JP3951577B2 - Method and apparatus for measuring turbidity and fine particles - Google Patents

Method and apparatus for measuring turbidity and fine particles Download PDF

Info

Publication number
JP3951577B2
JP3951577B2 JP2000284611A JP2000284611A JP3951577B2 JP 3951577 B2 JP3951577 B2 JP 3951577B2 JP 2000284611 A JP2000284611 A JP 2000284611A JP 2000284611 A JP2000284611 A JP 2000284611A JP 3951577 B2 JP3951577 B2 JP 3951577B2
Authority
JP
Japan
Prior art keywords
fine particles
light
sample water
light beam
turbidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000284611A
Other languages
Japanese (ja)
Other versions
JP2002090284A (en
Inventor
太秀 山口
時喜雄 大戸
和彦 赤松
健治 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2000284611A priority Critical patent/JP3951577B2/en
Publication of JP2002090284A publication Critical patent/JP2002090284A/en
Application granted granted Critical
Publication of JP3951577B2 publication Critical patent/JP3951577B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は濁度および微粒子の測定方法とその装置に関する。
【0002】
【従来の技術】
1996年のクリプトスポリジウム流出事故により、「クリプトスポリジウムによって水道原水が汚染されるおそれのある浄水場ではろ過池出口の濁度を0.1度以下に維持すること」という暫定対策指針が厚生省から発表され、濁度0.1度以下を安定に測定できるオンラインの濁度計が必要となった。そして、これまでに半導体レーザを光源に用い、微粒子が光ビームを通過する際に生じる回折縞をカウントし、カウント数を濁度に変換する特開平7−49302号公報に記載のレーザ濁度計や、微粒子が光ビームを通過する際に、粒径に応じた波高値で観測される散乱光を粒径区分ごとにカウントし、カウントされた一つ一つの信号を微粒子の大きさに応じた濁度に変換する本発明者らが出願中の特開平10−311784号公報に記載の微粒子カウント式高感度濁度計などが開発されている。また、前記事故以降の上水分野では、微粒子監視が普及し始めている。
【0003】
微粒子カウンタの測定方式には、光ビームを試料水に照射し、光ビームの観測領域を微粒子が通過したときに生ずる散乱光パルス信号をカウントする散乱光方式と、光ビームの観測領域を微粒子が通過したときに生ずる、透過光量の減光パルス信号をカウントする光遮断方式とがある。光遮断方式の最小検出粒径は1〜2μmであり、この粒径以上が光遮断方式の測定粒径となる。散乱光方式の最小検出粒径はパルス信号を検出する受光光学系の位置によって異なるが、側方散乱光方式で0.1μm以下、前方散乱光方式で0.1〜0.2μmである。側方散乱方式では、前記クリプトスポリジウムなどの生物ように大きさがある程度揃い、屈折率が水に近い物質に対してほとんど感度を持たない場合があることが知られている。前方散乱光方式の場合は、前記生物のように光ビームの波長と比較して同程度以上に大きくなると、ほとんどが前方に向けて光ビームが散乱されるようになるので、側方散乱光方式と比較すると屈折率に対する影響は非常に小さいが、吸収成分を検出していない分だけ光遮断方式より粒径に対する感度が小さくなり、実際の大きさより小さい利粒子としてカウントされる場合がある。
【0004】
上水分野では、クリプトスポリジウム相当径の4〜6μmの粒子を監視することと、前記クリプトスポリジウムや浄水中にしばしば含まれる藻類は、校正に用いる標準粒子より屈折率が水に近いので、散乱光方式のパルス信号が小さくなるという理由から、主に光遮断方式が採用されている。
【0005】
【発明が解決しようとする課題】
前記半導体レーザを用いた濁度計は、従来にない低濁度を安定して測定できるという利点を持つが、その反面、以下に述べ問題がある。の問題は、濁度の測定値が手分析値(積分球方式)より小さくなる場合があることである。この原因は主に二つあり、その一つは前記半導体レーザを用いた濁度計は光ビームを絞っているため、ビーム幅以上の粒子が通過した場合、見かけの粒径が小さくカウントされてしまうことである。例えば、前記微粒子カウント式の場合、約10μmの粒子までは対応するが、それ以上の大きさの粒子は10μm相当として濁度に変換されてしまうことがある。ほとんどの飲料水の中には10μm以上の粒子が含まれていないため、通常は問題ないのであるが、藻類を多く含む原水を取水している浄水場などでは、凝集阻害などにより、ろ過水中に10μm以上の粒子やフロックがしばしば検出され、濁度が手分析値より小さくなる場合がある。また、二つ目の原因は塩素と接触した藻類がろ過池から流出した場合、前記藻類は脱色によって散乱光が小さくなっているため、散乱光量の他に透過光量(吸収成分)を検出する積分球方式の濁度計より測定値が小さくなる場合があることである。
【0007】
【課題を解決するための手段】
上記問題を解決するため、請求項1から4の発明は濁度および微粒子の測定方法および測定装置(微粒子カウント式高感度濁度計および微粒子カウンタ)において、散乱光をカウントする散乱光方式の光学系と、微粒子が通過する際に減少する透過光量をパルスとしてカウントする光遮断方式を組み合わせることとする。
【0009】
請求項1の発明は、集光された光ビームを試料水に向けて照射し、試料水中の微粒子によって散乱される光を光電変換素子で電気信号に変換する方法と、前記の光ビームとは異なる偏平光ビームを試料水に向けて照射し、試料水を透過する光を光電変換素子で電気信号に変換する方法とにより、予め定められた所定の粒径より小さい微粒子については、微粒子が前記集光された光ビームを通過する度に発生する散乱光パルス信号に基づいて粒径区分ごとに試料水中の微粒子の個数濃度を求め、また、前記所定の粒径より大きい微粒子については、微粒子が前記偏平光ビームを通過する度に発生する光遮断パルス信号に基づいて、粒径区分ごとに試料水中の微粒子の個数濃度を求め、さらに、前記微粒子の個数濃度に対して粒径区分ごとに個別の係数を乗じて試料水の濁度を求める濁度および微粒子の測定方法であることを特徴とする。
【0010】
請求項2の発明は、集光された光ビームを試料水に向けて照射する光源と、前記集光された光ビームにより試料水中の微粒子によって散乱される光を光電変換素子で電気信号に変換する光電変換手段と、前記の光ビームとは異なる偏平光ビームを試料水に向けて照射する光源と、前記偏平光ビームにより試料水を透過する光を光電変換素子で電気信号に変換する光電変換手段とを有し、所定の粒径より小さい微粒子については、微粒子が前記集光された光ビームを通過する度に発生する散乱光パルス信号に基づいて、粒径区分ごとに試料水中の微粒子の個数濃度を求める計数手段と、また、前記所定の粒径より大きい微粒子については、微粒子が前記偏平光ビームを通過する度に発生する光遮断パルス信号に基づいて、粒径区分ごとに試料水中の微粒子の個数濃度を求める微粒子の計数手段と、さらに、前記微粒子の個数濃度に対して粒径区分ごとに個別の係数を乗じて試料水の濁度を求める手段とを備えた濁度および微粒子の測定装置であることを特徴とする。
【0011】
請求項3の発明は、請求項2記載の濁度および微粒子の測定装置において、試料水が流れるフローセルに対して光源から光ビームを照射し、前記フローセルを介して、光源と対峙する位置で、かつ光ビームの光軸上に設置したビームストップにより光源からの直接の光ビームを遮断し、微粒子からの前方散乱光を検出する光学系と、光源から試料水が流れるフローセルに対して照射された偏平光の光量を検出する光学系を有することを特徴とする。
【0012】
請求項4の発明は、請求項2記載の濁度および微粒子の測定装置において、試料水が流れるフローセルに対して光源から光ビームを照射し、試料水が流れる方向に垂直で、かつ前記光ビームの光軸に一定の角度の方向で、微粒子からの側方散乱光を検出する光学系と、試料水が流れるフローセルに対して光源から照射された偏平光の光量を検出する光遮断方式の光学系を有することを特徴とする。
【0019】
【発明の実施の形態】
以下に本発明の実施形態について詳細に説明する。
〔実施〕本発明の請求項1〜3に関する実施例として、微粒子による散乱光を検出する光学系に前方散乱光方式を採用した装置の光学系を図1に示す。図1の前方散乱光方式の光学系において、光源1から照射された光ビーム1Aは、フローセル2の光ビーム照射領域を通過する試料水中の微粒子によって散乱される。試料水を通過する光源1からの直接光は、光源1から見てフローセル2の後ろ側に設置されたビームストップ3によって遮断され、ビームストップ3の外側を通過した前記微粒子による散乱光の一部は光ビームの光軸1Bと同一軸上に設置された集光レンズ系4によって集められ、迷光を遮るために設けたピンホール5を通過した後、前記光ビームの光軸1Bと同一軸上に設置された光電変換素子6によって電気信号に変換される。前記電気信号は図2のように光ビーム照射領域を微粒子が通過するたびに、微粒子の大きさに応じた波高値を持つ散乱光パルスとして検出される。
【0020】
一方、図1のコネクタ10によって、前方散乱光方式の光学系と接続された光遮断方式の光学系において、光源7から偏平に集光された光ビーム7Aは、フローセル8の光ビーム照射領域を通過する試料水中の微粒子によって一部が遮蔽される。前記光ビームはその光軸7Bと同一軸上に設置された光電変換素子9によって電気信号に変換され、図3のように光ビーム照射領域を微粒子が通過するたびに、透過光が微粒子により減光した変化分としての微粒子の大きさに応じた波高値を持つ光遮断パルスとして検出される。
【0021】
前記散乱光パルス信号と光遮断パルス信号は電子回路にて各々独立に増幅され、粒径に応じたしきい値とパルスの波高値を比較し、規定時間内に発生したパルスのカウント数が試料水中に含まれる微粒子個数濃度として出力される。ここで、例えば2μm未満の微粒子は前記散乱光パルス信号を基にカウントし、2μm以上の微粒子は光遮断パルス信号を基にカウントするようにしておけば、1μm以下の極微粒子から100μm程度の微粒子までの幅広い粒径範囲で微粒子個数濃度を測定することが可能となる。また、特に塩素によって脱色された数μmオーダーの藻類に対して、散乱光方式の微粒子カウンタより粒径感度の高い、光遮断方式によるパルスカウントが可能となる。
【0022】
尚、本実施例では前方散乱光方式と光遮断方式の組合せを示したが、請求項4に関する側方散乱光方式と光遮断方式の組合せでも同じ効果が得られる
【0030】
【発明の効果】
本発明は微粒子および濁度の測定方法と、その装置にかかり、請求項1〜4の発明により一つの計測器で、サブミクロンから数百μmの幅広い粒径レンジで微粒子の検出を可能とし、藻類や塩素により脱色された藻類、フロックに対する検出粒径の精度を向上させ、さらに微粒子カウント式濁度計に適用した場合は、積分球と同等の濁度測定値を得ることを可能とする
【図面の簡単な説明】
【図1】実施の装置で、微粒子による散乱光を検出する光学系として前方散乱光方式と光遮断方式とを組み合わせた光学系の構成と配置を示す図
【図2】実施の装置における散乱光パルスの検出例を示す図
【図3】実施の装置における光遮断パルスの検出例を示す図
【符号の説明】
1、7: 光源
1A、7A: 光ビーム
2、8: フローセル
3: ビームストップ
4: 集光レンズ系
1B、7B: 光ビームの光軸
5: ピンホール
6、9: 光電変換素子
10: コネクタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for measuring turbidity and fine particles.
[0002]
[Prior art]
A provisional countermeasure guideline announced by the Ministry of Health, Labor and Welfare that the turbidity of raw water in a water treatment plant that may be contaminated by Cryptosporidium is maintained at 0.1 degrees or less at the basin outlet of the filtration basin due to a spill of Cryptosporidium in 1996 Therefore, an on-line turbidimeter that can stably measure turbidity of 0.1 degrees or less is required. A laser turbidimeter described in Japanese Patent Application Laid-Open No. 7-49302 that uses a semiconductor laser as a light source, counts diffraction fringes generated when fine particles pass through a light beam, and converts the count number to turbidity. Or, when the fine particles pass through the light beam, the scattered light observed at the crest value according to the particle size is counted for each particle size category, and each counted signal depends on the size of the fine particles. A fine particle count type high-sensitivity turbidimeter described in Japanese Patent Application Laid-Open No. 10-311784, which has been applied for by the present inventors to convert to turbidity, has been developed. In the field of water supply after the accident, particulate monitoring has begun to spread.
[0003]
The measurement method of the fine particle counter includes a scattered light method in which a sample beam is irradiated with a light beam and the scattered light pulse signal generated when the fine particle passes through the observation region of the light beam, and the observation region of the light beam is made up of fine particles. There is a light blocking method that counts a dimming pulse signal of a transmitted light amount that occurs when the light passes. The minimum detectable particle size of the light blocking method is 1 to 2 μm, and the particle size equal to or larger than this particle size is the measured particle size of the light blocking method. The minimum detection particle diameter of the scattered light method varies depending on the position of the light receiving optical system that detects the pulse signal, but is 0.1 μm or less in the side scattered light method and 0.1 to 0.2 μm in the forward scattered light method. It is known that the side-scattering