JP2002034145A - Transmission line protection device - Google Patents

Transmission line protection device

Info

Publication number
JP2002034145A
JP2002034145A JP2000217009A JP2000217009A JP2002034145A JP 2002034145 A JP2002034145 A JP 2002034145A JP 2000217009 A JP2000217009 A JP 2000217009A JP 2000217009 A JP2000217009 A JP 2000217009A JP 2002034145 A JP2002034145 A JP 2002034145A
Authority
JP
Japan
Prior art keywords
zero
current
phase
transmission line
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000217009A
Other languages
Japanese (ja)
Other versions
JP3942137B2 (en
Inventor
Takahisa Abe
高久 阿部
Masahiro Ito
正弘 伊藤
Masao Hori
政夫 堀
Michihiko Inukai
道彦 犬飼
Shigeru Sato
茂 佐藤
Hidemasa Sugiura
秀昌 杉浦
Koji Hanzawa
弘司 半沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Chubu Electric Power Co Inc
Original Assignee
Toshiba Corp
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Chubu Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP2000217009A priority Critical patent/JP3942137B2/en
Publication of JP2002034145A publication Critical patent/JP2002034145A/en
Application granted granted Critical
Publication of JP3942137B2 publication Critical patent/JP3942137B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent degradation in ground fault detection sensitivity in a system with large zero-phase circulating current. SOLUTION: The transmission line protection device uses a current differential relay that identifies any section of ground fault in a power system based on the quantities of electricity of a plurality of specified terminals of two parallel transmission lines. The transmission line protection device is provided with a ground fault detecting means that detects any internal ground fault in the two parallel lines as a whole, a difference current comparing means that compares the magnitude of zero-phase difference current calculated for each of the two parallel lines with the magnitude of zero-phase difference current calculated for the two parallel lines as a whole to detect any ground fault line, and a logic circuit means that opens the circuit breaker in the faulty circuit based on the logical conjunction of the output of the ground fault detecting means and the output of the zero-phase difference current comparing means.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、零相循環電流の存
在する並行2回線系統に適用するのに好適な送電線保護
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transmission line protection device suitable for use in a parallel two-line system having a zero-phase circulating current.

【0002】[0002]

【従来の技術】並行多回線の電力系統においては、系統
の各相事故インピーダンスの不平衡により、事故時以外
でも常時、零相循環電流が存在する。この零相循環電流
が事故電流に比べて無視できない場合、特に高抵抗接地
系においては、保護リレーの検出感度に影響が及び、高
速度・高感度の保護が不可能になりかねない。
2. Description of the Related Art In a parallel multi-line power system, a zero-phase circulating current is always present even at times other than the time of an accident due to the imbalance of the fault impedance of each phase of the system. If this zero-phase circulating current is not negligible compared to the fault current, particularly in a high resistance grounding system, the detection sensitivity of the protection relay may be affected, and high speed and high sensitivity protection may not be possible.

【0003】一般に、送電線の保護リレー方式の内で主
保護として使用される電流差動継電装置では、保護回線
内の地絡故障を検出するために比率特性を持った零相差
電流リレーを用いるが、零相循環電流が増大すると比率
特性上において抑制量が大きくなって、地絡故障検出感
度が低下する。特に零相循環電流が大きい場合は保護リ
レーとして電流差動継電装置を系統に適用できなくな
る。
In general, a current differential relay used as main protection in a transmission line protection relay system uses a zero-phase difference current relay having a ratio characteristic to detect a ground fault in a protection line. However, when the zero-phase circulating current increases, the suppression amount increases in the ratio characteristic, and the ground fault detection sensitivity decreases. In particular, when the zero-phase circulating current is large, the current differential relay cannot be applied to the system as a protection relay.

【0004】以上のことを図を参照しながら説明する。
図8は並行2回線の系統構成例を示すものである。図8
において、母線1aと母線1bとの間に、両端に遮断器
2a,2bを有する第1の送電線4aと、両端に遮断器
2c,2dを有する第2の送電線4bとが並行2回線を
構成するように設けられている。母線1aと1bには、
送電線4aを流れる零相電流が、夫々電流変成器(以
下、CTと称す)3a,3bによって検出される。
The above is described with reference to the drawings.
FIG. 8 shows a system configuration example of two parallel lines. FIG.
, A first transmission line 4a having circuit breakers 2a and 2b at both ends and a second transmission line 4b having circuit breakers 2c and 2d at both ends between the bus 1a and the bus 1b. It is provided to make up. In buses 1a and 1b,
Zero-phase currents flowing through the transmission line 4a are detected by current transformers (hereinafter referred to as CT) 3a and 3b, respectively.

【0005】第1の送電線のF点で1線地絡故障があっ
た場合、差電流リレー5aでは、CT3aで検出された
零相電流(Io3a)とCT3bで検出された零相電流
(Io3b)とから、動作量としてIo3aとIo3b
のベクトル和として得られる零相差電流の絶対値(|I
od|)と、抑制量としてIo3aとIo3bのスカラ
ー和(Σ|Io|)を算出する。
When there is a single-line ground fault at point F of the first transmission line, the differential current relay 5a uses the zero-phase current (Io3a) detected by CT3a and the zero-phase current (Io3b) detected by CT3b. ), The operation amounts Io3a and Io3b
The absolute value of the zero-phase difference current (| I
od |) and the scalar sum (Σ | Io |) of Io3a and Io3b as the suppression amount.

【0006】差電流リレー5aは、零相差電流(Io
d)と各CTで検出された零相電流のスカラー和(Σ|
Io|)が下記(1)式に示す関係を満たし、電流ベク
トルと電圧ベクトルの位相関係が保護対象系統の内部方
向を示すと動作し、遮断器2a,2bの遮断を可能とす
る。
The differential current relay 5a has a zero-phase differential current (Io
d) and the scalar sum of the zero-phase current detected by each CT (Σ |
Io |) satisfies the relationship shown in the following equation (1), and operates when the phase relationship between the current vector and the voltage vector indicates the internal direction of the protection target system, thereby enabling the breakers 2a and 2b to be cut off.

【数1】 |Iod|≧a・Σ|Io|+(1−1/a)b ………(1)| Iod | ≧ a · Σ | Io | + (1-1 / a) b (1)

【0007】図9は差電流リレーの比率特性例を示すも
のである。図の特性において、零相差電流の絶対値(|
Iod|)を縦軸とし、CT3aで検出された零相電流
(Io3a)とCT3bで検出された零相電流(Io3
b)のスカラー和(Σ|Io|)を横軸としている。
(1)式にあるaは比率特性の傾きとして表され、bは
縦軸と交わる切片として表される。本比率特性において
(1)式を満たす動作域cは、比率特性上の斜線よりも
上の部分となる。又、不動作域dは、比率特性上の斜線
より下の部分となる。
FIG. 9 shows an example of a ratio characteristic of a differential current relay. In the characteristics shown in the figure, the absolute value of the zero-phase difference current (|
Iod |) on the vertical axis, the zero-phase current (Io3a) detected by CT3a and the zero-phase current (Io3) detected by CT3b.
The horizontal axis is the scalar sum (Σ | Io |) of b).
In the equation (1), a is expressed as a slope of the ratio characteristic, and b is expressed as an intercept intersecting the vertical axis. In this ratio characteristic, the operation range c that satisfies the expression (1) is a portion above the oblique line on the ratio characteristic. Further, the non-operation area d is a portion below the oblique line on the ratio characteristic.

