JP3952228B2 - Electrolysis apparatus and electrolysis method - Google Patents

Electrolysis apparatus and electrolysis method Download PDF

Info

Publication number
JP3952228B2
JP3952228B2 JP31877597A JP31877597A JP3952228B2 JP 3952228 B2 JP3952228 B2 JP 3952228B2 JP 31877597 A JP31877597 A JP 31877597A JP 31877597 A JP31877597 A JP 31877597A JP 3952228 B2 JP3952228 B2 JP 3952228B2
Authority
JP
Japan
Prior art keywords
chamber
exchange membrane
anode
electrolysis
cation exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31877597A
Other languages
Japanese (ja)
Other versions
JPH11151493A (en
Inventor
修生 澄田
Original Assignee
有限会社コヒーレントテクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社コヒーレントテクノロジー filed Critical 有限会社コヒーレントテクノロジー
Priority to JP31877597A priority Critical patent/JP3952228B2/en
Publication of JPH11151493A publication Critical patent/JPH11151493A/en
Application granted granted Critical
Publication of JP3952228B2 publication Critical patent/JP3952228B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば殺菌、洗浄、表面処理、或いは植物の成長促進に利用できる水を製造する電解装置及び電解方法に関する。
【0002】
【発明が解決しようとする課題】
食塩水を電解すると、アノード電極側では酸性で、かつ、酸化性の液が生成し、カソード電極側ではアルカリ性で、かつ、還元性の液が生成する。
このような電解装置は、図6に示す構造をしている。図6中、21はアノード室、22はアノード電極、23はカソード室、24はカソード電極、25はアノード室21とカソード室23とを仕切っている隔膜である。この隔膜25によって分離されたアノード室21とカソード室23とを有する2室型の電解槽を具備した従来の電解装置において、アノード電極22とカソード電極24との間に電圧を印加して電解を行った場合、食塩などの電解質濃度が低い場合には、電解電圧を高くしなければならなかった。そして、電解電圧を低くする場合には、食塩水濃度を高くせざるを得なかった。
【0003】
ところで、食塩水を電解してアノード電極22側で得た酸性・酸化性の水は、病院などでの殺菌(消毒)水として利用することが提案されている。これは、アノード電極側で次のような反応が起き、Cl2 ,ClO- 等の塩素化合物が生成し、これらの活性種が殺菌作用を発揮するからと考えられたからである。
2Cl- −2e- →Cl2 (1)
2Na+ +2e- →2Na (2)
2Na+2H2 O→2Na+ +H2 +2OH- (3)
2H2 O+2e- →H2 +2OH- (4)
又、(1)式で生成したCl2 ガスの一部が水に溶解し、次亜塩素酸が生成する。
Cl2 +H2 O→HClO+HCl (5)
そして、食塩水濃度を高くした場合、塩素イオンの酸化反応が増加し、Cl2 ガスの発生量が増し、塩素臭が強くなると共に、機器の腐食や、作業環境の悪化等がもたらされる。従って、食塩水濃度を高くすることは避けなければならない。しかし、これは、電解電圧を高くすることを意味する。
【0004】
食塩水を電解してカソード電極24側で得たアルカリ性・還元性の水は、生物の成長や酵素反応を促進することが報告(”電解水が作物の成育に及ぼす影響”清水裕一 東京農業大学 修士論文(1996年))されている。
しかし、殺菌水としての酸化水を生成する時の副産物として生成した場合、上記(2)から(4)の反応式に従い、pHが約12、酸化還元電位(ORP)が約−850mV(vs,Ag/AgCl)で、高濃度のNaClが溶解したアルカリ性還元水が得られる。このようなアルカリ性還元水は、高すぎるpHや高濃度のNaClの為、植物の成長には悪影響を及ぼすと考えられる。従って、この場合でも、NaCl濃度が低い方が好ましいことが窺える。尚、pHが12以上のアルカリ性還元水も細菌に対する殺菌効果を示す。
【0005】
従って、本発明が解決しようとする課題は、電解質濃度を低くした場合でも、電解電圧が低くて済み、そして殺菌、洗浄、表面処理、或いは植物の成長促進に利用できる塩素臭が低い電解水を得る技術を提供することである。
【0006】
【課題を解決するための手段】
前記の課題は、アノード室およびカソード室を有する電解槽を備えた電解装置において、
前記電解槽を仕切ってアノード室を構成する為に配設されたフッ素系カチオン交換膜からなる隔膜と、
前記フッ素系カチオン交換膜製隔膜に密着させてアノード室側に配設されたアノード電極と、
前記フッ素系カチオン交換膜製隔膜の前記アノード電極配設面側とは反対側の面に積重配設されたアニオン交換膜
とを具備することを特徴とする電解装置によって解決される。
【0007】
又、アノード室と、カソード室と、前記アノード室とカソード室との間に設けられた中間室とを有する電解槽を備えた電解装置において、
前記電解槽を仕切って前記アノード室と前記中間室とを区分する為に配設されたフッ素系カチオン交換膜からなる隔膜と、
前記フッ素系カチオン交換膜製隔膜に密着させて前記アノード室側に配設されたアノード電極と、
前記フッ素系カチオン交換膜製隔膜の前記アノード電極配設面側とは反対側の面に積重配設されたアニオン交換膜
とを具備することを特徴とする電解装置によって解決される。
【0008】
又、上記の電解装置に電導度が60000μS/cm以下の水を供給し、電解することを特徴とする電解方法によって解決される。
特に、アノード室とカソード室とからなる2室型の電解槽タイプの電解装置を用いた場合には、カソード室に電導度が60000μS/cm以下の水を供給し、電解により、アノード室に酸化性物質を含む水を、カソード室に還元性物質を含む水を生成することを特徴とする電解方法によって解決される。
【0009】
或いは、アノード室とカソード室と中間室とからなる3室型の電解槽タイプの電解装置を用いた場合には、中間室に電導度が60000μS/cm以下の水を供給し、電解により、アノード室に酸化性物質を含む水を、カソード室に還元性物質を含む水を生成することを特徴とする電解方法によって解決される。
すなわち、アノード電極に接して(特に、密着して)フッ素系のカチオン交換膜を設けた場合、電解質濃度が低い場合でも、低い電解電圧で電解水が得られるようになった理由を完全に解明するには未だ至っていないが、フッ素系のカチオン交換膜の中でH+ の解離が起こり、交換膜中において導電性が高まった為であろうと考えている。つまり、フッ素系のカチオン交換膜とアノード電極との接点で、水の電解が容易に起こり、アニオンがアノード電極に必ずしも移行する必要がないからであろうと考えた。
【0010】
そして、フッ素系のカチオン交換膜のアノード電極と反対側にアニオン交換膜を設けていた場合、特にアノード室を形成する為の仕切りとなる隔膜としてフッ素系のカチオン交換膜とアニオン交換膜とを積重したタイプのものを用い、フッ素系のカチオン交換膜をアノード電極に密着させて設けた場合、電解質濃度を低くした場合でも、より一層低い電解電圧で、殺菌、洗浄、表面処理、或いは植物の成長促進に利用できる塩素臭の低い電解水を得ることが出来た。
【0011】
アノード室側で得た電解水におけるCl- 等の陰イオン濃度を高めたい場合には、フッ素系のカチオン交換膜に孔(ピンホール)を開けておけば、Cl- 等の陰イオンは補足されずにアノード室に移行することになる。
従って、必要に応じて、所定の割合(面密度)で孔を開けておけば、所望の濃度のCl- 等の陰イオンを有するアノード電解液が得られる。
【0012】
カソード室側で得た電解水中のNa+ 等の陽イオン濃度を制御する場合、カソード室を形成する為の仕切りとなる隔膜として、特にカチオン交換膜とアニオン交換膜との併用が好ましい。アノード室側にフッ素系のカチオン交換膜を用いた場合、カソード室側でもフッ素系のカチオン交換膜が必ずしも必要になるものではない。但し、陽イオン濃度を制御して電解電圧をより低減する為には、カソード電極にアニオン交換膜を接して設けておくのが好ましい。
【0013】
カソード室側で得た電解水における陽イオン濃度を高めたい場合には、アニオン交換膜に孔(ピンホール)を開けておけば、陽イオンは補足されずにカソード室に移行することになる。
従って、必要に応じて、所定の割合(面密度)でアニオン交換膜に孔を開けておけば、所望の濃度の陽イオンを有するカソード電解液が得られる。
【0014】
上記のように構成した装置を用いた場合、電極表面におけるCl- 等の電解質濃度は低下し、水の電解が優先的に起きるようになる。この結果、酸化還元電位に寄与する電解生成物の種が変化する。
すなわち、NaClが低濃度の領域では、塩素の酸化以外にも下記の反応により水の酸化分解種であるO3 ,H2 2 等が生成し、これらの活性種がClO- 等の陰イオンの酸化反応生成物と共に作用して殺菌効果を相乗的に示すようになる。
〔アノード反応〕
2H2 O−4e- →4H+ +O2 (6)
2H2 O−2e- →H2 2 +2H+ (7)
2 O+O2 −2e- →O3 +2H+ (8)
尚、O3 ,H2 2 等は、細菌などを酸化すると、酸素や水に戻る。従って、電解質が低濃度な水を電解したアノード電解水は、環境面からも好ましいものである。
【0015】
還元反応においても、下式に従って水素ガスや水酸イオン等が生成する。
〔カソード反応〕
2H2 O+2e- →H2 +2OH- (9)
2H+ +2e- →H2 (10)
2 O+e- →OH- +H (11)
+ +e- →H・ (12)
【0016】
【発明の実施の形態】
本発明の電解装置は、隔膜によって仕切られたアノード室を有する電解装置であって、前記アノード室には隔膜に接して、特に密着してアノード電極が設けられてなり、前記アノード電極に接して設けられた隔膜にはフッ素系のカチオン交換膜が用いられたものである。特に、アノード室とカソード室とを有し、前記アノード室とカソード室とが隔膜によって仕切られた2室型の電解槽を具備した電解装置であって、前記アノード室には隔膜に接して、特に密着してアノード電極が設けられてなり、前記アノード電極に接して設けられた隔膜にはフッ素系のカチオン交換膜が用いられたものである。又、アノード室と、カソード室と、前記アノード室とカソード室との間に設けられた中間室とを有し、前記アノード室と中間室、カソード室と中間室とが各々隔膜によって仕切られた3室型の電解槽を具備した電解装置であって、前記アノード室には隔膜に接して、特に密着してアノード電極が設けられてなり、前記アノード電極に接して設けられた隔膜にはフッ素系のカチオン交換膜が用いられたものである。又、上記電解装置において、フッ素系のカチオン交換膜のアノード電極と反対側にはアニオン交換膜が設けられている。又、3室型の電解槽を具備した電解装置にあっては、カソード室と中間室とを仕切る隔膜にカチオン交換膜とアニオン交換膜とが積重されたものが用いられている。又、上記フッ素系のカチオン交換膜には孔が開けられている。又、カソード室と中間室とを仕切る隔膜のアニオン交換膜には孔が開けられている。
【0017】
本発明の電解方法は、上記の電解装置に電導度が60000μS/cm以下(下限値は0.05μS/cm)の水を供給し、電解するものである。特に、アノード室とカソード室とからなる2室型の電解槽タイプの電解装置を用いた場合には、カソード室に電導度が60000μS/cm以下(下限値は0.05μS/cm)の水を供給し、電解により、アノード室に酸化性物質を含む水を、カソード室に還元性物質を含む水を生成するものである。又、アノード室とカソード室と中間室とからなる3室型の電解槽タイプの電解装置を用いた場合には、中間室に電導度が60000μS/cm以下(下限値は0.05μS/cm)の水を供給し、電解により、アノード室に酸化性物質を含む水を、カソード室に還元性物質を含む水を生成するものである。
【0018】
以下、更に具体的に説明する。
図1は、本発明になる電解装置の第1実施形態を示すものである。
図1に示される如く、電解槽内にイオン交換膜からなる隔膜1が設けられ、アノード室2aとカソード室2bとが構成される。従って、2室型のものであって、3室型のタイプのような中間室はない。
【0019】
前記隔膜1は、フッ素系のカチオン交換膜(本例では、デュポン社製のフッ素系カチオン交換膜ナフィオン117)1aとアニオン交換膜1b(本例では、徳山ソーダ社製のアニオン交換膜AMH)とが積重されたものである。そして、フッ素系のカチオン交換膜1aがアノード室2a側に面している。
アノード室2aには隔膜(フッ素系のカチオン交換膜1a)に密着させてアノード電極(例えば、ラス目7×12のチタン−白金電極、面積60mm×80mm)3aが設けられている。
【0020】
3bはカソード電極(例えば、ラス目7×12のチタン−白金電極、面積60mm×80mm)であり、カソード電極3bはアニオン交換膜1bに密着させても、図示するようにアニオン交換膜1bから離間させても良い。本例では、隔膜(アニオン交換膜1b)から5mm離した。
アノード室2aには電導度が約1μS/cmの純水を通水し、カソード室2bには200g/Lの食塩を溶解した食塩水を2L充填した。
【0021】
そして、アノード電極3aとカソード電極3bとの間に電解電流9Aを流した時、電解電圧は16vとなり、電解が行われた。
アノード室2aの排水口から取り出されたアノード電解液のpHは4.1で、ORPは1100mv(vs,Ag/AgCl)であった。又、残留塩素濃度は2ppmであった。更に、このアノード電解液の抗菌作用を調べた。すなわち、E.coli,P.aeruginosaを取り挙げ、菌濃度を約107 個/ccとし、1ccの菌液を10ccのアノード電解液に混合した後、この混合液を標準寒天培地に塗沫し、30℃で24時間培養した処、菌数はほぼ全て零になった。このことから、アノード電解液は殺菌作用に優れていることが判る。
【0022】
尚、図1の装置において、比較の為、アノード電極3aをフッ素系のカチオン交換膜1aから5mm離した処、500v以上の電解電圧が必要であり、低電圧での電解を行うことは出来なかった。
図2は、本発明になる電解装置の第2実施形態を示すものである。
本実施形態は、アノード室とカソード室と中間室とを有する3室型のタイプのものである。
【0023】
図2に示される如く、電解槽内にイオン交換膜からなる隔膜10,11が設けられ、アノード室12aと中間室12cとカソード室12bとが構成される。
アノード室12aと中間室12cとを仕切る隔膜10は、フッ素系のカチオン交換膜(本例では、デュポン社製のフッ素系カチオン交換膜ナフィオン117)10aとアニオン交換膜10b(本例では、徳山ソーダ社製のアニオン交換膜AMH)とが積重されたものである。そして、フッ素系のカチオン交換膜10aがアノード室12a側に面している。
【0024】
カソード室12bと中間室12cとを仕切る隔膜11は、カチオン交換膜(本例では、徳山ソーダ社製のカチオン交換膜CMV)である。
アノード室12aには隔膜10(フッ素系のカチオン交換膜10a)に密着させてアノード電極(例えば、ラス目7×12のチタン−白金電極、面積60mm×80mm)13aが設けられている。
【0025】
カソード室12bには隔膜(徳山ソーダ社製のカチオン交換膜CMV)11に密着させてカソード電極(例えば、ラス目7×12のチタン−白金電極、面積60mm×80mm)13bが設けられている。
中間室12cにはガラスビーズが充填された。
そして、アノード室12a及びカソード室12bに約1L/minの割合で純水(電導度1.0μS/cm)を供給し、又、中間室12cには飽和濃度の食塩水を充填した。
