tab is provided integrally with the band-shaped porous body at the center in the thickness direction of the band-shaped porous body along the longitudinal direction. in this way,
When the strip-shaped conductive plate is disposed along the longitudinal direction at the center in the thickness direction of the strip-shaped porous body, the pressing force at the time of welding with the current collector is not unevenly distributed, and the strip-shaped conductive plate is more than the strip-shaped porous body. Since the belt-like conductive plate has high strength, it is possible to prevent the belt-shaped conductive plate from being bent, and it is possible to prevent an internal short circuit from occurring.

【0013】この場合、帯状導電板は耐食性およびコス
トの点で、ニッケル金属板、ニッケルもしくはニッケル
合金で修飾された金属板を用いるのが好ましい。また、
帯状導電板の帯状多孔体と一体的に埋設された部分の幅
が電極の幅に対して大きくなりすぎると活物質の充填可
能な体積が減少し、埋設された部分の幅が電極の幅に対
して小さくなりすぎると加圧力に対する強度が低下する
ため、帯状導電板の帯状多孔体と一体的に埋設された部
分の幅は電極の幅に対して最適な幅にするのが望まし
い。
In this case, it is preferable to use a nickel metal plate or a metal plate modified with nickel or a nickel alloy from the viewpoint of corrosion resistance and cost. Also,
If the width of the portion embedded in the strip-shaped conductive plate integrally with the strip-shaped porous body becomes too large with respect to the width of the electrode, the volume that can be filled with the active material decreases, and the width of the embedded portion becomes smaller than the width of the electrode. On the other hand, if the width is too small, the strength against the pressing force is reduced. Therefore, it is desirable that the width of the portion of the strip-shaped conductive plate embedded integrally with the strip-shaped porous body be an optimum width with respect to the electrode width.

【0014】また、本発明は三次元網目状構造を有する
帯状多孔体に活物質を充填して形成する電池用電極の製
造方法であって、帯状発泡樹脂の一端部の厚み方向の中
央部に該帯状発泡樹脂の長手方向に沿って溝部を形成す
る溝部形成工程と、溝部内に帯状導電板の一部を埋設す
る埋設工程と、帯状発泡樹脂および帯状導電板にニッケ
ルメッキを施すメッキ工程と、ニツケルメッキされた帯
状発泡樹脂を焼成して該発泡樹脂を除去する焼成工程と
を備えたことを特徴とする。
The present invention also relates to a method for manufacturing a battery electrode formed by filling a band-shaped porous body having a three-dimensional network structure with an active material, the method comprising: A groove forming step of forming a groove along the longitudinal direction of the band-shaped foamed resin, an embedding step of embedding a part of the band-shaped conductive plate in the groove, and a plating step of performing nickel plating on the band-shaped foamed resin and the band-shaped conductive plate. A baking step of baking the nickel-plated band-shaped foamed resin to remove the foamed resin.

【0015】帯状発泡樹脂の一端部の厚み方向の中央部
に帯状発泡樹脂の長手方向に沿って溝部を形成し、この
溝部内に帯状導電板の一部を埋設した後、帯状発泡樹脂
および帯状導電板にニッケルメッキを施すようにする
と、帯状発泡樹脂の骨格の表面および帯状導電板の表面
にニッケル金属が一体的に付着するようになる。この
後、帯状発泡樹脂を焼成すると、発泡樹脂の骨格は除去
されて、発泡樹脂の骨格の表面に付着したニッケル金属
が残存することとなる。これにより、中空骨格のニッケ
ル金属とこの中空骨格のニッケル金属の一端部の厚み方
向の中央部に埋設されてニッケルメッキされた帯状導電
板とが一体化したニッケル多孔体が得られる。
A groove is formed along the longitudinal direction of the band-shaped foamed resin at the center in the thickness direction of one end of the band-shaped foamed resin, and a part of the band-shaped conductive plate is buried in the groove. When nickel plating is applied to the conductive plate, nickel metal is integrally attached to the surface of the skeleton of the band-shaped foamed resin and the surface of the band-shaped conductive plate. Thereafter, when the band-shaped foamed resin is fired, the skeleton of the foamed resin is removed, and the nickel metal adhered to the surface of the skeleton of the foamed resin remains. As a result, a nickel porous body is obtained in which the nickel metal of the hollow skeleton and the belt-shaped conductive plate embedded with nickel and buried at the center in the thickness direction at one end of the nickel metal of the hollow skeleton are integrated.