【0008】図10は零相循環電流(Ico)が存在す
る系統において、第1の送電線4aのF点で1線地絡事
故が発生した場合を示すものである。零相循環電流(I
co)だけが系統に流れているときに、CT3a,CT
3bで検出される電流をIco3a,Ico3bとする
と、図示した場合において差電流リレー5aが取り込む
電気量は、1a端子において故障電流Io3aと零相循
環電流Ico3aのベクトル和Ioaとなり、1b端子
においては故障電流Io3bと零相循環電流Ico3b
のベクトルの差Iobとなる。
FIG. 10 shows a case where a single-line ground fault has occurred at point F of the first transmission line 4a in a system in which a zero-phase circulating current (Ico) exists. Zero-phase circulating current (I
co) flows into the system, CT3a, CT3a
Assuming that the currents detected at 3b are Ico3a and Ico3b, the amount of electricity taken in by the difference current relay 5a in the case shown in the figure becomes the vector sum Ioa of the fault current Io3a and the zero-phase circulating current Ico3a at the terminal 1a, and the fault at the terminal 1b. Current Io3b and zero-phase circulating current Ico3b
Is the difference Iob between the vectors.

【0009】図11は零相循環電流(Ico)が存在す
る系統に適用された差電流リレー5aに取り込まれる電
気量のベクトル図である。零相循環電流は地絡事故によ
る故障電流とランダムな位相に発生する。例として90
度方向に零相循環電流の位相があったものとすると、C
T3a,CT3bで検出する零相電流ベクトルのIoa
及びIobの大きさは、CT3aで検出する故障電流ベ
クトルをIo3a,CT3bで検出する故障電流ベクト
ルをIo3b,CT3bで検出する零相循環電流ベクト
ルを(−Ico3b)とすると(2)式,(3)式で表
される。
FIG. 11 is a vector diagram of the quantity of electricity taken into the differential current relay 5a applied to the system in which the zero-phase circulating current (Ico) exists. Zero-phase circulating current is generated at random phase with fault current due to ground fault. 90 as an example
If there is a phase of the zero-phase circulating current in the degree direction, C
Ioa of the zero-phase current vector detected by T3a and CT3b
When the fault current vector detected by CT3a is detected by Io3a and CT3b, the fault current vector detected by CT3a is detected by Io3b and CT3b, and the zero-phase circulating current vector detected by CT3b is expressed by (−Ico3b). ) Expression.

【0010】又、差電流リレー5aの抑制量(Σ|Io
|)はIoaとIobのスカラー和であることから
(4)式で表される。(4)式の結果から、零相循環電
流が存在する系統では、差電流リレー5aの比率特性に
おいて抑制量が大きくなることが分かる。
Also, the amount of suppression of the differential current relay 5a (Σ | Io
|) Is a scalar sum of Ioa and Iob, and is expressed by equation (4). From the result of equation (4), it can be seen that in a system in which a zero-phase circulating current exists, the suppression amount increases in the ratio characteristic of the difference current relay 5a.

【0011】[0011]

【数2】 (Equation 2)

【0012】[0012]

【発明が解決しようとする課題】図12は差電流リレー
5aが適用された系統に、零相循環電流(Ico)が存
在しなかった場合と、存在した場合との、比率特性上に
おける差電流(Iod)とCT3aで検出された零相電
流とCT3bで検出された零相電流のスカラー和(Σ|
Io|)の関係の比較である。差電流リレー5aが検出
する差電流(Iod)は零相循環電流の有無に関わらず
一定である。
FIG. 12 shows the difference current in the ratio characteristic between the case where the zero-phase circulating current (Ico) does not exist and the case where the zero-phase circulating current (Ico) exists in the system to which the difference current relay 5a is applied. (Iod), the scalar sum of the zero-phase current detected by CT3a and the zero-phase current detected by CT3b (Σ |
Io |). The difference current (Iod) detected by the difference current relay 5a is constant regardless of the presence or absence of the zero-phase circulating current.

【0013】零相循環電流が無い場合の比率特性上の点
を6aとし、零相循環電流が存在する場合の比率特性上
の点を6bとする。CT3aで検出された零相電流とC
T3bで検出された零相電流のスカラー和(Σ|Io
|)は、(4)式の結果から零相循環電流(Ico)が
存在すると大きくなるため、6bは6aを横軸方向に移
動させた点となる。このため、差電流リレー5aの地絡
故障感度が低下し、零相循環電流の大きさによっては、
差電流リレー5aが不動作になる問題がある。
A point on the ratio characteristic when there is no zero-phase circulating current is 6a, and a point on the ratio characteristic when there is a zero-phase circulating current is 6b. Zero-phase current detected by CT3a and C
Scalar sum of zero-sequence current detected at T3b (I | Io
|) Becomes larger when the zero-phase circulating current (Ico) is present from the result of equation (4), so that 6b is a point where 6a is moved in the horizontal axis direction. For this reason, the ground fault fault sensitivity of the differential current relay 5a decreases, and depending on the magnitude of the zero-phase circulating current,
There is a problem that the differential current relay 5a becomes inoperative.

【0014】本発明は上記課題を解決するためになされ
たものであり、構成簡単にして零相循環電流の大きい系
統における地絡事故検出感度低下を排除することの可能
な送電線保護装置を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and provides a transmission line protection device capable of simplifying the configuration and eliminating a decrease in ground fault detection sensitivity in a system having a large zero-phase circulating current. It is intended to be.

【0015】[0015]

【課題を解決するための手段】本発明の[請求項1]に
係る送電線保護装置は、並行2回線送電線の所定の複数
端子の電気量により、電力系統の地絡事故区間を判別す
る電流差動リレーを用いた送電線保護装置において、前
記並行2回線一括で内部地絡を検出する地絡検出手段
と、前記並行2回線において回線毎に算出した零相差電
流の大きさと前記2回線一括で算出した零相差電流の大
きさとを比較して地絡事故回線を検出する差電流比較手
段と、前記2回線一括地絡検出手段及び零相差電流比較
手段の出力をアンド条件として故障回線の遮断器を開路
させる論理回路手段とを備えた。
According to a first aspect of the present invention, a transmission line protection device determines a ground fault accident section of a power system based on the amount of electricity at predetermined terminals of a parallel two-line transmission line. In a transmission line protection device using a current differential relay, a ground fault detecting means for detecting an internal ground fault in the two parallel lines at once, a magnitude of a zero-phase difference current calculated for each line in the two parallel lines, and the two lines A difference current comparison means for comparing the magnitude of the zero-phase difference current calculated at a time with the magnitude of the zero-phase difference current to detect a ground fault fault line; and Logic circuit means for opening the circuit breaker.