【0026】
アノード電極13aとカソード電極13bとの間に電解電流9Aを流した時、電解電圧は14vとなり、電解が行われた。
アノード室12aの排水口から取り出されたアノード電解液のpHは4.05で、ORPは1090mv(vs,Ag/AgCl)であった。又、残留塩素濃度は2ppmであった。更に、このアノード電解液の抗菌作用を調べた。すなわち、E.coli,P.aeruginosaを取り挙げ、菌濃度を約107 個/ccとし、1ccの菌液を10ccのアノード電解液に混合した後、この混合液を標準寒天培地に塗沫し、30℃で24時間培養した処、菌数はほぼ全て零になった。このことから、アノード電解液は殺菌作用に優れていることが判る。
【0027】
又、上記純水の代わりに水道水(pH=7.56、電導度=320μS/cm)を供給し、電解電流9Aで電解した処、得られたアノード電解液の電導度は360μS/cm、pHは5.5で、ORPは1020mv(vs,Ag/AgCl)であった。又、塩素臭は感じられなかったが、残留塩素濃度は2.5ppmであった。
【0028】
このように、純水、水道水いずれの電解においても、アノード電解液における塩素ガスの発生はほぼ零であり、O3 の発生が観測された。すなわち、アノード電解では活性酸素が生成されたことが判る。
又、図2の装置において、中間室12cに5%硫酸水溶液を充填し、アノード室12a及びカソード室12bに約1L/minの割合で純水(電導度1.0μS/cm)を供給し、電解電流7A、電解電圧20vの条件で電解を行った処、pH4.89で、ORP−450mv(vs,Ag/AgCl)のアノード電解液が得られた。
【0029】
このアノード電解液中にマグネタイト(Fe3 4 )の酸化皮膜が1μm程度成長した鉄を浸漬し、5分後に引き上げた処、表面の酸化皮膜は綺麗に除去できていた。すなわち、アノード電解液は酸化皮膜などの溶解除去にも利用できることが判る。
尚、比較の為、図2の装置において、アノード電極13aをフッ素系のカチオン交換膜10aから5mm離して設けた。この場合、電解に500v以上の電解電圧が必要であった。
【0030】
又、比較の為、図2の装置において、フッ素系のカチオン交換膜10aの代わりにフッ素系のものではないカチオン交換膜(徳山ソーダ社製のカチオン交換膜CMV)を用い、アノード室12a及びカソード室12bに約1L/minの割合で純水(電導度1.0μS/cm)を供給し、又、中間室12cには飽和濃度の食塩水を充填し電解した処、電解電圧は300v以上必要であり、低い電圧での電解が困難になった。
【0031】
又、比較の為、図2の装置において、フッ素系のカチオン交換膜10aの代わりにフッ素樹脂からなる不織布を用い、アノード室12a及びカソード室12bに約1L/minの割合で純水(電導度1.0μS/cm)を供給し、又、中間室12cには飽和濃度の食塩水を充填して電解した処、比較的低い電解電圧でも行えた。しかし、この時に得たアノード電解液のpHは2.7で、ORPは1160mv(vs,Ag/AgCl)、電導度は950μS/cmであり、そして残留塩素濃度は80ppmであり、塩素臭が感じられたことから塩素ガスの発生が認められた。
【0032】
図2の装置において、フッ素系のカチオン交換膜10aに500個のピンホール(孔径0.1mm)を開けたものを用いて同様に行った。
すなわち、アノード室12a及びカソード室12bに約1L/minの割合で水道水(電導度320μS/cm)を供給し、又、中間室12cには飽和濃度の食塩水を充填して電解した処、電解電流9A、電解電圧14.5vで電解が始まり、pHは3.1で、ORPは1130mv(vs,Ag/AgCl)、電導度は430μS/cmのアノード電解液が得られた。このアノード電解液は、E.coli,P.aeruginosa,B.subtilisに抗菌性を示した。特に、上記実施形態のものよりも抗菌性が高かった。又、アノード電解液の残留塩素濃度は150〜200ppmであったものの、電解時に発生した塩素ガスは極微量であった。O3 の発生の方が多かった。これは、アノード電極13a上で直接Cl- が酸化されるのではなく、水の酸化により生成した活性酸素によりCl- が酸化されたことを示している。
【0033】
従って、フッ素系のカチオン交換膜10aに開けるピンホールの大きさや数を制御することにより、アノード電解液中に含まれる残留塩素濃度を高めたにもかかわらず、電解に際して塩素ガスの発生を抑制できた。
尚、このアノード電解液は、残留塩素濃度が高いものの、Cl- 濃度が低いので、SUS304鋼などのステンレス材料の腐食を促進することはなかった。
【0034】
又、図2の装置において、フッ素系のカチオン交換膜10aに500個のピンホール(孔径0.1mm)を開けたものを用い、アノード室12a及びカソード室12bに約1L/minの割合で純水(電導度1.0μS/cm)を供給し、又、中間室12cには飽和濃度の食塩水を充填し、電解電流9A、電解電圧14.5vの条件で電解を行った処、pH2.6で、ORP1160mv(vs,Ag/AgCl)、電導度430μS/cm、残留塩素濃度150〜200ppmのアノード電解液が得られた。
【0035】
このアノード電解液を用いて洗浄を行ったハードディスク用ガラス基板と、通常の純水を用いて洗浄を行ったハードディスク用ガラス基板とを、80℃の飽和湿度の中で1週間暴露試験した処、純水を用いて洗浄を行ったハードディスク用ガラス基板は空気中の湿気により表面が数μm程度侵され、表面平滑度が低下したのに対して、アノード電解液を用いて洗浄を行ったハードディスク用ガラス基板は空気中の湿気によっても表面が侵されることなく、表面平滑度が優れたものであった。
【0036】
図3は、本発明になる電解装置の他の実施形態を示すものである。
本実施形態は、図2の装置において、カソード室12bと中間室12cとを仕切る隔膜11に、カチオン交換膜のみではなく、カチオン交換膜11aとアニオン交換膜11bとを積重したものを用いたものである。カソード電極13bは、アニオン交換膜11bに密着して設けられている。
【0037】
その他の構成は第2実施形態のものと基本的に同じであるから、同一部分には同じ符号を付し、詳細な説明は省略する。
そして、アノード室12a及びカソード室12bに約1L/minの割合で純水(電導度1.0μS/cm)を供給し、又、中間室12cには飽和濃度の食塩水を充填し、アノード電極13aとカソード電極13bとの間に電解電流7Aを流した時、電解電圧は30vとなり、電解が行われた。
【0038】
この電解液も上記本発明の実施形態と同様な特長を有するものであった。例えば、カソード電解水は、電導度が250μS/cm、pHが10.5、ORPが−810mv(vs,Ag/AgCl)のものであった。
又、図3の装置において、フッ素系のカチオン交換膜10a、及びアニオン交換膜11bに500個のピンホール(孔径1mm)を開けたものを用い、アノード室12a及びカソード室12bに約1L/minの割合で水道水(電導度320μS/cm)を供給し、又、中間室12cには飽和濃度の食塩水を充填し、電解電流9A、電解電圧16.5vの条件で電解を行った。
【0039】
この電解液も上記本発明の実施形態と同様な特長を有するものであった。例えば、カソード電解水は、電導度が390μS/cm、pHが11.1、ORPが−870mv(vs,Ag/AgCl)のものであった。
比較の為、フッ素系のカチオン交換膜10aを除いた場合には、電解電流5Aを得るには電解電圧が100v以上必要であり、低電圧での電解は行えなかった。
【0040】
又、図3の装置において、中間室12cに固体電解質としてカチオン交換樹脂(オルガノ社製のアンバーライトIRC458)を充填し、アノード室12a及びカソード室12bに約0.5L/minの割合で超純水(抵抗が18MΩ)を供給し、電解電流5A、電解電圧35vの条件で電解を行った。
この電解液も上記本発明の実施形態と同様な特長を有するものであった。例えば、カソード電解水は、電導度が2μS/cm、pHが9.05、ORPが−690mv(vs,Ag/AgCl)のものであった。
【0041】
図4は、本発明になる電解装置の他の実施形態を示すものである。
本実施形態は、図2の装置において、フッ素系のカチオン交換膜10aのみを残し、アニオン交換膜10bを除去したものである。その他の構成は第2実施形態のものと基本的に同じであるから、同一部分には同じ符号を付し、詳細な説明は省略する。
【0042】
そして、中間室12cに固体電解質としてカチオン交換樹脂(デュポン社製のナフィオンNR−50)を充填し、アノード室12a及びカソード室12bに約0.5L/minの割合で水道水(電導度320μS/cm)を供給し、又、中間室12cにも水道水を充填し、アノード電極13aとカソード電極13bとの間に電解電流5Aを流した時、電解電圧は25vとなり、電解が行われた。
【0043】
この電解液も上記本発明の実施形態と同様な特長を有するものであった。例えば、アノード電解水は、電導度が330μS/cm、pHが7.0、ORPが960mv(vs,Ag/AgCl)のものであり、カソード電解水は、電導度が350μS/cm、pHが9.65、ORPが−620mv(vs,Ag/AgCl)のものであった。
【0044】
図5は、本発明になる電解装置の他の実施形態を示すものである。
本実施形態のものは、図2の装置において、フッ素系のカチオン交換膜10aのみを残し、アニオン交換膜10bを除去し、中間室12cに固体電解質としてカチオン交換樹脂(デュポン社製のナフィオンNR−50)を充填し、そして中間室12cを通過した水をアノード室12aに供給するようにしたものである。その他の構成は第2実施形態のものと基本的に同じであるから、同一部分には同じ符号を付し、詳細な説明は省略する。尚、図5中、4は3室型電解槽、5は軟水器、6はカソード室液タンク、7はアノード室液タンクである。
【0045】
そして、カソード室12bに約0.5L/minの割合で水道水(電導度320μS/cm)を供給し、電解電流5A、電解電圧25vの条件で電解した。
この電解液も上記本発明の実施形態と同様な特長を有するものであった。例えば、アノード電解水は、電導度が430μS/cm、pHが3.55、ORPが1120mv(vs,Ag/AgCl)のものであり、カソード電解水は、電導度が450μS/cm、pHが10.02、ORPが−750mv(vs,Ag/AgCl)のものであった。
【0046】
【発明の効果】
電解質濃度を低くした場合でも、電解電圧が低くて済み、そして殺菌、洗浄、表面処理、或いは植物の成長促進に利用できる塩素の発生が少ない電解水を得ることが出来る。
【図面の簡単な説明】
【図1】本発明になる電解装置の第1実施形態の概略図
【図2】本発明になる電解装置の第2実施形態の概略図
【図3】本発明になる電解装置の第3実施形態の概略図
【図4】本発明になる電解装置の第4実施形態の概略図
【図5】本発明になる電解装置の第5実施形態の概略図
【図6】従来の電解装置の概略図
【符号の説明】
1,10,11 隔膜
2a,12a アノード室
2b,12b カソード室
12c 中間室
1a,10a フッ素系のカチオン交換膜
3a,13a アノード電極
3b,13b カソード電極
10b アニオン交換膜
11b アニオン交換膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrolysis apparatus and an electrolysis method for producing water that can be used for, for example, sterilization, washing, surface treatment, or promoting plant growth.
[0002]
[Problems to be solved by the invention]
When the brine is electrolyzed, an acidic and oxidizing liquid is generated on the anode electrode side, and an alkaline and reducing liquid is generated on the cathode electrode side.
Such an electrolysis apparatus has a structure shown in FIG. In FIG. 6, 21 is an anode chamber, 22 is an anode electrode, 23 is a cathode chamber, 24 is a cathode electrode, and 25 is a diaphragm that partitions the anode chamber 21 and the cathode chamber 23. In a conventional electrolysis apparatus having a two-chamber electrolytic cell having an anode chamber 21 and a cathode chamber 23 separated by the diaphragm 25, a voltage is applied between the anode electrode 22 and the cathode electrode 24 for electrolysis. When performed, the electrolytic voltage had to be increased when the electrolyte concentration such as sodium chloride was low. And when making electrolysis voltage low, salt solution concentration had to be made high.
[0003]
By the way, it has been proposed that the acidic / oxidizing water obtained by electrolyzing the saline solution on the anode electrode 22 side is used as sterilizing (disinfecting) water in hospitals. This is because the following reaction occurs on the anode electrode side, and Cl2, ClO-This is because it is considered that chlorine compounds such as these are produced and these active species exert a bactericidal action.
2Cl--2e-→ Cl2                                        (1)
2Na++ 2e-→ 2Na (2)
2Na + 2H2O → 2Na++ H2+ 2OH-                      (3)
2H2O + 2e-→ H2+ 2OH-                                (4)
In addition, Cl generated by the formula (1)2Part of the gas dissolves in water and hypochlorous acid is produced.
Cl2+ H2O → HClO + HCl (5)
When the saline concentration is increased, the oxidation reaction of chloride ions increases and Cl2The amount of gas generated increases, the odor of chlorine becomes stronger, and the equipment is corroded and the working environment is deteriorated. Therefore, increasing the saline concentration must be avoided. However, this means increasing the electrolysis voltage.
[0004]
