JP3952732B2 - Longitudinal coupled resonator type surface acoustic wave filter - Google Patents

Longitudinal coupled resonator type surface acoustic wave filter Download PDF

Info

Publication number
JP3952732B2
JP3952732B2 JP2001322032A JP2001322032A JP3952732B2 JP 3952732 B2 JP3952732 B2 JP 3952732B2 JP 2001322032 A JP2001322032 A JP 2001322032A JP 2001322032 A JP2001322032 A JP 2001322032A JP 3952732 B2 JP3952732 B2 JP 3952732B2
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
coupled resonator
wave filter
type surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001322032A
Other languages
Japanese (ja)
Other versions
JP2003133901A (en
Inventor
道雄 門田
純也 吾郷
秀哉 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2001322032A priority Critical patent/JP3952732B2/en
Publication of JP2003133901A publication Critical patent/JP2003133901A/en
Application granted granted Critical
Publication of JP3952732B2 publication Critical patent/JP3952732B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、少なくとも1段の縦結合共振子型弾性表面波フィルタに関し、より詳細には、対向二端面間におけるSH波の反射を利用した縦結合共振子型弾性表面波フィルタに関する。
【0002】
【従来の技術】
従来、BGS波や、ラブ波などのSH波の対向二端面間における反射を利用した端面反射型弾性表面波装置が種々提案されている。特開平11−150442号や特開平9−69751号公報には、端面反射型の縦結合共振子型弾性表面波フィルタが開示されている。ここでは、間挿し合う電極指が一本の電極指により構成されている、シングル電極型の複数のインターデジタルトランスデューサ(IDT)が設けられている。
【0003】
他方、特願平11−60423号公報では、端面反射型の縦結合共振子型弾性表面波フィルタにおけるIDT間の距離、すなわち隣り合うIDT間の電極指中心間距離や交叉幅を制御することにより特性が変化する旨が示されている。
【0004】
また、間挿し合う電極指が、同電位に接続される2本の電極からなる、スプリット電極型のIDTを用いた端面反射型の縦結合共振子型弾性表面波フィルタが、特願平11−121035号公報、及び特願平12−51795号公報などに示されている。ここでは、SH波を反射させる端面をダイシングにより切り出す際のダイシング位置により、特性が変化する旨が示されている。
【0005】
【発明が解決しようとする課題】
前述したように、従来、スプリット電極からなるIDTを用いた端面反射型の縦結合共振子型弾性表面波フィルタでは、反射端面の位置を制御することにより、特性が変化することが知られていた。従って、端面を最適な位置に形成する必要があることが求められていた。しかしながら、スプリット電極からなるIDTでは、シングル電極を用いたIDTに比べて、電気機械結合係数kが小さく、従って損失が大きいという問題があった。
【0006】
また、シングル電極型のIDTを用いた縦結合共振子型弾性表面波フィルタと、スプリット電極型のIDTを用いた縦結合共振子型弾性表面波フィルタとでは、端面の最適位置は異なる。従って、特願平11−121035号公報や特願平12−51795号公報に記載の端面位置を、ただちにシングル電極型IDTを用いた縦結合共振子型弾性表面波フィルタには適用することはできない。
【0007】
他方、シングル電極型IDTを用いた縦結合共振子型弾性表面波フィルタでは、スプリット電極型IDTを用いた弾性表面波フィルタに比べ、電気機械結合係数kが大きいため、損失を低減することができるという利点を有する。しかしながら、シングル電極型IDTを用いた縦結合共振子型弾性表面波フィルタにおいては、帯域外スプリアスの影響が大きく、良好なフィルタ特性を必ずしも得ることはできなかった。
【0008】
本発明の目的は、上述した従来技術の現状に鑑み、シングル電極型IDTを用いた端面反射型の縦結合共振子型弾性表面波フィルタにおいて、反射端面の位置を制御し、それによって帯域外スプリアスを効果的に抑圧することができ、良好なフィルタ特性を得ることを可能とする構造を提供することである。
【0009】
【課題を解決するための手段】
【0011】
発明は、対向二端面におけるSH波の反射を利用した縦結合共振子型弾性表面波フィルタであって、対向し合う第1,第2の端面を有する圧電基板と、前記圧電基板上において第1の端面から第2の端面に向かう方向に沿って距離を隔てて独立に設けられており、かつシングル電極からなる複数のIDTとを備え、前記複数のIDTの電極指の対数の合計をNとした時に、第1,第2の端面間の距離が、D+(N−0.01×2)×λ0〜D+(N((1/5)×D/λ0−0.19)×2)×λ0 [但し、Nは正の整数、Dは隣り合うIDT間の電極指中心間距離であり、D=d+N×λ0/2あり、d<λ0/2、Nは正の整数である]の範囲にある。