method may have almost no sensitivity to a substance having a uniform size and a refractive index close to water, such as the living organism such as Cryptosporidium. In the case of the forward scattered light method, since the light beam is mostly scattered toward the front when it becomes larger than the wavelength of the light beam as in the case of the living thing, the side scattered light method Compared with, the influence on the refractive index is very small, but the sensitivity to the particle size is smaller than that of the light blocking method by the amount that the absorption component is not detected, and the particles may be counted as particles smaller than the actual size.
[0004]
In the water supply field, monitoring the Cryptosporidium equivalent diameter of 4 to 6 μm and the algae often contained in Cryptosporidium and purified water have a refractive index closer to water than the standard particles used for calibration, so scattered light The light blocking method is mainly adopted because the pulse signal of the method is small.
[0005]
[Problems to be solved by the invention]
The turbidity meter using the semiconductor laser, which has the advantage of low turbidity unprecedented can be stably measured, the other hand, there is a Ru problems described below. The their problem is that there are cases where the measured value of the turbidity is less than the manual analysis value (integrating sphere type). There are two main reasons for this. One of the causes is that the turbidimeter using the semiconductor laser narrows the light beam, so when particles larger than the beam width pass, the apparent particle size is counted small. It is to end. For example, in the case of the fine particle count method, particles up to about 10 μm are supported, but particles larger than that may be converted to turbidity as equivalent to 10 μm. Since most drinking water does not contain particles of 10 μm or more, there is usually no problem. However, in water purification plants that take in raw water containing a large amount of algae, it is not possible to add water to the filtered water due to coagulation inhibition. Particles and flocs of 10 μm or more are often detected, and the turbidity may be smaller than the manual analysis value. The second cause is that when algae in contact with chlorine flow out of the filter basin, the algae has a small amount of scattered light due to decolorization. The measured value may be smaller than that of a sphere type turbidimeter.
[0007]
[Means for Solving the Problems]
To solve the above problems, the invention of claims 1 to 4, in the measurement method and the measuring apparatus of turbidity and fine particle (particle count type sensitive turbidimeter and particle counter), of the scattered light method for counting the scattered light Assume that the optical system is combined with a light blocking method that counts the amount of transmitted light that decreases when fine particles pass as pulses.
[0009]
The invention of claim 1 is a method of irradiating a condensed light beam toward a sample water and converting light scattered by fine particles in the sample water into an electric signal by a photoelectric conversion element, and the light beam includes: By applying a different flat light beam toward the sample water and converting the light transmitted through the sample water into an electrical signal by the photoelectric conversion element, the fine particles are smaller than a predetermined particle diameter. The number concentration of fine particles in the sample water is determined for each particle size category based on the scattered light pulse signal generated each time the condensed light beam passes, and for fine particles larger than the predetermined particle size, The number concentration of the fine particles in the sample water is determined for each particle size category based on the light blocking pulse signal generated each time the flat light beam passes, and is further individually determined for each particle size category with respect to the number concentration of the fine particles. Wherein the multiplying coefficient is a measurement method of turbidity and fine seeking turbidity of sample water.
[0010]
According to a second aspect of the present invention, a light source that irradiates a sampled light beam toward the sample water, and light scattered by fine particles in the sample water by the collected light beam is converted into an electric signal by a photoelectric conversion element. Photoelectric conversion means, a light source for irradiating the sample water with a flat light beam different from the light beam, and photoelectric conversion for converting light transmitted through the sample water by the flat light beam into an electrical signal by a photoelectric conversion element A fine particle having a particle size smaller than a predetermined particle size, the fine particle in the sample water for each particle size category based on a scattered light pulse signal generated each time the fine particle passes through the condensed light beam. Counting means for determining the number concentration, and for fine particles larger than the predetermined particle size, the sample water for each particle size classification is based on a light blocking pulse signal generated each time the fine particles pass through the flat light beam. Fine particle counting means for determining the number concentration of fine particles, and means for determining the turbidity of sample water by multiplying the number concentration of the fine particles by an individual coefficient for each particle size category It is the measuring apparatus of this.
[0011]
According to a third aspect of the present invention, in the turbidity and particulate measurement device according to the second aspect, a light beam is irradiated from a light source to a flow cell through which sample water flows, and at a position facing the light source via the flow cell, In addition, an optical system that blocks the direct light beam from the light source by a beam stop installed on the optical axis of the light beam and detects the forward scattered light from the fine particles, and the flow cell through which the sample water flows are irradiated. It has an optical system for detecting the amount of flat light.
[0012]
According to a fourth aspect of the present invention, in the turbidity / fine particle measuring apparatus according to the second aspect, the light cell is irradiated with a light beam from a light source to the flow cell through which the sample water flows, and the light beam is perpendicular to the direction in which the sample water flows. An optical system that detects side scattered light from fine particles in a direction at a certain angle to the optical axis of the light, and a light blocking optical that detects the amount of flat light emitted from the light source to the flow cell through which the sample water flows It is characterized by having a system.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
As an example of claims 1-3 EXAMPLES present invention, shown in FIG. 1 the optical system of the apparatus employing the forward scattered light method in the optical system for detecting the light scattered by the particles. In the forward scattered light type optical system of FIG. 1, the light beam 1 </ b> A irradiated from the light source 1 is scattered by fine particles in the sample water passing through the light beam irradiation region of the flow cell 2. Direct light from the light source 1 that passes through the sample water is blocked by the beam stop 3 installed behind the flow cell 2 when viewed from the light source 1, and part of the scattered light by the fine particles that has passed outside the beam stop 3. Are collected by a condensing lens system 4 installed on the same axis as the optical axis 1B of the light beam, pass through a pinhole 5 provided to block stray light, and then on the same axis as the optical axis 1B of the light beam. It is converted into an electric signal by the photoelectric conversion element 6 installed in. The electric signal is detected as a scattered light pulse having a peak value corresponding to the size of the fine particle every time the fine particle passes through the light beam irradiation region as shown in FIG.
[0020]
On the other hand, in the light blocking optical system connected to the forward scattered light optical system by the connector 10 in FIG. 1, the light beam 7 </ b> A collected flatly from the light source 7 passes through the light beam irradiation area of the flow cell 8. A part is shielded by the fine particles in the passing sample water. The light beam is converted into an electric signal by the photoelectric conversion element 9 installed on the same axis as the optical axis 7B, and the transmitted light is reduced by the fine particle every time the fine particle passes through the light beam irradiation region as shown in FIG. It is detected as a light blocking pulse having a peak value corresponding to the size of the fine particle as the amount of change that has been emitted.
[0021]
The scattered light pulse signal and the light blocking pulse signal are independently amplified by an electronic circuit, and the threshold value corresponding to the particle diameter is compared with the pulse peak value, and the number of pulses generated within a specified time is determined by the sample. Output as the number concentration of fine particles contained in water. Here, for example, if the fine particles of less than 2 μm are counted based on the scattered light pulse signal, and the fine particles of 2 μm or more are counted based on the light blocking pulse signal, the fine particles of 1 μm or less to about 100 μm It becomes possible to measure the fine particle number concentration in a wide range of particle sizes up to. In particular, for algae on the order of several μm decolorized by chlorine, it is possible to perform pulse counting by the light blocking method, which has a higher particle size sensitivity than the fine particle counter of the scattered light method.
[0022]
In this embodiment, the combination of the forward scattered light method and the light blocking method is shown, but the same effect can be obtained by the combination of the side scattered light method and the light blocking method related to claim 4 .
[0030]
【The invention's effect】
The present invention relates to a method for measuring fine particles and turbidity and an apparatus thereof. According to the inventions of claims 1 to 4, it is possible to detect fine particles with a single measuring instrument in a wide particle size range from submicron to several hundred μm. The accuracy of the detected particle size for algae and flocs decolorized by algae and chlorine is improved, and when applied to a fine particle count turbidimeter, it is possible to obtain a turbidity measurement value equivalent to that of an integrating sphere .
[Brief description of the drawings]
In Figure 1 apparatus of the embodiment, in FIG. 2 shows apparatus of the embodiment shown the arrangement and configuration of the optical system combining a forward scattered light method with light blocking scheme as an optical system for detecting light scattered by particles Figure [eXPLANATION oF sYMBOLS] showing an example of detection of the light blocking pulses in the apparatus of FIG. 1. FIG. 3 embodiment showing an example of detection of the scattered light pulse
1, 7: Light source 1A, 7A: Light beam 2, 8: Flow cell 3: Beam stop 4: Condensing lens system
1B , 7B: Optical axis of light beam 5: Pinhole 6, 9: Photoelectric conversion element 10: Connector

Claims (4)

集光された光ビームを試料水に向けて照射し、試料水中の微粒子によって散乱される光を光電変換素子で電気信号に変換する方法と、前記の光ビームとは異なる偏平光ビームを試料水に向けて照射し、試料水を透過する光を光電変換素子で電気信号に変換する方法とにより、予め定められた所定の粒径より小さい微粒子については、微粒子が前記集光された光ビームを通過する度に発生する散乱光パルス信号に基づいて粒径区分ごとに試料水中の微粒子の個数濃度を求め、また、前記所定の粒径より大きい微粒子については、微粒子が前記偏平光ビームを通過する度に発生する光遮断パルス信号に基づいて、粒径区分ごとに試料水中の微粒子の個数濃度を求め、さらに、前記微粒子の個数濃度に対して粒径区分ごとに個別の係数を乗じて試料水の濁度を求めることを特徴とする濁度および微粒子の測定方法。A method of irradiating the condensed light beam toward the sample water and converting the light scattered by the fine particles in the sample water into an electric signal by the photoelectric conversion element, and a flat light beam different from the above light beam to the sample water In the case of fine particles having a predetermined particle diameter smaller than a predetermined particle diameter, the light beam on which the fine particles are condensed is converted into an electric signal by a photoelectric conversion element. The number concentration of fine particles in the sample water is determined for each particle size classification based on the scattered light pulse signal generated each time it passes, and for fine particles larger than the predetermined particle size, the fine particles pass through the flat light beam. The number concentration of fine particles in the sample water is obtained for each particle size category based on the light blocking pulse signal generated every time, and the number concentration of the fine particles is multiplied by an individual coefficient for each particle size category. Method of measuring the turbidity and fine particles, wherein the determination of the turbidity. 集光された光ビームを試料水に向けて照射する光源と、前記集光された光ビームにより試料水中の微粒子によって散乱される光を光電変換素子で電気信号に変換する光電変換手段と、前記の光ビームとは異なる偏平光ビームを試料水に向けて照射する光源と、前記偏平光ビームにより試料水を透過する光を光電変換素子で電気信号に変換する光電変換手段とを有し、所定の粒径より小さい微粒子については、微粒子が前記集光された光ビームを通過する度に発生する散乱光パルス信号に基づいて、粒径区分ごとに試料水中の微粒子の個数濃度を求める計数手段と、また、前記所定の粒径より大きい微粒子については、微粒子が前記偏平光ビームを通過する度に発生する光遮断パルス信号に基づいて、粒径区分ごとに試料水中の微粒子の個数濃度を求める微粒子の計数手段と、さらに、前記微粒子の個数濃度に対して粒径区分ごとに個別の係数を乗じて試料水の濁度を求める手段とを備えたことを特徴とする濁度および微粒子の測定装置。A light source that irradiates the collected light beam toward the sample water; a photoelectric conversion means that converts light scattered by the fine particles in the sample water by the collected light beam into an electrical signal by a photoelectric conversion element; and A light source that irradiates the sample water with a flat light beam that is different from the light beam, and photoelectric conversion means that converts light transmitted through the sample water by the flat light beam into an electrical signal by a photoelectric conversion element, Counting means for determining the number concentration of fine particles in sample water for each particle size classification based on a scattered light pulse signal generated each time the fine particles pass through the condensed light beam. For fine particles larger than the predetermined particle size, the number concentration of fine particles in the sample water for each particle size category based on the light blocking pulse signal generated each time the fine particles pass through the flat light beam. Turbidity and fine particles, comprising: a fine particle counting means for obtaining the sample water; and a means for obtaining the turbidity of the sample water by multiplying the number concentration of the fine particles by an individual coefficient for each particle size category. Measuring device. 請求項2記載の濁度および微粒子の測定装置において、試料水が流れるフローセルに対して光源から光ビームを照射し、前記フローセルを介して、光源と対峙する位置で、かつ光ビームの光軸上に設置したビームストップにより光源からの直接の光ビームを遮断し、微粒子からの前方散乱光を検出する光学系と、光源から試料水が流れるフローセルに対して照射された偏平光の光量を検出する光学系を有することを特徴とする濁度および微粒子の測定装置。3. The turbidity / fine particle measurement apparatus according to claim 2, wherein a light beam is irradiated from a light source to a flow cell through which sample water flows, and the light cell is positioned at a position facing the light source via the flow cell and on the optical axis of the light beam. An optical system that blocks the direct light beam from the light source by the beam stop installed in the sensor and detects the forward scattered light from the fine particles, and detects the amount of flat light emitted from the light source to the flow cell through which the sample water flows. An apparatus for measuring turbidity and fine particles, comprising an optical system. 請求項2記載の濁度および微粒子の測定装置において、試料水が流れるフローセルに対して光源から光ビームを照射し、試料水が流れる方向に垂直で、かつ前記光ビームの光軸に一定の角度の方向で、微粒子からの側方散乱光を検出する光学系と、試料水が流れるフローセルに対して光源から照射された偏平光の光量を検出する光遮断方式の光学系を有することを特徴とする濁度および微粒子の測定装置。3. The turbidity and fine particle measuring apparatus according to claim 2, wherein a light beam is irradiated from a light source to a flow cell through which sample water flows, and is perpendicular to a direction in which the sample water flows and at a constant angle to the optical axis of the light beam. And an optical system that detects side scattered light from the fine particles in the direction of, and a light blocking optical system that detects the amount of flat light emitted from the light source to the flow cell through which the sample water flows. To measure turbidity and fine particles.
JP2000284611A 2000-09-20 2000-09-20 Method and apparatus for measuring turbidity and fine particles Expired - Lifetime JP3951577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000284611A JP3951577B2 (en) 2000-09-20 2000-09-20 Method and apparatus for measuring turbidity and fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000284611A JP3951577B2 (en) 2000-09-20 2000-09-20 Method and apparatus for measuring turbidity and fine particles

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007062224A Division JP4003809B2 (en) 2007-03-12 2007-03-12 Method and apparatus for measuring turbidity and fine particles

Publications (2)

Publication Number Publication Date
JP2002090284A JP2002090284A (en) 2002-03-27
JP3951577B2 true JP3951577B2 (en) 2007-08-01

Family

ID=18768794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000284611A Expired - Lifetime JP3951577B2 (en) 2000-09-20 2000-09-20 Method and apparatus for measuring turbidity and fine particles

Country Status (1)

Country Link
JP (1) JP3951577B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111164389A (en) * 2017-08-10 2020-05-15 联邦科学及工业研究组织 Apparatus and method for monitoring material flow parameters along a channel

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250686A (en) * 2005-03-10 2006-09-21 Mitsui Eng & Shipbuild Co Ltd Flow site meter and laser beam irradiation method
JP4660266B2 (en) * 2005-04-25 2011-03-30 株式会社東芝 Water quality inspection device
JP4719587B2 (en) * 2006-02-21 2011-07-06 トライボテックス株式会社 Fine particle counter, fine particle counting method using the same, and lubrication target part diagnosis system including the same
US7495763B2 (en) * 2006-03-23 2009-02-24 Hach Company Dual function measurement system
JP4950908B2 (en) * 2007-05-18 2012-06-13 メタウォーター株式会社 Method and apparatus for determining coagulant injection rate in water treatment method for coagulation sedimentation treatment
KR101436165B1 (en) 2007-05-18 2014-09-01 메타워터 가부시키가이샤 Method and apparatus for determining injection rate of coagulant in water treatment method
KR101399005B1 (en) 2013-02-28 2014-05-27 한국과학기술원 Particle counter and electrical property analyzer
CN104969055B (en) 2013-03-14 2018-10-12 雅培实验室 The beam shaping optics and its correlation technique of flow cytometer systems
CN104729966B (en) * 2015-03-30 2017-01-18 江苏华凯矿业科技有限公司 Direct-reading dust concentration detector
CN104931399A (en) * 2015-06-19 2015-09-23 华北电力大学 Integrative capacitor-laser dust concentration measuring device
KR101857950B1 (en) * 2016-06-21 2018-05-16 한국표준과학연구원 High accuracy real-time particle counter
KR102227433B1 (en) * 2020-11-24 2021-03-15 한국표준과학연구원 Apparatus and Method for High-Accuracy Optical Particle Measuring using Laser Power Scanning
CN114002151A (en) * 2021-10-29 2022-02-01 中国科学院西安光学精密机械研究所 Non-contact type water body turbidity measuring device and method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718788B2 (en) * 1988-11-08 1995-03-06 富士電機株式会社 Optical particle measuring device
JPH03221835A (en) * 1990-01-26 1991-09-30 Canon Inc Instrument for measuring body to be tested
JPH05333286A (en) * 1992-06-01 1993-12-17 Hitachi Ltd Luminous flux flattening optical system
JPH0749301A (en) * 1993-08-03 1995-02-21 Toa Medical Electronics Co Ltd Particle analyzer
JP3429129B2 (en) * 1996-04-26 2003-07-22 三菱電機株式会社 Laser annealing method for low temperature polysilicon thin film transistor
JP3672158B2 (en) * 1997-03-10 2005-07-13 富士電機システムズ株式会社 Turbidity measuring method and apparatus
JP3614294B2 (en) * 1998-03-09 2005-01-26 富士通株式会社 Light intensity conversion element, optical device, and information storage device
JP3370612B2 (en) * 1998-09-14 2003-01-27 富士通株式会社 Light intensity conversion element, collimating lens, objective lens, and optical device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111164389A (en) * 2017-08-10 2020-05-15 联邦科学及工业研究组织 Apparatus and method for monitoring material flow parameters along a channel
CN111164389B (en) * 2017-08-10 2022-09-02 联邦科学及工业研究组织 Apparatus and method for monitoring material flow parameters along a channel
US11536597B2 (en) 2017-08-10 2022-12-27 Commonwealth Scientific And Industrial Research Organisation Device and method for monitoring material flow parameters along a passage

Also Published As

Publication number Publication date
JP2002090284A (en) 2002-03-27

Similar Documents

Publication Publication Date Title
JP3951577B2 (en) Method and apparatus for measuring turbidity and fine particles
US3713743A (en) Forward scatter optical turbidimeter apparatus
US4752131A (en) Laser-optical arrangement for measuring the degree of dispersion in flowing systems
JP3672158B2 (en) Turbidity measuring method and apparatus
CN104345018B (en) A kind of streaming particulate matter measuring instrument based on detector array
Gregory Turbidity and beyond
KR100503020B1 (en) Method and apparatus for measuring turbidity
US20110310386A1 (en) Method and system for analysing solid particles in a medium
EP1228358B1 (en) Device for measuring water colour and turbidity using a single detector
US5456102A (en) Method and apparatus for particle counting and counter calibration
WO2014052293A1 (en) System and method for detection and system and method for water treatment
EP3465149A1 (en) Method and apparatus for determining a concentration of a substance in a liquid medium
JPH09273987A (en) Method and apparatus for measuring particle size, count concentration or turbidity of fine particle in liquid
JP2000338030A (en) Method and apparatus for counting blue-green algae, algae and fine particle
JP4660266B2 (en) Water quality inspection device
AU590223B2 (en) Concentration meter
GB2355524A (en) Device for measuring colour and turbidity in a liquid sample
JP3113720B2 (en) Pollen detector
JP3745947B2 (en) Method and apparatus for measuring particle size of fine particles in fluid
JP2007192835A (en) Method and apparatus for measuring turbidity and particulate
Ebie et al. New measurement principle and basic performance of high-sensitivity turbidimeter with two optical systems in series
KR20120032148A (en) The micro particle sizing &amp; counter system for improving filtration efficiency of water treatment plant
JPH11344443A (en) Highly sensitive turbidimeter for measuring filtered water
JPH11230889A (en) Fine particle counter type turbidimeter
US20160103077A1 (en) Liquid contaminant sensor system and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3951577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term