KR20040057009A - Electrolytic high concentration disinfectants generator - Google Patents

Electrolytic high concentration disinfectants generator Download PDF

Info

Publication number
KR20040057009A
KR20040057009A KR1020020083783A KR20020083783A KR20040057009A KR 20040057009 A KR20040057009 A KR 20040057009A KR 1020020083783 A KR1020020083783 A KR 1020020083783A KR 20020083783 A KR20020083783 A KR 20020083783A KR 20040057009 A KR20040057009 A KR 20040057009A
Authority
KR
South Korea
Prior art keywords
chamber
high concentration
chlorine
anode chamber
anode
Prior art date
Application number
KR1020020083783A
Other languages
Korean (ko)
Other versions
KR100523982B1 (en
Inventor
문상봉
Original Assignee
(주)엘켐텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘켐텍 filed Critical (주)엘켐텍
Priority to KR10-2002-0083783A priority Critical patent/KR100523982B1/en
Publication of KR20040057009A publication Critical patent/KR20040057009A/en
Application granted granted Critical
Publication of KR100523982B1 publication Critical patent/KR100523982B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Automation & Control Theory (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE: An electrochemical system for supplying disinfectant to the places by producing a large amount of disinfectant required in places including water works, sewerage and swimming pool is provided. CONSTITUTION: The generator is characterized in that electrochemical unit cells comprising anode chamber(200), cathode chamber(300) and cation exchange membrane(400) for separating the anode chamber and the cathode chamber are continuously installed, salt water(2) and fresh water are supplied into the anode chamber and the cathode chamber respectively to generate high concentration chlorine(8) in the anode chamber and high concentration caustic soda in the cathode chamber, and the compounds of the chlorine and caustic soda are reacted with each other in an upper space of electrolytic cell(900) so that high concentration disinfectant is produced.

Description

전기화학적 고농도 살균제 발생기{Electrolytic high concentration disinfectants generator}Electrochemical high concentration disinfectants generator