【0013】
本発明(第1,第2の発明)の特定の局面では、前記複数のIDTからなる少なくとも1段の縦結合共振子型フィルタ部が構成されており、1段における複数のIDTの電極指の対数の合計が20〜100対の間の数とされている。
【0014】
上記圧電基板が比誘電率εrが4以上の圧電基板材料により構成することが好ましい。
本発明の別の特定の局面では、圧電基板を構成する圧電基板材料の電気機械結合係数は0.1〜0.5の範囲にあり、広帯域のフィルタ特性を得ることができ、かつ低損失化を果たすことができる。
【0015】
【発明の実施の形態】
以下、図面を参照しつつ、本発明の具体的な実施例を説明することにより、本発明を明らかにする。
【0016】
図1は、本発明の一実施例に係る縦結合共振子型弾性表面波フィルタの外観を模式的に示す斜視図である。縦結合共振子型弾性表面波フィルタ1は、SH波を用いた端面反射型の表面波フィルタである。縦結合共振子型弾性表面波フィルタ1は、矩形板状の圧電基板2を有する。圧電基板2を構成する材料は、特に限定されるわけではないが、LiTaO3、LiNbO3または水晶などの圧電単結晶、あるいはチタン酸ジルコン酸鉛系セラミックスのような圧電セラミックスを用いることができる。圧電セラミックスからなる場合には、圧電基板2は、図示の矢印P方向に分極処理される。すなわち、後述のIDTの電極指が延びる方向に分極軸が揃うように分極処理される。
【0017】
圧電基板2を構成する材料としては、好ましくは、比誘電率εrが4以上の圧電材料が用いることができる。また、圧電基板2を構成する圧電材料の電気機械結合係数は、0.1〜0.5の範囲が好ましく、この場合には、電気機械結合係数kが十分に大きいため、低損失化及び広い帯域幅を実現することができる。
【0018】
本実施例では、上記圧電基板2は、36度回転Y板LiTaO3により構成されている。
圧電基板2は、対向し合う第1,第2の端面2a,2bを有する。端面2a,2bは、SH波を反射させる反射端面を構成している。
【0019】
圧電基板2の上面には、第1,第2のIDT3,4が形成されている。IDT3,4は、本実施例ではAlからなるが、Al以外の他の金属もしくは合金により構成されていてもよい。
【0020】
IDT3,4は、いずれも、シングル電極型のIDTである。シングル電極型のIDTとは、間挿し合う電極指3a,4aが、一本の電極指すなわちシングル電極により構成されている、IDTである。
【0021】
本願発明者は、本実施例の縦結合共振子型弾性表面波フィルタ1を構成するに先立ち、まず、0.9mm×1.7mm×厚さ0.35mmの圧電基板2上に、電極指の対数がそれぞれ20対であるIDT3,4を形成し、各IDT3,4の交叉幅を19.5λとした縦結合共振子型弾性表面波フィルタを参考例として試作した。なお、λは表面波の波長を示す。ここで、図3に示すように、IDT3,4間の距離D、すなわちIDT3,4の隣り合う電極指中心間距離は、従来例に従って、λ0/2とした。また、端面2a,2bの位置は、IDT3,4の電極指の周期が最もλ0に近い部分の電極指3b,4bの中心から、第1,第2の端面2a,2b方向へ、M×λ0/2の位置とした。なお、Mは正の整数であり、λ0はIDTの平均的な波長を示すものとする。
【0022】
このようにして得られた参考例の縦結合共振子型弾性表面波フィルタの周波数特性を図2に示す。
図2から明らかなように、参考例の縦結合共振子型弾性表面波フィルタでは、通過帯域外にスプリアスSP−1,SP−2,SP+1,SP+2が大きく現れることがわかる。
【0023】
本願発明者は、これらの帯域外スプリアスSP−1,SP−2,SP+1,SP+2と、縦結合共振子型弾性表面波フィルタ1における端面2a,2bとの位置の関係を調べた。図4〜図10は、それぞれ、上記参考例と同様にして構成された縦結合共振子型弾性表面波フィルタ1において、IDT3,4間の距離Dを種々異ならせた場合のスプリアスの変化を示す図である。
【0024】
すなわち、上記IDT3,4間の距離Dを0.45λ0〜0.75λ0の範囲で変化させ、かつさらに端面2a,2bの位置を種々変化させ、スプリアスSP−1,SP−2,SP+1,SP+2と、端面位置との関係を調べた。結果を図4〜図10に示す。図4では、IDT間の距離に対応するDが0.45λ0の場合の帯域外スプリアスの減衰量が示されている。ここで、縦軸は、スプリアスの減衰量を示し、横軸は端面2a,2bの位置(×λ0)を示す。なお、端面の位置は、第1,第2のIDT3,4における電極指の周期が最もλ0に近い部分の電極指3b,4bの中心を基準とし、該中心から端面2a,2bまでの距離で表した。
【0025】
図4から明らかなように、D=0.45λ0の場合には、端面の位置が−0.07λ0〜−0.02λ0の範囲にある場合に、帯域外スプリアスSP−1,SP−2,SP+1,SP+2の減衰量が全て−28dB以下となり、これらの帯域外スプリアスが効果的に抑圧されていることがわかる。すなわち、図4から明らかなように、D=0.45λ0とした時に、第1,第2の端面2a,2bの位置を、−0.07λ0〜−0.02λ0とすることにより、帯域外スプリアスを効果的に抑圧し得ることがわかる。
【0026】
同様に、図5〜図10から明らかなように、Dが0.5λ0〜0.75λ0の範囲で変化された場合には、下記の表1に示す端面位置の時に、それぞれ、帯域外スプリアスが効果的に抑圧されることがわかる。
【0027】
【表1】