【0016】ここで、溝部内に帯状導電板の一部を埋設
しただけであると、帯状導電板は帯状発泡樹脂に対して
直立しにくいために溝部内に帯状導電板を固定する必要
がある。このため、埋設工程において、帯状導電板の一
部を樹脂により溝部内に固定するようにしている。これ
により、帯状導電板の一部が帯状発泡樹脂より突出し、
残部は溝内に埋設されるようになる。この場合、溝部と
帯状導電板とを固定する樹脂の充填量が多くなると、後
のメッキ工程で帯状発泡樹脂と帯状導電板との間に付着
するニッケル金属の付着量が少なくなってこの部分の強
度が低下するため、必要最小限にする必要がある。
Here, if only a part of the strip-shaped conductive plate is buried in the groove, the strip-shaped conductive plate is difficult to stand upright with respect to the strip-shaped foamed resin, so it is necessary to fix the strip-shaped conductive plate in the groove. . For this reason, in the embedding process, a part of the strip-shaped conductive plate is fixed in the groove by resin. Thereby, a part of the strip-shaped conductive plate protrudes from the strip-shaped foamed resin,
The remainder will be buried in the groove. In this case, when the filling amount of the resin for fixing the groove portion and the band-shaped conductive plate is increased, the amount of nickel metal adhered between the band-shaped foamed resin and the band-shaped conductive plate in a later plating step is reduced, and this portion is reduced. Since the strength is reduced, it is necessary to minimize the strength.

【0017】[0017]

【発明の実施の形態】以下に、本発明の電池用電極をニ
ッケル−水素蓄電池のニッケル正極に適用した場合の一
実施の形態を図に基づいて説明する。なお、図1は帯状
発泡樹脂に帯状金属板を埋設し、これにニッケルメッキ
を施した後、焼成して発泡ニッケルを形成する一連の工
程を模式的に示す斜視図である。また、図2はこの発泡
ニッケルに活物質を充填して形成した正極と負極とを外
装缶内に収容して形成されたニッケル−水素蓄電池を示
す断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the battery electrode of the present invention is applied to a nickel positive electrode of a nickel-hydrogen storage battery will be described below with reference to the drawings. FIG. 1 is a perspective view schematically showing a series of steps of burying a strip-shaped metal plate in a strip-shaped foamed resin, applying nickel plating to the strip-shaped metal plate, and then firing to form nickel foam. FIG. 2 is a cross-sectional view showing a nickel-hydrogen storage battery formed by accommodating a positive electrode and a negative electrode formed by filling an active material into the foamed nickel in an outer can.

【0018】1.ニッケル正極の作製 (1)実施例 まず、発泡樹脂(例えば、ウレタンフォーム)を完成極
板寸法より若干大きい短冊状に切断して、帯状発泡樹脂
11を用意した後、図1(a)に示すように、この帯状
発泡樹脂11の一端部の厚み方向の中央部に、帯状発泡
樹脂11の長手方向に沿って深さが0.4mmとなる溝
部12を形成した。ついで、図1(b)に示すように、
この溝部12内に鉄製の帯状金属板(幅が1mmで長さ
が300mmのもの)13を挿入した後、溝部12と帯
状金属板13との隙間に合成樹脂13aを適宜の間隔を
隔てて充填して、帯状金属板13を溝部12内に固定し
た。
1. 1. Production of Nickel Positive Electrode (1) Example First, a foamed resin (for example, urethane foam) was cut into a strip shape slightly larger than the size of a completed electrode plate to prepare a strip-shaped foamed resin 11, which is shown in FIG. As described above, the groove 12 having a depth of 0.4 mm along the longitudinal direction of the band-shaped foamed resin 11 was formed at the center of one end of the band-shaped foamed resin 11 in the thickness direction. Then, as shown in FIG.
After inserting an iron band-shaped metal plate (with a width of 1 mm and a length of 300 mm) 13 into the groove 12, a gap between the groove 12 and the band-shaped metal plate 13 is filled with a synthetic resin 13a at an appropriate interval. Then, the band-shaped metal plate 13 was fixed in the groove 12.

【0019】これにより、帯状金属板13の上部は帯状
発泡樹脂より0.6mmだけ突出して帯状発泡樹脂に対
して垂直に固定されることとなる。なお、溝部12と帯
状金属板13との隙間に充填する合成樹脂13aの充填
量が多くなると、後のメッキ工程で合成樹脂13aの表
面に付着するニッケル金属の付着量が少なくなってこの
部分の強度が低下するため、必要最小限にする必要があ
る。ついで、帯状金属板13が溝部12内に固定された
帯状発泡樹脂11にカーボン粉末を塗布して導電性を付
与した後、これをニッケルメッキ槽(図示せず)に浸漬
して、ニッケルメッキを施した。これにより、帯状発泡
樹脂11の骨格の表面および帯状金属板13の表面にニ
ッケル金属が一体的に付着するようになる。
As a result, the upper portion of the strip-shaped metal plate 13 projects from the strip-shaped foamed resin by 0.6 mm and is fixed vertically to the strip-shaped foamed resin. When the amount of the synthetic resin 13a filling the gap between the groove 12 and the strip-shaped metal plate 13 increases, the amount of nickel metal adhering to the surface of the synthetic resin 13a in a later plating step decreases, and the amount of nickel metal in this portion decreases. Since the strength is reduced, it is necessary to minimize the strength. Then, after applying a carbon powder to the band-shaped foamed resin 11 in which the band-shaped metal plate 13 is fixed in the groove portion 12 to impart conductivity, the plate is immersed in a nickel plating tank (not shown) to perform nickel plating. gave. As a result, nickel metal is integrally attached to the surface of the skeleton of the band-shaped foamed resin 11 and the surface of the band-shaped metal plate 13.