본 발명은 상수도, 하수도, 수영장 및 대중 목욕탕등에서 필요한 살균제를 현장에서 소금을 이용하여 살균제를 대량으로 생성하는 시스템에 관한 것이다. 종래의 경우 상수도, 하수도, 수영장 및 목욕탕등에서는 염소(Cl2) 외에 하이포아염소산염(NaOCl), 하이포아염소산칼슘(CaCOCl ·2H2O)의 형태로 염소약품 소독을 사용하여 왔으며 최근에는 소금을 이용한 무격막 전기분해 방식이 최근 도입이 되고 있다.염소가스(Cl2)는 보관하기가 불편하며, 가스상으로 얻어지고 사용되기 때문에 다루기가 매우 위험할 뿐만 아니라 살균효과도 현저히 낮고, 부식의 문제등 보수-유지가 어려운 점이 문제로 대두되어 왔다. 이에 염소가스 대체 약품으로 사용되는 하이포아염소산염(NaOCl), 하이포아염소산칼슘(CaCOCl ·2H2O)은 염소보다는 취급이 용이하지만 가격이 비싸고, 부식등의 문제가 있다. 전기분해를 이용한 방법은 격막이 없이 전기분해조에 양극과 음극을 교대로 복수개를 설치하여 전기분해 하는 방법이 이며, 일반적으로 전기분해 방식을 이용한 방법은 크게 3가지로 대별된다.첫째는 은이온 발생 장치를 이용하는 방법으로 이와 관련 되는 특허로는 대한 민국 특허 출원번호 2020020022335 (강종석 , 은 이온수 생산장치 ), 2020020021422(천일물산㈜, 은이온수 치아세정기)등이 있으며, 둘째는 수돗물을 전기분해하여 강산화수와 환원수를 얻어 이 물을 이용하는 방법으로, 이와 관련되는 특허로는 출원번호 1020027002260(김희정, 살균수 제조장치 및 방법), 0000004613(㈜티엠디, 대용량 전해수 제조 및 살포장치 ), 2019990029004(㈜보인글로벌, 삼방밸브를 구비한 산화 전해수 생성기), 1019980040446(㈜경우테크 강전해수 생성장치), 2019980018576(㈜경우테크 ,강전해수 생성장치의 ORP센서)등이 있다. 셋째는 소금물을 격막없이 전기분해하여 저농도의 차아염소산을 얻는 방법으로, 이와 같은 방법으로는 2020010027566(SI산업㈜ 치아 염소산의 생성시스템 ), 019980006792(김명호, 차아염소산의 생성시스템 )등이 있다. 상기 발명중 첫번째 은이온을 이용하여 살균하는 방법은 고가의 은을 사용하기 때문에 대량의 살균제가 필요로 하는 곳에는 전극 비용으로 인한 경제성 때문에 부적합하며, 상기 방법중 둘째방법인 전해산성수를 이용하는 방법은 전해산성수의 발생효율이 20~30%로서 살균제 발생 효율이 매우 낮기 때문에 대량의 살균제가 필요한 경우 대규모 설비가 필요하게 되어 부적합하며, 상기 방법중 셋째방법인 무격막 소금물 전기분해 방식역시 차아염소산등의 살균제 발생효율이 50%로 매우 낮고, 최대 염소농도가 0.8%인 시스템으로 대량의 살균제가 필요한 경우 역시 살균제 발생 설비가 대규모로 필요하게 되어 경제성이 없게 되는 문제점이 있다. 따라서, 상기 특허들은 발생효율이 낮아 운전비용 및 설비비 측면에서 경제성이 없어 대량의 살균제가 필요로하는 정수장, 하수처리장, 수영장등에서는 염소계 화학약품이 주로 이용되어 왔다.The present invention relates to a system for producing a large amount of disinfectant using salt in the field of the disinfectant required in water supply, sewage, swimming pool and public baths. In the past, chlorine chemical disinfection has been used in the form of hypochlorite (NaOCl) and calcium hypochlorite (CaCOCl 2H 2 O) in addition to chlorine (Cl 2 ) in water, sewage, swimming pools and baths. The use of non-diaphragm electrolysis has recently been introduced. Chlorine gas (Cl 2 ) is inconvenient to store, and because it is obtained and used in gaseous form, it is not only very dangerous to handle, but also has a low sterilization effect, corrosion problems, etc. Difficult to maintain and maintain has been a problem. Hypochlorite (NaOCl) and hypochlorite (CaCOCl 2H 2 O), which are used as alternatives to chlorine gas, are easier to handle than chlorine, but are expensive and have problems such as corrosion. Electrolysis is a method in which a plurality of anodes and cathodes are alternately installed in an electrolysis tank without a diaphragm, and electrolysis is generally classified into three types. Patents related to this method using the device include Korea Patent Application No. 2020020022335 (Kang Jong-seok, Silver Ion Water Production Equipment), 2020020021422 (Cheonil C & T, Silver Ion Water Tooth Cleaner), and secondly, strong oxidized water by electrolyzing tap water. And using the water to obtain reduced water, and the related patents are related to the application number 1020027002260 (Kim Hee-jung, sterilized water production apparatus and method), 0000004613 (TM, Co., Ltd.), 2019990029004 (Boine Global Co., Ltd.) , Oxidized Electrolyzed Water Generator with Three-way Valve), 1019980040446 (Keio Tech Co., Ltd.), 2019980018576 ORP sensor and the like of the water producing apparatus). The third method is to obtain hypochlorous acid at low concentration by electrolysis of brine without diaphragm. Such methods include 2020010027566 (generation system of chichloric acid of SI industry) and 019980006792 (Kim Myung-ho, generation system of hypochlorous acid). Since the first method of sterilization using silver ions is expensive silver, where a large amount of sterilizer is required, it is not suitable due to the economical cost due to electrode cost, and the method of using electrolytic acid water which is the second method of the above methods. Since the generation efficiency of silver electrolytic acid water is 20 ~ 30% and the efficiency of disinfectant generation is very low, a large-scale facility is required when a large amount of disinfectant is required. Fungicide generation efficiency is very low, such as 50%, the maximum chlorine concentration of 0.8% system requires a large amount of fungicides also need a large amount of disinfectant generation facilities there is a problem that there is no economic feasibility. Therefore, the patents have low economic efficiency in terms of operation cost and equipment cost, and therefore, chlorine-based chemicals have been mainly used in water purification plants, sewage treatment plants, swimming pools, etc., which require a large amount of disinfectant.

대량의 살균제가 요구되는 정수장, 하수처리장, 수영장등의 현장에서 현장 운전원 및 인근 주민 지역의 안전에 위협이되는 염소계 화학약품을 사용하지 않으면서, 컴팩트한 공간을 차지하고, 저비용 운전과 저렴한 설비비의 살균제 발생기가 요구된다.In the field of water purification plant, sewage treatment plant, swimming pool, etc. where a large amount of disinfectant is required, it does not use chlorine-based chemicals that threaten the safety of field operators and neighboring residents' area, occupying compact space, low cost operation and low cost of disinfectant Generator is required.

도 1은 본 발명의 원리도.1 is a principle diagram of the present invention.

도 2는 본 발명의 장치의 단위셀 구성도.2 is a unit cell configuration diagram of the apparatus of the present invention.

도 3은 본 발명의 양극실의 구조.3 is a structure of the anode chamber of the present invention.

도 4는 전해스택의 구성도.4 is a configuration diagram of an electrolytic stack.

도 5는 고농도 유효염소 발생기 공정의 예.5 is an example of a high concentration effective chlorine generator process.

본 발명은 위와 같은 문제를 해결하기 위해 제안된 것으로, 양극실과 음극실, 그사이에 양이온 교환막을 설치하여 양극실에는 소금물을, 음극실에는 순수를 공급하여, 양극실에서는 염소가스가 음극실에는 가성소다가 발생하여 전해실 상부에 이들이 혼합하는 공간을 두어 이들 염소가스와 가성소다를 반응시켜 고농도의 유효염소를 만들수 있는 전기화학적 전해셀을 제공하는 것이다.The present invention has been proposed to solve the above problems, by installing a cation exchange membrane between the anode chamber and the cathode chamber, there is a salt water in the anode chamber, supplying pure water to the cathode chamber, chlorine gas in the cathode chamber is caustic Soda is generated and a space where they are mixed in the upper part of the electrolytic chamber is to provide an electrochemical electrolytic cell capable of producing high concentration of effective chlorine by reacting these chlorine gas and caustic soda.

첨부한 도면에 의거하여 본 발명에따른 실시예를 상세히 설명한다.Exemplary embodiments according to the present invention will be described in detail with reference to the accompanying drawings.

제1도는 본 발명의 개념도로서 전해셀(900)은 양극실(200), 음극실(300), 막(400)으로 구성된다.1 is a conceptual diagram of the present invention, the electrolytic cell 900 is composed of a cathode chamber 200, a cathode chamber 300, the film 400.

양극실(200)에는 소금물(2)이 공급되고 소금은 소듐이온(Na+)(9)과 염소이온( Cl-)(7) 으로 전리된다. 이때의 전리되는 반응식은 식1과 같다.An anode chamber 200, the brine (2) is supplied to the salt is sodium ion (Na +) (9) and chloride ion (Cl -) is the ionizer 7. The reaction scheme ionized at this time is shown in Equation 1.

전리된 소듐이온(9)은 전기장하에서 음극(10)으로 이동하며, 염소이온(7)은 양극(20)에서 산화되어 염소(8)가 생성되어 전해셀(900) 외부로 배출된다. 이때의 반응식은 식2과 같다.The ionized sodium ion 9 moves to the cathode 10 under an electric field, and the chlorine ion 7 is oxidized at the anode 20 to generate chlorine 8 and is discharged to the outside of the electrolytic cell 900. At this time, the reaction formula is shown in Equation 2.

이때 양극(20)에서의 염소 발생 효율은 96%이상이며, 발생된 염소는 전해셀내 혼합관(500) 양극실 인입라인(4)을 통하여 혼합관(500)으로 이동한다.At this time, the chlorine generation efficiency at the anode 20 is 96% or more, and the generated chlorine moves to the mixing tube 500 through the mixing chamber 500 and the anode chamber inlet line 4 in the electrolytic cell.

음극실(300)에는 순수(1)가 공급되고 물은 수소이온(H+)과 수산이온(OH-) 으로 전리되며 이의 전리식은 식3로 표현할 수 있다. 전리된 수소이온(5)은 전기장하에서 음극(10)으로 이동하며 환원되어 식4와 같이 수소(6)가 생성되며, 미반응의 수산이온과 양극실에서 이동한 소듐이온(9)이 반응하여 반응식5와 가성소다같이 생성된다.A cathode chamber 300, the net (1) is supplied to the water proton (H +) and hydroxyl ions (OH -) and the ionization can be expressed by equation (3) ionization expression thereof. The ionized hydrogen ions (5) are moved to the cathode (10) under an electric field and reduced to produce hydrogen (6) as shown in Equation 4. The unreacted hydroxide ions and the sodium ions (9) moved from the anode chamber react. Produced like Scheme 5 and Caustic Soda.

이때 전극에서의 수소 발생 효율은 99%이상이며, 발생된 가성소다는 혼합관(500) 음극실 인입라인(3)을 통하여 혼합관(500)으로 이동한다. 이동한 가성소다와 염소는 반응을 하여 반응식6과 같이 유효염소농도 최대10%의 차아염소산 나트륨을 얻을 수 있다.At this time, the hydrogen generation efficiency at the electrode is more than 99%, the generated caustic soda is moved to the mixing tube 500 through the mixing tube 500, cathode chamber inlet line (3). The moved caustic soda and chlorine react to obtain sodium hypochlorite with an effective chlorine concentration of up to 10%, as shown in Scheme 6.

제2도-가는 본 발명의 단위 전해셀(A)로서 양극실(100) 및 음극실(200)을 분리하는 이온교환막(90), 양극(20)이 배치된 양극실(100)과 음극(10)이 배치된 음극실(200)로 이루어진다.2 is an ion exchange membrane 90 separating the anode chamber 100 and the cathode chamber 200 as the unit electrolytic cell A of the present invention, the anode chamber 100 and the cathode in which the anode 20 is disposed. It consists of a cathode chamber 200 is disposed 10.

양극실(100)의 입구(120)를 통하여 4%이상의 소금물을 주입시키면 가해준 전기에너지에 비례해서 양극(20)에서 염소가 생성되고, 발생된 염소는 출구 (128)을 통해 배출된다. 가해준 전기에너지는 양극실 외벽(130)으로부터 전기전도체(122)를 지나 양극(20)으로 공급된다. 전기전도체(122)는 양극실 외벽에 용접된 플레이트로서 플레이트에는 일정크기 원형의 전해질 통로(124)가 있어 전해질의 혼합 기능을 가지며, 또한 동시에 전류 전도체 역할을 한다.When more than 4% of brine is injected through the inlet 120 of the anode chamber 100, chlorine is generated in the anode 20 in proportion to the applied electric energy, and the generated chlorine is discharged through the outlet 128. The applied electric energy is supplied from the outer wall 130 of the anode chamber to the anode 20 through the electric conductor 122. The electrical conductor 122 is a plate welded to the outer wall of the anode chamber, and the plate has a circular electrolyte passage 124 of a predetermined size, and has a function of mixing electrolytes and at the same time serves as a current conductor.

본 발명의 양극(20)은 상기한 양극실의 반응이 원활히 일어날 수 있도록 이에 적합한 촉매를 사용한다. 양극(20)은 티타늄(Ti) 기재(substrate)위에 백금도금 또는 산소발생 촉매인 이리듐(Ir), 루테늄(Ru) 등의 산화물을 사용한 수치안정성 전극(DSA)을 주로 사용한다.The anode 20 of the present invention uses a catalyst suitable for this so that the reaction of the anode chamber can occur smoothly. The anode 20 mainly uses a numerically stable electrode (DSA) using an oxide such as iridium (Ir) or ruthenium (Ru), which is a platinum plating or oxygen generating catalyst, on a titanium (Ti) substrate.

전기전도체(122) 재질은 티타늄이나 양극(20)과 같이 티타늄(Ti) 기재(substrate)위에 백금도금 또는 산소발생 촉매인 이리듐(Ir), 루테늄(Ru) 등의 산화물을 코팅하여 사용한다.The electrical conductor 122 is formed by coating an oxide such as iridium (Ir), ruthenium (Ru), which is a platinum plating or an oxygen generating catalyst, on a titanium (Ti) substrate such as titanium or the anode 20.

음극실(200)의 입구(110)를 통하여 물이 공급되면 음(10)에서 가성소다와 수소가 생성되고, 생성된 수소와 가성소다는 출구 (118)을 통해 배출된다. 가한 전기에너지는 양극(10)으로부터, 양이온교환막(90), 음극(10), 전기전도체(102)를 통과하여 음극실 외벽(230)으로 이동한다.When water is supplied through the inlet 110 of the cathode chamber 200, caustic soda and hydrogen are generated in the negative 10, and the generated hydrogen and caustic soda are discharged through the outlet 118. The added electrical energy moves from the anode 10 to the cathode chamber outer wall 230 through the cation exchange membrane 90, the cathode 10, and the electrical conductor 102.

전기전도체(102)는 음극실 외벽에 용접된 플레이트이며, 플레이트에는 일정크기 원형의 전해질 통로(112)가 있어 양극실의 경우와 동일하게 전해질의 혼합 기능을 가지며, 또한 동시에 전류 전도체 역할을 한다.The electrical conductor 102 is a plate welded to the outer wall of the cathode chamber, and the plate has a predetermined size circular electrolyte passage 112 to have a mixing function of the electrolyte as in the case of the anode chamber, and at the same time serves as a current conductor.

음극(10)은 스테인레스 스틸, 니켈, 마일드 스틸, 티타늄 기재외에 수소 발생촉매 백금 및 그의 산화물을 주로 사용한다.The negative electrode 10 mainly uses hydrogen generating catalyst platinum and oxides thereof in addition to stainless steel, nickel, mild steel, and titanium substrates.

전기전도체(102) 재질은 음극의 구성 재료와 동일 한 것이 바람직하다.The material of the electrical conductor 102 is preferably the same as the material of the cathode.

본 발명에서 사용하는 이온교환막(90)은 시중에서 판매되고 있는 것으로서 전기분해시스템에 사용가능한 이온교환막은 미국의 듀폰사, 일본의 아사히케미칼사, 아사히 그라스사 등에서 시판하는 불소 및 탄화수소 계열의 이온교환막, 일본 도쿠야마소다사 등에서 생산하는 양이온 및 음이온교환막이 일체형 구조로 되어 있는 복극의 이온교환막등이다.The ion exchange membrane 90 used in the present invention is commercially available, and the ion exchange membrane that can be used for the electrolysis system is a fluorine and hydrocarbon-based ion exchange membrane commercially available from DuPont, USA, Asahi Chemical, Asahi Grass, etc. And a bipolar ion exchange membrane having an integral structure of cation and anion exchange membrane produced by Tokuyama Soda Co., Ltd., Japan.

본 발명의 단위셀(A)들은 제2도-나와 같이 볼트 및 너트(192)를 이용하여 압차 결합된다.The unit cells (A) of the present invention are pressure-coupled using a bolt and nut 192 as shown in FIG.

본 발명의 제3도는 양극실의 구조를 나타낸 것으로 번호는 제2도-가와 같으며, 해당번호와 동일한 기능을 가진다. 번호194는 제2도나의 볼트-너트를 체결하기 위한 구멍을 나타낸다.FIG. 3 of the present invention shows the structure of the anode chamber, the number of which is the same as that of FIG. 2, and has the same function as the corresponding number. Reference numeral 194 denotes a hole for fastening the bolt-nut of FIG.

양극실의 내부와 양극실의 플랜지면(27)과 이온교환막(90)에 밀착된 양극가스켓(37)은 양극실을 실(seal)하게 된다. 음실의 내부와 양극실의 플랜지면과 이온교환막(90)에는 음극가스켓(39)은 양극반응실을 실(seal)하게 된다.The anode gasket 37 in close contact with the inside of the anode chamber and the flange surface 27 of the anode chamber and the ion exchange membrane 90 seals the anode chamber. The cathode gasket 39 seals the anode reaction chamber in the interior of the chamber and the flange surface of the anode chamber and the ion exchange membrane 90.

제4는 단위셀(A)을 수개 연결한 것으로 이들 셀은 외부에서 프레싱(Pressing)하여 한 개의 전해스택(100)을 이룬다. 대용량의 살균제를 처리하기 위해서 단위셀(A)을 복수개로 설치한 전기분해 스택의 한 예로서 대용량의 살균제 발생용 전기분해장치는 단위셀이 밀착해서 배치되며, 다수의 셀의 양끝에는 다수의 셀을 밀착시키기 위한 플레이트(5)가 배치되는 구조이다. 여기서 플레이트(5)는 가이드 로드 또는 압착 스프링(97)등에 의해 지지된다.The fourth is a connection of several unit cells (A), these cells are pressed from the outside to form one electrolytic stack (100). As an example of an electrolysis stack in which a plurality of unit cells (A) are installed in order to process a large amount of sterilizer, an electrolysis device for generating a large amount of sterilizer is disposed in close contact with a unit cell and a plurality of cells at both ends of the plurality of cells. It is a structure that the plate 5 for close contact. The plate 5 is here supported by a guide rod or a pressing spring 97 or the like.

통로(200)은 각각의 전해셀(A) 양극실로 공급하는 소금물 통로이며 통로(300)은 각각의 전해셀(A) 음극실로 공급하는 물의 통로이다. 통로(200,300)을 통해서 각각의 단위 셀로 소금물과 물이 공급된다. 전해스택(100)의 각각 단위셀(A)의 양극실과 음극실에서 발생한 수소와 가성소다는 혼합관(400)에서 혼합하여 반응이 일어나며, 이때 1%이상의 고농도의 유효염소 살균제가 생성된다. 전해스택(100)의 운전 조건에따라 최대 10%의 유효염소 농도까지 얻을 수 있다.The passage 200 is a salt water passage that supplies each of the electrolytic cells A anode chambers, and the passage 300 is a passage of water that supplies each of the cathode cells A cathode chambers. Brine and water are supplied to each unit cell through the passages 200 and 300. Hydrogen and caustic soda generated in the anode chamber and the cathode chamber of each unit cell A of the electrolytic stack 100 are mixed in the mixing tube 400 to generate a reaction. At this time, a high concentration of effective chlorine disinfectant of 1% or more is generated. Depending on the operating conditions of the electrolytic stack 100, up to 10% effective chlorine concentration can be obtained.

제5도는 고농도 유효염소농도의 살균제 제조 시스템의 공정도이다. 소금 저장조(400)에 소금(22)을 녹인 후 소금물 4%로 만든 후 펌프(920)을 이용하여 전해스택(100)의 양극실(110)에 공급하면 부피농도 96%이상의 염소(3)가 얻어지며, 이 염소(3)는 압력차에의해 반응부(200)으로 이동한다.5 is a flow chart of a system for producing a high concentration of effective chlorine fungicides. After dissolving salt (22) in the salt reservoir (400) and making the salt water 4% and then using the pump 920 to supply to the anode chamber 110 of the electrolytic stack 100, chlorine (3) having a volume concentration of 96% or more This chlorine (3) is moved to the reaction section (200) by the pressure difference.

물 저장조(500)에 물(21)을 공급받아 펌프(910)를 이용하여 전해스택(100)의 음극실(120)에 공급하면 20%이상의 가성소다(4)가 생성되어 반응부(200)으로 이동한다. 혼합관(200)에 이동한 염소(3)과 가성소다(4)는 반응에의해 고농도의 유효염소를 가지는 살균제(25)가 얻어지며 이는 살균제 저장조(600)에 보관후 필요시에 펌프(700)를 이용하여 사용한다.When the water 21 is supplied to the water storage tank 500 and supplied to the cathode chamber 120 of the electrolytic stack 100 using the pump 910, more than 20% of caustic soda 4 is generated to generate the reaction unit 200. Go to. The chlorine (3) and caustic soda (4) moved to the mixing tube (200) is obtained by the reaction to a sterilant (25) having a high concentration of effective chlorine, which is stored in the sterilant storage tank (600) and pumps as necessary ) Is used.

반응부(200)에서 미반응된 염소(25)는 다시 살균제저장조(600)의 살균제를 이용하여 스크러버(300)에서 중화하여 다시 살균제를 만들어 살균제저장조(600)으로 공급한다. 상기 실시예는 본 발명을 보다 상세히 설명하고자 하는 것으로서 이들 실시예가 본 발명의 기술적 범위를 한정하지는 않는다.The unreacted chlorine 25 in the reaction unit 200 is neutralized in the scrubber 300 again by using the sterilant of the sterilant storage tank 600 to make a sterilizer again and supply it to the sterilant storage tank 600. The above examples are intended to explain the present invention in more detail, and these examples do not limit the technical scope of the present invention.

이상에서 설명한 바와 같이 본 발명은 고농도의 살균제를 발생할 수가 있어 살균제가 대량으로 필요한 정수장, 하수장, 대중목욕탕등에 저렴한 설비비용과 운전비용으로 사용할 수 있다.As described above, the present invention can generate a high concentration of disinfectant, so that the disinfectant can be used at low cost and operating cost for water purification plants, sewage plants, public baths, etc.

Claims (1)

양극실과 음극실, 이들을 분리하는 양이온교환막으로 구성된 전기화학적 단위 셀을 연속 설치하며, 양극실 및 음극실 각각에는 소금물과 물을 공급하여 양극실에서 고농도의 염소와 음극실에서는 고농도의 가성소다가 발생하고 다시 이들 화합물이 전해셀의 상부공간에서 반응이 일어나 고농도의 살균제를 제조하는 장치.An electrochemical unit cell consisting of an anode chamber and a cathode chamber and a cation exchange membrane separating them is continuously installed, and salt water and water are supplied to the anode chamber and the cathode chamber, respectively, and a high concentration of caustic soda is generated in the anode chamber and the cathode chamber. And again, these compounds react in the upper space of the electrolytic cell to produce a high concentration of fungicide.
KR10-2002-0083783A 2002-12-24 2002-12-24 Electrolytic disinfectants generator KR100523982B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0083783A KR100523982B1 (en) 2002-12-24 2002-12-24 Electrolytic disinfectants generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0083783A KR100523982B1 (en) 2002-12-24 2002-12-24 Electrolytic disinfectants generator

Publications (2)

Publication Number Publication Date
KR20040057009A true KR20040057009A (en) 2004-07-01
KR100523982B1 KR100523982B1 (en) 2005-10-26

Family

ID=37349626

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0083783A KR100523982B1 (en) 2002-12-24 2002-12-24 Electrolytic disinfectants generator

Country Status (1)

Country Link
KR (1) KR100523982B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101219582B1 (en) * 2009-10-30 2013-01-08 문상봉 Electrochemically sterilizing device and electrochemical cell comprising the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101020982B1 (en) * 2010-05-17 2011-03-09 주식회사 이온팜스 Water ionizer
KR101020925B1 (en) * 2010-05-17 2011-03-09 주식회사 이온팜스 Production-apparatus of ion water
WO2015152611A1 (en) * 2014-03-31 2015-10-08 (주)미라클인 Apparatus for preparing hypochlorous acid directly connected to water pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101219582B1 (en) * 2009-10-30 2013-01-08 문상봉 Electrochemically sterilizing device and electrochemical cell comprising the same

Also Published As

Publication number Publication date
KR100523982B1 (en) 2005-10-26

Similar Documents

Publication Publication Date Title
US6387241B1 (en) Method of sterilization using ozone
US5460705A (en) Method and apparatus for electrochemical production of ozone
US6547947B1 (en) Method and apparatus for water treatment
US5770033A (en) Methods and apparatus for using gas and liquid phase cathodic depolarizers
EP2563724B1 (en) Membrane-electrode assembly, electrolytic cell using the same, method and apparatus for producing ozone water, method for disinfection and method for wastewater or waste fluid treatment
EP3202955B1 (en) Electrolysis device for producing electrolyzed ozonated water
JPS58224189A (en) Chlorine gas generator and method
KR101361651B1 (en) A device using electrolyzer with a bipolar membrane and the method of producing hypochlorite solution and hydrogen gas thereby
JP2013043177A (en) Reactor for continuously producing high oxidation reduced water
JP2013108104A (en) Electrolytic synthesis device, electrolytic treating device, electrolytic synthesis method, and electrolytic treatment method
JP5863143B2 (en) Method for producing oxidized water for sterilization
KR100883894B1 (en) Apparatus for manufacturing of weak-acidic hypochlorous acid water and manufacturing method of weak-acidic hypochlorous acid water
KR100634889B1 (en) An electrolytic apparatus for producing sodium hypochloride
KR101427563B1 (en) Seawater electrolytic apparatus
US6761815B2 (en) Process for the production of hydrogen peroxide solution
KR20210015536A (en) Cooling pipe of titanium material equipped in electrolyzer of the Sodium Hypochlorite generation device of undivided type
KR20140035687A (en) A electrolysis apparatus
JP3561130B2 (en) Electrolyzer for hydrogen peroxide production
KR100523982B1 (en) Electrolytic disinfectants generator
CN106698602A (en) Electrolyzed water sterilization device and sterilization method
JP2005177671A (en) Electrolysis type ozonizer
KR102120149B1 (en) Sodium Hypochlorite generation device of undivided type with the cooling pipe of titanium material in electrolyzer
JP2007252963A (en) Electrolytic water producer
JPH0114830B2 (en)
EP1226094B1 (en) Device for electrolysis

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
J206 Request for trial to confirm the scope of a patent right
J801 Dismissal of trial

Free format text: REJECTION OF TRIAL FOR CONFIRMATION OF THE SCOPE OF RIGHT_DEFENSIVE REQUESTED 20070326

Effective date: 20070921

FPAY Annual fee payment

Payment date: 20121019

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20131021

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20141019

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20151019

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20161019

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20171019

Year of fee payment: 13