JP3941427B2 - Heating apparatus and heating method - Google Patents

Heating apparatus and heating method Download PDF

Info

Publication number
JP3941427B2
JP3941427B2 JP2001214787A JP2001214787A JP3941427B2 JP 3941427 B2 JP3941427 B2 JP 3941427B2 JP 2001214787 A JP2001214787 A JP 2001214787A JP 2001214787 A JP2001214787 A JP 2001214787A JP 3941427 B2 JP3941427 B2 JP 3941427B2
Authority
JP
Japan
Prior art keywords
temperature
heating
temperature control
wafer
thin plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001214787A
Other languages
Japanese (ja)
Other versions
JP2003031516A (en
Inventor
義明 中川
秀徳 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2001214787A priority Critical patent/JP3941427B2/en
Publication of JP2003031516A publication Critical patent/JP2003031516A/en
Application granted granted Critical
Publication of JP3941427B2 publication Critical patent/JP3941427B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、薄板状加熱対象物を加熱する加熱装置及び加熱方法に関し、特に、半導体ウェーハの面内温度分布を常に一定に保つように加熱処理する半導体処理装置及び方法に適用して好適なものである。
【0002】
【従来の技術】
半導体ウェーハ(以下、単にウェーハと呼ぶ)の処理工程の中には、ウェーハに対する熱処理(加熱)を要する工程も多く、そのような工程用の半導体処理装置は加熱装置を有している。
【0003】
例えば、エピタキシャル成長装置(成長炉)では、赤外線ランプ等を用いたウェーハの加熱装置(熱処理装置)を有し、ウェーハ膜厚分布及び比抵抗分布の適正化や、ウェーハの温度分布に起因するスリップ等の結晶欠陥制御のために、ウェーハの面内温度分布をコントロールする必要がある。
【0004】
従来、ウェーハの面内温度分布をコントロールするために、複数の温度測定手段(以下、適宜、測温手段と呼ぶ)と複数の加熱手段を有する半導体製造装置(特開平5−291169号公報)が開発され、それぞれの測温手段で測定された温度に基づき、それぞれの加熱手段をそれぞれの専用の温度制御手段によってコントロールする方法が用いられてきた。
【0005】
図1は、熱処理装置を有する代表的な装置(例えばエピタキシャル成長装置)における測温点の例を模式的に示した説明図である。
【0006】
図1において、ウェーハ1は円盤状のサセプタ2に保持され、このサセプタ2は円環状のサセプタリング3に保持され、その結果、加熱対象のウェーハ1がチャンバ4内の所定位置に位置するようになされている。例えばエピタキシャル成長装置であれば、反応ガス5がチャンバ4内に導入、導出され、反応ガス5は導入口から導出口へほぼ直線的な流路で流れる。
【0007】
図1の例では、ウェーハ1の中心を通る法線方向が、サセプタ2の裏面と交わっている位置が中心部測温手段5Cによる測温点となっている。また、反応ガスの導入口に近いサセプタリング3の位置が前部測温手段5Fによる測温点となっており、反応ガスの導出口に近いサセプタリング3の位置が後部測温手段5Bによる測温点となっており、位置5F及び5Bは、ウェーハ1の中心から見て角度的に180度だけ隔たっている。位置5F及び5Bからそれぞれ角度的に±90度だけ隔たっているサセプタリング3の位置が側部測温手段5Sによる測温点となっている。
【0008】
各測温手段5C、5F、5B、5Sからの出力は、図2に示すように、対応する温度制御手段6C、6F、6B、6Sに与えられ、各温度制御手段6C、6F、6B、6Sは、温度測定出力に基づいて、対応する加熱手段としてのランプ7C、7F、7B、7Sを制御する。すなわち、このような熱処理装置では、予めウェーハ各部に対して、望ましい温度プロフィール(指令温度変化)に従う値を与え、それぞれの部位が指令された温度プロフィールとなるように、加熱手段としてのランプ7C、7F、7B、7Sを制御する。
【0009】
なお、図1及び図2は、各測温手段5C、5F、5B、5Sが熱電対の場合を意図して記載している。
【0010】
また、特開平6−260426号公報に開示されているように、代表部位の温度プロフィールに対して、他の部位の温度差が一定になるように制御する手法も既に提案されている。
【0011】
上述した制御方法は、いずれも複数の測温手段の出力に基づき、個別に加熱手段を制御するものであった。
【0012】
【発明が解決しようとする課題】
しかしながら、複数ある温度測定手段毎に独立した制御系をもつ熱処理装置において、その温度測定手段の1個が何らかの原因で測定を正確に行わなくなった場合、ウェーハの面内温度分布が大きく変化するという問題が生じていた。
【0013】
このような温度測定手段が正確に測定しなくなる現象は、次のように日常的に発生し得る。
【0014】
1. 温度測定手段5に熱電対式の温度計を使用した場合
熱電対式の温度計は、接触式温度計であるため、熱電対の先端と被測定物(温度測定対象物)の接触状態がわずかに変化すると、図3で示すように、計測温度が大きく変化する。
【0015】
2. 温度測定手段5に放射温度計を使用した場合
放射温度計でウェーハ温度を測定する場合は、チャンバ4を構成している石英ガラスなどを通しての測温となる。このとき、熱処理中にチャンバ4に導入する反応ガスによっては、石英ガラス面に分子が付着し、結果として温度測定用波長の放射光に対する透過率が低下し、測定温度が変化する。
【0016】
このように、複数個の温度計の一つでも不正確な温度を測定すると、その測定点の実際の温度でなく、測定温度を設定値(指令値)に維持しようと温度制御手段が働き、ウェーハ面内の一部が設定値以上に加熱され始める。この加熱は、加熱対象部位だけでなく、他の部位へも影響を及ぼし、結果として、ウェーハの面内温度分布が所望するものと異なり、比抵抗分布や膜厚分布の悪化、更には、スリップなどの品質欠陥を生じる原因の一つとなっていた。
【0017】
ここで、温度測定手段による温度計測が正常に行われるように調整し、上記問題を回避することも可能であるが、一般的には、加熱装置を含む装置(例えばエピタキシャル成長装置)の操業開始の早い時期から、温度測定に誤差が生じるため、その調整のために、加熱装置を停止することは、生産性の観点から現実的ではない。
【0018】
本発明は、以上の点に鑑みてなされたものであり、複数ある温度測定手段の測定誤差を吸収することができる加熱装置及び加熱方法を提供しようとしたものである。
【0019】
【課題を解決するための手段】
かかる課題を解決するため、第1の本発明は、薄板状加熱対象物の所定部位、又は、上記薄板状加熱対象物の保持体の所定部位の温度を測定する複数の温度測定手段と、上記各温度測定手段のそれぞれに対応付けて設けられ、上記薄板状加熱対象物の担当領域を加熱する複数の加熱手段と、対応する上記温度測定手段の出力に基づいて、対応する上記加熱手段による加熱を制御する複数の温度制御手段とを備えた加熱装置において、上記各加熱手段に供給される電力を検出する供給電力検出手段と、少なくとも一部の上記温度制御手段の温度制御に、上記供給電力検出手段の検出結果を反映させる制御動作修正手段とを有することを特徴とする。
【0020】
ここで、上記制御動作修正手段が、少なくとも一部の上記温度制御手段に入力される、その温度制御手段に対応した上記温度測定手段からの測定温度を、上記供給電力検出手段の検出結果に基づき、修正して入力させることが好ましい。
【0021】
また、第2の本発明は、所定部位用の加熱手段によって加熱されている、薄板状加熱対象物の所定部位、又は、上記薄板状加熱対象物の保持体の所定部位の温度を複数の温度測定手段がそれぞれ測定し、その測定出力に基づいて、所定部位用の複数の温度制御手段がそれぞれ温度制御する加熱方法において、上記各加熱手段に供給される電力を検出し、この検出結果を、少なくとも一部の上記温度制御手段の温度制御に反映させることを特徴とする。
【0022】
ここで、少なくとも一部の上記温度制御手段に入力される、その温度制御手段に対応した上記温度測定手段からの測定温度を、検出された供給電力に応じて修正して温度制御に反映させることが好ましい。
【0023】
【発明の実施の形態】
(A)各実施形態に共通する温度制御の考え方
本発明による加熱装置及び加熱方法に係る後述する各実施形態は、薄板状加熱対象物を加熱する少なくとも一部の加熱手段への電力供給量を、各加熱手段による加熱温度の制御に利用しようとしたものである。
【0024】
以下ではまず、少なくとも一部の加熱手段への電力供給量を、各加熱手段による加熱温度の制御に利用できることを説明する。なお、以下では、熱電対でなる測温手段が図2に示すように配置されており、薄板状加熱対象物としてのウェーハを加熱するとして説明を行う。また、ウェーハの温度を直接測定している訳ではないが、間接的にウェーハの温度を測定しており、測定の意図はウェーハであるので、測定した温度をウェーハ温度と表現する。
【0025】
まず、被測定物(2、3)と熱電対(5C、5F、5B、5S)とが熱的に十分結合し、正確なウェーハ中心部温度t、ウェーハ前部温度t、ウェーハ後部温度t、ウェーハ側部温度tが測定されているとする(以下同様に、C、F、B、Sはそれぞれ、ウェーハ中心部、前部、後部、側部を表す)。このときの目標温度がT、T、T、Tであるとすれば、各制御手段(ここではPI制御を行う制御手段とする)6C、6F、6B、6Sはそれぞれ、(1)式〜(4)式に従う電力変更指令ΔP、ΔP、ΔP、ΔPを、対応する加熱手段7C、7F、7B、7Sに指令する。
【0026】
【数1】

Figure 0003941427
その結果、制御後のウェーハ各部の温度tCn、tFn、tBn、tSnは、加熱手段7C、7F、7B、7Sに供給される電力から温度の変換関数をgとした場合に、次の(5)式〜(8)式で表される温度になる。
【0027】
【数2】
Figure 0003941427
ここで、比例ゲインや積分ゲインなどの制御ゲインが適切であれば、時間の経過と共に、各部の温度tCn、tFn、tBn、tSnは、目標温度T、T、T、Tに収束していくことになる。
【0028】
しかしながら、熱電対の接触状態などが悪化し、例えば、前部の温度がΔεだけ低く計測されると、上述した(2)式より、電力指令値ΔPFεが、温度が正しく計測された場合での本来の電力指令値ΔPより、(9)式に示すように、誤差温度Δεに対して制御ゲインが反映された値ΔΔPFεだけ高く出力される。
【0029】
【数3】
Figure 0003941427
その結果、前部の温度がこの電力分ΔΔPFεだけ余分に温度が上昇するのみならず、上述した(5)式〜(8)式から明らかなように、この誤差電力指令値ΔΔPFεが各部位に対しても影響を及ぼし、各部位の温度も、その影響程度に応じて上昇しようとする。
【0030】
しかしながら、各部位はそれぞれ温度制御をしているため、結果として、前部以外の加熱手段への供給電力は、前部からの影響分に応じて電力供給量を下げることになる。
【0031】
このように、見かけ上の温度測定値には、何の変化もないにもかかわらず、加熱手段7C、7F、7B、7Sへの供給電力が変化し、ウェーハ面内の温度分布が異なっていることが、従来大きな問題となっていた。
【0032】
図4(A)は、全ての操業条件を等しくして熱処理(エピタキシャル成長)した場合の加熱手段7C、7F、7B、7Sへの供給電力(中心部供給電力との差で表示)の変化を示している。このように、全く同じ条件の操業で、かつ、図4(B)に示すように、各部位の見かけの計測温度(温度が高いため、中心部温度との差で表示)が一定であるにも拘わらず、ウェーハ前部を加熱する加熱手段(ランプ)7Cへの供給電力が上昇していることが分かる。なお、図4においては、ウェーハワンカセットの処理を1バッチと定義しており、以下、同様である。
【0033】
これは、図1のウェーハ前部を測定する熱電対(5F)と被測定点との接触状態が、操業を繰り返しているうちに悪化し、温度を低く計測した結果、上述したように、前部温度制御手段6Fが設定値通りの温度になるように加熱するために、加熱手段7Fへの供給電力を増加したためである。この前部の加熱手段7Fへの供給電力の増加は、側部などの温度上昇も伴うため、側部の温度制御手段6Sなどが、設定温度を維持しようとするために、側部加熱手段7Sなどへの電力供給量を低下することにつながっている。
【0034】
図5は、エピタキシャル成長後のウェーハ1における中央部膜厚に対する外周部膜厚の差を示した図である。図5の▲1▼、▲2▼、▲3▼は、図4の▲1▼、▲2▼、▲3▼の矢印部分で製造されたウェーハであり、図4(B)に示すように、測温手段5C、5F、5B、5Sの出力が一定であっても、図5で示すように外周部膜厚が厚くなっていることを示している。なお、測温手段(熱電対)5Fによる測定温度は、熱電対5Fと被測定物との接触が不十分なため、見かけ上の測定温度となっている。
【0035】
このような膜厚分布は、反応ガスの供給部近傍(前部)の温度が、前部の加熱手段7Fへの供給電力の増加により上昇したために、エピタキシャル成長が外周部でより促進された結果と考えられる。
【0036】
以上のような現象を抑制するために発明者らは研究を続け、同一品種(同一ウェーハ)、同一操業中の定常状態では、加熱手段への供給電力は、大きく変化しないことに注目し、後述する各実施形態に至った。
【0037】
すなわち、各加熱手段への定常状態の平均電力供給量と、基準となる加熱手段への定常状態の平均電力供給量との差が常に一定になるように、平均電力差を学習し、この学習結果を、各加熱手段への温度制御に反映させることとした。
【0038】
(B)第1の実施形態
以下、本発明による加熱装置及び加熱方法の第1の実施形態を図面を参照しながら説明する。
【0039】
第1の実施形態の加熱装置及び加熱方法は、各加熱手段への定常状態の平均電力供給量と、基準となる加熱手段への定常状態の平均電力供給量との差が常に一定になるように、平均電力差を学習し、この学習結果に基づき、各温度測定手段の出力を修正して温度制御に反映させるものである。
【0040】
以下、エピタキシャル成長装置(エピタキシャル成長炉)に適用された加熱装置及び加熱方法として、第1の実施形態を説明する。
【0041】
図6は、第1の実施形態の加熱装置の機能的構成を示すブロック図であり、上述した図1、図2との同一、対応部分には、同一、対応符号を付して示している。
【0042】
図6において、第1の実施形態の加熱装置10は、各部位の温度測定手段(測温手段)5C、5F、5B、5S、各部位の温度制御手段6C、6F、6B、6S、各部位の加熱手段7C、7F、7B、7Sなどの従来と同様な構成に加えて、供給電力検出手段11C、11F、11B、11S、温度補正手段8及び学習手段9を有している。
【0043】
なお、図6では示していないが、薄板状加熱対象物(ウェーハ)が存在している。また、側部加熱手段7Sは、図2に示したように、2個存在している。
【0044】
新たに設けられた学習手段9は、各加熱手段へ供給される電力を検出する供給電力検出手段11C、11F、11B、11Sを介して供給電力量が入力されており、定常状態の平均電力供給量と、基準となる加熱手段への定常状態の平均電力供給量との差が常に一定になるように平均電力差を学習するものである。
【0045】
また、新たに設けられた温度補正手段8は、学習手段9による学習結果に応じて、各温度測定手段からの測定温度を補正して、各温度制御手段に与えるものである。
【0046】
次に、学習手段9の学習処理は、図7のフローチャートをも参照しながら説明する。なお、以下では、ウェーハ中心部を基準部位としている。また、図7は、操業1回での処理を示しており、パラメータIは操業毎に1インクメントするものである。
【0047】
まず、加熱手段(赤外線ランプ)7C、7F、7B、7Sを交換した後のN回の操業における定常状態の各部平均電力差を記憶、保持する(ステップS1、S2)。
【0048】
ここでは、中心部電力との差ΔPF−Cini、ΔPB−Cini、ΔPS−Ciniを、(10)式〜(12)式を用いて計算する。
【0049】
【数4】
Figure 0003941427
Nバッチ後、Kバッチ中の定常状態の平均電力差ΔPF−C、ΔPB−C、ΔPS−Cを(13)式〜(15)式を用いて計算する(S1、S3、S4)。
【0050】
【数5】
Figure 0003941427
その後、(10)式〜(15)式で計算した平均電力差を用い、(17)式、(19)式、(21)式を用いて、電力学習量を、Nバッチ後、Kバッチ終了毎に計算する(S1、S3、S5)。この電力学習量が、温度測定手段の測定誤差に起因する影響分となるため、この電力学習量に基づいて、基準となる温度測定手段以外(ここでは、中央部温度測定手段5C以外)の温度の補正温度を求める(S6)。
【0051】
以上のようにして学習手段9が得た補正温度分だけ、温度補正手段8が、(16)式、(18)式、(20)式に示すように、温度測定手段5F、5B、5Sからの測定温度t、t、tを補正し、補正して得た温度tFin、tBin、tSinを温度制御手段7F、7B、7Sに与える。なお、基準となる中央部温度測定手段5Cの測定温度tはそのまま温度制御手段7Cに与えられる。
【0052】
【数6】
Figure 0003941427
以上のように計算された温度を制御入力とすることにより、温度測定手段の測定誤差を吸収しながら各部位を所定の温度プロフィールに制御することが可能となるため、常に一定のウェーハ温度分布を維持することが可能となる。
【0053】
以下、具体例で実際の制御内容などを説明する。温度測定手段として熱電対を用いて、サセプタ中央部(中央部)、ガス入り側のサセプタリング温度(前部)、ガス排気側のサセプタリングの温度(後部)、ウェーハ中心から見てガス入り側のサセプタリング温度測定位置と90度異なる位置(側部)の温度を測定し、それぞれの測定値に基づきそれぞれの汎用温度コントローラを用いてそれぞれの部位周辺を加熱する加熱手段を制御する気層エピタキシャル成長炉における熱処理装置(加熱装置)の例で説明する(図2参照)。
【0054】
この熱処理装置の前部測定用の熱電対は、ガス出側より熱電対を挿入するため、熱電対と被測定点との接触状態が悪化しやすい。このため、操業を継続するにしたがって、熱電対が被測定点から離れていき、測定温度が低くなることが懸念されていた。これを裏付けるように、一定温度に制御しようとすると、前部に供給される電力が増加していくことがわかった(図4参照)。
【0055】
そこで、このようなエピタキシャル成長炉に、第1の実施形態を適用した結果を図8に示す。ここでは、中央部温度測定手段を基準とし、前部温度測定手段の出力のみを学習した。
【0056】
ここで、初期平均電力差は、熱電対交換後10バッチ((10)式のN=10)で計算し、学習は、20バッチ((13)式のK=20)毎に実施した。また、学習係数((17)式のα)は0.3とした。この結果、(17)式で示す前部電力の学習量は、図8(B)のように変化し、この学習量に応じて、(16)式を適用することで、図8(A)で示すように、定常部の電力変化がほとんどない操業が実現できた。この結果の膜厚分布の変化を調査したところ、図9に示すように、長期にわたりほぼ一定のウェーハを製造することができた。
【0057】
以上のように、第1の実施形態によれば、加熱手段への供給電力を利用して、測定温度を補正して温度制御に供するようにしたので、複数ある温度測定手段の測定誤差を吸収することができる加熱装置及び加熱方法を提供することができる。
【0058】
(C)第2の実施形態
次に、本発明による加熱装置及び加熱方法の第2の実施形態を図面を参照しながら説明する。
【0059】
第2の実施形態の加熱装置及び加熱方法は、各加熱手段への定常状態の平均電力供給量と、基準となる加熱手段への定常状態の平均電力供給量との差が常に一定になるように、平均電力差を学習し、この学習結果に基づき、指令温度を修正して温度制御に反映させるものである。
【0060】
図10は、第2の実施形態の加熱装置の機能的構成を示すブロック図であり、上述した図6との同一、対応部分には、同一、対応符号を付して示している。
【0061】
図10において、第2の実施形態の加熱装置10Aは、各部位の温度測定手段(測温手段)5C、5F、5B、5S、各部位の温度制御手段6C、6F、6B、6S、各部位の加熱手段7C、7F、7B、7Sなどの従来と同様な構成に加えて、供給電力検出手段11C、11F、11B、11S、指令温度補正手段8A及び学習手段9Aを有している。
【0062】
学習手段9Aは、第1の実施形態の学習手段9と同様に、加熱手段7C、7F、7B、7Sへの供給電力量の関係を学習するものである。
【0063】
この第2の実施形態の場合、学習結果は、指令温度補正手段8Aに与えられる。指令温度補正手段8Aは、この学習結果に応じ、温度制御手段6C、6F、6B、6Sへ与える指令温度を補正し、温度制御に供給電力量の関係を反映させる。
【0064】
第2の実施形態によれば、加熱手段への供給電力を利用して、指令温度を補正して温度制御に供するようにしたので、複数ある温度測定手段の測定誤差を吸収することができる加熱装置及び加熱方法を提供することができる。
【0065】
(D)他の実施形態
上記各実施形態では、加熱手段の数が5個のものを示したが、これに限定されるものではなく、また、加熱手段に対応付けて温度測定点を決定すれば良い。なお、図2とは異なり、2個の側部用加熱手段(ランプ)毎に、温度測定手段や温度制御手段を設けても良い。
【0066】
さらに、上記各実施形態では、中央部の供給電力量を基準に、各部の供給電力量の関係を捉えたものを示したが、基準部位は中央部に限定されず、任意の位置に選定しても良い。また、基準部位が複数存在していても良い。
【0067】
さらにまた、加熱対象は半導体ウェーハに限定されず、薄板状のものであれば良い。また、温度制御方法も、PI制御に限定されるものではなく、PID制御などであっても良い。
【0068】
【発明の効果】
以上のように、本発明によれば、実操業中に起こりうる温度測定のわずかな誤差を吸収することにより、継続して薄板状加熱対象物の面内温度分布を一定に維持することができる。その結果、熱処理後の薄板状加熱対象物の品質を良好なものにすることができる。
【図面の簡単な説明】
【図1】加熱装置の温度測定手段(測温手段)の設置位置例の説明図である。
【図2】加熱装置の一般的な独立制御構成例を示す説明図である。
【図3】熱電対設置間隔(測定点からずれ長さ)と温度差との関係を示す説明図である。
【図4】各部加熱手段への供給電力の変化と各部の実績温度を示す説明図である。
【図5】膜厚分布の経時変化(熱電対交換からの経時変化)を示す説明図である。
【図6】第1の実施形態の加熱装置の構成を示すブロック図である。
【図7】第1の実施形態の学習手段の処理を示すフローチャートである。
【図8】第1の実施形態の電力学習値の推移と加熱手段への供給電力推移を示す説明図である。
【図9】第1の実施形態の適用後の膜厚分布推移を示す説明図である。
【図10】第2の実施形態の加熱装置の構成を示すブロック図である。
【符号の説明】
1…半導体ウェーハ、
2…サセプタ、
3…サセプタリング、
5C、5F、5B、5S…温度測定手段(測温手段)、
6C、6F、6B、6S…温度制御手段、
7C、7F、7B、7S…加熱手段(赤外線ランプ)、
8…温度補正手段、
8A…指令温度補正手段、
9、9A…学習手段、
10、10A…加熱装置、
11C、11F、11B、11S…供給電力検出手段。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heating apparatus and a heating method for heating a thin plate-like object to be heated, and in particular, is suitable for application to a semiconductor processing apparatus and method for performing a heat treatment so that the in-plane temperature distribution of a semiconductor wafer is always kept constant. It is.
[0002]
[Prior art]
Among processing steps for semiconductor wafers (hereinafter simply referred to as wafers), there are many steps that require heat treatment (heating) on the wafer, and a semiconductor processing apparatus for such steps has a heating device.
[0003]
For example, an epitaxial growth apparatus (growth furnace) has a wafer heating apparatus (heat treatment apparatus) using an infrared lamp and the like, optimization of wafer film thickness distribution and specific resistance distribution, slip caused by wafer temperature distribution, etc. In order to control crystal defects, it is necessary to control the in-plane temperature distribution of the wafer.
[0004]
2. Description of the Related Art Conventionally, in order to control the in-plane temperature distribution of a wafer, a semiconductor manufacturing apparatus (Japanese Patent Laid-Open No. 5-291169) having a plurality of temperature measuring means (hereinafter referred to as temperature measuring means as appropriate) and a plurality of heating means. Based on the temperature measured by each temperature measuring means, a method of controlling each heating means by each dedicated temperature control means has been used.
[0005]
FIG. 1 is an explanatory view schematically showing an example of temperature measuring points in a typical apparatus (for example, an epitaxial growth apparatus) having a heat treatment apparatus.
[0006]
In FIG. 1, a wafer 1 is held by a disc-shaped susceptor 2, and this susceptor 2 is held by an annular susceptor ring 3, and as a result, the wafer 1 to be heated is positioned at a predetermined position in the chamber 4. Has been made. For example, in the case of an epitaxial growth apparatus, the reaction gas 5 is introduced into and led out from the chamber 4, and the reaction gas 5 flows from the inlet to the outlet through a substantially linear flow path.
[0007]
In the example of FIG. 1, the position where the normal direction passing through the center of the wafer 1 intersects the back surface of the susceptor 2 is the temperature measuring point by the center temperature measuring means 5C. Further, the position of the susceptor ring 3 near the reaction gas inlet is a temperature measuring point by the front temperature measuring means 5F, and the position of the susceptor ring 3 near the reaction gas outlet is measured by the rear temperature measuring means 5B. It is a warm point, and the positions 5F and 5B are angularly separated by 180 degrees when viewed from the center of the wafer 1. The position of the susceptor ring 3 that is angularly separated from the positions 5F and 5B by ± 90 degrees is a temperature measuring point by the side temperature measuring means 5S.
[0008]
As shown in FIG. 2, the outputs from the temperature measuring means 5C, 5F, 5B, 5S are given to the corresponding temperature control means 6C, 6F, 6B, 6S, and the temperature control means 6C, 6F, 6B, 6S are provided. Controls the lamps 7C, 7F, 7B, 7S as the corresponding heating means based on the temperature measurement output. That is, in such a heat treatment apparatus, a value according to a desired temperature profile (command temperature change) is given to each part of the wafer in advance, and the lamp 7C as a heating unit is set so that each part has a commanded temperature profile. 7F, 7B and 7S are controlled.
[0009]
1 and 2 show the case where each of the temperature measuring means 5C, 5F, 5B, and 5S is a thermocouple.
[0010]
In addition, as disclosed in Japanese Patent Laid-Open No. 6-260426, a method for controlling the temperature profile of the representative part so that the temperature difference of the other part is constant has already been proposed.
[0011]
All of the control methods described above individually control the heating means based on the outputs of the plurality of temperature measuring means.
[0012]
[Problems to be solved by the invention]
However, in a heat treatment apparatus having an independent control system for each of a plurality of temperature measurement means, if one of the temperature measurement means fails to perform measurement accurately for some reason, the in-plane temperature distribution of the wafer changes greatly. There was a problem.
[0013]
Such a phenomenon that the temperature measuring means does not accurately measure can occur on a daily basis as follows.
[0014]
1. When a thermocouple type thermometer is used for the temperature measuring means 5, since the thermocouple type thermometer is a contact type thermometer, the contact state between the tip of the thermocouple and the object to be measured (temperature measurement object) is slight. As shown in FIG. 3, the measured temperature changes greatly.
[0015]
2. When a radiation thermometer is used as the temperature measuring means 5 When the wafer temperature is measured with the radiation thermometer, the temperature is measured through quartz glass or the like constituting the chamber 4. At this time, depending on the reaction gas introduced into the chamber 4 during the heat treatment, molecules adhere to the quartz glass surface, and as a result, the transmittance for the radiation of the wavelength for temperature measurement decreases, and the measurement temperature changes.
[0016]
In this way, if even one of the thermometers measures an inaccurate temperature, the temperature control means will work to maintain the measured temperature at the set value (command value) instead of the actual temperature at the measurement point, Part of the wafer surface begins to be heated above the set value. This heating affects not only the part to be heated, but also other parts. As a result, the in-plane temperature distribution of the wafer is different from the desired one, and the specific resistance distribution and film thickness distribution are deteriorated. This was one of the causes of quality defects.
[0017]
Here, it is possible to adjust the temperature measurement by the temperature measurement means so as to perform normally and to avoid the above problem, but in general, the operation start of the apparatus (for example, the epitaxial growth apparatus) including the heating apparatus is started. Since an error occurs in the temperature measurement from an early stage, it is not practical from the viewpoint of productivity to stop the heating device for the adjustment.
[0018]
The present invention has been made in view of the above points, and an object of the present invention is to provide a heating apparatus and a heating method that can absorb measurement errors of a plurality of temperature measurement means.
[0019]
[Means for Solving the Problems]
In order to solve such a problem, the first aspect of the present invention includes a plurality of temperature measuring means for measuring a temperature of a predetermined portion of the thin plate-shaped heating object or a predetermined portion of the holding body of the thin plate-shaped heating object, A plurality of heating means provided to be associated with each of the temperature measuring means and heating the area in charge of the thin plate-like heating object, and heating by the corresponding heating means based on the output of the corresponding temperature measuring means And a plurality of temperature control means for controlling the supply power detection means for detecting the power supplied to each of the heating means, and the supply power for temperature control of at least some of the temperature control means. And a control operation correcting means for reflecting a detection result of the detecting means.
[0020]
Here, the control operation correction means inputs the measured temperature from the temperature measurement means corresponding to the temperature control means, which is input to at least a part of the temperature control means, based on the detection result of the supply power detection means. It is preferable to make corrections and input.
[0021]
In the second aspect of the present invention, the temperature of the predetermined portion of the thin plate-shaped heating object or the predetermined portion of the holder of the thin plate-shaped heating object heated by the heating means for the predetermined portion is set to a plurality of temperatures. In the heating method in which each of the measurement means measures and based on the measurement output, the plurality of temperature control means for the predetermined part respectively control the temperature, the power supplied to each of the heating means is detected, and the detection result is It is reflected in the temperature control of at least a part of the temperature control means.
[0022]
Here, the measured temperature from the temperature measuring unit corresponding to the temperature control unit, which is input to at least a part of the temperature control unit, is corrected according to the detected power supply and reflected in the temperature control. Is preferred.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
(A) Concept of temperature control common to each embodiment Each embodiment to be described later relating to the heating device and the heating method according to the present invention has a power supply amount to at least a part of heating means for heating a thin plate-like heating object. These are intended to be used for controlling the heating temperature by each heating means.
[0024]
In the following, first, it will be described that the power supply amount to at least a part of the heating means can be used for controlling the heating temperature by each heating means. In the following description, temperature measuring means composed of a thermocouple is arranged as shown in FIG. 2, and description will be made assuming that a wafer as a thin plate-like heating object is heated. Although the wafer temperature is not directly measured, the wafer temperature is indirectly measured, and the intention of the measurement is the wafer. Therefore, the measured temperature is expressed as the wafer temperature.
[0025]
First, the object to be measured (2, 3) and the thermocouple (5C, 5F, 5B, 5S) are sufficiently thermally coupled, so that the accurate wafer center temperature t C , wafer front temperature t F , wafer rear temperature It is assumed that t B and wafer side temperature t S are measured (hereinafter, similarly, C, F, B, and S represent the wafer central portion, front portion, rear portion, and side portion, respectively). If the target temperatures at this time are T C , T F , T B , and T S , each control means (in this case, a control means that performs PI control) 6C, 6F, 6B, and 6S is (1 ) to (4) power change command [Delta] P C according to equation, ΔP F, ΔP B, the [Delta] P S, corresponding heating means 7C, 7F, 7B, instructs the 7S.
[0026]
[Expression 1]
Figure 0003941427
As a result, the temperatures t Cn , t Fn , t Bn , and t Sn of each part of the wafer after the control are as follows when the conversion function of temperature from the power supplied to the heating means 7C, 7F, 7B, and 7S is g. (5) to (8).
[0027]
[Expression 2]
Figure 0003941427
Here, if a control gain such as a proportional gain or an integral gain is appropriate, the temperatures t Cn , t Fn , t Bn , and t Sn of the respective parts are set to the target temperatures T C , T F , T B , so that will converge to T S.
[0028]
However, when the contact state of the thermocouple deteriorates, for example, when the front temperature is measured to be lower by Δε, the power command value ΔP is obtained from the above-described equation (2) when the temperature is correctly measured. than the original power command value [Delta] P F of, as shown in (9), the control gain is as high output reflects the value ΔΔP Fε relative error temperature [Delta] [epsilon].
[0029]
[Equation 3]
Figure 0003941427
As a result, the temperature of the front part increases not only by the amount of power ΔΔP Fε, but also the error power command value ΔΔP is determined by each of the equations (5) to (8). It also affects the part, and the temperature of each part also tries to increase according to the degree of the influence.
[0030]
However, since each part performs temperature control, as a result, the power supplied to the heating means other than the front part decreases the power supply amount according to the influence from the front part.
[0031]
As described above, although the apparent temperature measurement value has no change, the power supplied to the heating means 7C, 7F, 7B, and 7S changes, and the temperature distribution in the wafer surface is different. This has been a big problem in the past.
[0032]
FIG. 4A shows a change in power supplied to the heating means 7C, 7F, 7B, and 7S (displayed by a difference from the power supplied to the center) when heat treatment (epitaxial growth) is performed with all operating conditions being equal. ing. In this way, the operation is performed under exactly the same conditions, and as shown in FIG. 4B, the apparent measured temperature of each part (displayed by the difference from the center temperature because the temperature is high) is constant. Nevertheless, it can be seen that the power supplied to the heating means (lamp) 7C for heating the front part of the wafer is increased. In FIG. 4, the wafer one cassette process is defined as one batch, and the same applies hereinafter.
[0033]
This is because the contact state between the thermocouple (5F) that measures the front part of the wafer in FIG. 1 and the point to be measured deteriorates as the operation is repeated, and the temperature is measured low. This is because the power supplied to the heating means 7F is increased in order to heat the temperature control means 6F to a temperature as set. The increase in power supplied to the front heating means 7F is accompanied by a rise in temperature of the side portions and the like, so that the side temperature control means 6S and the like try to maintain the set temperature. This has led to a reduction in the amount of power supplied to
[0034]
FIG. 5 is a diagram showing the difference in the outer peripheral film thickness with respect to the central film thickness in the wafer 1 after epitaxial growth. (1), (2), and (3) in FIG. 5 are wafers manufactured by the arrow portions of (1), (2), and (3) in FIG. 4, as shown in FIG. 4 (B). Even when the outputs of the temperature measuring means 5C, 5F, 5B, and 5S are constant, the outer peripheral film thickness is increased as shown in FIG. Note that the temperature measured by the temperature measuring means (thermocouple) 5F is an apparent measured temperature because the contact between the thermocouple 5F and the object to be measured is insufficient.
[0035]
Such a film thickness distribution is due to the fact that the temperature in the vicinity of the reaction gas supply part (front part) has increased due to an increase in the power supplied to the front heating means 7F, so that epitaxial growth has been further promoted at the outer peripheral part. Conceivable.
[0036]
In order to suppress the above phenomenon, the inventors have continued research, paying attention to the fact that the power supplied to the heating means does not change significantly in the steady state during the same product (same wafer) and the same operation. It came to each embodiment to do.
[0037]
That is, the average power difference is learned so that the difference between the steady-state average power supply amount to each heating unit and the steady-state average power supply amount to the reference heating unit is always constant. The result was reflected in the temperature control to each heating means.
[0038]
(B) First Embodiment Hereinafter, a first embodiment of a heating device and a heating method according to the present invention will be described with reference to the drawings.
[0039]
In the heating apparatus and heating method of the first embodiment, the difference between the steady state average power supply amount to each heating unit and the steady state average power supply amount to the reference heating unit is always constant. Further, the average power difference is learned, and based on the learning result, the output of each temperature measuring means is corrected and reflected in the temperature control.
[0040]
Hereinafter, a first embodiment will be described as a heating apparatus and a heating method applied to an epitaxial growth apparatus (epitaxial growth furnace).
[0041]
FIG. 6 is a block diagram showing a functional configuration of the heating apparatus according to the first embodiment, and the same and corresponding parts as those in FIGS. 1 and 2 are given the same and corresponding reference numerals. .
[0042]
In FIG. 6, the heating device 10 of the first embodiment includes temperature measurement means (temperature measurement means) 5C, 5F, 5B, and 5S for each part, temperature control means 6C, 6F, 6B, and 6S for each part, and each part. In addition to the conventional configuration such as the heating means 7C, 7F, 7B, 7S, the power supply detection means 11C, 11F, 11B, 11S, the temperature correction means 8, and the learning means 9 are provided.
[0043]
Although not shown in FIG. 6, there is a thin plate-shaped heating object (wafer). Further, there are two side heating means 7S as shown in FIG.
[0044]
The newly provided learning means 9 is supplied with the amount of supplied power through the supplied power detecting means 11C, 11F, 11B, and 11S for detecting the power supplied to each heating means, and the average power supply in the steady state The average power difference is learned so that the difference between the amount and the steady state average power supply amount to the reference heating means is always constant.
[0045]
Further, the newly provided temperature correction means 8 corrects the measured temperature from each temperature measurement means according to the learning result by the learning means 9, and gives it to each temperature control means.
[0046]
Next, the learning process of the learning means 9 will be described with reference to the flowchart of FIG. In the following, the center of the wafer is used as a reference site. FIG. 7 shows a process in one operation, and the parameter I is incremented by 1 for each operation.
[0047]
First, the average power difference of each part in the steady state in N operations after replacing the heating means (infrared lamp) 7C, 7F, 7B, 7S is stored and held (steps S1, S2).
[0048]
Here, the difference [Delta] P F-Cini the central power, [Delta] P B-Cini, the [Delta] P S-Cini, calculated using equation (10) to (12) below.
[0049]
[Expression 4]
Figure 0003941427
After N batches, steady state average power differences ΔP F−C , ΔP B−C , ΔP S−C in K batches are calculated using Eqs. (13) to (15) (S1, S3, S4). .
[0050]
[Equation 5]
Figure 0003941427
Then, using the average power difference calculated by Equations (10) to (15), using Equation (17), Equation (19), and Equation (21), the power learning amount is set to N batches, and then K batches are completed. Calculate every time (S1, S3, S5). Since this power learning amount becomes an influence due to the measurement error of the temperature measuring means, the temperature other than the reference temperature measuring means (here, other than the central temperature measuring means 5C) based on this power learning amount. Is obtained (S6).
[0051]
As shown in the equations (16), (18), and (20), the temperature correction unit 8 generates the correction temperature corresponding to the correction temperature obtained by the learning unit 9 as described above from the temperature measurement units 5F, 5B, and 5S. The measured temperatures t F , t B and t S are corrected, and the corrected temperatures t Fin , t Bin and t Sin are given to the temperature control means 7F, 7B and 7S. The measured temperature t C of the central temperature measuring means 5C serving as a reference is directly supplied to the temperature control means 7C.
[0052]
[Formula 6]
Figure 0003941427
By using the temperature calculated as described above as a control input, it becomes possible to control each part to a predetermined temperature profile while absorbing the measurement error of the temperature measuring means, so a constant wafer temperature distribution is always obtained. Can be maintained.
[0053]
Hereinafter, actual control contents and the like will be described with specific examples. Using a thermocouple as the temperature measurement means, the susceptor center (center), the susceptor ring temperature on the gas inlet side (front), the susceptor ring temperature on the gas exhaust side (rear part), the gas inlet side as viewed from the wafer center Gas phase epitaxial growth that measures the temperature at a position (side part) 90 degrees different from the susceptor temperature measurement position and controls the heating means for heating the periphery of each part based on each measured value using each general-purpose temperature controller An example of a heat treatment apparatus (heating apparatus) in the furnace will be described (see FIG. 2).
[0054]
Since the thermocouple for measuring the front part of this heat treatment apparatus inserts the thermocouple from the gas outlet side, the contact state between the thermocouple and the point to be measured tends to deteriorate. For this reason, as the operation is continued, there is a concern that the thermocouple moves away from the measurement point and the measurement temperature becomes lower. In order to support this, it was found that the power supplied to the front portion increases when the temperature is controlled to be constant (see FIG. 4).
[0055]
FIG. 8 shows the result of applying the first embodiment to such an epitaxial growth furnace. Here, only the output of the front temperature measuring means was learned on the basis of the central temperature measuring means.
[0056]
Here, the initial average power difference was calculated in 10 batches (N = 10 in equation (10)) after thermocouple replacement, and learning was performed every 20 batches (K = 20 in equation (13)). The learning coefficient (α in the equation (17)) was set to 0.3. As a result, the learning amount of the front power indicated by equation (17) changes as shown in FIG. 8B, and by applying equation (16) according to this learning amount, FIG. As shown in Fig. 5, operation with little power change in the stationary part was realized. As a result of investigating the change in the film thickness distribution as a result, as shown in FIG. 9, a substantially constant wafer could be manufactured over a long period of time.
[0057]
As described above, according to the first embodiment, the measurement temperature is corrected and used for temperature control using the power supplied to the heating unit, so that the measurement error of a plurality of temperature measurement units is absorbed. It is possible to provide a heating device and a heating method that can be performed.
[0058]
(C) Second Embodiment Next, a second embodiment of the heating device and the heating method according to the present invention will be described with reference to the drawings.
[0059]
In the heating apparatus and the heating method of the second embodiment, the difference between the steady state average power supply amount to each heating unit and the steady state average power supply amount to the reference heating unit is always constant. Further, the average power difference is learned, and based on the learning result, the command temperature is corrected and reflected in the temperature control.
[0060]
FIG. 10 is a block diagram showing a functional configuration of the heating apparatus according to the second embodiment, and the same and corresponding parts as those in FIG. 6 are given the same and corresponding reference numerals.
[0061]
In FIG. 10, the heating apparatus 10A of the second embodiment includes temperature measuring means (temperature measuring means) 5C, 5F, 5B, 5S for each part, temperature control means 6C, 6F, 6B, 6S for each part, each part. In addition to the conventional configuration such as the heating means 7C, 7F, 7B, and 7S, the power supply detection means 11C, 11F, 11B, and 11S, the command temperature correction means 8A, and the learning means 9A are provided.
[0062]
The learning means 9A learns the relationship of the amount of power supplied to the heating means 7C, 7F, 7B, and 7S, similarly to the learning means 9 of the first embodiment.
[0063]
In the case of this second embodiment, the learning result is given to the command temperature correction means 8A. The command temperature correction means 8A corrects the command temperature given to the temperature control means 6C, 6F, 6B, 6S according to the learning result, and reflects the relationship of the supplied power amount to the temperature control.
[0064]
According to the second embodiment, the power supplied to the heating means is used to correct the command temperature for temperature control, so that heating that can absorb measurement errors of a plurality of temperature measuring means is provided. An apparatus and a heating method can be provided.
[0065]
(D) Other Embodiments In the above embodiments, the number of heating means is five. However, the present invention is not limited to this, and the temperature measurement point can be determined in association with the heating means. It ’s fine. In addition, unlike FIG. 2, you may provide a temperature measurement means and a temperature control means for every two side part heating means (lamp).
[0066]
Furthermore, in each of the above embodiments, the relationship between the power supply amounts of the respective parts is shown based on the power supply amount of the central part, but the reference part is not limited to the central part, and can be selected at any position. May be. A plurality of reference parts may exist.
[0067]
Furthermore, the object to be heated is not limited to a semiconductor wafer, but may be a thin plate. Also, the temperature control method is not limited to PI control, and may be PID control or the like.
[0068]
【The invention's effect】
As described above, according to the present invention, it is possible to continuously maintain the in-plane temperature distribution of the thin plate-shaped heating object by absorbing a slight error in temperature measurement that may occur during actual operation. . As a result, the quality of the thin plate-shaped heating object after the heat treatment can be improved.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an example of an installation position of temperature measuring means (temperature measuring means) of a heating device.
FIG. 2 is an explanatory diagram showing an example of a general independent control configuration of a heating device.
FIG. 3 is an explanatory diagram showing a relationship between a thermocouple installation interval (length shifted from a measurement point) and a temperature difference.
FIG. 4 is an explanatory diagram showing a change in power supplied to each part heating means and the actual temperature of each part.
FIG. 5 is an explanatory diagram showing a change with time in film thickness distribution (change with time from thermocouple exchange).
FIG. 6 is a block diagram illustrating a configuration of a heating device according to the first embodiment.
FIG. 7 is a flowchart showing processing of the learning means of the first embodiment.
FIG. 8 is an explanatory diagram showing a transition of a power learning value and a transition of power supplied to a heating unit according to the first embodiment.
FIG. 9 is an explanatory diagram showing changes in film thickness distribution after application of the first embodiment.
FIG. 10 is a block diagram illustrating a configuration of a heating device according to a second embodiment.
[Explanation of symbols]
1 ... Semiconductor wafer,
2 ... susceptor,
3 ... susceptor ring,
5C, 5F, 5B, 5S ... temperature measuring means (temperature measuring means),
6C, 6F, 6B, 6S ... temperature control means,
7C, 7F, 7B, 7S ... heating means (infrared lamp),
8 ... temperature correction means,
8A ... Command temperature correction means,
9, 9A ... learning means,
10, 10A ... heating device,
11C, 11F, 11B, 11S ... Supply power detection means.

Claims (4)

薄板状加熱対象物の所定部位、又は、上記薄板状加熱対象物の保持体の所定部位の温度を測定する複数の温度測定手段と、上記各温度測定手段のそれぞれに対応付けて設けられ、上記薄板状加熱対象物の担当領域を加熱する複数の加熱手段と、対応する上記温度測定手段の出力に基づいて、対応する上記加熱手段による加熱を制御する複数の温度制御手段とを備えた加熱装置において、
上記各加熱手段に供給される電力を検出する供給電力検出手段と、
少なくとも一部の上記温度制御手段の温度制御に、上記供給電力検出手段の検出結果を反映させる制御動作修正手段と
を有することを特徴とする加熱装置。
A plurality of temperature measuring means for measuring the temperature of a predetermined part of the thin plate-like heating object or a predetermined part of the holding body of the thin plate-like heating object, and each temperature measuring means are provided in association with each other, A heating apparatus comprising a plurality of heating means for heating a region in charge of a thin plate-like heating object, and a plurality of temperature control means for controlling heating by the corresponding heating means based on the output of the corresponding temperature measuring means In
Supply power detection means for detecting power supplied to each of the heating means;
A heating apparatus comprising: a control operation correcting unit that reflects a detection result of the supplied power detection unit in temperature control of at least a part of the temperature control unit.
上記制御動作修正手段は、少なくとも一部の上記温度制御手段に入力される、その温度制御手段に対応した上記温度測定手段からの測定温度を、上記供給電力検出手段の検出結果に基づき、修正して入力させることを特徴とする請求項1に記載の加熱装置。The control operation correction means corrects the measured temperature from the temperature measurement means corresponding to the temperature control means, which is input to at least a part of the temperature control means, based on the detection result of the supply power detection means. The heating apparatus according to claim 1, wherein the heating apparatus is input. 所定部位用の加熱手段によって加熱されている、薄板状加熱対象物の所定部位、又は、上記薄板状加熱対象物の保持体の所定部位の温度を複数の温度測定手段がそれぞれ測定し、その測定出力に基づいて、所定部位用の複数の温度制御手段がそれぞれ温度制御する加熱方法において、
上記各加熱手段に供給される電力を検出し、この検出結果を、少なくとも一部の上記温度制御手段の温度制御に反映させることを特徴とする加熱方法。
A plurality of temperature measuring means respectively measure the temperature of the predetermined part of the thin plate-like heating object or the predetermined part of the holder of the thin plate-like heating object, which is heated by the heating means for the predetermined part. In the heating method in which the plurality of temperature control means for the predetermined part respectively controls the temperature based on the output,
A heating method, wherein power supplied to each of the heating means is detected, and the detection result is reflected in temperature control of at least a part of the temperature control means.
少なくとも一部の上記温度制御手段に入力される、その温度制御手段に対応した上記温度測定手段からの測定温度を、検出された供給電力の関係に応じて修正して温度制御に反映させることを特徴とする請求項3に記載の加熱方法。The measured temperature from the temperature measuring means corresponding to the temperature control means, which is input to at least a part of the temperature control means, is corrected according to the relationship of the detected supply power and reflected in the temperature control. The heating method according to claim 3, wherein the heating method is characterized.
JP2001214787A 2001-07-16 2001-07-16 Heating apparatus and heating method Expired - Lifetime JP3941427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001214787A JP3941427B2 (en) 2001-07-16 2001-07-16 Heating apparatus and heating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001214787A JP3941427B2 (en) 2001-07-16 2001-07-16 Heating apparatus and heating method

Publications (2)

Publication Number Publication Date
JP2003031516A JP2003031516A (en) 2003-01-31
JP3941427B2 true JP3941427B2 (en) 2007-07-04

Family

ID=19049545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001214787A Expired - Lifetime JP3941427B2 (en) 2001-07-16 2001-07-16 Heating apparatus and heating method

Country Status (1)

Country Link
JP (1) JP3941427B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6916744B2 (en) * 2002-12-19 2005-07-12 Applied Materials, Inc. Method and apparatus for planarization of a material by growing a sacrificial film with customized thickness profile
WO2017151966A1 (en) * 2016-03-02 2017-09-08 Watlow Electric Manufacturing Company System and method for axial zoning of heating power
TW202405594A (en) * 2022-03-24 2024-02-01 日商東京威力科創股份有限公司 Analysis device, substrate processing system, substrate processing device, analysis method, and analysis program

Also Published As

Publication number Publication date
JP2003031516A (en) 2003-01-31

Similar Documents

Publication Publication Date Title
US6596973B1 (en) Pyrometer calibrated wafer temperature estimator
KR102433657B1 (en) Methods for thermally calibrating reaction chambers
US8047706B2 (en) Calibration of temperature control system for semiconductor processing chamber
US6284048B1 (en) Method of processing wafers with low mass support
US6191399B1 (en) System of controlling the temperature of a processing chamber
US6744018B2 (en) Substrate processing apparatus and method for manufacturing semiconductor device
US9245768B2 (en) Method of improving substrate uniformity during rapid thermal processing
JP2002514008A (en) Method and apparatus for controlling radial temperature gradient of wafer during wafer temperature ramping
JP2010168649A (en) Substrate processing apparatus, deposition method, and electronic device manufacturing method
TW201843344A (en) Method and device for the thermal treatment of a substrate
JP3941427B2 (en) Heating apparatus and heating method
JP6474047B2 (en) Vapor growth apparatus and epitaxial wafer manufacturing method
US20060249502A1 (en) Distance estimation apparatus, abnormality detection apparatus, temperature regulator, and thermal treatment apparatus
KR20230082660A (en) Methods for emissivity-corrected pyrometry
US20040144488A1 (en) Semiconductor wafer processing apparatus
JP3764689B2 (en) Semiconductor manufacturing method and semiconductor manufacturing apparatus
JP3631921B2 (en) Calibration method for non-contact thermometer
JP4980100B2 (en) Wafer heating film forming apparatus and wafer temperature control method
JP4392838B2 (en) Film forming apparatus and film forming method
JP2001085339A (en) Temperature control method
JP4391734B2 (en) Manufacturing method of semiconductor device
WO2014156853A1 (en) Method for adjusting vapor-phase growth apparatus
JP2001289714A (en) Temperature measurement method and measurement device of substrate and treating device of the substrate
WO2024091405A1 (en) Methods, systems, and apparatus for monitoring radiation output of lamps
JP2019106462A (en) Vapor phase growth apparatus and temperature measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070326

R150 Certificate of patent or registration of utility model

Ref document number: 3941427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250