【0020】この後、帯状発泡樹脂11を焼成炉内に配
置して、所定の温度で焼成すると、帯状発泡樹脂11の
骨格は除去されて、帯状発泡樹脂11の骨格の表面に付
着したニッケル金属が残存することとなる。これによ
り、図1(c)に示すように、中空骨格のニッケル金属
とニッケルメッキされた帯状金属板とが一体化したニッ
ケル多孔体10が得られる。
Thereafter, when the band-shaped foamed resin 11 is placed in a firing furnace and fired at a predetermined temperature, the skeleton of the band-shaped foamed resin 11 is removed, and the nickel metal adhered to the surface of the skeleton of the band-shaped foamed resin 11 is removed. Will remain. As a result, as shown in FIG. 1C, a nickel porous body 10 in which the hollow-frame nickel metal and the nickel-plated strip-shaped metal plate are integrated is obtained.

【0021】一方、共沈成分として亜鉛2.5重量%と
コバルト1重量%を含有する水酸化ニッケル粉末90重
量部と、水酸化コバルト粉末10重量部と、酸化亜鉛粉
末3重量部との混合粉末に、ヒドロキシプロピルセルロ
ースの0.2重量%水溶液50重量部を添加混練して活
物質スラリーを作製した。ついで、この活物質スラリー
を、上述したニッケル多孔体10に所定の充填密度にな
るように充填した後、乾燥させ、所定の厚みになるまで
圧延した後、所定寸法(例えば、高さ(幅)が35mm
で、長さが300mm)に切断してニッケル正極10を
作製した。このようにして作製されたニッケル正極10
を実施例のニッケル正極aとした。
On the other hand, 90 parts by weight of nickel hydroxide powder containing 2.5% by weight of zinc and 1% by weight of cobalt as coprecipitating components, 10 parts by weight of cobalt hydroxide powder, and 3 parts by weight of zinc oxide powder were mixed. An active material slurry was prepared by adding and kneading 50 parts by weight of a 0.2% by weight aqueous solution of hydroxypropyl cellulose to the powder. Then, the active material slurry is filled into the above-described nickel porous body 10 so as to have a predetermined packing density, dried, and rolled to a predetermined thickness, and then has a predetermined size (for example, height (width)). Is 35mm
Then, the length was cut to 300 mm) to produce a nickel positive electrode 10. Nickel positive electrode 10 thus produced
Was used as the nickel positive electrode a of the example.

【0022】(2)比較例1 まず、公知の方法で作製された発泡ニッケル21に、上
述した実施例と同様に作製した活物質スラリーを所定の
充填密度になるように充填した後、乾燥させ、所定の厚
みになるまで圧延した。ついで、発泡ニッケル21の上
辺部22に図示しない超音波ホーンを押し当てて、この
上辺部22に垂直方向に超音波振動を加えて、上辺部2
2に充填された活物質(約1mm幅)を発泡ニッケル2
1より脱落させて活物質除去部分を形成した。なお、超
音波ホーンを押し当てて超音波振動を与えることによ
り、上辺部22は圧縮されて高密度部となる。ついで、
図3に示すように、鉄にニッケルメッキを施した金属リ
ボン(幅が1mmで長さが300mmのもの)23を用
意し、この金属リボン23を活物質が除去された上辺部
22に溶接した後、所定寸法(例えば、高さ(幅)が3
5mmで、長さが300mm)に切断してニッケル正極
20を作製した。このようにして作製されたニッケル正
極20を比較例1のニッケル正極xとした。
(2) Comparative Example 1 First, an active material slurry manufactured in the same manner as in the above-described embodiment was filled into a foamed nickel 21 manufactured by a known method so as to have a predetermined packing density, and then dried. And rolled to a predetermined thickness. Next, an ultrasonic horn (not shown) is pressed against the upper side 22 of the foamed nickel 21, and ultrasonic vibration is applied to the upper side 22 in a vertical direction to thereby make the upper side 2
The active material (approx. 1 mm width) filled in
1 to remove the active material. By applying an ultrasonic vibration by pressing the ultrasonic horn, the upper side portion 22 is compressed to become a high density portion. Then
As shown in FIG. 3, a metal ribbon (one having a width of 1 mm and a length of 300 mm) obtained by plating nickel on iron was prepared, and this metal ribbon 23 was welded to the upper side 22 from which the active material had been removed. After that, a predetermined dimension (for example, height (width) is 3
(5 mm, length: 300 mm) to produce a nickel positive electrode 20. The nickel positive electrode 20 manufactured in this manner was used as a nickel positive electrode x of Comparative Example 1.