Alkaline / reducing water obtained by electrolyzing saline solution on the cathode electrode 24 side has been reported to promote the growth of organisms and enzymatic reactions ("Effect of electrolyzed water on crop growth" Yuichi Shimizu Tokyo University of Agriculture Master thesis (1996).
However, when it is produced as a by-product when producing oxidized water as sterilizing water, the pH is about 12 and the oxidation-reduction potential (ORP) is about -850 mV (vs,) according to the reaction formulas (2) to (4) above. (Ag / AgCl), alkaline reduced water in which a high concentration of NaCl is dissolved is obtained. Such alkaline reduced water is considered to have an adverse effect on plant growth due to too high pH and high concentration of NaCl. Therefore, even in this case, it can be seen that a lower NaCl concentration is preferable. In addition, alkaline reduced water having a pH of 12 or more also exhibits a bactericidal effect on bacteria.
[0005]
Accordingly, the problem to be solved by the present invention is to provide electrolyzed water having a low chlorine odor that can be used for sterilization, cleaning, surface treatment, or plant growth promotion even when the electrolyte concentration is lowered. Is to provide the technology to gain.
[0006]
[Means for Solving the Problems]
  The above issues areIn an electrolysis apparatus comprising an electrolytic cell having an anode chamber and a cathode chamber,
  A diaphragm made of a fluorine-based cation exchange membrane disposed to partition the electrolytic cell and constitute an anode chamber;
  An anode electrode disposed on the anode chamber side in close contact with the fluorine-based cation exchange membrane diaphragm;
  An anion exchange membrane disposed on the surface opposite to the surface on which the anode electrode is disposed of the fluorine-based cation exchange membrane diaphragm
And comprisingThis is solved by an electrolyzer characterized by this.
[0007]
  In addition, an anode chamber, a cathode chamber, and an intermediate chamber provided between the anode chamber and the cathode chamber are provided.In an electrolysis apparatus equipped with an electrolytic cell
  A diaphragm made of a fluorine-based cation exchange membrane disposed to partition the electrolytic cell and separate the anode chamber and the intermediate chamber;
  An anode electrode disposed on the anode chamber side in close contact with the fluorine-based cation exchange membrane diaphragm;
  An anion exchange membrane disposed on the surface opposite to the surface on which the anode electrode is disposed of the fluorine-based cation exchange membrane diaphragm
And comprisingThis is solved by an electrolyzer characterized by this.
[0008]
Further, the present invention can be solved by an electrolysis method characterized by supplying water having an electric conductivity of 60000 μS / cm or less to the electrolysis apparatus and performing electrolysis.
In particular, when a two-chamber electrolytic cell type electrolyzer comprising an anode chamber and a cathode chamber is used, water having an electric conductivity of 60000 μS / cm or less is supplied to the cathode chamber, and the anode chamber is oxidized by electrolysis. This is solved by an electrolysis method characterized in that water containing a reductive substance is generated in the cathode chamber.
[0009]
Alternatively, when a three-chamber electrolytic cell type electrolyzer comprising an anode chamber, a cathode chamber, and an intermediate chamber is used, water having an electric conductivity of 60000 μS / cm or less is supplied to the intermediate chamber, and the anode is electrolyzed. This is solved by an electrolysis method characterized in that water containing an oxidizing substance is produced in the chamber and water containing a reducing substance is produced in the cathode chamber.
That is, when a fluorine-based cation exchange membrane is provided in contact with the anode electrode (particularly in close contact), the reason why electrolyzed water can be obtained at a low electrolysis voltage even when the electrolyte concentration is low is completely elucidated. It has not yet been achieved, but H in the fluorinated cation exchange membrane+This is thought to be due to the increase in conductivity in the exchange membrane. In other words, it was considered that electrolysis of water easily occurred at the contact point between the fluorine-based cation exchange membrane and the anode electrode, and the anion did not necessarily have to be transferred to the anode electrode.
[0010]
When an anion exchange membrane is provided on the opposite side of the fluorine-based cation exchange membrane from the anode electrode, a fluorine-based cation exchange membrane and an anion exchange membrane are stacked as a partition membrane for forming an anode chamber. If the fluorine-type cation exchange membrane is provided in close contact with the anode electrode, even when the electrolyte concentration is lowered, sterilization, cleaning, surface treatment, or plant Electrolyzed water with low chlorine odor that can be used for growth promotion was obtained.
[0011]
Cl in electrolyzed water obtained on the anode chamber side-If you want to increase the concentration of anions such as, if you make a hole (pinhole) in the fluorine-based cation exchange membrane, Cl-Anions such as are transferred to the anode chamber without being captured.
Therefore, if necessary, if holes are formed at a predetermined ratio (area density), a desired concentration of Cl-An anolyte having anions such as is obtained.
[0012]
Na in electrolyzed water obtained on the cathode chamber side+In the case of controlling the cation concentration such as cation exchange membrane, a combination of a cation exchange membrane and an anion exchange membrane is particularly preferable as a diaphragm for forming a cathode chamber. When a fluorine-based cation exchange membrane is used on the anode chamber side, a fluorine-based cation exchange membrane is not necessarily required also on the cathode chamber side. However, in order to control the cation concentration and further reduce the electrolysis voltage, it is preferable to provide an anion exchange membrane in contact with the cathode electrode.
[0013]
When it is desired to increase the cation concentration in the electrolyzed water obtained on the cathode chamber side, if a hole (pinhole) is formed in the anion exchange membrane, the cation is transferred to the cathode chamber without being captured.
Accordingly, if necessary, if a hole is formed in the anion exchange membrane at a predetermined ratio (surface density), a cathode electrolyte having a desired concentration of cations can be obtained.
[0014]
When the apparatus configured as described above is used, Cl on the electrode surface-As a result, the concentration of the electrolyte decreases, and water electrolysis occurs preferentially. As a result, the type of electrolytic product that contributes to the redox potential changes.
That is, in the region where NaCl is low in concentration, in addition to the oxidation of chlorine, the following reaction causes O to be an oxidative decomposition species of water.Three, H2O2And these active species are ClO-The synergistic effect of the bactericidal effect is obtained by working together with an anionic oxidation reaction product such as.