Figure 0003952732
【0028】
上記のように、縦結合共振子型弾性表面波フィルタ1では、IDT3,4間の距離と、端面2a,2bの位置を制御することにより、帯域外スプリアスを効果的に抑圧することができ、良好なフィルタ特性を得ることができる。
【0029】
本願発明者は、さらに、IDT3,4の電極指の対数を変化させ、対数の変化により、上記IDT間の距離及び端面位置とスプリアスを抑圧し得る効果との関係を調べた。結果を図11〜図13に示す。図11〜図13は、それぞれ、IDT3,4の電極指の対数を、10対対10対、12対対12対及び40対対40対とした場合の結果を示す。図11〜図13のいずれにおいても、IDT間の距離を表すDは0.5λ0とした。
【0030】
図11から明らかなように、電極指の対数が10対対10対の場合には、端面の位置を−0.025λ0〜+0.025λ0とすれば、スプリアスSP−1,SP−2,SP+1,SP+2をいずれも−25dB以下に抑圧し得ることがわかる。同様に図12から明らかのように、電極指の対数が12対対12対の場合には、端面の位置を−0.075λ0〜+0.080λ0の範囲とすれば、全ての帯域外スプリアスの減衰量を−20dB以下とし得ることがわかる。
【0031】
さらに、図13から明らかなように、40対対40対の場合には、端面位置が−0.05λ0〜−0.075λ0の場合に、全ての帯域外スプリアスが−18dB以下に抑圧される。
【0032】
本願発明者は、図4〜図13に示したように、IDT3,4の電極指の対数を種々異ならせ、IDT間の距離及び端面の位置を種々変更し、上記帯域外スプリアスの減衰量が大きい範囲を調べた。結果を図14に示す。図14は、上記のように帯域外スプリアスの減衰量が大きい範囲を示し、図14の横軸はIDT間の距離(×λ0)、縦軸は端面位置(×λ0)を示し、□はIDT3,4の電極指の対数の合計が20対の場合を、○は32対の場合、△は40対、▽は60対、◇は80対、×は100対の場合を示す。
【0033】
図14において、電極指の対数の合計が20対の場合を例に取ると、この場合には、図14の□で結ばれた線Bの範囲の場合に帯域外スプリアスが効果的に抑圧されることを意味する。
【0034】
従って、図14から明らかなように、IDT3,4の電極指の総対数が20〜100の範囲では、帯域外スプリアスの抑圧度が高い端面カット位置の下限は、図14に示す直線Cで表される。この直線Cは、端面の位置をB、IDT間の距離Dをd+N×λ0/2とした場合、以下の式で表される。
【0035】
B=(1/5)×D−0.19λ0+M×λ0/2
また、図14に示されている電極指の総対数が20対〜100対の範囲で帯域外スプリアスか効果的に抑圧される領域における第1,第2の端面2a,2bの位置は、図14から、M×λ0/2−0.001λ0〜M×λ0/2−0.08λ0…式(1)の範囲とすれば良いことがわかる。
【0036】
従って、IDT3,4内の周期が一定の場合には、第1,第2の端面2a,2bの位置は、各IDTの第1,第2の端面に最も近い電極指の隣の電極指の中心から、λ0/2−0.001λ0〜λ0/2+(1/5)D−0.19λ0…式(2)の範囲に位置していることが望ましいことがわかる。
【0037】
他方、縦結合共振子型弾性表面波フィルタ1における第1,第2の端面2a,2b間の距離を中心に考えた場合には、第1,第2の端面2a,2bが上述した式(1)の範囲にある場合には、D+(N−0.01×2)×λ0〜D+(N−0.08×2)×λ0の範囲とすればよいことがわかる。また、式(2)の場合には、第1,第2の端面間の距離をD+(N−0.01×2)×λ0〜D+(N((1/5)×D/λ0−0.19)×2)×λ0とすればよいことがわかる。
【0038】
なお、上記実施例では、複数のIDTとして第1,第2のIDT3,4が備えられていたが、本発明においては、3以上のIDTが表面波伝搬方向に配置されていてもよい。さらに、上記実施例では、IDT3,4を有する1段の縦結合共振子型弾性表面波フィルタ部を構成されていたが、本発明の縦結合共振子型弾性表面波フィルタは複数段構成を有するものであってもよい。
【0039】
【発明の効果】
【0041】
発明に係る縦結合共振子型弾性表面波フィルタでは、第1,第2の端面間の距離が、D+(N−0.01×2)×λ0〜D+(N((1/5)×D/λ0−0.19×2)×λ0の範囲とされているので、第1の発明と同様に、通過帯域外スプリアスを効果的に抑圧することができ、良好な共振特性を得ることができる。
【0043】
よって、本発明によれば、第1,第2の端面の位置及び端面間の距離を制御することにより、SH波を利用した端面反射型弾性表面波装置における帯域外スプリアスの抑圧を確実に果たすことができる。
【図面の簡単な説明】
【図1】本発明の一実施例を説明するための縦結合共振子型弾性表面波フィルタの外観を示す斜視図。
【図2】縦結合共振子型弾性表面波フィルタにおける帯域外スプリアスを説明するための減衰量−周波数特性を示す図。
【図3】第1,第2のIDT間の距離と端面の位置を説明するための模式的平面図。
【図4】IDT間の距離D=0.45λ0の場合の帯域外スプリアスの減衰量と端面の位置との関係を示す図。
【図5】IDT間の距離D=0.50λ0の場合の帯域外スプリアスの減衰量と端面の位置との関係を示す図。
【図6】IDT間の距離D=0.55λ0の場合の帯域外スプリアスの減衰量と端面の位置との関係を示す図。
【図7】IDT間の距離D=0.60λ0の場合の帯域外スプリアスの減衰量と端面の位置との関係を示す図。
【図8】IDT間の距離D=0.65λ0の場合の帯域外スプリアスの減衰量と端面の位置との関係を示す図。
【図9】IDT間の距離D=0.70λ0の場合の帯域外スプリアスの減衰量と端面の位置との関係を示す図。
【図10】IDT間の距離D=0.75λ0の場合の帯域外スプリアスの減衰量と端面の位置との関係を示す図。
【図11】第1,第2のIDTの電極指の対数が10対対10対であり、かつ第1,第2のIDT間の距離D=0.5λ0の場合の帯域外減衰量と端面の位置との関係を示す図。
【図12】第1,第2のIDTの電極指の対数が12対対12対であり、かつ第1,第2のIDT間の距離D=0.5λ0の場合の帯域外減衰量と端面の位置との関係を示す図。
【図13】第1,第2のIDTの電極指の対数が40対対40対であり、かつ第1,第2のIDT間の距離D=0.5λ0の場合の帯域外減衰量と端面の位置との関係を示す図。
【図14】帯域外スプリアスの減衰量が大きい場合の端面の位置と、IDT間の距離との関係を示す図。
【符号の説明】
1…縦結合共振子型弾性表面波フィルタ
2…圧電基板
2a,2b…第1,第2の端面
3,4…第1,第2のIDT[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a longitudinally coupled resonator type surface acoustic wave filter of at least one stage, and more particularly to a longitudinally coupled resonator type surface acoustic wave filter that utilizes reflection of SH waves between two opposing end faces.
[0002]
[Prior art]
Conventionally, various end surface reflection type surface acoustic wave devices utilizing reflection between two opposing end surfaces of SH waves such as BGS waves and Love waves have been proposed. Japanese Patent Application Laid-Open Nos. 11-150442 and 9-69751 disclose end face reflection type longitudinally coupled resonator type surface acoustic wave filters. Here, a plurality of single-electrode interdigital transducers (IDTs) are provided in which interdigitated electrode fingers are formed by a single electrode finger.
[0003]
On the other hand, in Japanese Patent Application No. 11-60423, by controlling the distance between IDTs in an end face reflection type longitudinally coupled resonator type surface acoustic wave filter, that is, the distance between electrode fingers between adjacent IDTs and the crossing width. It shows that the characteristics change.
[0004]
Further, an end face reflection type longitudinally coupled resonator type surface acoustic wave filter using a split electrode type IDT, in which interdigitated electrode fingers are composed of two electrodes connected to the same potential, is disclosed in Japanese Patent Application No. Hei 11-. No. 121035 and Japanese Patent Application No. 12-51795. Here, it is shown that the characteristics change depending on the dicing position when the end face that reflects the SH wave is cut out by dicing.
[0005]
[Problems to be solved by the invention]
As described above, it has been conventionally known that the characteristics of the end-surface reflection type longitudinally coupled resonator type surface acoustic wave filter using the split electrode IDT are changed by controlling the position of the reflection end surface. . Therefore, it has been demanded that the end face must be formed at an optimal position. However, the IDT composed of split electrodes has a problem that the electromechanical coupling coefficient k is small and the loss is large compared to the IDT using a single electrode.
[0006]
Further, the optimum position of the end face differs between the longitudinally coupled resonator type surface acoustic wave filter using the single electrode type IDT and the longitudinally coupled resonator type surface acoustic wave filter using the split electrode type IDT. Therefore, the end face positions described in Japanese Patent Application No. 11-121035 and Japanese Patent Application No. 12-51795 cannot be immediately applied to a longitudinally coupled resonator type surface acoustic wave filter using a single electrode type IDT. .
[0007]
On the other hand, a longitudinally coupled resonator type surface acoustic wave filter using a single electrode type IDT has a larger electromechanical coupling coefficient k than a surface acoustic wave filter using a split electrode type IDT, so that loss can be reduced. Has the advantage. However, in a longitudinally coupled resonator type surface acoustic wave filter using a single electrode type IDT, the influence of out-of-band spurious is large, and good filter characteristics cannot always be obtained.
[0008]
An object of the present invention is to control the position of a reflection end face in an end face reflection type longitudinally coupled resonator type surface acoustic wave filter using a single electrode type IDT in view of the current state of the above-described prior art, and thereby out-of-band spurious. It is possible to provide a structure capable of effectively suppressing the filter and obtaining good filter characteristics.
[0009]
[Means for Solving the Problems]
[0011]
The present invention is a longitudinally coupled resonator-type surface acoustic wave filter that utilizes SH wave reflection at two opposing end surfaces, a piezoelectric substrate having first and second end surfaces facing each other, and a first substrate on the piezoelectric substrate. A plurality of IDTs that are independently provided at a distance along the direction from one end face to the second end face and that are made of a single electrode, and the total number of pairs of electrode fingers of the plurality of IDTs is N The distance between the first and second end faces is D + (N−0.01 × 2) × λ 0 to D + (N ((1/5) × D / λ 0 −0.19) × 2) × λ 0 [where, N is a positive integer, the electrode finger center distance between IDT which D is adjacent, D = d + N × λ There 0/2, d <λ 0 /2, N being a positive Is an integer] range.
[0013]
In a specific aspect of the present invention (first and second inventions), at least one stage of a longitudinally coupled resonator type filter unit composed of the plurality of IDTs is configured, and electrode fingers of the plurality of IDTs in one stage are formed. The total of the logarithm is a number between 20 and 100 pairs.
[0014]
The piezoelectric substrate is preferably made of a piezoelectric substrate material having a relative dielectric constant ε r of 4 or more.
In another specific aspect of the present invention, the electromechanical coupling coefficient of the piezoelectric substrate material constituting the piezoelectric substrate is in the range of 0.1 to 0.5, a broadband filter characteristic can be obtained, and low loss can be achieved. Can be fulfilled.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be clarified by describing specific embodiments of the present invention with reference to the drawings.
[0016]
FIG. 1 is a perspective view schematically showing an appearance of a longitudinally coupled resonator type surface acoustic wave filter according to an embodiment of the present invention. The longitudinally coupled resonator type surface acoustic wave filter 1 is an end surface reflection type surface acoustic wave filter using SH waves. The longitudinally coupled resonator type surface acoustic wave filter 1 has a rectangular plate-shaped piezoelectric substrate 2. The material constituting the piezoelectric substrate 2 is not particularly limited, it is possible to use piezoelectric ceramics such as LiTaO 3, LiNbO 3 or piezoelectric single crystal such as quartz or lead zirconate titanate ceramics. When made of piezoelectric ceramics, the piezoelectric substrate 2 is polarized in the direction of the arrow P shown in the figure. That is, the polarization process is performed so that the polarization axes are aligned in the direction in which the electrode fingers of the IDT described later extend.
[0017]
As a material constituting the piezoelectric substrate 2, a piezoelectric material having a relative dielectric constant ε r of 4 or more can be preferably used. In addition, the electromechanical coupling coefficient of the piezoelectric material constituting the piezoelectric substrate 2 is preferably in the range of 0.1 to 0.5. In this case, since the electromechanical coupling coefficient k is sufficiently large, the loss is reduced and widened. Bandwidth can be realized.
[0018]
In this embodiment, the piezoelectric substrate 2 is composed of a 36-degree rotated Y plate LiTaO 3 .
The piezoelectric substrate 2 has first and second end faces 2a and 2b facing each other. The end faces 2a and 2b constitute reflection end faces that reflect SH waves.
[0019]
First and second IDTs 3 and 4 are formed on the upper surface of the piezoelectric substrate 2. The IDTs 3 and 4 are made of Al in this embodiment, but may be made of a metal or alloy other than Al.
[0020]
Each of the IDTs 3 and 4 is a single electrode type IDT. The single electrode type IDT is an IDT in which the interdigitated electrode fingers 3a and 4a are constituted by one electrode finger, that is, a single electrode.
[0021]
Prior to the construction of the longitudinally coupled resonator type surface acoustic wave filter 1 of the present embodiment, the inventor of the present application first puts electrode fingers on a piezoelectric substrate 2 of 0.9 mm × 1.7 mm × thickness 0.35 mm. A longitudinally coupled resonator type surface acoustic wave filter in which IDTs 3 and 4 having 20 pairs of logarithms were formed and the crossing width of each IDT 3 and 4 was 19.5λ was manufactured as a reference example. Note that λ indicates the wavelength of the surface wave. Here, as shown in FIG. 3, the distance D between the IDTs 3 and 4, i.e. the electrode finger center distance between adjacent IDTs 3 and 4, according to the conventional example, and the lambda 0/2. The positions of the end faces 2a and 2b are M × from the center of the electrode fingers 3b and 4b where the period of the electrode fingers of the IDTs 3 and 4 is closest to λ 0 toward the first and second end faces 2a and 2b. was the position of λ 0/2. Note that M is a positive integer, and λ 0 represents an average wavelength of the IDT.
[0022]
FIG. 2 shows frequency characteristics of the longitudinally coupled resonator type surface acoustic wave filter of the reference example thus obtained.
As can be seen from FIG. 2, in the longitudinally coupled resonator type surface acoustic wave filter of the reference example, spurious SP-1, SP-2, SP + 1, and SP + 2 appear greatly outside the passband.
[0023]
The inventor of the present application examined the positional relationship between these out-of-band spurious SP-1, SP-2, SP + 1, SP + 2 and the end faces 2a, 2b in the longitudinally coupled resonator type surface acoustic wave filter 1. 4 to 10 show changes in spurious when the distance D between the IDTs 3 and 4 is varied in the longitudinally coupled resonator-type surface acoustic wave filter 1 configured in the same manner as the above-described reference example. FIG.
[0024]
That is, the distance D between the IDTs 3 and 4 is changed in the range of 0.45λ 0 to 0.75λ 0 , and the positions of the end faces 2a and 2b are changed variously, so that the spurious SP-1, SP-2, SP + 1, The relationship between SP + 2 and the end face position was examined. The results are shown in FIGS. FIG. 4 shows the attenuation amount of out-of-band spurious when D corresponding to the distance between IDTs is 0.45λ 0 . Here, the vertical axis represents the amount of spurious attenuation, and the horizontal axis represents the positions (× λ 0 ) of the end faces 2a and 2b. The position of the end face, first, the electrode finger 3b of the portion near the cycle most lambda 0 of the electrode fingers in the second IDTs 3 and 4, the center of 4b as a reference, middle sincerely end face 2a, the distance to 2b Expressed in
[0025]
As apparent from FIG. 4, in the case of D = 0.45λ 0, when the position of the end face is in the range of -0.07λ 0 ~-0.02λ 0, band spurs SP-1, SP- The attenuation amounts of 2, SP + 1, and SP + 2 are all −28 dB or less, and it can be seen that these out-of-band spurs are effectively suppressed. That is, as is clear from FIG. 4, when the D = 0.45λ 0, first and second end surfaces 2a, the position of 2b, by a -0.07λ 0 ~-0.02λ 0, It can be seen that out-of-band spurious can be effectively suppressed.
[0026]
Similarly, as apparent from FIG. 5 to FIG. 10, when D is changed in the range of 0.5λ 0 to 0.75λ 0 , each of the end face positions shown in Table 1 below is out of band. It can be seen that the spurious is effectively suppressed.
[0027]
[Table 1]
Figure 0003952732
[0028]
As described above, the longitudinally coupled resonator type surface acoustic wave filter 1 can effectively suppress out-of-band spurious by controlling the distance between the IDTs 3 and 4 and the positions of the end faces 2a and 2b. Good filter characteristics can be obtained.
[0029]
The inventor of the present application further changed the logarithm of the electrode fingers of IDTs 3 and 4 and investigated the relationship between the distance between the IDTs and the end face position and the effect of suppressing the spurious by changing the logarithm. The results are shown in FIGS. FIGS. 11 to 13 show the results when the number of electrode fingers of IDTs 3 and 4 is 10 to 10 pairs, 12 to 12 pairs, and 40 to 40 pairs, respectively. In any of FIGS. 11 to 13, D representing the distance between the IDT was set to 0.5 [lambda 0.
[0030]
As is clear from FIG. 11, when the number of electrode fingers is 10 vs 10 vs, if the position of the end face and -0.025λ 0 ~ + 0.025λ 0, spurious SP-1, SP-2, It can be seen that both SP + 1 and SP + 2 can be suppressed to -25 dB or less. Similarly, as is apparent from FIG. 12, when the number of electrode fingers is 12 to 12 pairs, all out-of-band spurious can be obtained by setting the position of the end face to a range of −0.075λ 0 to + 0.080λ 0. It can be seen that the amount of attenuation can be set to -20 dB or less.
[0031]
Further, as apparent from FIG. 13, in the case of 40 to 40 pairs, all out-of-band spurious are suppressed to −18 dB or less when the end face position is −0.05λ 0 to −0.075λ 0. The
[0032]
As shown in FIGS. 4 to 13, the inventor of the present application varies the number of electrode fingers of the IDTs 3 and 4, changes the distance between the IDTs and the positions of the end faces, and reduces the out-of-band spurious attenuation. A large range was examined. The results are shown in FIG. FIG. 14 shows a range where the attenuation amount of out-of-band spurious is large as described above, the horizontal axis of FIG. 14 shows the distance between IDTs (× λ 0 ), the vertical axis shows the end face position (× λ 0 ), Indicates a case where the total number of pairs of electrode fingers of IDTs 3 and 4 is 20, ◯ indicates a case of 32 pairs, Δ indicates 40 pairs, ▽ indicates 60 pairs, ◇ indicates 80 pairs, and × indicates a case of 100 pairs.
[0033]
In FIG. 14, taking as an example the case where the total number of pairs of electrode fingers is 20, in this case, out-of-band spurious is effectively suppressed in the range of line B connected by □ in FIG. Means that.
[0034]
Therefore, as apparent from FIG. 14, when the total logarithm of the electrode fingers of IDTs 3 and 4 is in the range of 20 to 100, the lower limit of the end face cut position where the suppression degree of out-of-band spurious is high is represented by the straight line C shown in FIG. Is done. The straight line C is the position of the end face B, and the distance D between the IDT and the d + N × λ 0/2 , is expressed by the following equation.
[0035]
B = (1/5) × D- 0.19λ 0 + M × λ 0/2
The positions of the first and second end faces 2a and 2b in the region where the out-of-band spurious is effectively suppressed in the range of the total number of electrode fingers shown in FIG. 14 shows that M × λ 0 /2−0.001λ 0 to M × λ 0 /2−0.08λ 0 ...
[0036]
Therefore, when the period in the IDTs 3 and 4 is constant, the positions of the first and second end faces 2a and 2b are the positions of the electrode fingers next to the electrode finger closest to the first and second end faces of each IDT. from the center, λ 0 /2-0.001λ 0 ~λ 0 /2+(1/5)D-0.19λ 0 ... it can be seen that it is desirable that located in the range of formula (2).
[0037]
On the other hand, when considering the distance between the first and second end faces 2a and 2b in the longitudinally coupled resonator type surface acoustic wave filter 1, the first and second end faces 2a and 2b are expressed by the above-described formula ( When it is in the range of 1), it is understood that the range of D + (N−0.01 × 2) × λ 0 to D + (N−0.08 × 2) × λ 0 may be used. Further, in the case of Expression (2), the distance between the first and second end faces is D + (N−0.01 × 2) × λ 0 to D + (N ((1/5) × D / λ 0 ). It can be seen that −0.19) × 2) × λ 0 is sufficient.
[0038]
In the above embodiment, the first and second IDTs 3 and 4 are provided as a plurality of IDTs. However, in the present invention, three or more IDTs may be arranged in the surface wave propagation direction. Further, in the above embodiment, a single-stage longitudinally coupled resonator type surface acoustic wave filter unit having IDTs 3 and 4 is configured. However, the longitudinally coupled resonator type surface acoustic wave filter of the present invention has a multi-stage configuration. It may be a thing.
[0039]
【The invention's effect】
[0041]
In the longitudinally coupled resonator type surface acoustic wave filter according to the present invention, the distance between the first and second end faces is D + (N−0.01 × 2) × λ 0 to D + (N ((1/5) × D / λ 0 −0.19 × 2) × λ 0 , the spurious out of the passband can be effectively suppressed as in the first aspect of the invention, and good resonance characteristics can be obtained. Obtainable.
[0043]
Therefore, according to the present invention, by controlling the positions of the first and second end faces and the distance between the end faces, out-of-band spurious can be reliably suppressed in the end surface reflection type surface acoustic wave device using the SH wave. be able to.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an external appearance of a longitudinally coupled resonator type surface acoustic wave filter for explaining an embodiment of the present invention.
FIG. 2 is a diagram showing attenuation-frequency characteristics for explaining out-of-band spurious in a longitudinally coupled resonator type surface acoustic wave filter.
FIG. 3 is a schematic plan view for explaining the distance between the first and second IDTs and the position of the end face.
4 is a diagram showing the relationship between the position of the attenuation and the end face of the band spurs in the case of the distance D = 0.45λ 0 between IDT.
5 is a diagram showing the relationship between the position of the attenuation and the end face of the band spurs in the case of the distance D = 0.50λ 0 between IDT.
6 shows the relationship between the position of the attenuation and the end face of the band spurs in the case of the distance D = 0.55λ 0 between IDT.
7 is a diagram showing the relationship between the position of the attenuation and the end face of the band spurs in the case of the distance D = 0.60λ 0 between IDT.
8 is a diagram showing the relationship between the position of the attenuation and the end face of the band spurs in the case of the distance D = 0.65λ 0 between IDT.
9 is a view showing the relationship between the position of the attenuation and the end face of the band spurs in the case of the distance D = 0.70λ 0 between IDT.
10 is a view showing the relationship between the position of the attenuation and the end face of the band spurs in the case of the distance D = 0.75? 0 between IDT.
[Figure 11] is a first, second IDT of electrode finger pairs is 10 vs 10 vs, and the first out-of-band attenuation amount in the case of the distance D = 0.5 [lambda 0 between the second IDT and The figure which shows the relationship with the position of an end surface.
FIG. 12 shows the out-of-band attenuation when the number of electrode fingers of the first and second IDTs is 12 to 12 and the distance D between the first and second IDTs is 0.5λ 0. The figure which shows the relationship with the position of an end surface.
[Figure 13] is a first, second IDT of electrode finger pairs 40 vs 40 vs, and the first out-of-band attenuation amount in the case of the distance D = 0.5 [lambda 0 between the second IDT and The figure which shows the relationship with the position of an end surface.
FIG. 14 is a diagram showing the relationship between the position of the end face when the out-of-band spurious attenuation is large and the distance between IDTs.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Longitudinal coupling resonator type surface acoustic wave filter 2 ... Piezoelectric substrate 2a, 2b ... 1st, 2nd end surface 3, 4 ... 1st, 2nd IDT

Claims (4)

対向二端面におけるSH波の反射を利用した縦結合共振子型弾性表面波フィルタであって、
対向し合う第1,第2の端面を有する圧電基板と、
前記圧電基板上において第1の端面から第2の端面に向かう方向に沿って距離を隔てて独立に設けられており、かつシングル電極からなる複数のIDTとを備え、
前記複数のIDTの電極指の対数の合計をNとした時に、第1,第2の端面間の距離が、D+(N−0.01×2)×λ0〜D+(N((1/5)×D/λ0−0.19)×2)×λ0 [但し、Nは正の整数、Dは隣り合うIDT間の電極指中心間距離であり、D=d+N×λ0/2あり、d<λ0/2、Nは正の整数である]の範囲にある、縦結合共振子型弾性表面波フィルタ。
A longitudinally coupled resonator-type surface acoustic wave filter using SH wave reflection at opposing two end faces,
A piezoelectric substrate having first and second end faces facing each other;
A plurality of IDTs that are independently provided at a distance along the direction from the first end surface to the second end surface on the piezoelectric substrate, and that include a plurality of IDTs;
When the total number of pairs of electrode fingers of the plurality of IDTs is N, the distance between the first and second end faces is D + (N−0.01 × 2) × λ 0 to D + (N ((1 / 5) × D / λ 0 -0.19 ) × 2) × λ 0 [ where, N is the positive integer, D is the electrode finger center distance between IDT adjacent, D = d + N × λ 0/2 There, d <λ 0/2, N is in the range of a positive integer, longitudinally coupled resonator type surface acoustic wave filter.
前記複数のIDTからなる少なくとも1段の縦結合共振子型フィルタ部が構成されており、1段における複数のIDTの電極指の対数の合計が20〜100対の間にある、請求項1に記載の縦結合共振子型弾性表面波フィルタ。Said plurality of are longitudinally coupled resonator filter unit of at least one stage consisting of IDT is configured, the sum of a plurality of the IDT electrode finger pairs in the first stage is between 20 and 100 pairs, to claim 1 The longitudinally coupled resonator type surface acoustic wave filter as described. 前記圧電基板材料の比誘電率εrが4以上である、請求項1または2に記載の縦結合共振子型弾性表面波フィルタ。The relative dielectric constant epsilon r of the piezoelectric substrate material is 4 or more, longitudinally coupled resonator surface acoustic wave filter according to claim 1 or 2. 前記圧電基板を構成する圧電基板材料の電気機械結合係数が0.1〜0.5の範囲にある請求項1〜のいずれかに記載の縦結合共振子型弾性表面波フィルタ。The longitudinally coupled resonator type surface acoustic wave filter according to any one of claims 1 to 3, the electromechanical coupling coefficient of the piezoelectric substrate material is in the range of 0.1 to 0.5 constituting the piezoelectric substrate.
JP2001322032A 2001-10-19 2001-10-19 Longitudinal coupled resonator type surface acoustic wave filter Expired - Fee Related JP3952732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001322032A JP3952732B2 (en) 2001-10-19 2001-10-19 Longitudinal coupled resonator type surface acoustic wave filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001322032A JP3952732B2 (en) 2001-10-19 2001-10-19 Longitudinal coupled resonator type surface acoustic wave filter

Publications (2)

Publication Number Publication Date
JP2003133901A JP2003133901A (en) 2003-05-09
JP3952732B2 true JP3952732B2 (en) 2007-08-01

Family

ID=19139148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001322032A Expired - Fee Related JP3952732B2 (en) 2001-10-19 2001-10-19 Longitudinal coupled resonator type surface acoustic wave filter

Country Status (1)

Country Link
JP (1) JP3952732B2 (en)

Also Published As

Publication number Publication date
JP2003133901A (en) 2003-05-09

Similar Documents

Publication Publication Date Title
US7659653B2 (en) Acoustic wave device and filter
JP3233087B2 (en) Surface acoustic wave filter
JP5338914B2 (en) Elastic wave device, duplexer and electronic device using the same
JPH0969751A (en) Surface acoustic wave filter
JP2000244275A (en) Saw resonator filter
JP3873802B2 (en) Surface acoustic wave filter
US5986523A (en) Edge reflection type longitudinally coupled surface acoustic wave filter
CN116032242B (en) Surface acoustic wave resonator with parasitic mode suppression layer
JP2000165186A (en) Surface acoustic wave filter
JP2000165197A (en) Surface acoustic wave filter
JP3077052B2 (en) Surface acoustic wave resonator filter device
EP0827274B1 (en) Surface acoustic wave resonator filter
JP3952732B2 (en) Longitudinal coupled resonator type surface acoustic wave filter
JPH11340774A (en) Surface acoustic wave filter
JP2002076835A (en) Surface acoustic wave element
JP4251409B2 (en) Surface acoustic wave filter
JPH08204498A (en) End face reflection type surface acoustic wave device
JP3250252B2 (en) Surface wave device
JPH11205081A (en) Surface acoustic wave filter
JP3298538B2 (en) Edge reflection vertical coupling type SAW resonator filter
JP3931880B2 (en) Surface acoustic wave filter
JPH09186553A (en) Surface acoustic wave device and its manufacture
US6781282B1 (en) Longitudinally coupled resonator-type surface acoustic wave device
JPH09162695A (en) Surface acoustic wave device
JPH10145183A (en) Surface acoustic wave filter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070115

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070423

R150 Certificate of patent or registration of utility model

Ref document number: 3952732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees