JP3942816B2 - 金属間のロウ付け接合方法 - Google Patents

金属間のロウ付け接合方法 Download PDF

Info

Publication number
JP3942816B2
JP3942816B2 JP2000325415A JP2000325415A JP3942816B2 JP 3942816 B2 JP3942816 B2 JP 3942816B2 JP 2000325415 A JP2000325415 A JP 2000325415A JP 2000325415 A JP2000325415 A JP 2000325415A JP 3942816 B2 JP3942816 B2 JP 3942816B2
Authority
JP
Japan
Prior art keywords
metal
particles
ultrafine
metals
brazing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000325415A
Other languages
English (en)
Other versions
JP2002126869A (ja
Inventor
頼重 松葉
英之 後藤
雅行 上田
正明 小田
敏洋 鈴木
知行 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Chemical Inc
Original Assignee
Harima Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Chemical Inc filed Critical Harima Chemical Inc
Priority to JP2000325415A priority Critical patent/JP3942816B2/ja
Publication of JP2002126869A publication Critical patent/JP2002126869A/ja
Application granted granted Critical
Publication of JP3942816B2 publication Critical patent/JP3942816B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/858Bonding techniques
    • H01L2224/8584Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases

Description

【0001】
【発明の属する技術分野】
本発明は、金属間のロウ付け接合方法に関し、より具体的には、電子部品同士の電気的、物理的接合を与える目的で、用いられている電極金属などの間を単一金属の微粒子を主成分とするロウ付け材として利用した接合方法に関する。特には、電子部品同士のロウ付け接合として、広く普及しているハンダ付けを代替可能な低温の接合方法であり、主として、プリント配線及び半導体パッケージ内の層間接続、プリント配線板と電子部品の接合、配線の修復等に利用できる手段に関する。
【0002】
【従来の技術】
電子部品のプリント配線板への部品の搭載など、低温における金属間のロウ付け接合には、従来、Sn−Pb共晶合金をハンダ素材を用いるハンダ付けが広く利用されている。このハンダ付けでは、接合すべき金属表面に接触させて、ハンダを加熱・熔融して、接合する金属面から熔融しているハンダへと一部金属の拡散を生じさせ、冷却した際、界面に金属間化合物を形成することで、物理的、電気的な接合を行っている。Sn−Pb共晶合金はその熔融温度が低く、高い温度に曝される間に、前記の接合する金属面からの拡散が不必要に多くなり、接合すべき金属面の侵食を引き起こすといった懸念が僅かであり、多用されてきた。しかしながら、近年は、かかるハンダ付けの際、Sn−Pbハンダ素材を熔融すると、含まれるPbの蒸散、また、酸化鉛などとなった微細な粉体の飛散が不可避的に起こり、作業環境を汚染する問題を回避するため、鉛を含まないハンダ素材の利用、ロウ付け方法の開発が進められている。
【0003】
また、ハンダ素材を使用するハンダ付け(ロウ付け)では、一旦、ハンダ素材を完全に熔融した後、接合すべき金属表面と接触させる際、金属表面上に残留している酸化被膜を化学的に除去するため、フラックスが利用される。このフラックスには、この金属酸化物と反応して、それを溶解除去する作用を有する活性化学種が含有されており、ハンダ付け作業後、このフラックス成分を洗浄する工程が必要となる。なお、フラックス成分が残留すると、その後、前記活性化学種に因る更なる反応が進行し、種々の不都合、故障を引き起こすことが報告されている。従って、従来のハンダ付け法を利用する際には、再現性のよいハンダ付けを行うためには、ハンダ素材の熔融条件、前記フラックス処理条件の双方を最適に調整することが必要であり、温度、周辺雰囲気などを制御した専用のリフロー装置の使用が必須であり、また、後工程として、残留フラックス除去用の有機溶剤を用いる洗浄工程も不可欠であった。
【0004】
【発明が解決しようとする課題】
鉛を含まないハンダ素材を利用するハンダ付け方法は、用いるハンダ素材自体、従来のSn−Pbハンダと比較してその熔融温度が高く、その結果、ハンダ付けの際に、接合される金属面から拡散する金属量もより多くなる。それに伴い、接合界面に形成される金属間化合物の層厚も厚くなってしまう。この金属間化合物自体は、ハンダ材との接着性が極めて高く、接合を保持するに必要であるものの、その層厚が厚くなり、一方、用いられるハンダ材の延伸性・柔軟性は、従来のSn−Pbハンダと比較して、大幅に低下する結果、ハンダ付け後冷却した際に生じる熱膨張係数の差異に起因する歪みストレスは、接合される金属面と前記界面に形成される金属間化合物層との間により集中したものとなる。それが誘因となり、時間経過とともに、ハンダ付け界面に微細な亀裂が生じたり、さらには、剥離を引き起こしたりして、導通性の劣化などの故障の遠因となる。
【0005】
従って、鉛を含まないハンダ素材を利用するハンダ付け方法に代わり、前記するハンダ付けに付随する故障要因を本質的に排除できる、新規な金属間のロウ付け接合方法の提案が望まれている。
【0006】
本発明は前記の課題を解決するもので、本発明の目的は、プリント配線及び半導体パッケージ内の層間接続、プリント配線板と電子部品の接合、配線の修復等に利用できる金属間の電気的、物理的接合を、鉛を含まないハンダ素材を利用するハンダ付けと同程度の低温において形成する手段として適しており、その際、接合に用いるロウ付け材料を一旦熔融状態としなくとも、接合すべき金属面に対して緻密な接合状態を達成でき、加えて、この接合形成に伴う熱歪みストレスの残留を抑制できる新規な金属間のロウ付け接合方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく、鋭意研究を進めたところ、平均粒子径100nm以下の金属超微粒子、例えば、平均粒子径10nm程度の金属超微粒子においては、室温程度でも、その表面における金属原子の拡散が速く、比較的低温に加熱するだけで、例えば、互いに表面を接触した複数の金属微粒子間で、その界面における融合が進行し、相互に相手を取り込むことによりひとつの大きな粒子に成長する粒成長という現象を起こし、加えて、このような金属超微粒子を、平坦な表面を有するバルク金属面に接触させた際にも、同様に金属原子の拡散に起因して、両者の界面の融合が起こることを見出した。さらには、前記の金属超微粒子表面における金属原子の拡散に起因して起こる、バルク金属面と金属超微粒子との界面融合は、両者が異なる金属であっても、比較的低温で生じ、相互拡散した領域は、極めて薄い層となることを見出した。なお、金属超微粒子が粒成長して、その粒子径が大きくなるとともに、しだいに表面における拡散速度が抑えられるため、多数の金属超微粒子を積層された状態に配置しておくと、その積層構造を概ね維持し、接触界面部が融合により広くなったネットワーク状構造となることも判明した。一方、金属超微粒子の表面を、その金属原子に対して配位的な結合を形成可能なアミン化合物で被覆すると、この被覆層により微粒子同士がその表面を直接接することが防止され、結果的に融着による粒成長が抑制できる。従って、その表面がアミン化合物で被覆された金属超微粒子は、例えば、有機溶媒中においてコロイド状粒子として、安定な分散状態を保つことも判明した。
【0008】
以上の知見に基づき、さらに検討を進めた結果、表面がアミン化合物で被覆された金属超微粒子が、有機溶媒中においてコロイド状に分散している分散液を利用し、接合すべきバルク金属面の間隙に、かかる金属コロイド分散液を塗布、充填し、加熱して有機溶媒の蒸散を図ると、金属超微粒子の表面を被覆しているアミン化合物の層も最終的に離脱して、バルク金属面と金属超微粒子、また、金属超微粒子相互がその表面を直接接触させ、微粒子同士の界面における融着とバルク金属表面での相互拡散による密着がおき、接合すべきバルク金属面の間隙は、金属超微粒子相互の融着で形成されたネットワーク状のロウ材層が、接合すべきバルク金属面と極めて薄い相互拡散層を介して、両者間を接合する形態となることを見出した。この接合形成の過程では、利用されている金属超微粒子自体は熔融を起こさず、比較的に低温で起こる、その表面における拡散に起因する融着によっており、その際、熱膨張係数の差異等に由来する歪みストレスは、ネットワーク状のロウ材層の柔構造により大幅に緩和されることを本発明者らは確認して、本発明を完成するに至った。
【0009】
すなわち、本発明の金属間のロウ付け接合方法は、
バルク金属の相互間をロウ付け接合する方法であって、
ロウ付け材として、平均粒子径1〜100nmの金属超微粒子を、その超微粒子の表面が、かかる超微粒子を構成する金属に対して配位的結合可能な末端アミノ基を有するアミン化合物一種以上により被覆され、前記金属超微粒子100質量部当たり、前記アミン化合物一種以上が、その総和として0.1〜60質量部の範囲で含有されており、有機溶媒中に均一に分散されてなる金属コロイド状として含有してなる金属コロイド分散液を用い、
接合すべきバルク金属の対向する面間の間隙に前記金属コロイド分散液を塗布・充填し、
前記超微粒子を構成する金属と、接合すべきバルク金属を構成する金属の一つとからなる合金の融解温度よりも低く、前記有機溶媒の沸点以上の範囲に選択される温度に加熱して、
接合すべき前記バルク金属表面と前記超微粒子との接触界面における相互拡散融着、ならびに、前記間隙間に充填されている超微粒子間の融着を行い接合層を形成する方法である。その際、ロウ付け材として用いる前記金属コロイド分散液が、前記有機溶媒中に前記末端アミノ基を有するアミン化合物と加熱時に反応可能な有機酸あるいは有機の酸無水物またはその誘導体が添加されてなる分散液であることがより好ましい。より具体的には、金属コロイド分散液に添加される有機酸あるいは有機の酸無水物またはその誘導体の量は、含有される前記末端アミノ基を有するアミノ化合物のアミノ基の総和に対して、末端アミノ基1つ当たり、有機酸あるいは有機の酸無水物またはその誘導体に存在する酸基の総和が、有機の酸無水物に換算して0.5〜5分子となる比率範囲に選択されていることが一層好ましい。
【0010】
また、本発明の接合方法においては、金属間の接合形成を行う加熱温度を、180℃〜350℃の範囲に選択することが望ましい。
【0011】
加えて、金属コロイド分散液に含有される超微粒子を構成する金属と、接合すべき対向したバルク金属面を構成する金属とは、ともにその種類が異っている際にも、本発明の接合方法は好適に適用できる。
【0012】
【発明の実施の形態】
以下に、本発明の金属間のロウ付け接合方法をより詳細に説明する。
【0013】
本発明の金属間の接合方法は、バルク金属表面を対向させ、その間をロウ付けにより接合する際、用いるロウ付け材として、平均粒子径1〜100nmの金属微粒子、例えば、貴金属、銅、タングステン、ニッケル、タンタル、インジウム、錫、亜鉛、チタンのうち少なくとも1種類以上の金属、より好ましくは、貴金属もしくは銅の超微粒子を利用すると、かかる金属超微粒子を一旦熔融しなくとも、比較的に低温で加熱することで、その表面における金属原子の拡散を促進する結果、界面においては、熔融させたと同等の均一な融着が起こることを利用して、バルク金属表面と金属超微粒子との相互拡散融着、ならびに、対向する二つの表面間の間隙に充填されている金属超微粒子層内での超微粒子相互の融着によるネットワーク状の連結を行い、ロウ付け接合とするものである。
【0014】
この方法においては、金属超微粒子層とバルク金属表面との接合は、熔融させたハンダ材を用いるような面状の接触でなく、緻密に分布する超微粒子との点状の接合の集積であるが、相互拡散による強固な接合が達成されるため、全体としての密着性、接合強度は遜色のないものとなる。一方、バルク金属と金属超微粒子が異なる種類の金属である際、その熱膨張係数の差異に起因して、冷却する間に、界面の面内方向に引っ張りまたは圧縮応力が生じるものの、金属超微粒子層全体は、超微粒子相互がネットワーク状に連結された柔構造をとり、また、超微粒子自体、より好ましくは、延伸性に優れた貴金属もしくは銅で形成されているため、前記の熱歪み応力は、超微粒子層全体の塑性変形によりその大半は開放される利点を有する。それに対して、Snを主成分とする合金ハンダを利用したハンダ付けにおいては、熔融後冷却した際、合金形成による硬化が起こされ、延伸性は一層低下し、それに伴い、熱歪み応力は接合界面に集中する結果、時に接合部での剥離、微細なヒビなどの欠陥が見出される。
【0015】
加えて、本発明の金属間の接合方法においては、接合されるバルク金属とロウ付け材として利用する金属超微粒子が、同種の金属を用いることもでき、その際には、両者の熱膨張係数の差異はなく、接合界面に熱歪み応力は実質的に存在しないものとなる。勿論、両者が異なる種類の金属である際には、上述するようにバルク金属表面と接触する金属超微粒子との接触点から、表面の拡散に起因する、界面の面内方向の拡大が起こるものの、深さ方向への拡散は、その拡散源が、金属超微粒子の表面拡散により移動可能な原子の量に限られるため、熔融しているハンダを拡散源とした場合と比較すると格段に僅かなものとなる。すなわち、バルク金属表面と接触する金属超微粒子との界面における、両者の金属が相互拡散して形成される拡散領域の層厚は、ハンダ付けの際に形成される金属間化合物層と比較して、格段に薄いものとなる。ただし、界面において、面内方向における拡散により、原子レベルで密着した接合が形成されている結果、ハンダ付けの際に形成される金属間化合物層による密着強度と遜色のない高い接合強度が達成される。
【0016】
このようなバルク金属表面と金属超微粒子との緻密な接触密度を達成するため、本発明の方法では、金属超微粒子をコロイド状に予め有機溶媒中に均一に分散してなる金属コロイド分散液として、接合すべきバルク金属表面上の所定領域に塗布し、対向して配置されるバルク金属表面の間隙に、所定量の金属コロイド分散液が充填された状態とする。その後、金属コロイド分散液に含有される有機溶媒を蒸散すると、バルク金属表面と金属超微粒子との緻密な接触、ならびに、金属超微粒子相互が密に接触してなる金属超微粒子層とすることができる。加えて、金属コロイド分散液として、接合すべき部位に塗布するため、接合すべき部位の形状、面積に依存することなく、本発明の方法を適用することが可能となる。さらには、かかる接合を行う面間隙が狭い際にも、目的とする領域に金属コロイド分散液を所望の薄い皮膜状に塗布することで、本発明の方法を適用することが可能となる。
【0017】
本発明の方法において、ロウ付け材として利用する金属コロイド分散液は、接合すべき金属面の間の間隙に塗布、充填した後、含まれる有機溶媒が蒸散して、バルク金属表面と金属超微粒子との緻密な接触、ならびに、金属超微粒子相互が密に接触してなる金属超微粒子層となった後、加熱処理を施して、初めて、バルク金属表面と金属超微粒子と融着、ならびに、金属超微粒子相互の融着が起こるようにするため、金属超微粒子の表面は、かかる微粒子を構成する金属に対して配位的結合可能な末端アミノ基を有するアミン化合物により被覆された状態で、金属コロイド状にして分散されている。従って、かかる金属超微粒子の表面を密に被覆している末端アミノ基を有するアミン化合物の層が、金属超微粒子相互が、直接その表面を接触させ、加熱処理を施す前に、互いの融着を引き起こし、粒子塊を生成することを防止している。
【0018】
しかしながら、この金属超微粒子の表面を被覆しているアミン化合物と金属原子との結合は、アミン化合物が有する末端アミノ基を利用した配位的結合であるため、加熱を開始し、温度が上昇するに従って、その結合はますます不安定化し、最終的に加熱温度に到達すると、加速度的にアミン化合物の解離が進む。解離したアミン化合物は、金属超微粒子層中の粒子間の隙間に残留する有機溶媒中に一旦溶解した後、加熱が進む間に有機溶媒と同様に徐々に蒸散して行く。一方、表面を被覆するアミン化合物の層が失われると、バルク金属表面と金属超微粒子の表面、金属超微粒子相互の表面間で直接接触が可能となり、その界面においては、微粒子表面における金属原子の拡散が加熱によりますます促進される。結果として、各界面において、互いの融着が優先的進行するものの、当初接触がなされていない間隙では、表面を被覆するアミン化合物が最後まで残留するため、かかる間隙をも埋めるまで粒成長が進行することは抑制される。従って、加熱温度を比較的低温に選択すると、界面における融着により、各微粒子相互の接触点の界面断面積は増すものの、全体としては、金属超微粒子相互が積層した当初の状態を概ね保持するネットワーク状の金属超微粒子層の構造となる。同じく、バルク金属表面と金属超微粒子との接触点でも、その接触点の界面断面積は増すものの、隣接する金属超微粒子との界面が連結して、全体として面状となるまでには至らない。従って、バルク金属表面と金属超微粒子との接合は、個々は点状の界面が緻密に分布し、金属超微粒子層の構造は、内部に当初から存在する間隙をそのまま保持する、ネットワーク状の柔構造となる。
【0019】
以上の機能を発揮する金属コロイド分散液では、含有される金属コロイドとして、例えば、平均粒子径1〜100nmの金属微粒子、好ましくは、貴金属、銅、タングステン、ニッケル、タンタル、インジウム、錫、亜鉛、チタンのうち少なくとも1種類以上の金属、より好ましくは、貴金属もしくは銅の超微粒子が利用される。この金属の超微粒子表面における金属原子の拡散は、その粒子径が小さいほどより活発であるが、本発明においては、加熱処理後も金属超微粒子層の構造は、ネットワーク状の柔構造を保持することが好ましく、不必要に平均粒子径を小さく選択することは望ましくない。加熱処理を施す温度、また、用いる金属の種類にもよるが、平均粒子径を2〜10nmの範囲に選択するとより好ましい結果が得られる。
【0020】
金属コロイド粒子とされる金属超微粒子は、電気的導通を図る接合用においては、銅、または貴金属(銀、金、白金、パラジウム、ロジウム、オスミウム、ルテニウム、イリジウム)で構成される微粒子が好適に利用でき、さらには、一層好ましくは、その表面には、自然酸化膜の皮膜を実質的に持たないものが利用される。つまり、自然酸化膜の皮膜が存在すると、微粒子表面で起こる金属原子の拡散が阻害を受け、本発明の最大の特徴の一つである、比較的に低温での加熱により、前記の表面で起こる金属原子の拡散を利用した融着が十分に進行しないこともある。従って、本質的に自然酸化膜形成が遅い貴金属(銀、金、白金、パラジウム、ロジウム、オスミウム、ルテニウム、イリジウム)は好適である。一方、銅自体は、貴金属と比較すると、自然酸化はより起こり易いが、電気伝導性が高く、また、延伸性も優れ、特に、電子部品を接合する対象は、多くの場合、銅箔を利用する回路であるため、両者が同種の金属となる点から、実用上好ましいものとなる。
【0021】
また、微粒子の形状は、球状、あるいは、それに類した楕円体状を用いることが好ましい。表面で生じる金属原子の拡散は、表面の曲率が大きい(粒子径が小さい)状態では、表面上に金属格子の段差(ステップ)が高い密度で露呈する結果、かかるステップを介した表面拡散により生じるものである。従って、球状、あるいは、それに類した楕円体状とすることで、表面の何れの方向においても、金属原子の拡散が概ね均一に生じる状態とでき、金属超微粒子相互の接触点における融着が均質に起こるようにできる。
【0022】
また、この金属コロイドは、酸化されていない金属の超微粒子表面をアミン化合物で被覆した構造をとる。本発明においては、かかる表面の格子段差(ステップ)に露呈している金属原子に対して、末端アミノ基を有するアミン化合物は、配位的に結合する結果、その酸化を防止するとともに、拡散を抑制する機能も果たしている。
【0023】
しかしながら、金属の超微粒子表面を被覆するアミン化合物の第一の機能は、加熱処理を施さない状態では、金属微粒子の表面に付着層を形成し、金属微粒子がその清廉な表面を直接接触させ、相互に融着して塊を形成することを防止することである。従って、室温付近において金属微粒子の表面に被覆層を形成する限り、また、加熱した際、その配位的な結合が不安定化し、解離が可能である限り、特にその種類に限定はないものの、室温において、容易に蒸散することのないものが望ましい。従って、末端アミノ基を有するアミン化合物として、アルキルアミンならびにポリオキシアルキレンアミンを用いることが好ましい。例えば、アルキルアミンとして、そのアルキル基は、C4〜C20が用いられ、さらに好ましくはC8〜C18の範囲に選択され、アルキル鎖の末端にアミノ基を有するものが用いられる。例えば、前記C8〜C18の範囲のアルキルアミンは、熱的な安定性もあり、また、その蒸気圧もさほど高くなく、室温等で保管する際、含有率を所望の範囲に維持・制御することが容易であるなど、ハンドリング性の面から好適に用いられる。また、本発明において利用する、ポリオキシアルキレンアミンは、オキシアルキレン単位を複数含むポリエーテル骨格と、その末端に1以上のアミノ基を有する化合物を意味するが、これも前記のアルキルアミンと同様に、熱的な安定性もあり、また、その蒸気圧もさほど高くなく、室温等で保管する際、含有率を所望の範囲に維持・制御することが容易であるなど、ハンドリング性の面から好適に用いられる。利用されるポリオキシアルキレンアミンは、アルキルアミンと同様に、アミノ基を末端に有しており、オキシアルキレン単位を複数有するポリエーテル骨格を含む化合物を用いることが望ましい。そのポリエーテル骨格は、プロピレンオキシド、あるいはエチレンオキシドに由来するオキシアルキレン単位、あるいは、前記二種のオキシアルキレン単位を混合して含む構成が好ましい。また、末端の置換するアミノ基の総数が、一個のモノアミン、二個のジアミン、三個のトリアミンが用いられるが、トリアミンを用いると、後に述べる酸無水物またはその誘導体と反応し、ポリアミド化合物を与え、先に述べた金属超微粒子層内のネットワーク路間の空隙を埋める緩衝成分となり、柔構造の形成上好適に利用できる。好適なポリオキシアルキレンアミンの一例を示すと、下記式(I):
【0024】
【化1】
Figure 0003942816
で表される成分を主成分とするポリオキシアルキレンアミン(平均分子量約440)などを挙げることもできる。
【0025】
金属微粒子の表面に被覆層を形成するという第一の機能を達成すべく、アルキルアミンなどの末端アミノ基を有するアミン化合物の含有量は、金属微粒子の全表面に応じて、また、金属の種類、アミン化合物の種類をも考慮して、適宜選択すべきものである。例えば、分子量がC4〜C20のアルキルアミンと同程度のアミン化合物を用い、金属自体の比重が前記銀、金、銅程度であり、金属微粒子の平均粒子径が10nmより極端に小さくない場合では、金属コロイドを含有した分散物中におけるアミン化合物の使用量は金属の種類や粒子径にもよるが、金属微粒子100質量部に対し、アミン化合物の含有量を、総和として、およそ0.1〜60質量部、好ましくは5〜60質量部、より好ましくは15〜40質量部の範囲に選択することが好ましい。なお、前記の下限値5質量部は、用いる有機溶媒中に溶解しており、金属表面に結合していないアミン化合物も存在し、その寄与によって、金属表面の被覆自体に関る量より格段に大きな値となることも多く、その観点から選択されている。
【0026】
なお、この金属コロイドは、有機溶媒中に均一に分散した状態として用いるが、その有機溶媒により、室温付近においても、金属微粒子の表面を被覆されるアミン化合物が溶解、離脱しては、その本来の役割が果たせなくなるため、用いる有機溶媒は、利用されるアミン化合物の溶解性が過度に高くないものを用いる。具体的には、アミン化合物、例えば、アルキルアミン、あるいはポリオキシアルキレンアミンの溶解性が高すぎ、金属微粒子表面の被覆層が消失するような高い極性を有する溶剤ではなく、非極性溶剤あるいは低極性溶剤を選択することが好ましい。加えて、本発明の接合方法において、加熱処理を行う温度において、かかる有機溶媒は蒸散・除去できることも必要であり、また、その間に有機溶媒自体が熱分解などを起こすことがない程度には熱的な安定性を有することが好ましい。さらには、金属微粒子の表面酸化を引き起こす水分などの混入をも、抑制することが好ましく、水との混和性に乏しく、アミン化合物自体の溶解性も低い、非極性溶剤あるいは低極性溶剤、例えば、キシレン、トルエン、ミネラル・スピリット、ターピネオールなどを用いるとよい。
【0027】
本発明の接合方法において、ロウ付け材として利用する金属コロイドの分散液には、加熱処理する温度において、含まれる末端アミノ基を有するアミン化合物と、その末端アミノ基において反応可能な、有機酸あるいは有機の酸無水物またはその誘導体を添加するとより好ましい。すなわち、加熱のみによっても、金属微粒子表面からアミン化合物の解離が進むが、有機酸あるいは有機の酸無水物またはその誘導体を添加しておくと、末端アミノ基とアミド結合を形成するなどして、その解離を促進するため、より低い温度条件において、金属微粒子相互の界面融着が進行でき、好ましい結果を与える。加えて、金属微粒子の表面などに、僅かに酸化皮膜が残余している際には、加熱の過程において、例えば、有機の酸無水物またはその誘導体と酸化皮膜(金属酸化物)との反応により、金属酸化物の除去がなされ、清浄な金属表面とする効果も併せ持つ。
【0028】
従って、金属コロイド分散液中に、付加的成分として、有機酸あるいは有機の酸無水物またはその誘導体を添加すると、比較的低温の加熱によっても、速やかに金属微粒子の表面を被覆しているアミン化合物層の排除がなされ、また、金属表面に僅かに残余する酸化被膜除去の付加的効果も相俟って、接触界面での融着による接合が一層短時間に完了する。なお、このように金属微粒子の表面を被覆しているアミン化合物層の排除を短時間で終了した際にも、その後融着が一定の程度進行すると、その間に周辺の金属微粒子表面から拡散により金属原子が界面に移動した結果、曲率が低下し、それ以上の過度な融着まで達することはない。従って、最終的に得られる融着状態は、加熱処理の温度には依存するものの、一定時間を超えて、加熱処理を施したとしても、過度に進行することはなく、加熱処理の時間は、一定時間以上である限り、任意に選択することも可能である。
【0029】
従って、上記のアミン化合物と加熱処理時に反応することができる限り、本発明において利用される金属コロイド分散液中に、付加的に添加する有機酸あるいは有機の酸無水物またはその誘導体は特に限定されるものではない。また、アミン化合物と同じく、付加的に添加する有機酸あるいは有機の酸無水物またはその誘導体も、室温付近において保管する間に蒸散すると好ましくなく、その点からも、一般に蒸散性がより少ない、有機の酸無水物またはその誘導体を用いることがより望ましい。なお、酸無水物またはその誘導体は、金属コロイド分散液に用いる有機溶媒として、非極性溶媒や低極性溶媒を利用する際にも、所望の濃度で溶解するものを選択することが好ましい。あるいは、有機の酸無水物またはその誘導体の溶解に適する低極性溶媒を選択する際には、アミン化合物として、ポリオキシアルキルアミンなど、その分子内のエーテル酸素(−O−)などの極性を示す部分構造を内蔵するアミノ化合物を利用し、金属コロイドの分散も有機の酸無水物またはその誘導体の溶解も、共に好適な有機溶媒を利用し、所望の溶解性を確保することもできる。
【0030】
付加的に添加してもよい、有機酸としては、ギ酸、酢酸、プロピオン酸、ブタン酸、ヘキサン酸、オクチル酸などのC1〜C10の直鎖または分岐した飽和カルボン酸、ならびにアクリル酸、メタクリル酸、クロトン酸、ケイ皮酸、安息香酸、ソルビン酸などの不飽和カルボン酸、ならびに、シュウ酸、マロン酸、セバシン酸、マレイン酸、フマル酸、イタコン酸などの二塩基酸など、種々のカルボン酸に加えて、カルボキシル基に代えて、リン酸基(−O-P(O)(OH)2)あるいは、スルホ基(−SO3H)を有する、リン酸エステル、スルホン酸などのその他の有機酸を挙げることができる。
【0031】
好適に利用できる有機の酸無水物またはその誘導体として、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水ベンゾフェノンテトラカルボン酸、エチレングリコールビス(アンヒドロトリメリテート)、グリセロールトリス(アンヒドロトリメリテート)などの芳香族酸無水物、無水マレイン酸、無水コハク酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、アルケニル無水コハク酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルシクロヘキセンテトラカルボン酸無水物などの環状脂肪族酸無水物、ポリアジピン酸無水物、ポリアゼライン酸無水物、ポリセバシン酸無水物などの脂肪族酸無水物を挙げることができる。この中でも、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、およびこれらの誘導体は、本発明が目的とする比較的に低い加熱温度においても、アミン化合物の末端アミノ基に対して適度な反応性を有することから好適に用いられる。
【0032】
金属コロイド分散液中に、付加的に添加する酸無水物またはその誘導体の総量は、それとの反応にあずかるアミン化合物の含有量に応じて選択するとよい。例えば、上に例示するような酸無水物またはその誘導体は、加熱硬化の際、金属表面を被覆する付着層として利用している末端アミノ基を有するアミン化合物、例えば、アルキルアミンやポリオキシアルキレンアミンと反応し、アミドを形成するために利用される。従って、酸無水物またはその誘導体の含有量は、用いる末端アミノ基を有するアミン化合物、例えば、アルキルアミンならびにポリオキシアルキレンアミンの種類と、その含有量に応じて適宜選択される。具体的には、例えば、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、およびこれらの誘導体のような二塩基酸由来の酸無水物または酸無水物誘導体を用いる際、その含有量(モル数)は、前記末端アミノ基を有するアミン化合物、例えば、アルキルアミンならびにポリオキシアルキレンアミンに由来するアミノ基の総和(モル数)の1/2よりも過剰な量を選択することが望ましい。ただし、二塩基酸由来の酸無水物または酸無水物誘導体の含有量(モル数)は、前記末端アミノ基を有するアミン化合物、例えば、アルキルアミンならびにポリオキシアルキレンアミンに由来するアミノ基の総和(モル数)の5倍を超えない範囲に留めることが好ましい。なお、有機の酸無水物またはその誘導体ではなく、有機酸を用いる際には、カルボキシル基や、リン酸基(−O-P(O)(OH)2)あるいは、スルホ基(−SO3H)の二つが、二塩基酸由来の酸無水物1分子に相当するとして、その添加量を前記の範囲に選択するとよい。
【0033】
本発明の接合方法で利用される金属コロイド分散液は、予めその表面に酸化被膜を持たない金属超微粒子の表面に、その金属微粒子に含まれる金属原子と配位的な結合が可能な末端アミノ基を1以上有するアミン化合物一種以上により被覆された状態において、金属コロイド状に有機溶媒中に均一に分散したものとする。また、前記する酸無水物またはその誘導体を付加的に添加する際には、予めアミン化合物による被覆層を形成した金属コロイドを分散した液に、所定の添加量の酸無水物またはその誘導体などを溶解して、目的の組成とすることが望ましい。また、金属コロイド分散液に含有される有機溶媒の量は、それを塗布する際に最適な粘度となるように選択することが望ましい。すなわち、塗布されるバルク金属表面の状態、塗布の方法に応じて、適正な液粘度となるように、使用する際、適量の有機溶媒を加えて希釈する、あるいは、余剰の有機溶媒を減圧下蒸散により除去することもできる。なお、接合を目的とするバルク金属への塗布は、ディスペンス印刷、スクリーン印刷、ドット状の印刷などが用いられる。
【0034】
接合を目的とするバルク金属表面間の間隙に塗布後、前記金属コロイド分散液に含有される有機溶媒を部分的に蒸散させ、その後、金属超微粒子の融着を行う加熱処理を施す際、バルク金属表面に対する金属超微粒子の付着、金属超微粒子相互の集積がなされた状態とする。次いで、所定の加熱処理温度まで加熱し、金属超微粒子表面を被覆するアミン化合物層を排除し、金属超微粒子表面における拡散を可能とし、融着を起こさせる。
【0035】
この加熱処理の温度は、超微粒子を構成する金属と、接合すべきバルク金属を構成する金属の一つとからなる合金の融解温度よりも低く、金属コロイド分散液に含有される有機溶媒の沸点以上の範囲に選択される温度とする。すなわち、少なくとも、加熱処理が終了する時点では、金属超微粒子層の内部に浸漬している有機溶媒も除去するため、その沸点以上とする。一方、融着に続き、その界面部において、合金化が進行することを避けるため、超微粒子を構成する金属と、接合すべきバルク金属を構成する金属の一つとからなる合金の融解温度よりも低く設定する。利用される超微粒子を構成する金属の種類、その平均粒子径に応じて、表面における金属原子の拡散速度は変化するものの、通常、前記加熱処理の温度は、180℃〜350℃の範囲に選択することが好ましい。なお、現在、その利用が進みつつある鉛フリー・ハンダ材を用いる際、そのリフロー温度は、270℃程度であり、それと比較できる程度に低い温度で、金属間の接合ができている。
【0036】
なお、本発明の接合方法は、接合すべきバルク金属表面が双方ともに平面な場合のみでなく、例えば、平均粒子径が1000nmを超える金属粒子相互の接点における金属間の接合など、利用するロウ付け材の金属超微粒子と比較した際、桁違いに大きな粒子相互の接合にも利用できる。従って、上記の金属コロイド分散液中に、平均粒子径が1000nmを超える金属粒子をも加えたものを利用し、それを接合すべきバルク金属表面に塗布し、バルク金属表面と金属粒子表面との間隙を、金属超微粒子を利用して接合する態様とすることもできる。また、金属粒子相互の接合も、その間隙に充填される金属超微粒子を利用して接合される。
【0037】
なお、前記金属コロイド分散液に含有される極めて粒子径の小さな金属微粒子、少なくとも、平均粒子径が100nm以下である金属微粒子の製造方法の一つとして、特開平3−34211号公報には、ガス中蒸発法を用いて調製される10nm以下の金属微粒子をコロイド状に分散したものとその製造方法が開示されている。また、特開平11-319538号公報などには、還元にアミン化合物を用いる還元析出法を利用して、平均粒子径が数nm〜数10nm程度の金属微粒子をコロイド状に分散したものとその製造方法が開示されている。これらの手法で調製される平均粒子径が100nm以下である金属微粒子から、目的とする平均粒子径のものを用いるとよい。
【0038】
【実施例】
以下に、具体例を挙げて、本発明をより具体的に説明する。なお、下記する実施例は、本発明の最良の実施の形態の一例ではあるものの、本発明は、かかる実施例に記載する形態に限定されるものではない。
【0039】
(実施例1)
平均粒子径10nm以下の銀微粒子を含有する金属コロイド分散液として、市販される銀固形分30質量%の金属コロイド溶液(パーフェクトシルバー、真空冶金(株)製)を利用した。その具体的な組成は、銀微粒子100質量部、アルキルアミンとして、ドデシルアミン15質量部、有機溶剤として、ターピネオール75質量部を含む、平均粒子径8nmの銀微粒子の分散液である。この金属コロイド溶液100質量部に対して、10質量部のメチルヘキサヒドロ無水フタル酸を添加し攪拌脱泡機で十分に攪拌する。
【0040】
この酸無水物を添加した金属コロイド分散液を、銅張り積層板に数滴塗布し、塗布した分散液層中に直径20μmの銅線を置き、150℃で30min予備乾燥させた。その後、電気炉にて300℃で1時間加熱した。
【0041】
銅張り積層板上、金属コロイドの分散液を滴下した部分を詳細に観察したところ、含有されていた銀微粒子は、緻密な層となり、メタル状に硬化していた。また、銅張り積層板と銅線との間は、前記のメタル状に硬化した銀微粒子の緻密な層を介して、強固に接合されていることが確認された。
【0042】
なお、接合された銅線の先から銅張り積層板の抵抗値は、20mΩであり、前記メタル状に硬化した銀微粒子の緻密な層を介して、良好なハンダ付けを行った際の電気的導通性能と遜色のないことも確認された。
【0043】
(参考例1)
銀固形分30質量%の金属コロイド溶液(パーフェクトシルバー、真空冶金(株)製)を銅張り積層板に数滴塗布し、塗布した分散液層中に直径20μmの銅線を置き、150℃で30min予備乾燥させた。その後、電気炉にて250℃で1時間加熱した。
【0044】
銅張り積層板上、金属コロイドの分散液を滴下した部分を詳細に観察したところ、含有されていた銀微粒子は、緻密な層となり、メタル状に固着していた。また、銅張り積層板と銅線との間は、前記の銀微粒子の緻密な層を介して、接合されていることが確認された。なお、接合された銅線の先から銅張り積層板の抵抗値は、250mΩであり、酸無水物を添加した金属コロイド分散液を用いた実施例1の抵抗値には及ばないものの、十分な電気的な導通が達成されていた。
【0045】
(実施例2)
平均粒子径10nm以下の銀微粒子を含有する金属コロイド分散液として、市販される銀固形分30%の金属コロイド溶液(パーフェクトシルバー、真空冶金(株)製)を利用した。この金属コロイド溶液100質量部に対して、10質量部のメチルヘキサヒドロ無水フタル酸を添加し攪拌脱泡機で十分に攪拌する。
【0046】
次いで、調製された酸無水物を添加した金属コロイド分散液を利用して、電解銅粉5g(平均粒子径5μm)とこの酸無水物を添加した金属コロイド分散液3gの比率で混合して、攪拌脱泡機で十分に攪拌する。
【0047】
ペースト状になった混合物を、ガラス板上に長さ1cm×幅5cm、膜厚100μmで塗布し、150℃で30min予備乾燥させた。その後、250℃で1時間加熱した。塗布したペースト状の混合物の層は、ガラス板上において、一体化した硬化物となっていた。ガラス板との接着はなく剥離でき、電解銅粉の表面、ならびにその粉体間に、銀微粒子による接合、被覆層により一体化されている、均一で弾性のある金属板状となっていた。この弾性のある金属板状を用いて比抵抗を測定したところ、比抵抗は5×10-5Ω・cmであった。
【0048】
(参考例2)
銀固形分30質量%の金属コロイド溶液(パーフェクトシルバー、真空冶金(株)製)を利用して、電解銅粉5g(平均粒子径5μm)とこの金属コロイド分散液3gの比率で混合して、攪拌脱泡機で十分に攪拌する。
【0049】
ペースト状になった混合物を、ガラス板上に長さ1cm×幅5cm、膜厚100μmで塗布し、150℃で30min予備乾燥させた。その後、250℃で1時間加熱した。塗布したペースト状の混合物の層は、ガラス板上において、一体化した硬化物となっていた。ガラス板との接着はなく剥離でき、電解銅粉の表面、ならびにその粉体間に、銀微粒子による接合、被覆層により一体化されている、金属板状となっていた。この金属板状を用いて比抵抗を測定したところ、比抵抗は4×10-4Ω・cmであった。ペーストの調製に酸無水物を添加した金属コロイド分散液を利用した実施例2の比抵抗には及ばないものの、十分な電気的な導通が達成されていた。
【0050】
(参考例3)
参考例2に記載するペースト状になった混合物を、ガラス板上に長さ1cm×幅5cm、膜厚100μmで塗布し、250℃で1時間加熱した。塗布したペースト状の混合物の層は、ガラス板上において、一体化した硬化物となっていた。
【0051】
実施例2と同様に、この硬化物も均一で弾性のある金属板状であり、その比抵抗は7×10-4Ω・cmであった。ペーストの調製に酸無水物を添加した金属コロイド分散液を利用した実施例2の比抵抗には及ばないものの、十分な電気的な導通が達成されていた。
【0052】
(参照例1)
電解銅粉(平均粒子径5μm)をトルエンに分散したものを、ガラス板上に長さ1cm×幅5cm、膜厚100μmで塗布し、150℃で30min予備乾燥させた。その後、250℃で1時間加熱した。一応、ガラス板上に塗布された電解銅粉の層は、その外形を保つ硬化物とはなっていた。しかしながら、この硬化物は脆く崩れ易く、その比抵抗の測定は不可能であった。
【0053】
【発明の効果】
本発明の金属間のロウ付け接合方法では、ロウ付け材として、平均粒子径100nm以下の金属超微粒子、例えば、貴金属もしくは銅の超微粒子を利用し、その粒子表面を末端アミノ基を有するアミン化合物により被覆され、有機溶媒中に均一に分散されてなる金属コロイド分散液として、接合すべきバルク金属面間の間隙に塗布・充填し、好ましくは、加熱した際、末端アミノ基を有するアミン化合物と反応できる酸無水物などを適量分散液に添加しておき、その状態で有機溶媒を蒸散させる予備加熱、その後、ハンダ付け温度と同程度まで加熱して、バルク金属表面と前記超微粒子との接触界面における相互拡散融着、ならびに、超微粒子間の融着を行って接合層を形成するので、ハンダ付けのように熔融したハンダ合金を用いた際に散見される接合界面における剥離やひびの発生がない。また、接合に用いるロウ付け材は、鉛以外の種々の金属、例えば、導電性に優れる貴金属もしくは銅の超微粒子を利用しているので、鉛フリーハンダと同様に、電子部品の組み立てに伴う鉛の廃棄物を生まない手段となる。さらに、本質的にフラックス剤を利用しない手段であり、電子部品に応用した際、事後の残フラックスの洗浄除去を必要とせず、また、残フラックスに由来する故障要因を排除できる。

Claims (7)

  1. バルク金属の相互間をロウ付け接合する方法であって、
    ロウ付け材として、平均粒子径1〜100nmの金属超微粒子を、その超微粒子の表面が、かかる超微粒子を構成する金属に対して配位的結合可能な末端アミノ基を有するアミン化合物一種以上により被覆され、前記金属超微粒子100質量部当たり、前記アミン化合物一種以上が、その総和として0.1〜60質量部の範囲で含有されており、有機溶媒中に均一に分散されてなる金属コロイド状として含有してなる金属コロイド分散液を用い、
    該金属コロイド分散液は、さらに、前記有機溶媒中に前記末端アミノ基を有するアミン化合物と加熱時に反応可能な有機の酸無水物が添加されてなる分散液であり、
    接合すべきバルク金属の対向する面間の間隙に前記金属コロイド分散液を塗布・充填し、
    前記超微粒子を構成する金属と、接合すべきバルク金属を構成する金属の一つとからなる合金の融解温度よりも低く、前記有機溶媒の沸点以上の範囲に選択される温度に加熱して、
    接合すべき前記バルク金属表面と前記超微粒子との接触界面における相互拡散融着、ならびに、前記間隙間に充填されている超微粒子間の融着を行い接合層を形成することを特徴とする金属間のロウ付け接合方法。
  2. ロウ付け材として用いる前記金属コロイド分散液が、前記有機溶媒中に前記末端アミノ基を有するアミン化合物と加熱時に反応可能な有機の酸無水物として、二塩基酸由来の酸無水物が添加されてなる分散液であることを特徴とする請求項1に記載の金属間のロウ付け接合方法。
  3. 金属間の接合形成を行う加熱温度を、180℃〜350℃の範囲に選択することを特徴とする請求項1または2に記載の金属間のロウ付け接合方法。
  4. 金属コロイド分散液に含有される超微粒子を構成する金属と、接合すべき対向したバルク金属面を構成する金属とは、ともにその種類が異っていることを特徴とする請求項1〜3のいずれか一項に記載の金属間のロウ付け接合方法。
  5. 金属コロイド分散液に添加される有機の酸無水物の量は、含有される前記末端アミノ基を有するアミノ化合物のアミノ基の総和に対して、末端アミノ基1つ当たり、有機の酸無水物に存在する酸基の総和が、有機の酸無水物に換算して0.5〜5分子となる比率範囲に選択されていることを特徴とする請求項1〜4のいずれか一項に記載の金属間のロウ付け接合方法。
  6. 前記金属超微粒子を構成する金属は、銅または貴金属であることを特徴とする請求項1〜5のいずれか一項に記載の金属間のロウ付け接合方法。
  7. 前記末端アミノ基を有するアミン化合物は、アルキルアミンまたはポリオキシアルキレンアミンであることを特徴とする請求項1〜6のいずれか一項に記載の金属間のロウ付け接合方法。
JP2000325415A 2000-10-25 2000-10-25 金属間のロウ付け接合方法 Expired - Lifetime JP3942816B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000325415A JP3942816B2 (ja) 2000-10-25 2000-10-25 金属間のロウ付け接合方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000325415A JP3942816B2 (ja) 2000-10-25 2000-10-25 金属間のロウ付け接合方法

Publications (2)

Publication Number Publication Date
JP2002126869A JP2002126869A (ja) 2002-05-08
JP3942816B2 true JP3942816B2 (ja) 2007-07-11

Family

ID=18802787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000325415A Expired - Lifetime JP3942816B2 (ja) 2000-10-25 2000-10-25 金属間のロウ付け接合方法

Country Status (1)

Country Link
JP (1) JP3942816B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175417A1 (ja) 2013-04-26 2014-10-30 Dowaエレクトロニクス株式会社 金属ナノ粒子分散体、金属ナノ粒子分散体の製造方法および接合方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3711953B2 (ja) * 2002-03-15 2005-11-02 株式会社デンソー ガスセンサ用センシング膜の製造方法
KR20020061584A (ko) * 2002-07-09 2002-07-24 나노기술개발(주) 나노크기의 분말들을 이용한 세라믹과 금속간의 저온 브레이징 접합 방법
JP2004146695A (ja) * 2002-10-25 2004-05-20 Ebara Corp 金属化装置
JP2004130371A (ja) * 2002-10-11 2004-04-30 Ebara Corp 接合体
JP2004107728A (ja) * 2002-09-18 2004-04-08 Ebara Corp 接合材料及び接合方法
US20040245648A1 (en) * 2002-09-18 2004-12-09 Hiroshi Nagasawa Bonding material and bonding method
JP4110961B2 (ja) * 2002-12-24 2008-07-02 株式会社デンソー ガスセンサ用ガス感応膜の製造方法
JP2004276232A (ja) * 2003-02-24 2004-10-07 Mitsubishi Electric Corp カーボンナノチューブ分散液およびその製造方法
EP1640338B1 (en) 2003-06-10 2011-11-02 Asahi Glass Company, Limited Method for producing metal hydride fine particle, liquid dispersion containing metal hydride fine particle, and metallic material
JP4069867B2 (ja) * 2004-01-05 2008-04-02 セイコーエプソン株式会社 部材の接合方法
JP3997991B2 (ja) * 2004-01-14 2007-10-24 セイコーエプソン株式会社 電子装置
JP2005205696A (ja) * 2004-01-21 2005-08-04 Ebara Corp 接合用品
JP4484544B2 (ja) * 2004-02-25 2010-06-16 京セラ株式会社 高周波モジュールの製造方法
EP1724789B1 (en) 2004-03-10 2010-12-22 Asahi Glass Company, Limited Metal-containing fine particle, liquid dispersion of metal-containing fine particle, and conductive metal-containing material
JP4378239B2 (ja) 2004-07-29 2009-12-02 株式会社日立製作所 半導体装置及びそれを使用した電力変換装置並びにこの電力変換装置を用いたハイブリッド自動車。
JP2006073550A (ja) * 2004-08-31 2006-03-16 Toshiba Corp 接合部材およびその製造方法
JP4815800B2 (ja) * 2004-12-28 2011-11-16 株式会社大真空 圧電振動デバイス
EP1876604B1 (en) 2005-04-12 2011-02-09 Asahi Glass Company Ltd. Ink composition and metallic material
JP2007321215A (ja) * 2006-06-02 2007-12-13 Nippon Shokubai Co Ltd 金属ナノ粒子分散体および金属被膜
EP2048205A4 (en) 2006-07-28 2010-07-21 Asahi Glass Co Ltd DISPERSION CONTAINING FINE METALLIC PARTICLES, METHOD FOR PRODUCING THE DISPERSION AND ARTICLES HAVING METALLIC FILMS
US8555491B2 (en) 2007-07-19 2013-10-15 Alpha Metals, Inc. Methods of attaching a die to a substrate
JP5502434B2 (ja) * 2008-11-26 2014-05-28 三ツ星ベルト株式会社 無機素材用接合剤及び無機素材の接合体
JP5237143B2 (ja) * 2009-02-06 2013-07-17 田淵電機株式会社 電線接続用の端子、電線接続構造および電線と端子の接続方法
KR102158290B1 (ko) * 2010-11-22 2020-09-21 도와 일렉트로닉스 가부시키가이샤 접합재료, 접합체, 및 접합방법
EP3151270B1 (en) * 2014-05-27 2022-06-01 Denka Company Limited Semiconductor package and method for manufacturing same
WO2017007011A1 (ja) 2015-07-09 2017-01-12 古河電気工業株式会社 金属微粒子含有組成物
JP7011892B2 (ja) * 2015-11-17 2022-02-10 積水化学工業株式会社 はんだ接合材料及び接続構造体の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175417A1 (ja) 2013-04-26 2014-10-30 Dowaエレクトロニクス株式会社 金属ナノ粒子分散体、金属ナノ粒子分散体の製造方法および接合方法
US9662748B2 (en) 2013-04-26 2017-05-30 Dowa Electronics Materials Co., Ltd. Metal nanoparticle dispersion, method for producing metal nanoparticle dispersion, and bonding method

Also Published As

Publication number Publication date
JP2002126869A (ja) 2002-05-08

Similar Documents

Publication Publication Date Title
JP3942816B2 (ja) 金属間のロウ付け接合方法
JP3764349B2 (ja) 金属微粒子分散液を用いたメッキ代替導電性金属皮膜の形成方法
JP5811314B2 (ja) 金属ナノ粒子ペースト、並びに金属ナノ粒子ペーストを用いた電子部品接合体、ledモジュール及びプリント配線板の回路形成方法
CN102687603B (zh) 导电连接材料、电子部件的生产方法以及具有导电连接材料的电子构件和电子部件
TW200803666A (en) Components joining method and components joining structure
WO2008016140A1 (en) Bonding material, bonded portion and circuit board
TWI505898B (zh) A bonding method, a bonding structure, and a method for manufacturing the same
JP5462984B1 (ja) 導電ペースト、硬化物、電極、及び電子デバイス
JP2009006337A (ja) 超微細ハンダ組成物
Yim et al. Characteristics of solderable electrically conductive adhesives (ECAs) for electronic packaging
JP2011147982A (ja) はんだ、電子部品、及び電子部品の製造方法
JP4142680B2 (ja) はんだバンプ形成方法
TW201934704A (zh) 焊料粒子、導電材料、焊料粒子之保管方法、導電材料之保管方法、導電材料之製造方法、連接構造體及連接構造體之製造方法
TW201934703A (zh) 焊料粒子、導電材料、焊料粒子之保管方法、導電材料之保管方法、導電材料之製造方法、連接構造體及連接構造體之製造方法
JP2013110403A (ja) リフローフィルム、はんだバンプ形成方法、はんだ接合の形成方法及び半導体装置
JP2003290974A (ja) 電子回路装置の接合構造及びそれに用いる電子部品
JP2006265484A (ja) 接着性樹脂組成物及び電子装置
JP4112546B2 (ja) 鉛フリー接合材の製造方法
JP2004071467A (ja) 接続材料
JP4106447B2 (ja) 導電性金ペーストを用いた無電解金メッキ代替導電性金皮膜の形成方法
JP5579996B2 (ja) はんだ接合方法
TW201607992A (zh) 助焊劑組成物
JP2001284785A (ja) 電気又は電子部品及び電気又は電子組立体
JP6071161B2 (ja) はんだ付け用フラックスおよびそれを用いたはんだペースト組成物
JP3596445B2 (ja) 半田接合方法ならびに実装構造

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040712

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3942816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term