[Anode reaction]
2H2O-4e-→ 4H++ O2                                (6)
2H2O-2e-→ H2O2+ 2H+                            (7)
H2O + O2-2e-→ OThree+ 2H+                            (8)
OThree, H2O2When it oxidizes bacteria etc., it returns to oxygen and water. Accordingly, anode electrolyzed water obtained by electrolyzing water having a low electrolyte concentration is preferable from the viewpoint of the environment.
[0015]
Also in the reduction reaction, hydrogen gas, hydroxide ions, and the like are generated according to the following formula.
[Cathode reaction]
2H2O + 2e-→ H2+ 2OH-                              (9)
2H++ 2e-→ H2                                        (10)
H2O + e-→ OH-+ H (11)
H++ E-→ H ・ (12)
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The electrolysis apparatus of the present invention is an electrolysis apparatus having an anode chamber partitioned by a diaphragm, wherein the anode chamber is in contact with the diaphragm, and is provided with an anode electrode in close contact with the anode chamber. A fluorine-based cation exchange membrane is used for the provided diaphragm. In particular, the electrolysis apparatus includes a two-chamber electrolytic cell having an anode chamber and a cathode chamber, and the anode chamber and the cathode chamber are separated by a diaphragm, the anode chamber being in contact with the diaphragm, In particular, an anode electrode is provided in close contact, and a fluorine-based cation exchange membrane is used for the diaphragm provided in contact with the anode electrode. In addition, an anode chamber, a cathode chamber, and an intermediate chamber provided between the anode chamber and the cathode chamber, the anode chamber and the intermediate chamber, and the cathode chamber and the intermediate chamber are each partitioned by a diaphragm. An electrolysis apparatus having a three-chamber type electrolytic cell, wherein the anode chamber is in contact with a diaphragm, and is particularly closely attached with an anode electrode, and the diaphragm provided in contact with the anode electrode is fluorine. System cation exchange membranes are used. In the electrolysis apparatus, an anion exchange membrane is provided on the opposite side of the fluorine-based cation exchange membrane from the anode electrode. Further, in an electrolysis apparatus having a three-chamber type electrolytic cell, a membrane in which a cation exchange membrane and an anion exchange membrane are stacked on a diaphragm partitioning a cathode chamber and an intermediate chamber is used. The fluorine-based cation exchange membrane is perforated. In addition, a hole is formed in the anion exchange membrane of the diaphragm that partitions the cathode chamber and the intermediate chamber.
[0017]
In the electrolysis method of the present invention, electrolysis is performed by supplying water having an electric conductivity of 60000 μS / cm or less (lower limit is 0.05 μS / cm) to the above electrolysis apparatus. In particular, when a two-chamber electrolytic cell type electrolyzer comprising an anode chamber and a cathode chamber is used, water having a conductivity of 60000 μS / cm or less (lower limit is 0.05 μS / cm) is supplied to the cathode chamber. By supplying and electrolyzing, water containing an oxidizing substance in the anode chamber and water containing a reducing substance in the cathode chamber are generated. Further, when a three-chamber electrolytic cell type electrolyzer comprising an anode chamber, a cathode chamber, and an intermediate chamber is used, the electric conductivity in the intermediate chamber is 60000 μS / cm or less (the lower limit is 0.05 μS / cm). Then, water containing an oxidizing substance in the anode chamber and water containing a reducing substance in the cathode chamber are generated by electrolysis.
[0018]
More specific description will be given below.
FIG. 1 shows a first embodiment of an electrolysis apparatus according to the present invention.
As shown in FIG. 1, a diaphragm 1 made of an ion exchange membrane is provided in the electrolytic cell, and an anode chamber 2a and a cathode chamber 2b are configured. Therefore, it is a two-chamber type, and there is no intermediate chamber like the three-chamber type.
[0019]
The diaphragm 1 includes a fluorine-based cation exchange membrane (in this example, a fluorine-based cation exchange membrane Nafion 117 manufactured by DuPont) and an anion exchange membrane 1b (in this example, an anion exchange membrane AMH manufactured by Tokuyama Soda). Are stacked. The fluorine-based cation exchange membrane 1a faces the anode chamber 2a side.
The anode chamber 2a is provided with an anode electrode (for example, a 7 × 12 titanium-platinum electrode having an area of 60 × 80 mm) 3a in close contact with a diaphragm (fluorine-based cation exchange membrane 1a).
[0020]
3b is a cathode electrode (for example, a 7 × 12 lath titanium-platinum electrode having an area of 60 mm × 80 mm). Even if the cathode electrode 3b is in close contact with the anion exchange membrane 1b, it is separated from the anion exchange membrane 1b as shown in the figure. You may let them. In this example, it was separated from the diaphragm (anion exchange membrane 1b) by 5 mm.
Pure water having an electric conductivity of about 1 μS / cm was passed through the anode chamber 2a, and 2 L of sodium chloride in which 200 g / L of sodium chloride was dissolved was filled in the cathode chamber 2b.
[0021]
When an electrolysis current 9A was passed between the anode electrode 3a and the cathode electrode 3b, the electrolysis voltage was 16v and electrolysis was performed.
The pH of the anode electrolyte taken out from the drain of the anode chamber 2a was 4.1, and the ORP was 1100 mV (vs, Ag / AgCl). The residual chlorine concentration was 2 ppm. Furthermore, the antibacterial action of this anode electrolyte was investigated. That is, E.I. coli, P.M. Taking aeruginosa, the bacteria concentration is about 107After mixing 1 cc of the bacterial solution with 10 cc of the anolyte, the mixture was smeared on a standard agar medium and cultured at 30 ° C. for 24 hours. The number of bacteria was almost all zero. . From this, it can be seen that the anode electrolyte has an excellent bactericidal action.
[0022]
In the apparatus of FIG. 1, for comparison, when the anode electrode 3a is separated from the fluorine-based cation exchange membrane 1a by 5 mm, an electrolysis voltage of 500 V or more is necessary, and electrolysis at a low voltage cannot be performed. It was.
FIG. 2 shows a second embodiment of the electrolysis apparatus according to the present invention.
This embodiment is of a three-chamber type having an anode chamber, a cathode chamber, and an intermediate chamber.
[0023]
As shown in FIG. 2, diaphragms 10 and 11 made of an ion exchange membrane are provided in the electrolytic cell, and an anode chamber 12a, an intermediate chamber 12c, and a cathode chamber 12b are configured.
The diaphragm 10 that partitions the anode chamber 12a and the intermediate chamber 12c includes a fluorine-based cation exchange membrane (in this example, a fluorine-based cation exchange membrane Nafion 117 manufactured by DuPont) 10a and an anion exchange membrane 10b (in this example, Tokuyama soda). And an anion exchange membrane AMH) manufactured by the company. The fluorine-based cation exchange membrane 10a faces the anode chamber 12a side.
[0024]
The diaphragm 11 that partitions the cathode chamber 12b and the intermediate chamber 12c is a cation exchange membrane (in this example, a cation exchange membrane CMV manufactured by Tokuyama Soda).
The anode chamber 12a is provided with an anode electrode (for example, a 7 × 12 titanium-platinum electrode, area 60 mm × 80 mm) 13a in close contact with the diaphragm 10 (fluorine cation exchange membrane 10a).
[0025]
The cathode chamber 12b is provided with a cathode electrode (for example, a 7 × 12 titanium-platinum electrode having an area of 60 × 80 mm) 13b in close contact with a diaphragm (cation exchange membrane CMV manufactured by Tokuyama Soda).
The intermediate chamber 12c was filled with glass beads.
Then, pure water (conductivity: 1.0 μS / cm) was supplied to the anode chamber 12a and the cathode chamber 12b at a rate of about 1 L / min, and the intermediate chamber 12c was filled with a saturated saline solution.
[0026]
When an electrolysis current 9A was passed between the anode electrode 13a and the cathode electrode 13b, the electrolysis voltage was 14v, and electrolysis was performed.
The pH of the anode electrolyte taken out from the drain of the anode chamber 12a was 4.05, and the ORP was 1090 mV (vs, Ag / AgCl). The residual chlorine concentration was 2 ppm. Furthermore, the antibacterial action of this anode electrolyte was investigated. That is, E.I. coli, P.M. Taking aeruginosa, the bacteria concentration is about 107After mixing 1 cc of the bacterial solution with 10 cc of the anolyte, the mixture was smeared on a standard agar medium and cultured at 30 ° C. for 24 hours. The number of bacteria was almost all zero. . From this, it can be seen that the anode electrolyte has an excellent bactericidal action.
[0027]
Further, when tap water (pH = 7.56, conductivity = 320 μS / cm) was supplied instead of the pure water and electrolysis was performed with an electrolysis current of 9 A, the conductivity of the obtained anode electrolyte was 360 μS / cm, The pH was 5.5 and the ORP was 1020 mV (vs, Ag / AgCl). Moreover, although the chlorine odor was not felt, the residual chlorine concentration was 2.5 ppm.
[0028]
Thus, in both pure water and tap water electrolysis, generation of chlorine gas in the anode electrolyte is almost zero, and OThreeThe occurrence of was observed. That is, it can be seen that active oxygen was generated in the anode electrolysis.
2, the intermediate chamber 12c is filled with a 5% sulfuric acid aqueous solution, and pure water (conductivity: 1.0 μS / cm) is supplied to the anode chamber 12a and the cathode chamber 12b at a rate of about 1 L / min. When electrolysis was performed under conditions of an electrolysis current of 7 A and an electrolysis voltage of 20 v, an anode electrolyte solution of ORP-450 mv (vs, Ag / AgCl) was obtained at pH 4.89.
[0029]
In this anode electrolyte, magnetite (FeThreeOFourThe iron oxide film on the surface was immersed in iron having a thickness of about 1 μm and pulled up 5 minutes later, and the oxide film on the surface was removed cleanly. That is, it can be seen that the anode electrolyte can be used for dissolving and removing oxide films and the like.
For comparison, in the apparatus of FIG. 2, the anode electrode 13a was provided 5 mm away from the fluorine-based cation exchange membrane 10a. In this case, an electrolysis voltage of 500 V or more was required for electrolysis.
[0030]
For comparison, in the apparatus shown in FIG. 2, a non-fluorine cation exchange membrane (cation exchange membrane CMV manufactured by Tokuyama Soda Co.) is used instead of the fluorine cation exchange membrane 10a, and the anode chamber 12a and the cathode are used. Pure water (conductivity: 1.0 μS / cm) is supplied to the chamber 12b at a rate of about 1 L / min, and the intermediate chamber 12c is filled with a saturated saline solution and electrolyzed. Therefore, electrolysis at a low voltage has become difficult.
[0031]
For comparison, in the apparatus of FIG. 2, a non-woven fabric made of fluororesin is used instead of the fluorine-based cation exchange membrane 10a, and pure water (conductivity) is supplied to the anode chamber 12a and the cathode chamber 12b at a rate of about 1 L / min. 1.0 μS / cm) was supplied, and the intermediate chamber 12 c was filled with a saturated saline solution and electrolyzed, so that it could be performed even at a relatively low electrolysis voltage. However, the anode electrolyte obtained at this time had a pH of 2.7, an ORP of 1160 mV (vs, Ag / AgCl), an electric conductivity of 950 μS / cm, and a residual chlorine concentration of 80 ppm. Generation of chlorine gas was confirmed.
[0032]
In the apparatus of FIG. 2, the same procedure was performed using a fluorine-based cation exchange membrane 10a having 500 pinholes (hole diameter: 0.1 mm).
That is, tap water (conductivity of 320 μS / cm) is supplied to the anode chamber 12a and the cathode chamber 12b at a rate of about 1 L / min, and the intermediate chamber 12c is filled with saturated saline solution and electrolyzed. Electrolysis started at an electrolysis current of 9 A, an electrolysis voltage of 14.5 v, an pH of 3.1, an ORP of 1130 mv (vs, Ag / AgCl), and an anodic electrolyte with an electric conductivity of 430 μS / cm. This anolyte is prepared from E.I. coli, P.M. aeruginosa, B. et al. Subtilis showed antibacterial properties. In particular, the antibacterial property was higher than that of the above embodiment. Moreover, although the residual chlorine concentration of the anode electrolyte was 150 to 200 ppm, the amount of chlorine gas generated during electrolysis was extremely small. OThreeThere were more outbreaks. This is directly Cl on the anode electrode 13a.-Is not oxidized, but Cl is generated by active oxygen generated by oxidation of water.-Is oxidized.
[0033]
Therefore, by controlling the size and number of pinholes opened in the fluorine-based cation exchange membrane 10a, it is possible to suppress generation of chlorine gas during electrolysis even though the concentration of residual chlorine contained in the anode electrolyte is increased. It was.
Although this anode electrolyte has a high residual chlorine concentration,-The low concentration did not promote the corrosion of stainless materials such as SUS304 steel.
[0034]
In the apparatus of FIG. 2, a fluorine-based cation exchange membrane 10a having 500 pinholes (hole diameter 0.1 mm) is used, and the anode chamber 12a and the cathode chamber 12b are pure at a rate of about 1 L / min. Water (electric conductivity: 1.0 μS / cm) was supplied, and the intermediate chamber 12c was filled with a saturated saline solution, and electrolysis was performed under conditions of an electrolysis current of 9A and an electrolysis voltage of 14.5v, pH 2. 6, an anode electrolyte having an ORP of 1160 mv (vs, Ag / AgCl), an electric conductivity of 430 μS / cm, and a residual chlorine concentration of 150 to 200 ppm was obtained.
[0035]
The hard disk glass substrate cleaned using this anode electrolyte and the hard disk glass substrate cleaned using ordinary pure water were subjected to an exposure test in a saturated humidity of 80 ° C. for one week, Hard disk glass substrates cleaned with pure water are affected by moisture in the air and the surface is affected by several μm, and the surface smoothness is reduced. The glass substrate was excellent in surface smoothness without being affected by the moisture in the air.
[0036]
FIG. 3 shows another embodiment of the electrolytic apparatus according to the present invention.
In the present embodiment, in the apparatus of FIG. 2, not only the cation exchange membrane but also the cation exchange membrane 11a and the anion exchange membrane 11b are used as the diaphragm 11 that partitions the cathode chamber 12b and the intermediate chamber 12c. Is. The cathode electrode 13b is provided in close contact with the anion exchange membrane 11b.
[0037]
Since the other configuration is basically the same as that of the second embodiment, the same parts are denoted by the same reference numerals and detailed description thereof is omitted.
Then, pure water (conductivity: 1.0 μS / cm) is supplied to the anode chamber 12a and the cathode chamber 12b at a rate of about 1 L / min, and the intermediate chamber 12c is filled with a saturated saline solution. When an electrolysis current 7A was passed between 13a and the cathode electrode 13b, the electrolysis voltage was 30v and electrolysis was performed.
[0038]
This electrolytic solution also has the same features as the embodiment of the present invention. For example, the cathode electrolyzed water had a conductivity of 250 μS / cm, a pH of 10.5, and an ORP of −810 mv (vs, Ag / AgCl).
Further, in the apparatus of FIG. 3, a fluorine-based cation exchange membrane 10a and anion exchange membrane 11b having 500 pinholes (pore diameter 1 mm) are used, and the anode chamber 12a and the cathode chamber 12b are about 1 L / min. Then, tap water (conductivity of 320 μS / cm) was supplied at a rate of, and the intermediate chamber 12c was filled with a saturated saline solution, and electrolysis was performed under conditions of an electrolysis current of 9A and an electrolysis voltage of 16.5v.
[0039]
This electrolytic solution also has the same features as the embodiment of the present invention. For example, the cathode electrolyzed water had a conductivity of 390 μS / cm, a pH of 11.1, and an ORP of −870 mv (vs, Ag / AgCl).
For comparison, when the fluorine-based cation exchange membrane 10a was removed, an electrolysis voltage of 100 V or more was required to obtain the electrolysis current 5A, and electrolysis at a low voltage could not be performed.
[0040]
3, the intermediate chamber 12c is filled with a cation exchange resin (Amberlite IRC458 manufactured by Organo) as a solid electrolyte, and the anode chamber 12a and the cathode chamber 12b are ultrapure at a rate of about 0.5 L / min. Water (resistance is 18 MΩ) was supplied, and electrolysis was performed under the conditions of an electrolysis current of 5 A and an electrolysis voltage of 35 v.
This electrolytic solution also has the same features as the embodiment of the present invention. For example, the cathode electrolyzed water had a conductivity of 2 μS / cm, a pH of 9.05, and an ORP of −690 mV (vs, Ag / AgCl).
[0041]
FIG. 4 shows another embodiment of the electrolysis apparatus according to the present invention.
In this embodiment, only the fluorine-based cation exchange membrane 10a is left and the anion exchange membrane 10b is removed in the apparatus of FIG. Since the other configuration is basically the same as that of the second embodiment, the same parts are denoted by the same reference numerals and detailed description thereof is omitted.
[0042]
The intermediate chamber 12c is filled with a cation exchange resin (Nafion NR-50 manufactured by DuPont) as a solid electrolyte, and tap water (conductivity of 320 μS / min) is supplied to the anode chamber 12a and the cathode chamber 12b at a rate of about 0.5 L / min. cm), and the intermediate chamber 12c was also filled with tap water, and an electrolysis current of 5A was passed between the anode electrode 13a and the cathode electrode 13b, the electrolysis voltage was 25v and electrolysis was performed.
[0043]
This electrolytic solution also has the same features as the embodiment of the present invention. For example, the anode electrolyzed water has an electric conductivity of 330 μS / cm, pH of 7.0, and ORP of 960 mv (vs, Ag / AgCl), and the cathode electrolyzed water has an electric conductivity of 350 μS / cm and a pH of 9. .65, ORP of −620 mv (vs, Ag / AgCl).
[0044]
FIG. 5 shows another embodiment of the electrolysis apparatus according to the present invention.
In the apparatus of this embodiment, in the apparatus of FIG. 2, only the fluorine-based cation exchange membrane 10a is left, the anion exchange membrane 10b is removed, and a cation exchange resin (Nafion NR-made by DuPont) is used as a solid electrolyte in the intermediate chamber 12c. 50) and water that has passed through the intermediate chamber 12c is supplied to the anode chamber 12a. Since the other configuration is basically the same as that of the second embodiment, the same parts are denoted by the same reference numerals and detailed description thereof is omitted. In FIG. 5, 4 is a three-chamber electrolytic cell, 5 is a water softener, 6 is a cathode chamber liquid tank, and 7 is an anode chamber liquid tank.
[0045]
Then, tap water (conductivity of 320 μS / cm) was supplied to the cathode chamber 12b at a rate of about 0.5 L / min, and electrolysis was performed under conditions of an electrolysis current of 5 A and an electrolysis voltage of 25 v.
This electrolytic solution also has the same features as the embodiment of the present invention. For example, the anode electrolyzed water has an electric conductivity of 430 μS / cm, a pH of 3.55, and an ORP of 1120 mv (vs, Ag / AgCl), and the cathode electrolyzed water has an electric conductivity of 450 μS / cm and a pH of 10 0.02, ORP was -750 mv (vs, Ag / AgCl).
[0046]
【The invention's effect】
Even when the electrolyte concentration is lowered, the electrolysis voltage is low, and electrolyzed water with less generation of chlorine that can be used for sterilization, washing, surface treatment, or promotion of plant growth can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic view of a first embodiment of an electrolysis apparatus according to the present invention.
FIG. 2 is a schematic view of a second embodiment of the electrolyzer according to the present invention.
FIG. 3 is a schematic view of a third embodiment of the electrolyzer according to the present invention.
FIG. 4 is a schematic view of a fourth embodiment of the electrolyzer according to the present invention.
FIG. 5 is a schematic view of a fifth embodiment of the electrolyzer according to the present invention.
FIG. 6 is a schematic diagram of a conventional electrolyzer.
[Explanation of symbols]
1,10,11 Diaphragm
2a, 12a Anode chamber
2b, 12b Cathode chamber
12c Intermediate room
1a, 10a Fluorine-based cation exchange membrane
3a, 13a Anode electrode
3b, 13b Cathode electrode
10b Anion exchange membrane
11b Anion exchange membrane

Claims (8)

アノード室およびカソード室を有する電解槽を備えた電解装置において、
前記電解槽を仕切ってアノード室を構成する為に配設されたフッ素系カチオン交換膜からなる隔膜と、
前記フッ素系カチオン交換膜製隔膜に密着させてアノード室側に配設されたアノード電極と、
前記フッ素系カチオン交換膜製隔膜の前記アノード電極配設面側とは反対側の面に積重配設されたアニオン交換膜
とを具備することを特徴とする電解装置。
In an electrolysis apparatus comprising an electrolytic cell having an anode chamber and a cathode chamber,
A diaphragm made of a fluorine-based cation exchange membrane disposed to partition the electrolytic cell and constitute an anode chamber;
An anode electrode disposed on the anode chamber side in close contact with the fluorine-based cation exchange membrane diaphragm;
An anion exchange membrane disposed on the surface opposite to the surface on which the anode electrode is disposed of the fluorine-based cation exchange membrane diaphragm
An electrolysis apparatus comprising:
アノード室と、カソード室と、前記アノード室とカソード室との間に設けられた中間室とを有する電解槽を備えた電解装置において、
前記電解槽を仕切って前記アノード室と前記中間室とを区分する為に配設されたフッ素系カチオン交換膜からなる隔膜と、
前記フッ素系カチオン交換膜製隔膜に密着させて前記アノード室側に配設されたアノード電極と、
前記フッ素系カチオン交換膜製隔膜の前記アノード電極配設面側とは反対側の面に積重配設されたアニオン交換膜
とを具備することを特徴とする電解装置。
An anode chamber, a cathode chamber, the electrolytic device including an electrolytic tank for organic and an intermediate chamber provided between the anode and cathode compartments,
A diaphragm made of a fluorine-based cation exchange membrane disposed to partition the electrolytic cell and separate the anode chamber and the intermediate chamber;
An anode electrode disposed on the anode chamber side in close contact with the fluorine-based cation exchange membrane diaphragm;
An anion exchange membrane disposed on the surface opposite to the surface on which the anode electrode is disposed of the fluorine-based cation exchange membrane diaphragm
An electrolysis apparatus comprising:
フッ素系カチオン交換膜製隔膜に孔が開けられてなる
ことを特徴とする請求項1又は請求項2の電解装置。
The electrolyzer according to claim 1 or 2, wherein a hole is formed in the fluorine-based cation exchange membrane diaphragm .
アニオン交換膜に孔が開けられてなる
ことを特徴とする請求項2の電解装置。
The electrolyzer according to claim 2, wherein the anion exchange membrane is perforated .
アニオン交換膜がカソード室側に位置するようにアニオン交換膜とカチオン交換膜とが積重配設されてカソード室と中間室とが区分されてなる
ことを特徴とする請求項2の電解装置。
An anion exchange membrane and a cation exchange membrane are stacked so that the anion exchange membrane is located on the cathode chamber side, and the cathode chamber and the intermediate chamber are separated from each other. Electrolyzer.
請求項1〜請求項5いずれかの電解装置に電導度が60000μS/cm以下の水を供給し、電解する
ことを特徴とする電解方法
Electrolysis is performed by supplying water having an electric conductivity of 60000 μS / cm or less to the electrolysis apparatus according to claim 1.
An electrolysis method characterized by the above .
アノード室とカソード室とからなる2室型の電解槽タイプの電解装置を用いた請求項6の電解方法であって、
カソード室に電導度が60000μS/cm以下の水を供給し、電解により、アノード室に酸化性物質を含む水を、カソード室に還元性物質を含む水を生成する
ことを特徴とする電解方法。
The electrolysis method according to claim 6, wherein a two-chamber electrolytic cell type electrolyzer comprising an anode chamber and a cathode chamber is used.
Water having an electric conductivity of 60000 μS / cm or less is supplied to the cathode chamber, and water containing an oxidizing substance is generated in the anode chamber and water containing a reducing substance is generated in the cathode chamber by electrolysis. To electrolyze.
アノード室とカソード室と中間室とからなる3室型の電解槽タイプの電解装置を用いた請求項6の電解方法であって、
中間室に電導度が60000μS/cm以下の水を供給し、電解により、アノード室に酸化性物質を含む水を、カソード室に還元性物質を含む水を生成する
ことを特徴とする電解方法。
The electrolysis method according to claim 6, wherein a three-chamber electrolytic cell type electrolyzer comprising an anode chamber, a cathode chamber, and an intermediate chamber is used.
Water having an electric conductivity of 60000 μS / cm or less is supplied to the intermediate chamber, and water containing an oxidizing substance is generated in the anode chamber and water containing a reducing substance is generated in the cathode chamber by electrolysis. To electrolyze.
JP31877597A 1997-11-19 1997-11-19 Electrolysis apparatus and electrolysis method Expired - Fee Related JP3952228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31877597A JP3952228B2 (en) 1997-11-19 1997-11-19 Electrolysis apparatus and electrolysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31877597A JP3952228B2 (en) 1997-11-19 1997-11-19 Electrolysis apparatus and electrolysis method

Publications (2)

Publication Number Publication Date
JPH11151493A JPH11151493A (en) 1999-06-08
JP3952228B2 true JP3952228B2 (en) 2007-08-01

Family

ID=18102813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31877597A Expired - Fee Related JP3952228B2 (en) 1997-11-19 1997-11-19 Electrolysis apparatus and electrolysis method

Country Status (1)

Country Link
JP (1) JP3952228B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110082568A (en) * 2008-10-17 2011-07-19 유겐가이샤 스프링 Apparatus for producing hydrogen-dissolved drinking water and process for producing the dissolved drinking water

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980087769A (en) * 1998-09-17 1998-12-05 이재용 Electrolytic Device and Electrolytic Method
JP2002096065A (en) * 2000-09-21 2002-04-02 Takahashi Kinzoku Kk Preparation method and device for washing water, and washing water
JP5140218B2 (en) * 2001-09-14 2013-02-06 有限会社コヒーレントテクノロジー Electrolyzer for producing charged anode water suitable for surface cleaning and surface treatment, method for producing the same, and method of use
US9168318B2 (en) 2003-12-30 2015-10-27 Oculus Innovative Sciences, Inc. Oxidative reductive potential water solution and methods of using the same
AU2006226750B2 (en) 2005-03-23 2012-07-19 Oculus Innovative Sciences, Inc. Method of treating skin ulcers using oxidative reductive potential water solution
MX2007013774A (en) 2005-05-02 2008-01-29 Oculus Innovative Sciences Inc Method of using oxidative reductive potential water solution in dental applications.
CA2637178C (en) 2006-01-20 2018-09-04 Oculus Innovative Sciences, Inc. Methods of preventing or treating sinusitis with oxidative reductive potential water solution
JP4677993B2 (en) * 2007-01-23 2011-04-27 パナソニック電工株式会社 Electrolyzed water generator
JP5279419B2 (en) * 2008-09-05 2013-09-04 株式会社 ウォーターウェア Water electrolysis apparatus and water electrolysis system
CN102480972B (en) 2009-06-15 2014-12-10 奥古露丝创新科学公司 Solution containing hypochlorous acid and methods of using same
EP3081535B1 (en) 2013-12-09 2019-11-13 Tech Corporation Co., Ltd. Method for producing oxidized water for sterilization use without adding electrolyte
JP6495630B2 (en) 2014-11-28 2019-04-03 株式会社東芝 Photoelectrochemical reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110082568A (en) * 2008-10-17 2011-07-19 유겐가이샤 스프링 Apparatus for producing hydrogen-dissolved drinking water and process for producing the dissolved drinking water
KR101640592B1 (en) * 2008-10-17 2016-07-18 가부시키가이샤 테크 코포레이션 Apparatus for producing hydrogen-dissolved drinking water and process for producing the dissolved drinking water

Also Published As

Publication number Publication date
JPH11151493A (en) 1999-06-08

Similar Documents

Publication Publication Date Title
KR100443448B1 (en) Electrolyzed functional water, and production process and production apparatus thereof
US7749370B2 (en) Manufacturing method of oxidative water to be employed for sterilization
JP4653708B2 (en) Electrolyzed water generating method and electrolyzed water generating apparatus used therefor
JP5688103B2 (en) Electrolyzed water production method and apparatus
US20100310672A1 (en) Disinfectant based on aqueous; hypochlorous acid (hoci)-containing solutions; method for the production thereof and use thereof
JP3716042B2 (en) Acid water production method and electrolytic cell
JP3952228B2 (en) Electrolysis apparatus and electrolysis method
JP5913693B1 (en) Electrolytic device and electrolytic ozone water production device
JP3785219B2 (en) Method for producing acidic water and alkaline water
JP2005058848A (en) Production method for water used for washing, disinfecting, and wound healing, its production apparatus, and water used for washing, disinfecting, and wound healing
JP5595213B2 (en) Disinfecting water manufacturing apparatus and disinfecting water manufacturing method
JP4090665B2 (en) Electrolyzed water production method
JP2002336856A (en) Electrolytic water making apparatus and method of making electrolytic water
JP5764474B2 (en) Electrolytic synthesis apparatus, electrolytic treatment apparatus, electrolytic synthesis method, and electrolytic treatment method
JP5863143B2 (en) Method for producing oxidized water for sterilization
JP3396853B2 (en) Water production method and obtained water
CN101638262A (en) Process for producing electrolyzed oxidizing water and bottled package
JPH10128331A (en) Method and apparatus for producing sterilized water
US20140190820A1 (en) Reusable apparatus with sparingly soluble solid for cleaning and/or disinfecting
JP4181170B2 (en) Drinking electrolyzed water and method for producing the same
JP2002153873A (en) Method for sterilization
KR19980087769A (en) Electrolytic Device and Electrolytic Method
KR20040057009A (en) Electrolytic high concentration disinfectants generator
JPH11221566A (en) Production of electrolytic water
JP2002355674A (en) Apparatus and method for producing drinking water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees