JP3951428B2 - Manufacturing method of high strength steel sheet with small material difference in thickness direction - Google Patents

Manufacturing method of high strength steel sheet with small material difference in thickness direction Download PDF

Info

Publication number
JP3951428B2
JP3951428B2 JP08353898A JP8353898A JP3951428B2 JP 3951428 B2 JP3951428 B2 JP 3951428B2 JP 08353898 A JP08353898 A JP 08353898A JP 8353898 A JP8353898 A JP 8353898A JP 3951428 B2 JP3951428 B2 JP 3951428B2
Authority
JP
Japan
Prior art keywords
cooling
steel
steel plate
steel sheet
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08353898A
Other languages
Japanese (ja)
Other versions
JPH11279636A (en
Inventor
稔 諏訪
伸一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP08353898A priority Critical patent/JP3951428B2/en
Publication of JPH11279636A publication Critical patent/JPH11279636A/en
Application granted granted Critical
Publication of JP3951428B2 publication Critical patent/JP3951428B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、船舶、海洋構造物、貯蔵タンク等の構造物の分野で使用される厚鋼板、特に板厚方向材質差の小さい高張力鋼板の製造方法に関する。
【0002】
【従来の技術】
従来より、板厚約10mm以上の厚鋼板の高強度化や高靭性化等の特性の向上や合金元素の削減、熱処理の省略を目的として、制御圧延と制御冷却を組み合わせたTMCP技術が使用されている。
【0003】
しかし、制御冷却時に、その効果を最大限活用しようとして、冷却速度を速くすると、圧延まま材および焼きならし材に比べて、板厚方向に材質の不均一を生じてしまうという問題がある。すなわち、冷却速度が速くなるにしたがい、板厚中心部の冷却速度に比較して、表面近傍の冷却速度が著しく速くなり、板厚中心部に比べて表面の強度が著しく上昇したり、延性が低下したりするという差を生じてしまう。
この現象は板厚が厚くなるほど顕著になるため、厚物材において制御圧延と、高冷却速度の制御冷却を併用するのが難しいという問題を生じる。例えば、特開平4−224623号公報では、厚物材に制御冷却を適用するにあたり、冷却速度を3〜12℃/秒という比較的低冷却速度に制御することにより、板厚中心部に対する表面の硬度上昇を抑える技術が開示されている。しかし、この技術は、比較的合金添加量が多い場合に適用されるものであり、Ceqが0.36以下の低合金成分系に対しては適用し難い。
【0004】
一方、高冷却速度の効果を活かしつつ、板厚方向の強度差を小さくする低降伏比建築用耐震鋼材の製造技術が特開平3−188216号公報に開示されている。この技術は、冷却を一旦中断し、表面に生成した硬質のべイナイト相を、表面をAc1 〜Ac3 の温度範囲に復熱させることにより、部分的に軟質のフェライト相に変態させた後、再び冷却を開始する、表面硬度の上昇を抑制する技術である。
【0005】
【発明が解決しようとする課題】
しかし、特開平3−188216号公報の技術は、建築用低YR鋼板等、合金元素を豊富に用い焼入れ性が高い鋼材を対象とし、低YR化を目的とした製造技術であり、本発明が目的とする合金元素の使用を抑えて(Ceq≦0.36%)安価で大量に用いられる、船舶、海洋構造物、貯蔵タンク等用鋼板の製造技術とは異なる技術である。
上記のように、本発明が目的とする船舶、海洋構造物、貯蔵タンク等用鋼板に対する高冷却速度の制御冷却適用時の板厚方向材質均一化技術は、未だ開発されていないのが実情である。
本発明の目的は、船舶、海洋構造物、貯蔵タンク等に大量に用いられる合金成分量の少ない安価な低合金成分系の鋼板において、特性向上のため高冷却速度の制御冷却による製造を行うにあたり、板厚方向の材質が均一になるような高張力鋼板の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
前記課題を解決し目的を達成するために、本発明は以下に示す手段を用いている。
(1)本発明の方法は、重量%で、C:0.08〜0.18%と、Si:0.05〜0.5%と、Mn:0.8〜1.8%と、Al:0.01〜0.1%とを含み、残部Fe及び不可避的不純物からなり、かつ炭素当量:Ceq≦0.36%である鋼板を製造する方法において、
該鋼を1050〜1200℃に加熱し、次いでAr3 点〜900℃での圧下率が40%以上となるように熱間圧延を行う工程と、熱間圧延された鋼板を(Ar3 点−50)℃以上820℃以下の鋼板表面温度域から(Ar3点−200)℃以下の鋼板表面温度域まで12℃/秒以上の鋼板平均冷却速度で冷却した後、一旦冷却を中断し、鋼板表面温度を650℃以上に復熱させる工程と、
鋼板表面温度が650℃以上に復熱された鋼板を、再び500〜650℃(ただし500℃を除く)の鋼板平均温度域まで12℃/秒以上の鋼板平均冷却速度で冷却する工程と、
を備えたことを特徴とする、板厚方向材質差の小さい高張力鋼板の製造方法である。
【0007】
但し、炭素当量:Ceq=C%+Mn%/6+(Cu%+Ni%)/15+(Cr%+Mo%+V%)/5
(2)本発明の方法は、鋼成分として、重量%でさらに、Nb:0.005〜0.02%を含有することを特徴とする、上記(1)に記載の板厚方向材質差の小さい高張力鋼板の製造方法である。なお、本発明においては特にことわりのない限り、温度は鋼板板厚方向の平均温度をさす。
【0008】
【発明の実施の形態】
本発明者らは、上記の課題を解決すべく、冷却中に生成するべイナイト組織を硬質なものとならないようにする冷却条件を調査した。その結果、表層に生成したべイナイト相は、冷却を一旦中断した後にフェライト相に逆変態しなくても、復熱によるテンパー効果によりある程度軟化すること、さらに、冷却の最終停止温度を制御することにより軟化を一層促進できることを見出した。一方、復熱温度を高くしたり、冷却中断時間を長くしたり、また冷却停止温度を高くすることは、高冷却速度時の強度上昇効果等の特性向上効果を減少させてしまうことから、極端な条件の選択はできない。
以上の知見に基づき、本発明者らは、炭素当量:Ceq≦0.36%の低合金成分系の鋼板の熱間圧延条件、及び冷却中断、復熱工程を含む冷却条件を一定範囲内に制御するようにして、上記の相反する要求を双方とも最大限満足する製造条件を確立することにより、板厚方向材質差の小さい高張力鋼板の製造方法を見出し、本発明を完成させた。
【0009】
すなわち、本発明は、鋼組成及び製造条件を下記範囲に限定することにより、船舶、海洋構造物、貯蔵タンク等に大量に用いられる合金成分量の少ない安価な低合金成分系の鋼板において、特性向上のため高冷却速度の制御冷却による製造を行うにあたり、板厚方向の材質が均一になるような高張力鋼板の製造方法を提供することができる。
【0010】