【0023】(3)比較例2 まず、公知の方法で作製された発泡ニッケル31に、上
述した実施例と同様に作製した活物質スラリーを所定の
充填密度になるように充填した後、乾燥させ、所定の厚
みになるまで圧延した。ついで、発泡ニッケル31の上
辺部32に図示しない超音波ホーンを押し当てて、この
上辺部32に垂直方向に超音波振動を加えて、上辺部3
2に充填された活物質(約2mm幅の活物質)を発泡ニ
ッケル31より脱落させて活物質除去部分を形成した。
ついで、図4に示すように、活物質が除去された上辺部
32を発泡ニッケル31の高さ方向(図4のx方向)に
圧縮(幅が1mmで、長さが300mm)して、高密度
部を形成した後、所定寸法(例えば、高さ(幅)が35
mmで、長さが300mm)に切断してニッケル正極3
0を作製した。このようにして作製されたニッケル正極
30を比較例2のニッケル正極yとした。
(3) Comparative Example 2 First, an active material slurry produced in the same manner as in the above-described embodiment was filled into a foamed nickel 31 produced by a known method so as to have a predetermined filling density, and then dried. And rolled to a predetermined thickness. Next, an ultrasonic horn (not shown) is pressed against the upper side 32 of the foamed nickel 31, and ultrasonic vibration is applied to the upper side 32 in a vertical direction, thereby forming the upper side 3.
The active material (active material having a width of about 2 mm) filled in 2 was dropped from the foamed nickel 31 to form an active material removed portion.
Next, as shown in FIG. 4, the upper side 32 from which the active material has been removed is compressed (width 1 mm, length 300 mm) in the height direction (x direction in FIG. 4) of the foamed nickel 31 to increase the height. After the formation of the density portion, a predetermined dimension (for example, a height (width) of 35
mm, length is 300mm)
0 was produced. The nickel positive electrode 30 manufactured in this manner was used as a nickel positive electrode y of Comparative Example 2.

【0024】2.水素吸蔵合金負極の作製 ミッシュメタル(Mm)、ニッケル(Ni)、コバルト
(Co)、アルミニウム(Al)およびマンガン(M
n)を1:3.4:1:0.2:0.6の比率で混合
し、この混合物をアルゴンガス雰囲気の高周波誘導炉で
誘導加熱して合金溶湯とした。この合金溶湯を公知の方
法で鋳型に流し込み、冷却して、組成式Mm 1.0Ni3.4
Co1.0Al0.2Mn0.6で表される水素吸蔵合金のイン
ゴットを作製した。
2. Preparation of hydrogen storage alloy negative electrode Misch metal (Mm), nickel (Ni), cobalt
(Co), aluminum (Al) and manganese (M
n) in a ratio of 1: 3.4: 1: 0.2: 0.6
Then, this mixture is placed in a high-frequency induction furnace in an argon gas atmosphere.
The alloy was melted by induction heating. If you use this alloy melt
Poured into a mold by the method, cooled, and the composition formula Mm 1.0Ni3.4
Co1.0Al0.2Mn0.6Of hydrogen storage alloy represented by
A got was made.

【0025】この水素吸蔵合金インゴットを機械的に粗
粉砕した後、不活性ガス雰囲気中で平均粒子径が約15
0μmになるまで機械的に粉砕した後、この水素吸蔵合
金粉末にポリエチレンオキサイド等の結着剤と、適量の
水を加えて混合して水素吸蔵合金スラリーを作製した。
ついで、得られた水素吸蔵合金スラリーをパンチングメ
タルからなる活物質保持体の両面に、圧延後に所定の活
物質充填密度になるように塗着した後、乾燥、圧延を行
った後、所定寸法(例えば、幅35mmで長さが350
mm)に切断して水素吸蔵合金負極50を作製した。
After mechanically coarsely pulverizing the hydrogen storage alloy ingot, the ingot having an average particle diameter of about 15 was obtained in an inert gas atmosphere.
After mechanically pulverizing to a thickness of 0 μm, a binder such as polyethylene oxide and an appropriate amount of water were added to the hydrogen storage alloy powder and mixed to prepare a hydrogen storage alloy slurry.
Then, after applying the obtained hydrogen storage alloy slurry to both surfaces of the active material holding body made of punched metal so as to have a predetermined active material filling density after rolling, drying and rolling, the resultant is subjected to a predetermined size ( For example, a width of 35 mm and a length of 350
mm) to produce a hydrogen storage alloy negative electrode 50.

【0026】3.ニッケル−水素電池の作製 ついで、図2に示すように、上述のように作製した各ニ
ッケル正極10(20,30)と、水素吸蔵合金負極5
0との間に、厚みが約0.15mmのナイロン製不織布
からなるセパレータ60を介在させて渦巻状に巻回して
渦巻状電極群を作製した。この渦巻状電極群のニッケル
正極10(20,30)の上端に露出した金属板13
(あるは金属板23もしくは高密度部32)に正極集電
体15を溶接するとともに、渦巻状電極群の水素吸蔵合
金負極50の下端に露出したパンチングメタルの端部に
負極集電体50aを溶接して渦巻状電極体を作製した。
なお、正極集電体15は円板状に形成されているととも
に、その一端から延出してリード部15aが形成されて
いる。また、負極集電体50aは円板状に形成されてい
る。
3. Production of Nickel-Hydrogen Battery Next, as shown in FIG. 2, each nickel positive electrode 10 (20, 30) produced as described above and a hydrogen storage alloy negative electrode 5
0, a spiral electrode group was produced by spirally winding with a separator 60 made of a nonwoven fabric made of nylon having a thickness of about 0.15 mm interposed therebetween. Metal plate 13 exposed at the upper end of nickel positive electrode 10 (20, 30) of this spiral electrode group
The positive electrode current collector 15 is welded to (or the metal plate 23 or the high-density portion 32), and the negative electrode current collector 50a is attached to the end of the punched metal exposed at the lower end of the hydrogen storage alloy negative electrode 50 of the spiral electrode group. A spiral electrode body was produced by welding.
The positive electrode current collector 15 is formed in a disk shape, and has a lead portion 15a extending from one end thereof. The negative electrode current collector 50a is formed in a disk shape.

【0027】ついで、渦巻状電極群の両端部に正極集電
体15および負極集電体50aが溶接された渦巻状電極
体を鉄にニッケルメッキを施した有底筒状の外装缶(電
池ケース:底面の外面は負極外部端子となる)70内に
収納した後、負極集電体50aを外装缶70の内底面に
溶接するとともに、正極集電体15から延出したリード
部15aの端部を封口体80の蓋体81の底面に溶接し
た。ついで、外装缶70の上部内周側に防振リング71
を挿入し、外装缶70外周側に溝入れ加工を施して防振
リング71の上端部に凹部72を形成した。この後、外
装缶70内に電解液(LiOH、NaOHを含有した7
〜8.5mol/lの水溶液)を注入した。
Next, a spirally wound electrode body in which the positive electrode current collector 15 and the negative electrode current collector 50a are welded to both ends of the spirally wound electrode group is nickel-plated with iron. : The outer surface of the bottom surface is a negative electrode external terminal) 70, the negative electrode current collector 50a is welded to the inner bottom surface of the outer can 70, and the end of the lead portion 15a extending from the positive electrode current collector 15 Was welded to the bottom surface of the lid 81 of the sealing body 80. Next, an anti-vibration ring 71 is provided on the upper inner peripheral side of the outer can 70.
And a groove 72 was formed on the outer peripheral side of the outer can 70 to form a concave portion 72 at the upper end of the vibration isolating ring 71. Thereafter, the electrolyte (LiOH, NaOH-containing 7
~ 8.5 mol / l aqueous solution).

【0028】ついで、この外装缶70の上部開口部に、
周縁に絶縁ガスケット73を嵌着させた封口体80を配
置した後、プレス機を用いて封口体80に加圧力を加え
て、絶縁ガスケット73の下端が凹部72の位置になる
まで封口体80を外装缶70内に押し込んだ。この後、
外装缶70の開口端縁を内方にかしめて電池を封口し
て、公称容量3Ahの円筒形ニッケル−水素蓄電池A,
X,Yを作製した。なお、封口体80は、底面に円形状
の下方突出部を形成してなる蓋体81と、正極キャップ
(正極外部端子)82と、これら蓋体81および正極キ
ャップ82間に介在されるスプリング83と弁板84か
らなる弁体を備えており、蓋体81の中央にはガス抜き
孔が形成されている。ここで、ニッケル正極10を用い
たニッケル−水素蓄電池を電池Aとし、ニッケル正極2
0を用いたニッケル−水素蓄電池を電池Xとし、ニッケ
ル正極30を用いたニッケル−水素蓄電池を電池Yとし
た。
Next, in the upper opening of the outer can 70,
After arranging the sealing body 80 with the insulating gasket 73 fitted on the periphery, a pressing force is applied to the sealing body 80 using a press machine, and the sealing body 80 is pressed until the lower end of the insulating gasket 73 is positioned at the concave portion 72. It was pushed into the outer can 70. After this,
The battery is sealed by caulking the opening edge of the outer can 70 inward, and the cylindrical nickel-metal hydride storage battery A having a nominal capacity of 3 Ah,
X and Y were produced. The sealing body 80 includes a lid 81 having a circular downward projection formed on the bottom surface, a positive electrode cap (positive electrode external terminal) 82, and a spring 83 interposed between the lid 81 and the positive electrode cap 82. And a valve plate comprising a valve plate 84, and a gas vent hole is formed in the center of the lid 81. Here, the nickel-hydrogen storage battery using the nickel positive electrode 10 is referred to as a battery A, and the nickel positive electrode 2
The nickel-metal hydride storage battery using the nickel positive electrode 30 was referred to as a battery X, and the nickel-hydrogen storage battery using the nickel positive electrode 30 was referred to as a battery Y.

【0029】4.実験結果 上述のようにして作製した円筒形ニッケル−水素蓄電池
A,X,Yをそれぞれ10000個ずつ用意し、これら
の各10000個ずつの円筒形ニッケル−水素蓄電池
A,X,Yの電圧を測定し、電圧が0.5V以下の電池
を短絡電池と判定して、短絡電池数を数えて短絡率(短
絡率=(短絡電池数/10000)×100%)を求め
ると、下記の表1に示すような結果となった。
4. Experimental Results 10,000 cylindrical nickel-metal hydride storage batteries A, X, Y prepared as described above were prepared, and the voltages of 10,000 cylindrical nickel-metal hydride batteries A, X, Y were measured. A battery having a voltage of 0.5 V or less is determined as a short-circuit battery, and the number of short-circuit batteries is counted to determine a short-circuit rate (short-circuit rate = (number of short-circuit batteries / 10000) × 100%). The results were as shown.

【0030】[0030]

【表1】 [Table 1]

【0031】上記表1より明らかなように、中空骨格の
ニッケル金属とこの中空骨格のニッケル金属の一端部の
厚み方向の中央部に埋設されてニッケルメッキされた帯
状金属板13とが一体化されたニッケル多孔体10を用
いた電池Aの短絡率が低く、上部に高密度部32が形成
された発泡ニッケル31を用いた電池Yは短絡率が高
く、上辺部22に帯状金属板23が溶接されたニッケル
多孔体21を用いた電池Xの短絡率がさらに高くなって
いることが分かる。
As is clear from Table 1, the nickel metal of the hollow skeleton and the nickel-plated strip-shaped metal plate 13 buried at the center in the thickness direction of one end of the nickel metal of the hollow skeleton are integrated. The short-circuit rate of the battery A using the nickel porous body 10 is low, the short-circuit rate of the battery Y using the foamed nickel 31 having the high-density portion 32 formed thereon is high, and the band-shaped metal plate 23 is welded to the upper side 22. It can be seen that the short circuit rate of the battery X using the nickel porous body 21 is further increased.

【0032】これは、電池Yにあっては、高密度部32
に正極集電体15を溶接する際に、図4(b)に示すよ
うに、溶接時の加圧力により高密度部32が圧縮され
て、高密度部32の両端部が両側に突出して突出部32
aが形成され、この突出部32aがセパレータを貫通し
て対極に接触するためである。また、電池Xにあって
は、高密度部22に溶接された金属リボン23に集電体
15を溶接する際に、図3(b)に示すように、高密度
部22は金属多孔体21の厚み方向の一方側に偏在して
いるため、高密度部22に溶接された金属リボン23に
集電体15を溶接する際に、溶接時の加圧力により高密
度部22の付け根部が屈曲し、この屈曲した部分Xがセ
パレータを突き破って対極と接触するためである。
In the battery Y, the high-density portion 32
As shown in FIG. 4 (b), when the positive electrode current collector 15 is welded, the high-density portion 32 is compressed by the pressing force at the time of welding, and both ends of the high-density portion 32 protrude to both sides and protrude. Part 32
This is because a is formed, and the protruding portion 32a penetrates through the separator and contacts the counter electrode. Further, in the battery X, when the current collector 15 is welded to the metal ribbon 23 welded to the high-density portion 22, as shown in FIG. When the current collector 15 is welded to the metal ribbon 23 welded to the high-density portion 22, the base of the high-density portion 22 is bent by welding force when welding the current collector 15 to the metal ribbon 23 welded to the high-density portion 22. This is because the bent portion X breaks through the separator and comes into contact with the counter electrode.

【0033】一方、電池Aにあっては、帯状金属板13
が金属多孔体11の厚み方向の中央部に長手方向に沿っ
て埋設されているため、集電体15との溶接時の加圧力
が偏在しなくなるとともに、帯状金属板13の強度も高
いためにこの帯状金属板13が屈曲することが防止でき
るようになって、内部短絡の発生を未然に防止すること
ができるようになったためである。この場合、帯状金属
板13の帯状金属多孔体11に一体的に埋設された部分
の幅が電極の幅に対して5.0%よりも大きくなると活
物質の充填可能な体積が減少し、埋設された部分の幅が
電極の幅に対して0.5%よりも小さくなると加圧力に
対する強度が低下するため、帯状金属板13の帯状金属
多孔体11と一体的に埋設された部分の幅は電極の幅に
対して0.5〜5.0とするのが望ましい。
On the other hand, in the battery A, the band-shaped metal plate 13
Is buried along the longitudinal direction at the center in the thickness direction of the porous metal body 11, so that the pressing force during welding with the current collector 15 is not unevenly distributed, and the strength of the band-shaped metal plate 13 is high. This is because the band-shaped metal plate 13 can be prevented from being bent, and an internal short circuit can be prevented from occurring. In this case, when the width of the portion of the band-shaped metal plate 13 embedded in the band-shaped metal porous body 11 is larger than 5.0% of the width of the electrode, the volume that can be filled with the active material is reduced, and If the width of the formed portion is smaller than 0.5% with respect to the width of the electrode, the strength against the pressing force is reduced. It is desirable to set the width to 0.5 to 5.0 with respect to the width of the electrode.

【0034】なお、上述した実施の形態においては、本
発明をニッケル−水素蓄電池のニッケル正極に適用する
例について説明したが、本発明はこれに限らず、発砲ニ
ッケルなどの三次元網目状構造を有する多孔体を活物質
保持体とする電池用電極であれば、どのような電極にも
適用することが可能である。
In the above-described embodiment, an example in which the present invention is applied to a nickel positive electrode of a nickel-hydrogen storage battery has been described. However, the present invention is not limited to this, and a three-dimensional network structure such as foamed nickel may be used. The present invention can be applied to any electrode as long as it has a porous material as an active material holder and has a battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 帯状発泡樹脂に帯状導電板を埋設し、これに
ニッケルメッキを施した後、焼成して発泡ニッケルを形
成する一連の工程を模式的に示す斜視図である。
FIG. 1 is a perspective view schematically showing a series of steps of embedding a strip-shaped conductive plate in a strip-shaped foamed resin, applying nickel plating to the strip-shaped conductive plate, and then firing to form nickel foam.

【図2】 発泡ニッケルに活物質を充填して形成した正
極と負極とを外装缶内に収容して形成されたニッケル−
水素蓄電池を示す断面図である。
FIG. 2 shows a nickel-containing battery formed by accommodating a positive electrode and a negative electrode, each of which is formed by filling an active material into foamed nickel.
It is sectional drawing which shows a hydrogen storage battery.

【図3】 発泡ニッケルの圧縮部に金属リボンを溶接し
て形成した比較例(従来例)のニッケル電極を模式的に
示す断面図である。
FIG. 3 is a cross-sectional view schematically showing a nickel electrode of a comparative example (conventional example) formed by welding a metal ribbon to a compressed portion of foamed nickel.

【図4】 発泡ニッケルの上辺部に高密度部を形成した
他の比較例(他の従来例)のニッケル電極を模式的に示
す断面図である。
FIG. 4 is a cross-sectional view schematically illustrating a nickel electrode of another comparative example (another conventional example) in which a high-density portion is formed on the upper side of foamed nickel.

【図5】 導電性金属板の両面に金属多孔体を焼結して
一体化させた他の従来例のニッケル電極を模式的に示す
断面図である。
FIG. 5 is a cross-sectional view schematically illustrating another conventional nickel electrode in which a porous metal body is sintered and integrated on both surfaces of a conductive metal plate.

【符号の説明】[Explanation of symbols]

10…ニッケル正極、11…帯状発泡樹脂、12…溝
部、13…帯状金属板(帯状導電板)、15…正極集電
体、15a…リード部、20,30…ニッケル正極、5
0…水素吸蔵合金負極、50a…負極集電体、60…セ
パレータ、70…外装缶、71…防振リング、72…凹
部、73…絶縁ガスケット、80…封口体、81…蓋
体、82…正極キャップ、83…スプリング、84…弁
DESCRIPTION OF SYMBOLS 10 ... Nickel positive electrode, 11 ... Strip-shaped foamed resin, 12 ... Groove part, 13 ... Strip-shaped metal plate (strip-shaped conductive plate), 15 ... Positive electrode collector, 15a ... Lead part, 20, 30 ... Nickel positive electrode, 5
0: hydrogen storage alloy negative electrode, 50a: negative electrode current collector, 60: separator, 70: outer can, 71: anti-vibration ring, 72: concave portion, 73: insulating gasket, 80: sealing body, 81: lid, 82 ... Positive electrode cap, 83 ... spring, 84 ... valve plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浜松 太計男 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H017 AA02 AS08 AS10 BB03 BB04 BB10 BB11 BB15 BB16 CC01 CC28 DD01 EE04 EE07 EE08 HH02 HH05 5H022 AA04 AA18 BB02 BB03 BB22 BB25 CC12 CC13 CC16 CC18 CC19 CC30 EE03 EE09 5H050 AA08 AA14 AA19 BA11 CA00 CA01 CA04 CB16 DA02 DA06 DA10 DA20 FA09 FA12 FA13 GA02 GA04 GA07 GA24 HA09 HA12  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Taimeo Hamamatsu 2-5-5 Keihanhondori, Moriguchi-shi, Osaka F-term in Sanyo Electric Co., Ltd. (reference) 5H017 AA02 AS08 AS10 BB03 BB04 BB10 BB11 BB15 BB16 CC01 CC28 DD01 EE04 EE07 EE08 HH02 HH05 5H022 AA04 AA18 BB02 BB03 BB22 BB25 CC12 CC13 CC16 CC18 CC19 CC30 EE03 EE09 5H050 AA08 AA14 AA19 BA11 CA00 CA01 CA04 CB16 DA02 DA06 DA10 DA20 FA09 FA12 FA24

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 三次元網目状構造を有する帯状多孔体に
活物質が充填された電池用電極であって、 前記帯状多孔体の一端部の長手方向に沿って、該帯状多
孔体の厚み方向の中央部に集電タブ部となる帯状導電板
が該帯状多孔体と一体的に配設されていることを特徴と
する電池用電極。
1. A battery electrode in which an active material is filled in a strip-shaped porous body having a three-dimensional network structure, wherein the thickness direction of the strip-shaped porous body is along a longitudinal direction of one end of the strip-shaped porous body. A band-shaped conductive plate serving as a current collecting tab portion is disposed integrally with the band-shaped porous body at a central portion of the battery electrode.
【請求項2】 前記帯状導電板はニッケル金属板、ニッ
ケルもしくはニツケル合金で修飾された金属板であるこ
とを特徴とする請求項1に記載の電池用電極。
2. The battery electrode according to claim 1, wherein the strip-shaped conductive plate is a nickel metal plate or a metal plate modified with nickel or a nickel alloy.
【請求項3】 前記帯状導電板の一部が前記帯状多孔体
に埋設され、該帯状多孔体に埋設されない部分の前記帯
状導電板は前記帯状多孔体から突出して一体的に配設さ
れていることを特徴とする請求項1または請求項2に記
載の電池用電極。
3. A part of the strip-shaped conductive plate is buried in the strip-shaped porous body, and a part of the strip-shaped conductive plate which is not buried in the strip-shaped porous body is integrally provided so as to protrude from the strip-shaped porous body. The battery electrode according to claim 1 or 2, wherein
【請求項4】 三次元網目状構造を有する帯状多孔体に
活物質を充填して形成する電池用電極の製造方法であっ
て、 帯状発泡樹脂の一端部の厚み方向の中央部に該帯状発泡
樹脂の長手方向に沿って溝部を形成する溝部形成工程
と、 前記溝部内に帯状導電板の一部を埋設する埋設工程と、 前記帯状発泡樹脂および前記帯状導電板にニッケルメッ
キを施すメッキ工程と、 前記ニツケルメッキされた帯状発泡樹脂を焼成して該発
泡樹脂を除去する焼成工程とを備えたことを特徴とする
電池用電極の製造方法。
4. A method for producing an electrode for a battery, comprising forming a band-shaped porous body having a three-dimensional network structure with an active material by filling the band-shaped foamed resin with one end of the band-shaped foamed resin in the center in the thickness direction. A groove forming step of forming a groove along the longitudinal direction of the resin; an embedding step of embedding a part of the band-shaped conductive plate in the groove; and a plating step of performing nickel plating on the band-shaped foamed resin and the band-shaped conductive plate. And baking the nickel-plated strip-shaped foamed resin to remove the foamed resin.
【請求項5】 前記埋設工程において、前記帯状導電板
の一部を樹脂により前記溝部内に固定するようにしたこ
とを特徴とする請求項4に記載の電池用電極の製造方
法。
5. The method for manufacturing a battery electrode according to claim 4, wherein in the embedding step, a part of the strip-shaped conductive plate is fixed in the groove with a resin.
【請求項6】 前記帯状導電板はニッケル金属板、ニッ
ケルもしくはニツケル合金で修飾された金属板であるこ
とを特徴とする請求項4または請求項5に記載の電池用
電極の製造方法。
6. The method according to claim 4, wherein the strip-shaped conductive plate is a nickel metal plate or a metal plate modified with nickel or a nickel alloy.
JP2001082812A 2001-03-22 2001-03-22 Electrode for battery, and method of manufacturing the electrode Withdrawn JP2002279979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001082812A JP2002279979A (en) 2001-03-22 2001-03-22 Electrode for battery, and method of manufacturing the electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001082812A JP2002279979A (en) 2001-03-22 2001-03-22 Electrode for battery, and method of manufacturing the electrode

Publications (1)

Publication Number Publication Date
JP2002279979A true JP2002279979A (en) 2002-09-27

Family

ID=18938710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001082812A Withdrawn JP2002279979A (en) 2001-03-22 2001-03-22 Electrode for battery, and method of manufacturing the electrode

Country Status (1)

Country Link
JP (1) JP2002279979A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021131233A1 (en) 2020-12-17 2022-06-23 Honda Motor Co., Ltd. Secondary Battery Electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021131233A1 (en) 2020-12-17 2022-06-23 Honda Motor Co., Ltd. Secondary Battery Electrode

Similar Documents

Publication Publication Date Title
JP3819570B2 (en) Cylindrical alkaline storage battery using non-sintered electrodes
JPH03184275A (en) Rectangular sealed alkaline battery with negative electrode of hydrogen storage alloy
JP3695978B2 (en) Alkaline storage battery with spiral electrode body
JP2002298906A (en) Nickel-hydrogen secondary battery
JP2002279964A (en) Alkaline secondary battery and manufacturing method therefor
JP3649909B2 (en) battery
JP3738125B2 (en) Alkaline storage battery using non-sintered electrode and method for manufacturing the same
JP2002025604A (en) Alkaline secondary battery
JP2002279979A (en) Electrode for battery, and method of manufacturing the electrode
JP3953139B2 (en) Non-sintered nickel electrode for alkaline storage battery
JP3893856B2 (en) Square alkaline storage battery
JP2002367607A (en) Non-sintered electrode for alkali storage battery, and alkali storage battery using the same
JP3869540B2 (en) Cylindrical battery with spiral electrode body and method for manufacturing the same
JP2002289170A (en) Alkali secondary battery
JP3913395B2 (en) Method for producing alkaline storage battery
JP2762517B2 (en) Method of manufacturing spiral electrode group for alkaline battery
JP3952489B2 (en) Alkaline storage battery
JP4413294B2 (en) Alkaline secondary battery
JP3568356B2 (en) Method of manufacturing prismatic battery and prismatic battery
JP2003031215A (en) Non-sintered electrode for alkaline storage battery and alkaline storage battery using the electrode
JP2001351672A (en) Alkali storage battery
JP3371734B2 (en) Method for producing electrode for alkaline storage battery
JP2003203639A (en) Alkaline storage battery and its manufacturing method
JP2001283863A (en) Non-sintering electrode for alkaline battery and manufacturing method
JP2001351673A (en) Alkali storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060515

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081112