【0016】本発明の[請求項2]に係る送電線保護装
置は、前記並行2回線送電線の所定の複数端子の電気量
により、電力系統の地絡事故区間を判別する送電線保護
装置において、前記並行2回線一括の各電気量から抑制
量を生成すると共に、前記回線毎の各電気量から生成し
た動作量を生成する電流差動リレーを備えた。
A transmission line protection device according to claim 2 of the present invention is a transmission line protection device for determining a ground fault section of an electric power system based on an amount of electricity at predetermined terminals of the parallel two-line transmission line. And a current differential relay for generating a suppression amount from each electric quantity of the parallel two lines and generating an operation amount generated from each electric quantity for each line.

【0017】本発明の[請求項3]に係る送電線保護装
置は、[請求項1]又は[請求項2]において、前記回
線毎の零相差電流の大きさと位相から電力系統の事故区
間を判別する手段と、前記並行2回線の遮断器及び断路
器の開閉状態から各回線の運用状態を判別する論理回路
手段とを備え、前記回線運用状態によって使用する保護
手段を切り替えるように構成した。
In the transmission line protection device according to the third aspect of the present invention, in the first or second aspect, the fault section of the power system is determined based on the magnitude and phase of the zero-phase difference current for each line. It is provided with means for determining, and logic circuit means for determining the operation state of each line from the open / closed state of the circuit breaker and disconnector of the two parallel lines, and the protection means to be used is switched according to the line operation state.

【0018】本発明の[請求項4]に係る送電線保護装
置は、[請求項1]又は[請求項2]において、前記回
線毎の零相差電流の大きさと位相から電力系統の事故区
間を判別する手段と、前記系統の電気量から零相循環電
流の大きさを算出する手段と、前記零相循環電流の大き
さによって使用する保護方式を切り替える論理回路手段
とを備えた。
According to a fourth aspect of the present invention, in the transmission line protection device according to the first or second aspect, the fault section of the power system is determined based on the magnitude and phase of the zero-phase difference current for each line. Means for determining the magnitude of the zero-phase circulating current from the amount of electricity in the system; and logic circuit means for switching a protection method to be used depending on the magnitude of the zero-phase circulating current.

【0019】[0019]

【発明の実施の形態】(第1の実施の形態)([請求項
1]に対応) 図1は並行2回線の系統構成例を示す。図1において、
母線1aと母線1bとの間に、両端に遮断器2a,2b
を有する第1の送電線4aと、両端に2c,2dを有す
る第2の送電線4bとが並行2回線を構成するように設
けられている。母線1aと1bにおいては、第1の送電
線4aを流れる零相電流が、夫々CT3a,CT3bに
よって検出される。又、第2の送電線4bを流れる零相
電流は、夫々CT3c,CT3dによって検出される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) (corresponding to [Claim 1]) FIG. 1 shows an example of a system configuration of two parallel lines. In FIG.
Between the bus 1a and the bus 1b, circuit breakers 2a, 2b are provided at both ends.
And a second power transmission line 4b having 2c and 2d at both ends are provided so as to form two parallel circuits. In buses 1a and 1b, a zero-phase current flowing through first transmission line 4a is detected by CT3a and CT3b, respectively. Further, the zero-phase current flowing through the second transmission line 4b is detected by CT3c and CT3d, respectively.

【0020】第1の送電線F点の1線地絡故障を検出す
ると、零相循環電流対策付差電流リレー5に含まれる2
回線一括差電流リレー5aでは、電気量としてCT3
a,CT3b,CT3c,CT3dから夫々検出された
零相電流Io3a,Io3b,Io3c,Io3dを用
いる。
When a one-line ground fault at the point F of the first transmission line is detected, the two
In the line collective difference current relay 5a, CT3
The zero-phase currents Io3a, Io3b, Io3c, and Io3d detected from a, CT3b, CT3c, and CT3d, respectively, are used.

【0021】2回線一括差電流リレーでは、動作量とし
てIo3aとIo3bとIo3cとIo3dをベクトル
和して得られる2回線一括零相差電流(IodT)を用
いる。又、抑制量としてはIo3aとIo3cのベクト
ル和と、Io3bとIo3dのベクトル和を、スカラー
和して得られる2回線一括抑制量(Σ|IoT|)を用
いる。
In the two-line batch difference current relay, a two-line batch zero-phase difference current (IodT) obtained by vector summing Io3a, Io3b, Io3c, and Io3d is used as an operation amount. Further, as the suppression amount, a two-line collective suppression amount (Σ | IoT |) obtained by performing a scalar sum of the vector sum of Io3a and Io3c and the vector sum of Io3b and Io3d is used.

【0022】2回線一括差電流リレーは、2回線一括零
相差電流(IodT)と、2回線一括抑制量(Σ|Io
T|)が(5)式に示した関係を満たすと出力する。
The two-circuit batch differential current relay has a two-circuit batch zero-phase difference current (IodT) and a two-circuit batch suppression amount (Σ | Io).
T |) satisfies the relationship shown in equation (5).

【数3】 |Io3a+Io3b+Io3c+Io3d|≧ a・|(Io3a+Io3c)+(Io3b+Io3d)| +(1−1/a)b ……………………………(5)| Io3a + Io3b + Io3c + Io3d | ≧ a · | (Io3a + Io3c) + (Io3b + Io3d) | + (1-1 / a) b ············ (5)

【0023】又、零相循環電流対策付差電流リレー5に
含まれる差電流比較リレー5bは、第1の送電線4a,
第2の送電線4b夫々の零相差電流(Iod)と、2回
線一括差電流(IodT)を比較する。このため、零相
電流Io3aとIo3bをベクトル和し、第1の送電線
4aの差電流(Ioda)を得る。
A differential current comparison relay 5b included in the differential current relay 5 with a countermeasure against zero-phase circulating current is provided with a first transmission line 4a,
The zero-phase difference current (Iod) of each of the second transmission lines 4b is compared with the two-line collective difference current (IodT). Therefore, the vector sum of the zero-phase currents Io3a and Io3b is obtained to obtain a difference current (Ioda) of the first transmission line 4a.

【0024】差電流比較リレー5bは、第1の送電線4
aの差電流(Ioda)の大きさが2回線一括差電流
(IodT)の大きさの所定の割合を超過していること
を条件に出力する。同様に第2の送電線4bの地絡故障
は、零相電流Io3cとIo3dをベクトル和して得ら
れる送電線4bの差電流(Iodb)の大きさが2回線
一括差電流(IodT)の大きさの所定の割合を超過し
ていることを条件に出力する。本リレーの処理は(6)
式で表される。
The differential current comparison relay 5b is connected to the first transmission line 4
The output is made on condition that the magnitude of the difference current (Ioda) of a exceeds a predetermined ratio of the magnitude of the two-line collective difference current (IodT). Similarly, the ground fault of the second transmission line 4b is caused by the fact that the magnitude of the difference current (Iodb) of the transmission line 4b obtained by vector summing the zero-phase currents Io3c and Io3d is the magnitude of the two-circuit collective difference current (IodT). Is output on condition that the predetermined ratio is exceeded. Processing of this relay is (6)
It is expressed by an equation.

【0025】[0025]

【数4】 |Io3a+Io3b|≧ K|Io3a+Io3b+Io3c+Io3d| |Io3b+Io3d|≧ K|Io3a+Io3b+Io3c+Io3d| ………………………………(6)| Io3a + Io3b | ≧ K | Io3a + Io3b + Io3c + Io3d | | Io3b + Io3d | ≧ K | Io3a + Io3b + Io3c + Io3d |...

【0026】零相循環電流対策付差電流リレー5は、2
回線一括差電流リレー5aと差電流比較リレー5bの出
力がアンド条件で成立した場合に動作し、遮断器2a,
2bあるいは遮断器2c,2dを遮断する。本方式で
は、従来の保護リレー方式と同様に、電圧ベクトルと電
流ベクトルの位相関係から保護対象の内部故障であるこ
とを検出する手段を組合せることも可能であるが、組み
合わせなくても機能する。
The differential current relay 5 with a countermeasure against zero-phase circulating current has two
It operates when the outputs of the line collective differential current relay 5a and the differential current comparison relay 5b are satisfied under an AND condition, and the circuit breaker 2a,
2b or the circuit breakers 2c and 2d are cut off. In this system, as in the conventional protection relay system, it is possible to combine means for detecting the internal failure to be protected from the phase relationship between the voltage vector and the current vector, but it works without the combination. .

【0027】図2は第1の実施の形態を実施するための
シーケンスブロック図である。送電線4aの差電流比較
リレー6aの出力6dと、2回線一括差電流リレー6c
の出力6fが夫々アンド回路6gに入力され、その出力
が送電線4aの遮断器2a,2bを開路させるよう働
く。又、同様に、送電線4bの差電流比較リレー6bの
出力6eと、2回線一括差電流リレー6cの出力6fが
夫々アンド回路6hに入力され、その出力が送電線4b
の遮断器2c,2dを開路させるよう働く。
FIG. 2 is a sequence block diagram for implementing the first embodiment. The output 6d of the differential current comparison relay 6a of the transmission line 4a and the two-circuit collective differential current relay 6c
Are output to the AND circuit 6g, and the outputs serve to open the circuit breakers 2a and 2b of the transmission line 4a. Similarly, the output 6e of the differential current comparison relay 6b of the transmission line 4b and the output 6f of the two-circuit batch differential current relay 6c are input to the AND circuit 6h, respectively, and the output is transmitted to the transmission line 4b.
Work to open the circuit breakers 2c and 2d.

【0028】図3は零相循環電流対策付差電流リレー5
において、零相循環電流(Ico)の影響を排除可能な
原理について示したものである。図において、母線1a
と母線1bとの間に、送電線4a,4bが並行2回線を
構成するように設けられている。
FIG. 3 shows a differential current relay 5 with a countermeasure against zero-phase circulating current.
1 shows a principle that can eliminate the influence of the zero-phase circulating current (Ico). In the figure, bus 1a
The transmission lines 4a and 4b are provided between the power transmission lines 4a and 4b so as to form two parallel lines.

【0029】送電線4aに設置されたCT3aでは、1
線地絡故障点Fに母線1aから流入する故障電流IoF
aと零相循環電流Icoのベクトル和Ioaaを検出
し、CT3bでは故障点Fに母線1bから流入する故障
電流IoFbと零相循環電流(−Ico)のベクトル和
Ioabを検出する。送電線4bに設置されたCT3c
では、零相循環電流(−Ico)をIobaとして検出
し、CT3dでは零相循環電流IcoをIobbとして
検出する。
In the CT 3a installed on the transmission line 4a, 1
Fault current IoF flowing from line 1a to line ground fault point F
a and the zero-phase circulating current Ico are detected. At CT3b, the vector sum Ioab of the fault current IoFb flowing into the fault point F from the bus 1b and the zero-phase circulating current (−Ico) is detected. CT3c installed on transmission line 4b
, The zero-phase circulating current (-Ico) is detected as Ioba, and the CT3d detects the zero-phase circulating current Ico as Iobb.

【0030】零相循環電流Icoは送電線4a,母線1
b,送電線4bを通過して母線1aから送電線4aに戻
る。このため、各母線に設置されたCTで検出する電流
に含まれる零相循環電流成分は、隣接する回線のCTで
検出される零相循環電流成分の逆位相で同じ大きさとな
る。
The zero-phase circulating current Ico is transmitted through the transmission line 4a and the bus 1
b, passing through the transmission line 4b and returning from the bus 1a to the transmission line 4a. For this reason, the zero-phase circulating current component included in the current detected by the CT installed on each bus has the same magnitude in the opposite phase to the zero-phase circulating current component detected by the CT of the adjacent line.

【0031】2回線一括差電流リレー5aの抑制量算出
においては、隣回線のCTで検出された電流とベクトル
和すると零相循環電流成分が消去されることを利用し、
CT3aで検出する零相電流IoaaとCT3cで検出
する零相電流Iobaのベクトル和を取り、Ioaaの
中の事故電流成分であるIoFaだけを取り出す。
In the calculation of the suppression amount of the two-line simultaneous difference current relay 5a, the fact that the zero-phase circulating current component is eliminated by vector summing with the current detected by the CT of the adjacent line is used.
The vector sum of the zero-sequence current Ioaa detected by CT3a and the zero-sequence current Ioba detected by CT3c is obtained, and only IoFa, which is the fault current component in Ioaa, is extracted.

【0032】又、同様に、CT3bで検出する零相電流
IoabとCT3dで検出する電流Iobbのベクトル
和を取り、Ioabの中の事故電流成分であるIoFb
だけを取り出す。2回線一括抑制量(Σ|Io|)は事
故電流IoFaと事故電流IoFbのスカラー和である
から、原理上、零相循環電流は演算量に含まれない。
Similarly, the vector sum of the zero-phase current Ioab detected by CT3b and the current Iobb detected by CT3d is calculated, and IoFb, which is the fault current component in Ioab, is obtained.
Just take out. Since the collective suppression amount of two lines (Σ | Io |) is a scalar sum of the fault current IoFa and the fault current IoFb, the zero-phase circulating current is not included in the calculation amount in principle.

【0033】2回線一括差電流リレー5aの動作量とな
る2回線一括差電流(IodT)の算出では、全CTで
検出される零相電流を全てベクトル和している。この処
理は、隣りあう回線のCTで検出された零相電流をベク
トル和して零相循環電流成分を消去したうえで、保護リ
レー演算に用いているため、零相循環電流の影響を受け
ない。
In the calculation of the two-line collective difference current (IodT), which is the operation amount of the two-line collective difference current relay 5a, all zero-phase currents detected in all CTs are vector-summed. In this process, the zero-phase circulating current component detected by the CT of the adjacent line is vector-summed to eliminate the zero-phase circulating current component, and is used for the protection relay operation. .

【0034】具体的には、CT3a,CT3b,CT3
c,CT3dで夫々検出する電流Ioaa,Ioab,
Ioba,Iobbのベクトル和を取るとIoFa+I
oFbとなり、このベクトルは地絡事故点Fからの流出
する地絡事故電流となり、零相循環電流(Ico)が含
まれないものとなる。
Specifically, CT3a, CT3b, CT3
c, and currents Ioaa, Ioab,
Taking the vector sum of Ioba and Iobb gives IoFa + I
oFb, and this vector is the ground fault current flowing out of the ground fault point F, and does not include the zero-phase circulating current (Ico).

【0035】又、差電流比較リレー5bでは、回線毎の
差電流を保護リレー演算に用いる。送電線の所定の端子
で検出された零相電流値をベクトル和するため、零相循
環電流の影響が排除される。具体的にはCT3a,CT
3bで夫々検出する電流Ioaa,Ioabのベクトル
和を取ると、IoFa+IoFbとなり、このベクトル
は地絡事故点Fから大地に流出する地絡事故電流とな
り、零相循環電流Icoが含まれないものとなる。
In the difference current comparison relay 5b, the difference current of each line is used for the protection relay calculation. The vector sum of the zero-phase current value detected at a predetermined terminal of the transmission line eliminates the effect of the zero-phase circulating current. Specifically, CT3a, CT
When the vector sum of the currents Ioaa and Ioab detected respectively at 3b is obtained, IoFa + IoFb is obtained, and this vector becomes a ground fault current flowing out from the ground fault point F to the ground, and does not include the zero-phase circulating current Ico. .

【0036】本実施の形態によれば、動作原理として零
相循環電流の影響を受けないため、従来使用されていた
保護リレー方式で問題となっていた零相循環電流が大き
い系統での地絡故障検出感度の低下を防止することがで
きる。
According to the present embodiment, since the operation principle is not affected by the zero-phase circulating current, a ground fault in a system having a large zero-phase circulating current, which has been a problem in the protection relay system conventionally used, is used. It is possible to prevent a decrease in the failure detection sensitivity.

【0037】(第2の実施の形態)([請求項2]に対
応) 図4は第2の実施の形態である並行2回線の系統構成例
を示す。図において、母線1aと母線1bとの間に、両
端に遮断器2a,2bを有する第1の送電線4aと、両
端に遮断器2c,2dを有する第2の送電線4bとが並
行2回線を構成するように設けられている。母線1aと
1bにおいては、第1の送電線4aを流れる零相電流
が、夫々CT3a,CT3bによって検出される。又、
第2の送電線4bを流れる零相電流は、夫々CT3c,
CT3dによって検出される。
(Second Embodiment) (corresponding to [Claim 2]) FIG. 4 shows an example of a system configuration of two parallel lines according to a second embodiment. In the figure, a first transmission line 4a having circuit breakers 2a and 2b at both ends and a second transmission line 4b having circuit breakers 2c and 2d at both ends are provided in parallel between the bus 1a and the bus 1b. Is provided. In buses 1a and 1b, a zero-phase current flowing through first transmission line 4a is detected by CT3a and CT3b, respectively. or,
Zero-phase currents flowing through the second transmission line 4b are respectively CT3c,
Detected by CT3d.

【0038】第1の送電線のF点で1線地絡故障があっ
た場合、零相循環電流対策付差電流リレー5は、電気量
としてCT3a,CT3b,CT3c,CT3dから夫
々検出された零相電流Io3a,Io3b,Io3c,
Io3dを用いる。零相循環電流対策付差電流リレー5
は、第1の送電線4aの故障判別を行なうため、動作量
として零相電流Io3aとIo3bをベクトル和して得
られる回線毎の零相差電流(Ioda)を用いる。
When there is a one-line ground fault at point F of the first transmission line, the zero-phase circulating current countermeasure-added differential current relay 5 outputs the zeros detected from CT3a, CT3b, CT3c, and CT3d as electric quantities, respectively. The phase currents Io3a, Io3b, Io3c,
Io3d is used. Zero-phase circulating current countermeasure differential current relay 5
Uses the zero-phase difference current (Ioda) for each line, which is obtained by vector summing the zero-phase currents Io3a and Io3b, as an operation amount in order to determine the failure of the first transmission line 4a.

【0039】又、抑制量としてはIo3aとIo3cの
ベクトル和と、Io3bとIo3dのベクトル和を、ス
カラー和して得られる2回線一括抑制量(Σ|IoT
|)を用いる。零相循環電流対策付差電流リレー5は
(7)式の関係が満たされると、遮断器2a,2bを遮
断する。
As the suppression amount, a two-line collective suppression amount (Σ | IoT) obtained by a scalar sum of the vector sum of Io3a and Io3c and the vector sum of Io3b and Io3d.
|) Is used. When the relation of the expression (7) is satisfied, the differential current relay 5 with a countermeasure against zero-phase circulating current shuts off the circuit breakers 2a and 2b.

【0040】同様に、第2の送電線4bの故障判別を行
なうためには、動作量としてIo3cとIo3dをベク
トル和して得られる回線毎の差電流(Iodb)を用い
る。抑制量としてはIo3aとIo3cのベクトル和
と、Io3bとIo3dのベクトル和を、スカラー和し
て得られる2回線一括抑制量(Σ|IoT|)を用い、
零相循環電流対策付き差電流リレー5は(7)式の関係
が満たされると、遮断器2c,2dを遮断する。
Similarly, in order to determine the failure of the second transmission line 4b, a difference current (Iodb) for each line obtained by vector summing Io3c and Io3d is used as an operation amount. As the suppression amount, a two-line batch suppression amount (Σ | IoT |) obtained by performing a scalar sum of the vector sum of Io3a and Io3c and the vector sum of Io3b and Io3d is used.
When the relation of the expression (7) is satisfied, the differential current relay 5 with a countermeasure for zero-phase circulating current shuts off the circuit breakers 2c and 2d.

【0041】本方式では、従来の保護リレー方式と同様
に、電圧ベクトルと電流ベクトルの位相関係から保護対
象の内部故障であることを検出する手段を組合せること
も可能であるが、組み合わせなくても機能する。
In the present system, similarly to the conventional protection relay system, it is possible to combine means for detecting the internal failure to be protected from the phase relationship between the voltage vector and the current vector. Also works.

【数5】 |Io3a+Io3b|≧ a・|(Io3a+Io3c)+(Io3b+Io3d)| +(1−1/a)b ……………………(7)| Io3a + Io3b | ≧ a · | (Io3a + Io3c) + (Io3b + Io3d) | + (1-1 / a) b ............ (7)

【0042】図5は零相循環電流対策付差電流リレー5
において、零相循環電流(Ico)の影響排除可能な原
理について示したものである。図において、母線1aと
母線1bとの間に、送電線4a,4bが並行2回線を構
成するように設けられている。
FIG. 5 shows a differential current relay 5 with a countermeasure against zero-phase circulating current.
1 shows the principle by which the influence of the zero-phase circulating current (Ico) can be eliminated. In the drawing, transmission lines 4a and 4b are provided between a bus 1a and a bus 1b so as to form two parallel lines.

【0043】第1の送電線4aに設置されたCT3aで
は、1線地絡故障点Fに母線1aから流入する故障電流
IoFaと零相循環電流Icoとのベクトル和Ioaa
を検出し、CT3bでは故障点Fに母線1bから流入す
る故障電流IoFbと零相循環電流(−Ico)のベク
トル和Ioabを検出する。第2の送電線4bに設置さ
れたCT3cでは、零相循環電流(−Ico)をIob
aとして検出し、CT3dでは零相循環電流IcoをI
obbとして検出する。
In the CT 3a installed on the first transmission line 4a, the vector sum Ioaaa of the fault current IoFa flowing into the one-line ground fault point F from the bus 1a and the zero-phase circulating current Ico
In CT3b, the vector sum Ioab of the fault current IoFb flowing into the fault point F from the bus 1b and the zero-phase circulating current (-Ico) is detected. In CT3c installed on the second transmission line 4b, the zero-phase circulating current (-Ico) is
a in the CT 3d, the zero-phase circulating current
detected as obb.

【0044】零相循環電流Icoは第1の送電線4a,
母線1b,第2の送電線4bを通過し母線1aから第1
の送電線4aに戻る。このため、各母線に設置されたC
Tで検出する電流に含まれる零相循環電流成分は、隣接
する回線のCTで検出される零相循環電流成分の逆位相
で同じ大きさとなる。
The zero-phase circulating current Ico is applied to the first transmission lines 4a,
After passing through the bus 1b and the second transmission line 4b, the first
Return to the transmission line 4a. For this reason, C
The zero-phase circulating current component included in the current detected at T has the same magnitude as the opposite phase of the zero-phase circulating current component detected by the CT of the adjacent line.

【0045】零相循環電流対策付差電流リレー5の抑制
量算出においては、隣回線のCTで検出された電流とベ
クトル和すると零相循環電流成分が消去されることを利
用し、CT3aで検出する零相電流IoaaとCT3c
で検出する零相電流Iobaのベクトル和を取り、Io
aaの中の事故電流成分であるIoFaを取り出す。
In calculating the amount of suppression of the differential current relay 5 with the countermeasure against zero-phase circulating current, the fact that the zero-phase circulating current component is eliminated when the vector sum with the current detected by the CT of the adjacent line is used is detected by CT3a. Zero-phase current Ioaa and CT3c
The vector sum of the zero-phase current Ioba detected by
The fault current component IoFa in aa is extracted.

【0046】又、同様にCT3bで検出する電流Ioa
bとCT3dで検出する電流Iobbのベクトル和を取
り、Ioabの中の事故電流成分であるIoFbを取り
出す。抑制量はIoFaとIoFbのスカラー和である
から、原理上零相循環電流は演算量に含まれない。
Similarly, the current Ioa detected by CT3b
The vector sum of b and the current Iobb detected by CT3d is calculated, and IoFb, which is the fault current component in Ioab, is extracted. Since the suppression amount is a scalar sum of IoFa and IoFb, the zero-phase circulating current is not included in the calculation amount in principle.

【0047】零相循環電流対策付差電流リレー5の動作
量算出では、回線毎の差電流を処理に用いる。差電流の
算出は、送電線の両端で検出された電流値をベクトル和
するため、零相循環電流の影響が排除される。具体的に
はCT3a,CT3bで夫々検出する零相電流Ioa
a,Ioabのベクトル和を取ると、IoFa+IoF
bとなり、このベクトルは地絡事故点Fからの流出する
地絡事故電流となり、零相循環電流Icoが含まれない
ものとなる。
In calculating the operation amount of the differential current relay 5 with a countermeasure against zero-phase circulating current, the differential current for each line is used for processing. In the calculation of the difference current, the current values detected at both ends of the transmission line are vector-summed, so that the influence of the zero-phase circulating current is eliminated. Specifically, the zero-phase current Ioa detected by CT3a and CT3b respectively
When the vector sum of a and Ioab is obtained, IoFa + IoF
b, this vector becomes the ground fault current flowing out of the ground fault point F, and does not include the zero-phase circulating current Ico.

【0048】本実施の形態によれば、動作原理として零
相循環電流の影響を受けないため、従来使用されていた
保護リレー方式で問題となっていた零相循環電流が大き
い系統での地絡故障検出感度の低下を防止することがで
きる。
According to the present embodiment, since the operation principle is not affected by the zero-phase circulating current, a ground fault in a system having a large zero-phase circulating current, which has been a problem in the protection relay system conventionally used, is used. It is possible to prevent a decrease in the failure detection sensitivity.

【0049】(第3の実施の形態)([請求項3]に対
応) 図6は第3の実施の形態を示すシーケンスブロック図で
ある。図において、零相循環電流対策リレー7aの出力
7dと、並行2回線送電線の機器条件から判定された2
回線運用条件7cの出力7fが夫々アンド回路6gに入
力される。従来の保護リレー方式を用いた地絡事故検出
リレー7bの出力7eと、並行2回線送電線の機器条件
から判定された2回線運用条件7cの出力7fの否定論
理が夫々アンド回路6hに入力される。アンド回路6g
の出力6iと、アンド回路6hの出力6jが夫々オア回
路6kに入力され、その出力が送電線の遮断器を開路さ
せるよう働く。
(Third Embodiment) (corresponding to [Claim 3]) FIG. 6 is a sequence block diagram showing a third embodiment. In the figure, the output 7d of the zero-phase circulating current countermeasure relay 7a and the 2
Outputs 7f of the line operation conditions 7c are respectively input to the AND circuits 6g. The negative logic of the output 7e of the ground fault detection relay 7b using the conventional protection relay system and the output 7f of the two-line operation condition 7c determined from the equipment condition of the parallel two-line transmission line are input to the AND circuit 6h. You. AND circuit 6g
6i and the output 6j of the AND circuit 6h are input to the OR circuit 6k, and the outputs serve to open the circuit breaker of the transmission line.

【0050】零相循環電流対策リレーは零相循環電流に
よる地絡事故検出感度の低下を生じないが、従来の保護
リレー方式に比べると保護リレー演算に用いる電気量が
多いため、零相循環電流の無い系統に適用された場合
は、誤差によって従来の保護リレー方式よりも地絡事故
検出感度が低下することが考えられる。
Although the zero-phase circulating current countermeasure relay does not lower the ground fault detection sensitivity due to the zero-phase circulating current, the amount of electricity used for the protection relay calculation is larger than that of the conventional protection relay system. When applied to a system with no fault, it is conceivable that the ground fault detection sensitivity is lower than that of the conventional protection relay system due to an error.

【0051】又、零相循環電流は並行2回線が電気的に
閉回路となっている場合には発生するが、1回線運用時
には発生しない。このため、零相循環電流が発生しうる
並行2回線の2回線運用時には、零相循環電流対策付リ
レーを用い、零相循環電流が発生しない1回線運用時に
は、従来の保護リレー方式を用いることにより、地絡事
故検出感度をより高く維持することが可能となる。
The zero-phase circulating current is generated when two parallel lines are electrically closed, but is not generated when operating one line. For this reason, when operating two parallel circuits in which two zero-phase circulating currents can occur, use a relay with measures against zero-phase circulating current, and when operating one circuit where no zero-phase circulating current occurs, use the conventional protection relay method. Accordingly, it is possible to maintain the ground fault detection sensitivity higher.

【0052】(第4の実施の形態)([請求項4]に対
応) 図7は第4の実施の形態を示すシーケンスブロック図で
ある。図において、零相循環電流対策リレー7aの出力
7dと、並行2回線送電線の零相循環電流の大きさを算
出し、所定のレベルを超過していると判別した場合に出
力する零相循環電流リレー7cの出力7fが、夫々アン
ド回路6gに入力される。従来の保護リレー方式を用い
た地絡事故検出リレー7bの出力7eと、零相循環電流
リレー7cの出力7fの否定論理が夫々アンド回路6h
に入力される。アンド回路6gの出力6iと、アンド回
路6hの出力6jが夫々オア回路6kに入力され、その
出力が送電線の遮断器を開路させるよう働く。
(Fourth Embodiment) (corresponding to [Claim 4]) FIG. 7 is a sequence block diagram showing a fourth embodiment. In the figure, the output 7d of the zero-phase circulating current countermeasure relay 7a and the magnitude of the zero-phase circulating current of the parallel two-line transmission line are calculated, and the zero-phase circulating output is output when it is determined that the level exceeds a predetermined level. Outputs 7f of the current relays 7c are respectively input to the AND circuits 6g. The negative logic of the output 7e of the ground fault detection relay 7b using the conventional protection relay system and the output 7f of the zero-phase circulating current relay 7c are respectively AND circuits 6h.
Is input to The output 6i of the AND circuit 6g and the output 6j of the AND circuit 6h are respectively input to the OR circuit 6k, and the outputs serve to open the circuit breaker of the transmission line.

【0053】零相循環電流対策リレーは零相循環電流に
よる地絡事故検出感度の低下を生じないが、従来の保護
リレー方式に比べると保護リレー演算に用いる電気量が
多いため、零相循環電流が少ない系統に適用された場合
は、誤差によって従来の保護リレー方式よりも地絡事故
検出感度が低下することが考えられる。
Although the zero-phase circulating current countermeasure relay does not cause a decrease in the ground fault accident detection sensitivity due to the zero-phase circulating current, it uses a larger amount of electricity for the protection relay operation than the conventional protection relay method. If this is applied to a system with a small number of ground faults, the ground fault detection sensitivity may be lower than that of the conventional protection relay system due to an error.

【0054】このため、並行2回線送電線において、零
相循環電流リレーが出力しているときには零相循環電流
対策リレーを用い、零相循環電流リレーが出力していな
いときには従来の保護リレー方式を用いることにより、
地絡事故検出感度をより高く維持することが可能とな
る。
For this reason, in the parallel two-circuit transmission line, a zero-phase circulating current countermeasure relay is used when the zero-phase circulating current relay is outputting, and a conventional protection relay system is used when the zero-phase circulating current relay is not outputting. By using
Ground fault detection sensitivity can be maintained higher.

【0055】[0055]

【発明の効果】以上説明したように、本発明によれば零
相循環電流が大きい系統での地絡故障検出感度の低下を
防止することができる。
As described above, according to the present invention, it is possible to prevent a decrease in the ground fault detection sensitivity in a system having a large zero-phase circulating current.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態を示す構成図。FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】第1の実施の形態を実施するためのシーケンス
ブロック図。
FIG. 2 is a sequence block diagram for implementing the first embodiment;

【図3】零相循環電流対策付差電流リレー5において、
零相循環電流の影響を排除可能な原理を説明する図。
FIG. 3 shows a differential current relay 5 with a countermeasure against zero-phase circulating current.
The figure explaining the principle which can eliminate the influence of a zero-phase circulating current.

【図4】第2の実施の形態を示す系統構成図。FIG. 4 is a system configuration diagram showing a second embodiment.

【図5】零相循環電流対策付差電流リレーにおいて、零
相循環電流の影響を排除可能な原理を説明する図。
FIG. 5 is a diagram for explaining the principle of eliminating the influence of a zero-phase circulating current in a differential current relay with a zero-phase circulating current measure.

【図6】第3の実施の形態のシーケンスブロック図。FIG. 6 is a sequence block diagram according to a third embodiment.

【図7】第4の実施の形態のシーケンスブロック図。FIG. 7 is a sequence block diagram according to a fourth embodiment.

【図8】従来技術を示す構成図。FIG. 8 is a configuration diagram showing a conventional technique.

【図9】差電流リレーの比率特性例。FIG. 9 is a ratio characteristic example of a differential current relay.

【図10】零相循環電流のある系統への従来リレーの適
用例。
FIG. 10 shows an example of application of a conventional relay to a system having a zero-phase circulating current.

【図11】零相循環電流が差電流リレーに取り込まれる
電気量のベクトル図。
FIG. 11 is a vector diagram of the quantity of electricity in which a zero-phase circulating current is taken into a differential current relay.

【図12】差電流リレーの比率特性例。FIG. 12 is a ratio characteristic example of a differential current relay.

【符号の説明】[Explanation of symbols]

1 母線 2 遮断器 3 CT 4 送電線 5 零相循環電流対策付差電流リレー 6a,6b 差電流比較リレー 6c 2回線一括電流差動リレー 7a 零相循環電流対策リレー 7b 地絡事故検出リレー 7c 2回線運用条件 REFERENCE SIGNS LIST 1 bus bar 2 circuit breaker 3 CT 4 transmission line 5 differential current relay with zero-phase circulating current countermeasure 6 a, 6 b differential current comparison relay 6 c two-circuit batch current differential relay 7 a zero-phase circulating current countermeasure relay 7 b ground fault detection relay 7 c 2 Line operating conditions

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 正弘 愛知県名古屋市東区東新町1番地 中部電 力株式会社内 (72)発明者 堀 政夫 東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内 (72)発明者 犬飼 道彦 東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内 (72)発明者 佐藤 茂 東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内 (72)発明者 杉浦 秀昌 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 (72)発明者 半沢 弘司 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 Fターム(参考) 2G033 AA01 AB02 AC02 AD18 AD21 AF05 AG14 5G058 EE02 EF03 EG04 EH01  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masahiro Ito 1 Higashi-Shinmachi, Higashi-ku, Nagoya City, Aichi Prefecture Inside Chubu Electric Power Co., Inc. (72) Inventor Masao Hori 1-1-1, Shibaura, Minato-ku, Tokyo Toshiba Corporation In the head office (72) Inventor Michihiko Inukai 1-1-1, Shibaura, Minato-ku, Tokyo Toshiba Corporation Head office (72) Inventor Shigeru Sato 1-1-1, Shibaura, Minato-ku, Tokyo Toshiba head office In-house (72) Inventor Hidemasa Sugiura 1 Toshiba-cho, Fuchu-shi, Tokyo Inside the Toshiba Fuchu Works, Inc. (72) Inventor Koji Hanzawa 1-Toshiba-cho, Fuchu-shi, Tokyo Inside the Fuchu Works, F-term (reference) 2G033 AA01 AB02 AC02 AD18 AD21 AF05 AG14 5G058 EE02 EF03 EG04 EH01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 並行2回線送電線の所定の複数端子の電
気量により、電力系統の地絡事故区間を判別する電流差
動リレーを用いた送電線保護装置において、前記並行2
回線一括で内部地絡を検出する地絡検出手段と、前記並
行2回線において回線毎に算出した零相差電流の大きさ
と前記2回線一括で算出した零相差電流の大きさとを比
較して地絡事故回線を検出する差電流比較手段と、前記
2回線一括地絡検出手段及び零相差電流比較手段の出力
をアンド条件として故障回線の遮断器を開路させる論理
回路手段とを備えたことを特徴とする送電線保護装置。
1. A transmission line protection device using a current differential relay for determining a ground fault section of a power system based on the amount of electricity at predetermined terminals of a parallel two-circuit transmission line.
A ground fault detecting means for detecting an internal ground fault in a line collectively; a ground fault by comparing a magnitude of a zero-phase difference current calculated for each line in the two parallel lines with a magnitude of a zero-phase difference current calculated in the two lines collectively; A differential current comparing means for detecting a faulty line; and a logic circuit means for opening a circuit breaker of a faulty line with an output of the two-line ground fault detecting means and the zero-phase difference current comparing means as an AND condition. Transmission line protection device.
【請求項2】 並行2回線送電線の所定の複数端子の電
気量により、電力系統の地絡事故区間を判別する送電線
保護装置において、前記並行2回線一括の各電気量から
抑制量を生成すると共に、前記回線毎の各電気量から生
成した動作量を生成する電流差動リレーを備えたことを
特徴とする送電線保護装置。
2. A transmission line protection device that determines a ground fault accident section of a power system based on electric quantities of a plurality of predetermined terminals of a parallel two-circuit transmission line, wherein a suppression amount is generated from each electric quantity of the parallel two-circuits collectively. And a current differential relay for generating an operation amount generated from each electric quantity for each line.
【請求項3】 請求項1又は請求項2記載の送電線保護
装置において、前記回線毎の零相差電流の大きさと位相
から電力系統の事故区間を判別する手段と、前記並行2
回線の遮断器及び断路器の開閉状態から各回線の運用状
態を判別する論理回路手段とを備え、前記回線運用状態
によって使用する保護手段を切り替える手段を備えたこ
とを特徴とする送電線保護装置。
3. The transmission line protection device according to claim 1, wherein a means for determining a fault section of the power system from a magnitude and a phase of a zero-phase difference current for each line,
A transmission line protection device comprising: logic circuit means for determining the operation state of each line from the open / closed state of the circuit breaker and disconnector; and means for switching protection means to be used according to the line operation state. .
【請求項4】 請求項1又は請求項2記載の送電線保護
装置において、前記回線毎の零相差電流の大きさと位相
から電力系統の事故区間を判別する手段と、前記系統の
電気量から零相循環電流の大きさを算出する手段と、前
記零相循環電流の大きさによって使用する保護方式を切
り替える論理回路手段とを備えたことを特徴とする送電
線保護装置。
4. The transmission line protection device according to claim 1 or 2, wherein a means for determining a fault section of the power system from the magnitude and phase of the zero-phase difference current for each line, A transmission line protection device comprising: means for calculating the magnitude of a phase circulating current; and logic circuit means for switching a protection method to be used according to the magnitude of the zero-phase circulating current.
JP2000217009A 2000-07-18 2000-07-18 Transmission line protection device Expired - Lifetime JP3942137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000217009A JP3942137B2 (en) 2000-07-18 2000-07-18 Transmission line protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000217009A JP3942137B2 (en) 2000-07-18 2000-07-18 Transmission line protection device

Publications (2)

Publication Number Publication Date
JP2002034145A true JP2002034145A (en) 2002-01-31
JP3942137B2 JP3942137B2 (en) 2007-07-11

Family

ID=18712183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000217009A Expired - Lifetime JP3942137B2 (en) 2000-07-18 2000-07-18 Transmission line protection device

Country Status (1)

Country Link
JP (1) JP3942137B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100445339B1 (en) * 2002-11-01 2004-08-18 한국수력원자력 주식회사 ground detect apparatus of differential current for DC signal line and method theroof
JP2012135150A (en) * 2010-12-22 2012-07-12 Kansai Electric Power Co Inc:The Digital protective relay device
CN103149489A (en) * 2012-09-28 2013-06-12 西南交通大学 Disconnection discrimination method for electrified railway autotransformer (AT) traction network

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100445339B1 (en) * 2002-11-01 2004-08-18 한국수력원자력 주식회사 ground detect apparatus of differential current for DC signal line and method theroof
JP2012135150A (en) * 2010-12-22 2012-07-12 Kansai Electric Power Co Inc:The Digital protective relay device
CN103149489A (en) * 2012-09-28 2013-06-12 西南交通大学 Disconnection discrimination method for electrified railway autotransformer (AT) traction network

Also Published As

Publication number Publication date
JP3942137B2 (en) 2007-07-11

Similar Documents

Publication Publication Date Title
KR101421564B1 (en) Electrical leakage detection apparatus with unexpected motion blocking function
US10734800B2 (en) Method for preventing a dangerous, higher-frequency earth fault current for an electrical drive system
KR101696220B1 (en) Method of detecting line to ground fault in the distribution line of multiple grounding system
EP0604037B1 (en) Busbar protection method
EP2328249B1 (en) Reclosing method for electrical power transmission line
JP4199065B2 (en) Protective relay device
RU2644564C2 (en) Method for protecting socket device from parallel arc fault upstream
JPH04355628A (en) Dc transmission line short circuit detector
JP2002034145A (en) Transmission line protection device
Wilson et al. Detecting open phase conductors
WO2004008600A3 (en) Electrical network protection system
EP3893345A1 (en) Differential protection scheme
JP2014081322A (en) Ground fault detection method and device using positive-phase, one-phase voltage
Vukolov et al. Improvement of algorithms for voltage circuits fault detection in relay protection terminal of 6-35 kV electrical networks
KR20200038164A (en) Protection relay device
CN110794259B (en) Alternating current-direct current line-touching fault line selection method and device and computer readable storage medium
WO2023038121A1 (en) Electrical discharge detection system
CN115411708B (en) Allowable negative sequence current high-frequency protection method based on 110kV single-side power line disconnection
JP2009254036A (en) Ground fault protecting relay system
JP4836663B2 (en) Loop system protection device and method
WO2022074781A1 (en) Switchgear
Abdulwahhab SHORT CIRCUIT ANALYSIS FOR POWER SYSTEM NETWORKS: Electrical
JP3926971B2 (en) Digital protection relay device
JPS61236320A (en) Ground-fault detection system for parallel multiple circuit
JPH09205724A (en) Grounding distance relaying apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040119

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050829

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070402

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350