以下に本発明の成分添加理由、成分限定理由、及び製造条件の限定理由について、説明する。
(1)成分組成範囲
C:0.08〜0.18%
Cは、鋼の強度を確保する元素であるが、0.08%未満の場合は、強度の確保が困難となる。Cが多量の場合は、一般に鋼の靭性や溶接性を低下させるが、0.18%を越えると溶接部の硬度が著しく上昇し溶接低温割れ感受性を高くし、また制御冷却時の表面硬度の著しい上昇を招く。以上より、C量は0.08〜0.18%である。
Si:0.05〜0.5%
Siは、母材の強度維持・予備脱酸のために添加するが、その効果は0.05%未満では発揮されない。一方、溶接性の観点から0.5%が上限である。よって、Si量は0.05〜0.5%である。
Mn:0.8〜1.8%
Mnは、FeSの生成抑制ならびに鋼板の強度・靭性向上のために0.8%以上添加する。しかし、多量の添加は鋼の焼き入れ性の増加をもたらし、溶接硬化層の出現により割れ感受性が高くなること、また制御冷却時の表面硬度の著しい上昇を招くことから、上限は1.8%である。よって、Mn量は0.8〜1.8%である。
Al:0.01〜0.1%
Alは、脱酸のために添加するが、0.01%未満ではその効果が発揮されない。一方、多量に添加するとアルミナクラスタが形成され易くなるので、上限は0.1%である。よって、Al量は0.01〜0.1%である。
本発明では、上記化学成分以外に、必要に応じてTi、Nbのうちの1種または2種を添加することができる。
【0011】
Ti:0.005〜0.02%
Tiは、溶接加熱時のTiN析出によるオーステナイト粒の粗大化防止に効果があり大入熱溶接時のHAZ(溶接熱影響部)靭性の向上をもたらす。その効果は、0.005%未満では発揮されない。また、多量の添加はTiCの過剰な生成による靭性の劣化や、さらに大入熱溶接時のHAZ靭性の劣化を招くので、上限は0.02%である。よって、Ti量は0.005〜0.02%である。
【0012】
Nb:0.005〜0.02%
Nbは、オーステナイト域での再結晶を抑制し未再結晶温度域を拡大するために添加する。0.005%未満では、その効果は発揮されない。一方、多量の添加は島状マルテンサイトの生成を促し、溶接性を著しく劣化させるので、上限は0.02%である。よって、Nb量は0.005〜0.02%である。
以上の化学成分の範囲限定に加えて、溶接性向上、経済性、および制御冷却時の表面硬化抑制の観点から、炭素当量:Ceqを0.36%以下に限定する。
【0013】
但し、炭素当量:Ceq=C%+Mn%/6+(Cu%+Ni%)/15+(Cr%+Mo%+V%)/5
【0014】
上記の成分組成範囲に調整することにより、船舶、海洋構造物、貯蔵タンク等に大量に用いられる合金成分量の少ない安価な低合金成分系の鋼板において、特性向上のため高冷却速度の制御冷却による製造を行うにあたり、板厚方向材質差の小さい高張力鋼板を得ることが可能になる。
【0015】
このような特性の鋼板は、以下の製造方法により製造することができる。
(2)鋼板製造工程
(製造方法)
上記の成分組成範囲に調整した鋼を溶製し、連続鋳造で得られた鋼スラブを1050〜1200℃に加熱し、次いでAr 3 〜900℃での圧下率が40%以上となるように熱間圧延を行う。引き続き、(Ar 3 −50℃)以上の鋼板表面温度域から(Ar 3 −200)℃以下の鋼板表面温度域まで、12℃/秒以上の鋼板平均冷却速度で冷却した後、一旦冷却を中断し、鋼板表面温度を650℃以上に復熱させ、再び500〜650℃の鋼材平均温度域まで、12℃/秒以上の鋼板平均冷却速度で冷却する。
a.スラブ加熱温度:1050〜1200℃
スラブ加熱温度については、オーステナイト結晶粒の粗大化を抑制するためには1200℃以下とする必要がある。一方、能率向上の観点からは高い方が好ましく、またNbを添加した場合には効果を発揮させるために固溶させる必要があるために、下限は1050℃である。よって、スラブ加熱温度は1050〜1200℃である。
b.Ar 3 〜900℃での圧下率:40%以上
強度・靭性確保の観点から、Ar 3 〜900℃での累積圧下率は40%以上である。
【0016】
c.冷却開始温度:(Ar 3 −50)℃以上
冷却開始温度がAr 3 を大きく下回ると冷却の効果が低下するので、下限はAr 3 −50℃である。よって、冷却の開始温度は鋼板表面温度で(Ar 3 −50)℃以上である。
d.冷却速度(冷却中断時の冷却速度):12℃/秒以上
冷却速度は、速い方が好ましく、厚肉鋼板において板厚方向全体にその効果を行き渡らせるためには、鋼板平均冷却速度が12℃/秒以上が必要である。よって、冷却速度は鋼板平均冷却速度で12℃/秒以上である。
e.冷却方法;冷却中断時表面温度:(Ar 3 −200)℃以下、表面復熱温度:650℃以上、冷却停止温度:500〜650℃
冷却方法であるが、表面の硬化を抑制しつつ高強度化効果を最大限に活用するために下記の方法である。
【0017】
まず、冷却を一旦中断するまでの温度は、表面温度が(Ar 3 −200)℃以下とする必要がある。これは、冷却速度が12℃/秒以上の場合、表面温度をこの温度に達するまで冷却しなければ、板厚全体に対する初期の冷却効果が不十分となり、冷却再開後にいかに高冷却速度で冷却を行っても、高強度化が達成されないからである。
【0018】
次に、一旦冷却を中断する目的は、表面に生成したべイナイト相をテンパー効果により軟化させるためである。この場合復熱温度が650℃未満では、軟化が起こらない。
【0019】
最後に、冷却停止温度であるが、冷却効果を発揮させるためには、650℃以下とする必要がある。一方、冷却停止温度が低くなると、強度確保は容易になるが、表面の硬度も上昇し、500℃未満になると表面硬度が著しく上昇する。ここで、図1に示すように、この冷却最終停止温度に関しては、冷却を一旦中断することを前提としており、冷却を一旦中断しなかった場合には、冷却最終停止温度を強度確保できる範囲で高温化しても、表面を軟化させる効果は小さい。
よって、冷却方法は、鋼板表面温度が(Ar 3 −200)℃以下で一旦冷却を中断し、鋼板表面温度が650℃以上に復熱した後、再び冷却を開始し、鋼板平均温度が500〜650℃まで冷却することである。
以下に本発明の実施例を挙げ、本発明の効果を立証する。
【0020】
【実施例】
供試鋼の化学成分を表1に示す(A,B,E:本発明鋼、C,D:参考鋼、F:比較鋼)。表1にはCeqとAr 3 温度も示している。比較鋼FはCeqが本発明範囲外である。
製造条件(圧延、冷却条件)を表2に、その製造条件により得られた鋼板の特性(表面と板厚中心部のビッカース硬度差、引張試験及びシャルピー衝撃試験結果)を表3に示す(No.1〜7,14:本発明例、No.8〜13,21〜24:参考例、No.15〜20,25〜27:比較例)。
【0021】
本発明例No.1〜7,14は、いずれも表面と板厚中心部の硬度差が5〜25Hv程度と小さく、かつ500MPa級の強度(TS)を満足し、靭性(vTrs)も良好である。
一方、比較例No.15と参考例21は、冷却を中断しなかったため、表面と板厚中心部で著しい硬度差が生じている。また、比較例No.19は最終冷却停止温度が低過ぎたため、参考例No.23と比較例25は、冷却中断後の表面復熱温度が低かったため、比較例No.26と27はCeqが高い化学成分の比較鋼Fを用いているため、表面と板厚中心部で著しい硬度差が生じている。
【0022】
比較例No.16,17,18,20と参考例22,24の表面と板厚中心部の硬度差は、本発明例と同程度に小さいが、比較例No.16は、オーステナイト未再結晶温度域での圧下率が足りないため、強度と靭性が劣っている。比較例No.17は、冷却中断前の冷却速度が低かったため、比較例No.18は冷却中断後の冷却速度が低かったため、比較例No.20は冷却開始温度が低すぎたため、参考例No.24は最終冷却停止温度が高過ぎたため、強度不足が生じている。また、参考例No.22は、冷却を中断するタイミングが早すぎて、冷却中断前の冷却が有効に作用しなかったため、強度不足が生じている。
【0023】
【表1】

Figure 0003951428
【0024】
【表2】
Figure 0003951428
【0025】
【表3】
Figure 0003951428
【0026】
【発明の効果】
以上説明したように、本発明は、溶接性、経済性を考慮した、Ceqが低く(0.36%以下)、かつ合金の添加量が少ない鋼板においても、制御圧延と冷却方法を制御した高冷却速度の冷却を行うことにより、板厚方向材質差の小さい高張力鋼板の製造を可能にすることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る、冷却一旦中断と最終冷却停止温度の、表面と板厚中心部の硬度差に及ぼす影響を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a thick steel plate used in the field of structures such as ships, offshore structures, storage tanks, etc., in particular, a high-tensile steel plate having a small material thickness direction material difference.
[0002]
[Prior art]
Conventionally, TMCP technology that combines controlled rolling and controlled cooling has been used for the purpose of improving properties such as high strength and toughness of thick steel plates with a thickness of about 10 mm or more, reducing alloy elements, and omitting heat treatment. ing.
[0003]
However, when the cooling rate is increased in order to make the best use of the effect at the time of controlled cooling, there is a problem that the material becomes non-uniform in the thickness direction as compared with the as-rolled material and the normalized material. That is, as the cooling rate increases, the cooling rate in the vicinity of the surface becomes significantly faster than the cooling rate at the center of the plate thickness, and the strength of the surface increases significantly compared to the center of the plate thickness, and the ductility increases. It will cause a difference that it will decrease.
Since this phenomenon becomes more prominent as the plate thickness increases, there arises a problem that it is difficult to use controlled rolling and controlled cooling at a high cooling rate in a thick material. For example, in Japanese Patent Application Laid-Open No. 4-224623, when applying controlled cooling to a thick material, by controlling the cooling rate to a relatively low cooling rate of 3 to 12 ° C./second, A technique for suppressing an increase in hardness is disclosed. However, this technique is applied when a relatively large amount of alloy is added, and is difficult to apply to a low alloy component system having a Ceq of 0.36 or less.
[0004]
On the other hand, Japanese Patent Application Laid-Open No. 3-188216 discloses a technique for producing a low yield ratio building earthquake resistant steel material that reduces the strength difference in the thickness direction while utilizing the effect of a high cooling rate. In this technique, after cooling is temporarily interrupted, the hard bainite phase formed on the surface is transformed into a partially soft ferrite phase by reheating the surface to a temperature range of Ac 1 to Ac 3. This is a technology that starts cooling again and suppresses an increase in surface hardness.
[0005]
[Problems to be solved by the invention]
However, the technique disclosed in Japanese Patent Laid-Open No. 3-188216 is a manufacturing technique for the purpose of reducing the YR, targeting a steel material having a high hardenability using abundant alloy elements such as a low YR steel sheet for construction. This technology is different from the manufacturing technology of steel plates for ships, marine structures, storage tanks, etc., which are used in large quantities at a low cost while suppressing the use of the target alloying elements (Ceq ≦ 0.36%).
As described above, the material thickness direction material homogenization technology at the time of applying controlled cooling at a high cooling rate for steel plates for ships, marine structures, storage tanks, etc., which is the object of the present invention, has not been developed yet. is there.
An object of the present invention is to manufacture a low-alloy component steel sheet with a low alloy component amount that is used in large quantities in ships, offshore structures, storage tanks, etc., by controlled cooling at a high cooling rate in order to improve characteristics. An object of the present invention is to provide a method for producing a high-tensile steel plate in which the material in the thickness direction is uniform.
[0006]
[Means for Solving the Problems]
In order to solve the above problems and achieve the object, the present invention uses the following means.
(1) The method of the present invention comprises, by weight, C: 0.08 to 0.18%, Si: 0.05 to 0.5%, Mn: 0.8 to 1.8%, Al In the method of manufacturing a steel plate comprising 0.01 to 0.1% , the balance being Fe and unavoidable impurities, and carbon equivalent: Ceq ≦ 0.36%,
The steel is heated to 1050 to 1200 ° C., and then hot-rolled so that the reduction rate at Ar 3 to 900 ° C. is 40% or more, and the hot-rolled steel sheet is (Ar 3 point − 50) After cooling at a steel plate average temperature rate of 12 ° C./second or more from a steel plate surface temperature range of not lower than 820 ° C. to a steel plate surface temperature range of (Ar 3 point−200) ° C. or lower, the cooling is temporarily interrupted, Reheating the surface temperature to 650 ° C. or higher;
Cooling the steel sheet reheated to a steel plate surface temperature of 650 ° C. or higher to a steel plate average temperature range of 500 to 650 ° C. (excluding 500 ° C.) at a steel plate average cooling rate of 12 ° C./second or more;
A method for producing a high-tensile steel sheet having a small material difference in the thickness direction.
[0007]
However, carbon equivalent: Ceq = C% + Mn% / 6 + (Cu% + Ni%) / 15+ (Cr% + Mo% + V%) / 5
(2) The method of the present invention further includes, as a steel component, Nb: 0.005 to 0.02% by weight%, and the difference in the thickness direction material difference according to (1) above It is a manufacturing method of a small high-tensile steel plate. In the present invention, unless otherwise specified, the temperature refers to an average temperature in the thickness direction of the steel sheet.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In order to solve the above-mentioned problems, the present inventors have investigated cooling conditions for preventing the bainitic structure generated during cooling from becoming hard. As a result, the bainitic phase formed on the surface layer can be softened to some extent by the tempering effect due to recuperation without having to reversely transform into the ferrite phase after interrupting the cooling, and further control the final stop temperature of cooling. It has been found that softening can be further promoted. On the other hand, increasing the recuperation temperature, extending the cooling interruption time, or increasing the cooling stop temperature reduces the effect of improving the characteristics such as the strength increase effect at the high cooling rate. It is not possible to select an appropriate condition.
Based on the above findings, the present inventors set the hot rolling conditions of the low alloy component steel sheet having a carbon equivalent: Ceq ≦ 0.36%, and cooling conditions including cooling interruption and recuperation steps within a certain range. As a result of the control, the present inventors have found a method for producing a high-tensile steel sheet having a small material difference in the thickness direction, and completed the present invention by establishing production conditions that satisfy both of the above conflicting requirements to the maximum extent.
[0009]
That is, the present invention limits the steel composition and manufacturing conditions to the following ranges, thereby reducing the amount of alloy components used in large quantities in ships, offshore structures, storage tanks, etc. When manufacturing by controlled cooling at a high cooling rate for improvement, it is possible to provide a method for manufacturing a high-strength steel sheet that makes the material in the thickness direction uniform.
[0010]
The reason for adding the component, the reason for limiting the component, and the reason for limiting the manufacturing conditions will be described below.
(1) Component composition range C: 0.08 to 0.18%
C is an element that ensures the strength of the steel, but if it is less than 0.08%, it is difficult to ensure the strength. When C is a large amount, the toughness and weldability of steel are generally lowered. However, if it exceeds 0.18%, the hardness of the welded portion is remarkably increased and the sensitivity to cold cracking of the weld is increased, and the surface hardness during controlled cooling is increased. Incurs a significant rise. From the above, the C content is 0.08 to 0.18%.
Si: 0.05-0.5%
Si is added to maintain the strength of the base material and to perform preliminary deoxidation, but the effect is not exhibited at less than 0.05%. On the other hand, the upper limit is 0.5% from the viewpoint of weldability. Therefore, the amount of Si is 0.05 to 0.5%.
Mn: 0.8 to 1.8%
Mn is added in an amount of 0.8% or more in order to suppress the formation of FeS and improve the strength and toughness of the steel sheet. However, the addition of a large amount leads to an increase in the hardenability of the steel, the appearance of a weld hardened layer increases the cracking susceptibility, and causes a significant increase in the surface hardness during controlled cooling, so the upper limit is 1.8%. It is. Therefore, the amount of Mn is 0.8 to 1.8%.
Al: 0.01 to 0.1%
Al is added for deoxidation, but if less than 0.01%, the effect is not exhibited. On the other hand, when added in a large amount, alumina clusters are easily formed, so the upper limit is 0.1%. Therefore, the Al content is 0.01 to 0.1%.
In the present invention, in addition to the above chemical components, one or two of Ti and Nb can be added as necessary.
[0011]
Ti: 0.005-0.02%
Ti is effective in preventing coarsening of austenite grains due to TiN precipitation during welding heating, and improves HAZ (welding heat affected zone) toughness during high heat input welding. The effect is not exhibited at less than 0.005%. Moreover, since a large amount of addition causes deterioration of toughness due to excessive generation of TiC and further deterioration of HAZ toughness during high heat input welding, the upper limit is 0.02%. Therefore, the Ti amount is 0.005 to 0.02%.
[0012]
Nb: 0.005 to 0.02%
Nb is added to suppress recrystallization in the austenite region and expand the non-recrystallization temperature region. If it is less than 0.005%, the effect is not exhibited. On the other hand, the addition of a large amount promotes the formation of island martensite and significantly deteriorates the weldability, so the upper limit is 0.02%. Therefore, the Nb amount is 0.005 to 0.02%.
In addition to the above limitation of the range of chemical components, the carbon equivalent: Ceq is limited to 0.36% or less from the viewpoint of weldability improvement, economy, and surface hardening suppression during controlled cooling.
[0013]
However, carbon equivalent: Ceq = C% + Mn% / 6 + (Cu% + Ni%) / 15+ (Cr% + Mo% + V%) / 5
[0014]
By adjusting to the above component composition range, high-cooling rate controlled cooling is performed to improve the characteristics of low-alloy steel sheets with low alloy components that are used in large quantities in ships, offshore structures, storage tanks, etc. In the manufacture by the method, it becomes possible to obtain a high-tensile steel plate having a small material difference in the thickness direction.
[0015]
A steel plate having such characteristics can be manufactured by the following manufacturing method.
(2) Steel plate manufacturing process (Manufacturing method)
The steel adjusted to the above component composition range is melted, the steel slab obtained by continuous casting is heated to 1050 to 1200 ° C., and then Ar 3 Hot rolling is performed so that the rolling reduction at point to 900 ° C. is 40% or more. ( Ar 3 Point -50 ° C.) or more from the steel sheet surface temperature range (Ar 3 Point -200) After cooling to a steel plate surface temperature range of not higher than 12 ° C. at a steel plate average cooling rate of 12 ° C./second or higher, the cooling is temporarily interrupted, the steel plate surface temperature is reheated to 650 ° C. or higher, and 500 to 650 again. The steel sheet is cooled at an average cooling rate of 12 ° C./second or more to a steel material average temperature range of 0 ° C.
a. Slab heating temperature: 1050 to 1200 ° C
About slab heating temperature, in order to suppress the coarsening of an austenite crystal grain, it is necessary to set it as 1200 degrees C or less. On the other hand, a higher value is preferable from the viewpoint of improving efficiency, and when Nb is added, the lower limit is 1050 ° C. because it needs to be dissolved in order to exert the effect. Therefore, the slab heating temperature is 1050 to 1200 ° C.
b. Ar 3 Point to 900 ° C. Rolling ratio: 40% or more From the viewpoint of securing strength and toughness, Ar 3 The cumulative rolling reduction from the point to 900 ° C. is 40% or more.
[0016]
c. Cooling start temperature: ( Ar 3 Point -50) ° C or higher Cooling start temperature is Ar 3 The lower limit is Ar 3 , because the cooling effect decreases when the point is greatly below. The point is -50 ° C. Therefore, the cooling start temperature is the steel sheet surface temperature ( Ar 3 Point −50) ° C. or higher.
d. Cooling rate (cooling rate when cooling is interrupted): 12 ° C./second or more The cooling rate is preferably fast. In order to spread the effect in the entire thickness direction of the thick steel plate, the average cooling rate of the steel plate is 12 ° C. / Second or more is required. Accordingly, the cooling rate is 12 ° C./second or more in terms of the average steel plate cooling rate.
e. Cooling method: Surface temperature during cooling interruption: ( Ar 3 Point −200) ° C. or lower, surface recuperation temperature: 650 ° C. or higher, cooling stop temperature: 500 to 650 ° C.
Although it is a cooling method, it is the following method in order to make maximum use of the effect of increasing the strength while suppressing the hardening of the surface.
[0017]
First, the temperature until the cooling is temporarily interrupted is the surface temperature ( Ar 3 It is necessary to set it as point -200) degrees C or less. This is because when the cooling rate is 12 ° C / second or more, if the surface temperature is not cooled until this temperature is reached, the initial cooling effect on the entire plate thickness will be insufficient, and cooling will be performed at a high cooling rate after restarting cooling. This is because high strength is not achieved even if it is performed.
[0018]
Next, the purpose of temporarily stopping the cooling is to soften the bainitic phase generated on the surface by the temper effect. In this case, when the recuperation temperature is less than 650 ° C., softening does not occur.
[0019]
Finally, the cooling stop temperature is required to be 650 ° C. or lower in order to exert the cooling effect. On the other hand, when the cooling stop temperature is lowered, securing the strength is facilitated, but the surface hardness is also increased, and when the temperature is less than 500 ° C., the surface hardness is significantly increased. Here, as shown in FIG. 1, this cooling final stop temperature is based on the premise that the cooling is temporarily interrupted. If the cooling is not interrupted once, the cooling final stop temperature is within a range in which the strength can be secured. Even if the temperature is increased, the effect of softening the surface is small.
Therefore, in the cooling method, the surface temperature of the steel sheet is ( Ar 3 Point −200) The cooling is temporarily interrupted at a temperature of below 200 ° C., the steel sheet surface temperature is reheated to 650 ° C. or higher, and then the cooling is started again, and the steel sheet average temperature is cooled to 500 to 650 ° C.
Examples of the present invention will be given below to prove the effects of the present invention.
[0020]
【Example】
The chemical composition of the test steel is shown in Table 1 ( A, B, E: invention steel, C, D: reference steel, F: comparative steel). Table 1 shows Ceq and Ar 3 The point temperature is also shown. The comparative steel F has a Ceq outside the scope of the present invention.
Manufacturing conditions (rolling, cooling conditions) in Table 2 shows the characteristics of the steel sheet obtained by the manufacturing conditions (Vickers hardness difference between the surface and center of plate thickness, tensile test and Charpy impact test results) in Table 3 (No 1-7, 14: Examples of the present invention, Nos . 8-13, 21-24: Reference examples, Nos . 15-20, 25-27: Comparative examples ).
[0021]
Invention Example No. Each of Nos. 1 to 7 and 14 has a small difference in hardness between the surface and the center of the plate thickness of about 5 to 25 Hv, satisfies the strength (TS) of 500 MPa class, and has good toughness (vTrs).
On the other hand, Comparative Example No. In No. 15 and Reference Example 21 , since the cooling was not interrupted, there was a significant difference in hardness between the surface and the center of the plate thickness. Comparative Example No. No. 19 has a final cooling stop temperature that is too low . 23 and Comparative Example 25 had a low surface recuperation temperature after interruption of cooling. Since No. 26 and 27 use comparative steel F having a high Ceq chemical composition, there is a significant difference in hardness between the surface and the center of the plate thickness.
[0022]
Comparative Example No. 16, 17, 18, 20 and Reference Examples 22 and 24, the difference in hardness between the surface and the center of the plate thickness is as small as that of the present invention example. No. 16 is inferior in strength and toughness because the rolling reduction in the austenite non-recrystallization temperature range is insufficient. Comparative Example No. No. 17 was comparative example No. 17 because the cooling rate before the cooling interruption was low. No. 18 was comparative example No. 18 because the cooling rate after the cooling interruption was low. No. 20 had a cooling start temperature too low . Since the final cooling stop temperature of 24 is too high, the strength is insufficient. Reference Example No. In No. 22 , the timing of interrupting the cooling was too early, and the cooling before the cooling interruption did not work effectively, so that the strength was insufficient.
[0023]
[Table 1]
Figure 0003951428
[0024]
[Table 2]
Figure 0003951428
[0025]
[Table 3]
Figure 0003951428
[0026]
【The invention's effect】
As described above, the present invention has a high controllable rolling and cooling method even in a steel sheet with low Ceq (0.36% or less) and a small amount of alloy, considering weldability and economy. By performing cooling at a cooling rate, it is possible to manufacture a high-tensile steel plate having a small material thickness direction material difference.
[Brief description of the drawings]
FIG. 1 is a graph showing the influence of a temporary cooling interruption and a final cooling stop temperature on a hardness difference between a surface and a thickness center portion according to an embodiment of the present invention.

Claims (2)

重量%で、C:0.08〜0.18%と、Si:0.05〜0.5%と、Mn:0.8〜1.8%と、Al:0.01〜0.1%とを含み、残部Fe及び不可避的不純物からなり、かつ炭素当量:Ceq≦0.36%である鋼板を製造する方法において、
該鋼を1050〜1200℃に加熱し、次いでAr3 点〜900℃での圧下率が40%以上となるように熱間圧延を行う工程と、熱間圧延された鋼板を(Ar3 点−50)℃以上820℃以下の鋼板表面温度域から(Ar3点−200)℃以下の鋼板表面温度域まで12℃/秒以上の鋼板平均冷却速度で冷却した後、一旦冷却を中断し、鋼板表面温度を650℃以上に復熱させる工程と、
鋼板表面温度が650℃以上に復熱された鋼板を、再び500〜650℃(ただし500℃を除く)の鋼板平均温度域まで12℃/秒以上の鋼板平均冷却速度で冷却する工程と、
を備えたことを特徴とする、板厚方向材質差の小さい高張力鋼板の製造方法。
但し、炭素当量:Ceq=C%+Mn%/6+(Cu%+Ni%)/15+(Cr%+Mo%+V%)/5
By weight, C: 0.08-0.18%, Si: 0.05-0.5%, Mn: 0.8-1.8%, Al: 0.01-0.1% In the method of manufacturing a steel plate comprising the balance Fe and unavoidable impurities and having a carbon equivalent: Ceq ≦ 0.36%,
The steel is heated to 1050 to 1200 ° C., and then hot-rolled so that the reduction rate at Ar 3 to 900 ° C. is 40% or more, and the hot-rolled steel sheet is (Ar 3 point − 50) After cooling at a steel plate average temperature rate of 12 ° C./second or more from a steel plate surface temperature range of not less than 820 ° C. to a steel plate surface temperature range of (Ar 3 points−200) ° C. Reheating the surface temperature to 650 ° C. or higher;
Cooling the steel sheet reheated to a steel plate surface temperature of 650 ° C. or higher to a steel plate average temperature range of 500 to 650 ° C. (excluding 500 ° C.) at a steel plate average cooling rate of 12 ° C./second or more;
A method for producing a high-tensile steel sheet having a small material difference in the thickness direction.
However, carbon equivalent: Ceq = C% + Mn% / 6 + (Cu% + Ni%) / 15+ (Cr% + Mo% + V%) / 5
鋼成分として、重量%でさらに、Nb:0.005〜0.02%を含有することを特徴とする、請求項1に記載の板厚方向材質差の小さい高張力鋼板の製造方法。  The method for producing a high-tensile steel sheet having a small material difference in the thickness direction according to claim 1, wherein the steel component further contains Nb: 0.005 to 0.02% by weight.
JP08353898A 1998-03-30 1998-03-30 Manufacturing method of high strength steel sheet with small material difference in thickness direction Expired - Fee Related JP3951428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08353898A JP3951428B2 (en) 1998-03-30 1998-03-30 Manufacturing method of high strength steel sheet with small material difference in thickness direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08353898A JP3951428B2 (en) 1998-03-30 1998-03-30 Manufacturing method of high strength steel sheet with small material difference in thickness direction

Publications (2)

Publication Number Publication Date
JPH11279636A JPH11279636A (en) 1999-10-12
JP3951428B2 true JP3951428B2 (en) 2007-08-01

Family

ID=13805292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08353898A Expired - Fee Related JP3951428B2 (en) 1998-03-30 1998-03-30 Manufacturing method of high strength steel sheet with small material difference in thickness direction

Country Status (1)

Country Link
JP (1) JP3951428B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103045939A (en) * 2012-12-27 2013-04-17 安阳钢铁股份有限公司 Resource-saving Q345 low-alloy series steel plate and production method thereof
WO2018179512A1 (en) 2017-03-30 2018-10-04 Jfeスチール株式会社 High-strength steel plate for sour resistant line pipe, method for manufacturing same, and high-strength steel pipe using high-strength steel plate for sour resistant line pipe
WO2018181564A1 (en) 2017-03-30 2018-10-04 Jfeスチール株式会社 High strength steel sheet for sour-resistant line pipe, method for manufacturing same, and high strength steel pipe using high strength steel sheet for sour-resistant line pipe
WO2019064459A1 (en) 2017-09-28 2019-04-04 Jfeスチール株式会社 High-strength steel plate for sour resistant line pipe, method for manufacturing same, and high-strength steel pipe using high-strength steel plate for sour resistant line pipe
KR20210050548A (en) 2018-09-28 2021-05-07 제이에프이 스틸 가부시키가이샤 High-strength steel pipe using high-strength steel plate for sour-resistant line pipe and its manufacturing method, and high-strength steel plate for sour-resistant line pipe
KR20210064296A (en) 2018-09-28 2021-06-02 제이에프이 스틸 가부시키가이샤 High-strength steel sheet for sour-resistant line pipe and manufacturing method thereof, and high-strength steel pipe using high-strength steel sheet for sour-resistant line pipe
WO2021193383A1 (en) 2020-03-26 2021-09-30 Jfeスチール株式会社 High-strength steel sheet for sour-resistant line pipe, manufacturing method thereof, and high-strength steel pipe made using high-strength steel sheet for sour-resistant line pipe

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103045939A (en) * 2012-12-27 2013-04-17 安阳钢铁股份有限公司 Resource-saving Q345 low-alloy series steel plate and production method thereof
KR20210118961A (en) 2017-03-30 2021-10-01 제이에프이 스틸 가부시키가이샤 High strength steel plate for sour-resistant line pipe, method for manufacturing same, and high strength steel pipe using high strength steel plate for sour-resistant line pipe
WO2018179512A1 (en) 2017-03-30 2018-10-04 Jfeスチール株式会社 High-strength steel plate for sour resistant line pipe, method for manufacturing same, and high-strength steel pipe using high-strength steel plate for sour resistant line pipe
WO2018181564A1 (en) 2017-03-30 2018-10-04 Jfeスチール株式会社 High strength steel sheet for sour-resistant line pipe, method for manufacturing same, and high strength steel pipe using high strength steel sheet for sour-resistant line pipe
KR20210118960A (en) 2017-03-30 2021-10-01 제이에프이 스틸 가부시키가이샤 High strength steel plate for sour-resistant line pipe, method for manufacturing same, and high strength steel pipe using high strength steel plate for sour-resistant line pipe
KR20190129097A (en) 2017-03-30 2019-11-19 제이에프이 스틸 가부시키가이샤 High strength steel sheet for internal sour line pipe, manufacturing method thereof and high strength steel pipe using high strength steel sheet for internal sour line pipe
KR20190129957A (en) 2017-03-30 2019-11-20 제이에프이 스틸 가부시키가이샤 High strength steel sheet for internal sour line pipe, manufacturing method thereof and high strength steel pipe using high strength steel sheet for internal sour line pipe
KR20200051745A (en) 2017-09-28 2020-05-13 제이에프이 스틸 가부시키가이샤 High strength steel pipe for internal sour line pipe and manufacturing method thereof, and high strength steel pipe using high strength steel plate for internal sour line pipe
WO2019064459A1 (en) 2017-09-28 2019-04-04 Jfeスチール株式会社 High-strength steel plate for sour resistant line pipe, method for manufacturing same, and high-strength steel pipe using high-strength steel plate for sour resistant line pipe
KR20210064296A (en) 2018-09-28 2021-06-02 제이에프이 스틸 가부시키가이샤 High-strength steel sheet for sour-resistant line pipe and manufacturing method thereof, and high-strength steel pipe using high-strength steel sheet for sour-resistant line pipe
KR20210050548A (en) 2018-09-28 2021-05-07 제이에프이 스틸 가부시키가이샤 High-strength steel pipe using high-strength steel plate for sour-resistant line pipe and its manufacturing method, and high-strength steel plate for sour-resistant line pipe
WO2021193383A1 (en) 2020-03-26 2021-09-30 Jfeスチール株式会社 High-strength steel sheet for sour-resistant line pipe, manufacturing method thereof, and high-strength steel pipe made using high-strength steel sheet for sour-resistant line pipe
KR20220137970A (en) 2020-03-26 2022-10-12 제이에프이 스틸 가부시키가이샤 High-strength steel sheet for sour-resistant line pipe, manufacturing method thereof, and high-strength steel pipe using high-strength steel sheet for sour-resistant line pipe

Also Published As

Publication number Publication date
JPH11279636A (en) 1999-10-12

Similar Documents

Publication Publication Date Title
JP4071906B2 (en) Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness
JP3951429B2 (en) Manufacturing method of high strength steel sheet with small material difference in thickness direction
JP4205922B2 (en) High strength steel pipe excellent in deformation performance, low temperature toughness and HAZ toughness and method for producing the same
JPH0949026A (en) Production of high strength hot rolled steel plate excellent in balance between strength and elongation and in stretch-flange formability
JP3546726B2 (en) Method for producing high-strength steel plate with excellent HIC resistance
JP3951428B2 (en) Manufacturing method of high strength steel sheet with small material difference in thickness direction
JP4112733B2 (en) Method for producing 50 kg (490 MPa) to 60 kg (588 MPa) thick high-tensile steel sheet having excellent strength and low temperature toughness
JPH059651A (en) Steel plate having excellent property of stopping propagation of brittle fracture and its production
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP2004162085A (en) Steel plate with excellent fatigue crack propagation resistance, and its manufacturing method
JP3212344B2 (en) Manufacturing method of structural steel plate for welding with excellent toughness at low temperature
JPH05148539A (en) Production of steel for uoe steel pipe which is less embrittled by heating in (gamma+alpha) two-phase region
JPH02205627A (en) Production of directly quenched type high tensile steel plate excellent in toughness
JP2005272854A (en) Method for producing high-tensile steel excellent in refractoriness and toughness in welded heat affected part
JP3666457B2 (en) Manufacturing method of high yield steel with low yield ratio and small material difference in thickness direction
JP2532176B2 (en) Method for producing high-strength steel with excellent weldability and brittle crack propagation arresting properties
JP4715179B2 (en) Manufacturing method of high-tensile steel plate with excellent workability
JP2652538B2 (en) Method for producing high-strength steel with excellent weldability and low-temperature toughness
JPS623214B2 (en)
JPH1068045A (en) 600n/mm2 class high tensile strength steel excellent in weld cracking sensitivity and large heat input welded joint toughness and its production
JP3855479B2 (en) Manufacturing method of high-tensile steel with excellent toughness and arrestability
JP2000119747A (en) Production of high tensile strength steel plate small in difference of material in plate thickness direction
JP2601539B2 (en) Manufacturing method of high yield strength and high toughness steel sheet with low ultrasonic anisotropy
JP2000119746A (en) Production of high temsile strength steel plate small in difference of material quality in plate thickness direction
JP3848415B2 (en) Method for producing low yield ratio high strength steel with excellent weldability and low temperature toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees