JP3941173B2 - Manufacturing method of hot-rolled steel sheet with excellent scale adhesion and corrosion resistance - Google Patents

Manufacturing method of hot-rolled steel sheet with excellent scale adhesion and corrosion resistance Download PDF

Info

Publication number
JP3941173B2
JP3941173B2 JP19973997A JP19973997A JP3941173B2 JP 3941173 B2 JP3941173 B2 JP 3941173B2 JP 19973997 A JP19973997 A JP 19973997A JP 19973997 A JP19973997 A JP 19973997A JP 3941173 B2 JP3941173 B2 JP 3941173B2
Authority
JP
Japan
Prior art keywords
scale
less
steel sheet
hot
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19973997A
Other languages
Japanese (ja)
Other versions
JPH1143724A (en
Inventor
規雄 今井
常昭 長道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19973997A priority Critical patent/JP3941173B2/en
Publication of JPH1143724A publication Critical patent/JPH1143724A/en
Application granted granted Critical
Publication of JP3941173B2 publication Critical patent/JP3941173B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、足廻り部品やバンパーなどの自動車部品、鉄骨建材、鋼管やドラム缶などに使われる熱延鋼板の製造方法に係わり、さらに詳しくは、酸洗処理などの脱スケール処理を施すことなく加工が可能である、耐食性に優れた熱延鋼板の製造方法に関する。
【0002】
【従来の技術】
熱延鋼板は、鋼板表面にスケールが付いたまま加工されて使用される場合がある。熱間圧延したままの鋼板には表面に酸化スケール(以下単にスケールと記す)が形成されている。このスケールはその後の成形加工(曲げ加工、絞り加工等)時に剥離することがある。スケールが部分的に剥離すると製品の外観品質が損なわれ、剥離したスケールは鋼材を成形加工する時の作業性を悪くする。このため、成形加工を伴い、かつ、外観品質が必要な用途に用いる場合には、鋼自体の成形性を向上させた鋼板に、酸洗やショットブラストなど別工程による脱スケール処理を施して使用される。他方、経済性を追及する観点から、脱スケール処理を施さなくても加工できる、スケールの密着性に優れた熱延鋼板の開発が望まれている。
【0003】
また、製品の耐食性が特に重要な場合には、めっき鋼板を用いたり重防食塗装を施すなどの方法があるが、これらの方法はいずれもコストがかかる。このため、鋼自体の耐食性が優れた鋼板の開発が望まれており、例えば、特開昭54−9113号公報には、Cu、P、Niを添加した鋼板が提案されている。しかし、この鋼板の耐食性改善効果には限界がある。また、通常の熱延鋼板と同様に、スケールの密着性がよくない場合には、製品の外観や加工時の作業性が阻害される。
【0004】
スケールの密着性は、その組成、構造、厚さ等に影響される。薄くて緻密なスケールは密着性が優れる。薄くて緻密なスケール層を得るには、鋼を高温の酸化性雰囲気に曝さないことが重要である。スケールの密着性を改善するために、熱間圧延後の鋼を急速に冷却したり、非酸化性の雰囲気中で冷却する等の方法が提案されている。
【0005】
特開昭61−194112号公報には、0.04〜0.5重量%のSiを添加した鋼片を、Ar3 +50℃以下の温度で熱間圧延した後、40℃/秒以上の冷却速度で冷却して500℃〜360℃で巻き取ることによりスケールを薄くして、スケールの密着性に優れた熱延鋼板を得る方法が記載されている。しかしSiを含有する鋼では、スラブが加熱される段階で、地鉄とスケールとの界面にFe2SiO4(ファイヤライト)とFeOからなる低融点の共晶化合物が生成し、地鉄とスケールの双方に食い込む。このため、仕上圧延前までの高圧水などによるスケール除去が完全におこなえず、部分的にスケールが残ったまま仕上圧延される場合が生じる。この部分には、結果的に厚いスケールが残るため、スケールの密着性はよくない。
【0006】
熱間圧延鋼板の成形性は、熱間圧延で生じる圧延歪を十分に回復し、結晶粒を大きくし、パーライトやセメンタイトを成長させることにより良好になる。このため、熱間圧延後の鋼板を高温で巻取るとその成形性は改善される。スケールの密着性を改善するために熱間圧延時の鋼板の巻取温度を低くする方法では、熱延鋼板自体の成形性を改善するが難しいのが問題である。
【0007】
特開昭59−222533号公報には、熱間圧延して700〜550℃で巻き取った後、窒素ガスまたはArガスからなる非酸化性雰囲気中で350℃まで冷却する熱延鋼板の製造方法が提案されている。さらに特開昭62−136529号公報には、熱間圧延後20〜40℃/秒の冷却速度で冷却して550℃以下で巻き取った後、前記公報と同様に非酸化性雰囲気中で350℃まで冷却する熱延綱板の製造方法が提案されている。しかし、これらの方法は巻取り後の冷却を非酸化性雰囲気中でおこなう方法であり、大気を遮断して雰囲気を調整する設備が必要になるので、経済性や生産性が阻害される。
【0008】
このように、従来の提案では鋼板のスケール密着性と耐食性および成形性とを両立させて経済的に製造する方法は開示されていない。
【0009】
【発明が解決しようとする課題】
本発明は、スケール密着性、耐食性、および成形性に優れた熱延鋼板の製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の要旨は、下記の (1) (4) に示す、スケール密着性と耐食性に優れた熱延鋼板の製造方法にある。
【0011】
(1) 重量%で、C:0.2%以下、Si:0.08%以下、Mn:0.05〜2%、P:0.01〜0.06%、S:0.015%以下、Al:0.1〜1%、Cu:0.1〜0.5%およびNi:0.01〜0.3%を含有し、残部が鉄および不可避不純物からなる鋼の仕上圧延を1100℃以下で開始して900℃以下で終了し、仕上圧延後の鋼板に対して仕上圧延終了後2秒以内に強制冷却を開始し、少なくとも700℃までは冷却速度30℃/秒以上で急冷した後、650〜550℃で巻取り、550〜400℃の間を平均20℃/時以下の冷却速度で徐冷する工程を含むことを特徴とするスケール密着性と耐食性に優れた熱延鋼板の製造方法。
(2) 鋼の化学成分として、さらに、重量%で、Nb:0.1%以下、Ti:0.1%以下およびCr:1%以下うちの1種以上を含有することを特徴とする、上記(1)のスケール密着性と耐食性に優れた熱延鋼板の製造方法。
(3) 鋼の化学成分として、さらに、重量%で、B:0.005%以下を含有することを特徴とする、上記(1)又は(2)のスケール密着性と耐食性に優れた熱延鋼板の製造方法。
(4) 鋼の化学成分として、さらに、重量%で、Ca:0.004%以下含有することを特徴とする、上記(1)〜(3)のいずれかのスケール密着性と耐食性に優れた熱延鋼板の製造方法。
【0012】
上記の課題を解決するための本発明の基になっている考え方を以下に記す。
【0013】
(1) 鋼中のAl含有量がスケールの密着性に影響する。Al含有量を特定範囲に調整した鋼の仕上圧延とその後の冷却条件を選択して熱間圧延すれば、密着性に優れたスケール層が得られる。さらに、Alと、Cu、P、Niとを共に含有させた鋼では、熱間圧延ままの鋼板の耐食性が一段と向上する。
【0014】
本発明者等は、種々の割合でAlを含有させた鋼からなる厚さ240mmのスラブを1220℃に加熱して粗圧延をおこない、仕上圧延を1050℃で開始して860℃で終了し、仕上圧延終了から1秒後に30℃/秒の冷却速度で冷却を開始し、600℃で巻取り、その鋼板コイルを550〜400℃の間を20℃/時の冷却速度で徐冷して、厚さ2.3mm、幅1250mmの熱延鋼板を得た。鋼の化学組成を表1に示した。
【0015】
【表1】

Figure 0003941173
【0016】
これらの熱延鋼板のスケール厚さ、密着性および耐食性を、以下の方法で評価した。
【0017】
スケールの密着性は、曲げ試験片に内側曲げ半径が板厚の1.5倍の90度曲げ試験をおこなった後、曲げ部外側のスケールが剥離した部分の面積率を求めた。スケール剥離面積率が2%以下の場合はスケールの密着性が良好と判断される。表1には、その結果を、スケール剥離面積率が2%以下のものを「○」、2%を超えるものを「×」で表示した。
【0018】
耐食性は、スケールが付着したままの鋼板から得た幅30mm、長さ70mmの試験片に、「35℃の5%食温水を6時間噴霧→湿度95%以上の室温雰囲気中で12時間保持→50℃の乾燥雰囲気中で6時間保持」を1サイクルとする腐食試験を120サイクルおこない、試験片表面に認められる腐食部分の赤錆を除去した後、板厚方向への腐食深さの最大値をマイクロメータで測定して評価した。最大腐食深さが1.5mm以下の場合は耐食性が良好と判断される。表1には、その結果を、最大腐食深さが1.5mm以下のものを「○」、1.5mmを超え1.8mm以下のものを「△」、1.8mmを超えるものを「×」で表示した。
【0019】
表1に示されているように、Al含有量が高い鋼▲1▼、▲2▼、▲4▼および▲5▼は、スケール密着性が良好である。これに対し、Al含有量が少ない鋼▲3▼はスケールの密着性がよくない。また、Alと微量のCu、P、Niを共に含有している鋼▲1▼および▲2▼の耐食性は一段と優れている。
【0020】
Alを含有させることにより鋼板を加工した時のスケールの密着性が向上する機構は、未だ不明な部分が多いが、以下のように推測される。スケールと地鉄の界面には、スラブ加熱または熱間圧延時にAlの濃化により形成されたと考えられる、FeAl24を主体とするAlとFeとの複合酸化物層が形成されている。この複合酸化物は地鉄との密着性が優れているFe34と同じ結晶構造(スピネル構造)を持っている。このために、この複合酸化物層はスケール層との整合性が高いだけではなく、地鉄との整合性も比較的良好であり、結果的にスケール層と地鉄の密着性の向上に寄与しているのではないかと考えられる。
【0021】
仕上圧延前でのスケールの除去性は、Si含有率が高い鋼と異なり、Alの含有率が高くても問題がなく良好である。これは、FeAl24とFeOの共晶化合物の融点が高く、通常のスラブ加熱温度では、この複合酸化物層は溶融状態にはならない。このため、複合酸化物層がスケールや地鉄界面に食い込むことがないからであると考えられる。
【0022】
鋼板の耐食性が、微量のCu、P、Niなどに加えて、Alを含有させることで一段と向上するのは、Cu、P、Niなどを含有することで形成される緻密な皮膜状の腐食生成物の安定性が、安定なAl系の酸化物と共存することによって、さらに増すことによるものであると考えられる。
【0023】
(2) スケール層の大半を占めるFeOは、560℃以下でFeとFe34に共析変態する性質がある。このため、鋼板の温度が560℃以下になると、地鉄素地表面にはFeとFe34層とが形成される。
【0024】
鋼との密着性に優れるFeAl24を主とする複合酸化物層は、Al含有量が制限されているために、鋼板素地の表面全体を覆う訳ではないので、部分的に複合酸化物層で覆われない領域、すなわちスケールの密着性が十分に改善されていない領域も存在する。しかし、上述のFeOの共析変態で生じるFe34層は、FeAl24複合酸化物層の上のみならず、複合酸化物層が形成されなかった鋼板素地表面をも覆う。これによりスケール層と地鉄との密着力が更に強固になる。
【0025】
また、この変態時にはFe34の間にFeが析出し、あたかもFeの楔がFe34を固定するような形態になる。このこともスケールの密着性改善に寄与しているものと推測される。上述のFeOの共析変態は、550〜400℃の温度範囲で特に促進される。従って熱間圧延された鋼板をこの温度範囲に滞留させることで、鋼板の界面に一様にFe34層を生じさせ、スケールの密着性を更に改善することができる。
【0026】
熱間圧延鋼板の成形性を改善するためにコイルの巻取温度をある程度高めても、上述の共析変態の効果を活用すればスケールの密着性を良好なレベルに保つことができる。
【0027】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
【0028】
(A) 鋼の化学組成
C:鋼板の強度を確保するために使用される。しかし、その含有量が0.2%を超えると、鋼板表面に多量のセメンタイト(Fe3C )が生じるので、スケールの密着性のみならず鋼板の加工性や溶接性も損なわれる。従ってCの含有量は0.2%以下とする。鋼板の成形性が重要な場合にはC含有量は低い方が好ましく、0.001%程度の極低炭素でも本発明は有効である。しかし極低炭素領域までCを低下させるのは経済的でないためC含有量の下限は0.01%とするのが好ましい。
【0029】
Si:製鋼時の脱酸剤として用いられる。また、鋼板の強度を高める安価な元素としても広く用いられる。しかしSiは、高温域ではFeとSiの低融点の共晶化合物を形成し、熱間圧延前のデスケーリング不良や、鋼板を成形、加工する時のスケールの密着性不良などの問題を起こす。このためSi含有量は低いほど好ましく、0.08%を上限とする。好ましくは0.04%以下とする。また、鋼板の強度よりも成形性を重視する用途などの場合には、Siを用いなくても良い。
【0030】
Mn:鋼板の強度を確保するとともに、鋼中に不純物として存在するSをMnSとして固定し、熱間圧延中に生じるおそれがある割れを抑制する作用がある。Mn含有量が0.05%未満の場合にはこの割れ抑制の効果が得られず、一方、2%を超えて含有させてもその作用が飽和するうえ、スケールの密着性を劣化させる。このためMnの含有量は0.05〜2%とする。
【0031】
P:緻密な腐食皮膜を生成して耐食性を高める作用を有しているが、Pの含有量が0.01%に満たない場合にはその効果が不十分である。一方、0.06%を超えて含有させるとスケールの密着性が劣化する。このため、P含有量は0.01〜0.06%とする。
【0032】
Al:従来は、主として製鋼時に脱酸剤として用いられており、その効果は、0.1%に満たない量で十分に発揮される。しかしAlは、本発明では、熱延鋼板のスケールの密着性を改善するうえで最も重要な元素である。すなわち、Alを多量に含有させた鋼では、スラブ加熱時または熱間圧延中に、鋼に固溶しているAlがスケールと鋼表面との界面に濃化され、FeとAlの複合酸化物層が形成される。これによりスケールの密着性が改善される。Al含有量が0.1%に満たない場合にはその効果が弱いので、Al含有量の下限は0.1%とする。他方、Alの含有量が増すにつれて、密着性向上効果が飽和するうえ経済性を損なう。このため、その上限を1%とする。
【0033】
Cu:耐食性を向上させるための主要な成分である。Cuを含有する鋼では鋼の表面に緻密な腐食皮膜が生成して耐食性が改善される。Cuの含有量が0.1%に満たない場合には前記作用による耐食性向上の効果を得ることができない。他方、Cuを0.5%を超えて含有させても、耐食性改善効果が飽和するばかりでなくスケール密着性も劣化する。このため、Cu含有量は0.1〜0.5%とする。
【0034】
Ni:Cu添加にともなって生じるおそれがある鋼の熱間加工性の低下を抑制する作用があるほか、耐食性を向上させる効果も有する。これらの効果を得るにはNiを0.01以上含有させる必要がある。他方、Niを0.3%を超えて含有させても、前記作用が飽和するうえ経済性も損なわれる。このため、Ni含有量は0.01〜0.3%とする。
【0035】
本発明が目的としている熱延鋼板は、基本的には、上述の元素とFeとで構成されるが、さらに、鋼板の強度や成形性を必要とする場合には以下に述べる元素を含有させてもよい。
【0036】
高強度の熱延鋼板を必要とする場合にはNb、Ti、V、Cr、Moの内の1種以上を含有させてもよい。Nb、TiおよびVは、鋼のフェライト地に炭窒化物として析出して鋼板の強度を高めるが、0.005%未満ではその効果が弱い。このため、これらの元素を含有させる場合には、いずれの元素の場合でも0.005%以上とするのが好ましい。過剰に含有させてもその効果が飽和し経済性を損なうので、その上限は、NbおよびTiについては0.1%、Vについては0.2%とするのが望ましい。
【0037】
CrとMoは変態強化を通じて強度を高めるが、0.01%未満ではその効果が弱い。このため、これらの元素を含有させる場合には、いずれの元素の場合でも0.01%以上とするのが好ましい。Crは1%、Moは0.5%がそれぞれの元素が強度に有効に寄与する含有量の上限である。このため、これらの元素の含有量の上限は、Crについては1%、Moについては0.5%とするのがよい。
【0038】
成形性がより優れた熱延鋼板を必要とする場合にはBを含有させるのが望ましい。Bには鋼のAr3 変態点を下げる作用を通じて鋼板の降伏強度を低め、加工性を改善する効果が期待できる。その効果を発揮するには0.001%以上含有させるのが好ましい。0.005%を超えると成形性改善の効果が飽和する。したがってBの上限は0.005%とするのが望ましい。
【0039】
曲げ性などがより優れた熱延鋼板を必要とする場合には、介在物の形態を制御する目的でCa、Zrまたは希土類元素を含有させるのがよい。曲げ性改善の効果を得るには、Caの場合は0.0002%以上、Zrの場合は0.01%以上、希土類元素の場合は0.002%以上含有させるのが好ましい。他方、Caの場合は0.004%、Zrの場合は0.05%、希土類元素の場合は0.05%を超えて含有させると、逆に鋼中の介在物が多くなって加工性が劣化する。このため、これらの元素の含有量の上限は、Caでは0.004%、Zrでは0.05%、希土類元素では0.05%とする。介在物の形態制御はこれらの元素の内のいずれか1種を含有させればよいが、2種以上を複合して含有させてもかまわない。
【0040】
上記の成分以外はFeおよび不可避的不純物である。不可避的不純物としてのSは、熱間圧延前のスラブ加熱時および熱間圧延中に鋼の表面に濃化してスケールの密着性を損なうことがある。S含有量が0.015%以下であればスケール密着性に及ぼす悪影響は少ない。このため、Sは0.015%以下にすることが好ましい。
【0041】
(B)熱延鋼板の製造条件
本発明では、前項(A)に記載した組成の鋼からなるスラブを熱間圧延する。その際の冷却条件を特定することで、鋼板の成形性とスケールの密着性がさらに改善される。熱間圧延時の仕上圧延は、1100℃以下で開始し、900℃以下で終了させ、仕上圧延終了後2秒以内に注水冷却を開始し、少なくとも700℃までは冷却速度30℃/秒以上で急冷し、550℃以下で巻き取る。
【0042】
仕上圧延前のスラブ加熱はおこなってもよいし、これを省略して粗圧延しても良い。また、スラブが薄い場合などでは粗圧延を省略してもかまわない。通常、粗圧延及び仕上圧延前には高圧水などによってスケールを除去する。スケールが十分に除去されないまま仕上圧延を行うと、残ったスケールが圧延によって鋼板に押し込まれ、噛み込みスケールとして鋼板表面に残存する。このため、熱間圧延終了後のこの部分のスケールが厚くなる。スケールの密着性に優れた熱延鋼板を製造するためには、仕上圧延前にスケールを十分に除去しておくことが必要である。
【0043】
鋼の熱間変形抵抗は温度が高いほど低くなり、鋼板の材料特性は仕上圧延温度が高い方がよいので、仕上圧延温度は高いのが望ましい。しかし、スラブの加熱温度を高くするのはコストがかかるので、通常は、仕上圧延開始温度は1150℃以下、仕上圧延終了温度は950℃以下でおこなわれる。他方、スケールは、鋼の温度が高くなると指数関数的に速く成長し、その厚みが増すと剥離し易くなる。このため、スケールの密着性を改善するには、鋼板が高温に曝される時間をできるだけ短くするのがよい。
【0044】
これらの観点から、本発明では、仕上圧延は1100℃以下で開始し、900℃以下で終了する。仕上圧延の終了温度は好ましくは860℃以下である。仕上圧延の開始と終了の温度の下限は、それぞれ900℃および750℃とするのが好ましい。スケールの密着性を向上させる観点からは仕上温度は低い方が好ましいが、仕上温度をこれ以上低くすると圧延機への負荷が過大になり圧延が困難になる。
【0045】
さらに本発明では、仕上圧延終了後2秒以内に冷却を開始し、少なくとも700℃までは30℃/秒以上の冷却速度で冷却する。好ましくは1秒以内に冷却を開始する。冷却方法は、通常おこなわれている冷却水を用いたスプレー冷却方法、ラミナーフローによる冷却方法でもよいが、高圧水を噴射するなどのさらなる冷却促進手段を用いるのが望ましい。
【0046】
700℃まで冷却した後、650〜550℃で巻取る。鋼板自体の成形性を向上させるには高温で巻取るのがよいが、巻取温度が650℃を超えると、スケールが厚くなり密着性が低下する。他方、巻取温度が550℃に満たない場合には、鋼板自体の成形性が損なわれるうえ、以下に述べる理由でスケールの密着性改善効果が十分には得られない。
【0047】
巻取り後のコイルは、550〜400℃の温度区間の平均冷却速度を20℃/時以下にして冷却される。560℃以下では、4FeO→Fe34+Feの反応式で示される共析変態が生じる。550〜400℃の温度区間の平均冷却速度を20℃/時以下とし、上記の共析変態を十分に進行させ、鋼板素地表面のスケールをFe34が主体になったスケールにすることで、スケールの密着性をさらに向上させる。巻取温度が550℃未満、または、巻取った後のコイルの冷却速度が20℃/時を超える場合は、4FeO→Fe34+Fe共析変態が十分に進まずスケール密着性が低下する。また、巻取温度が650℃を超えると、スケールの生成量が多くなりスケール密着性が低下する。
【0048】
巻取後のコイルの冷却速度は、熱間圧延直後に巻取った高温状態のコイルを密集して保管したり、保温カバー等の放熱防止装置を用いて調整する等の方法を適宜用いればよい。
【0049】
【実施例】
表2に、試験に用いた鋼の化学組成を示す。
【0050】
【表2】
Figure 0003941173
【0051】
鋼A〜Mは本発明が規定する化学組成範囲にある鋼であり、鋼N〜Wは、比較例として選定した、本発明が規定する化学組成範囲から外れるものである。上記の化学組成からなる鋼の240mm厚のスラブを1220℃に加熱し、粗圧延し、仕上圧延し、注水冷却して巻取り、冷却して板厚2.3mmの鋼板を得た。巻取り後のコイルの冷却速度は、適宜保温カバーを用いて調整した。これらの鋼板の機械的性質、スケール密着性および耐食性を、以下に述べる方法で評価した。
【0052】
引張試験は、JIS−Z−2201に規定される5号試験片を用いて評価した。曲げ試験は、幅50mm、長さ120mmの試験片を採取してJIS−Z−2248に規定される方法で、曲げ半径:板厚の1.5倍、曲げ角度90度にておこなった。この曲げ試験片の曲げ部の外側に粘着テープを貼り付けて浮いたスケールを除去したのち、曲げ部外側の拡大写真を撮影してスケールが剥離している部分の面積率を測定し、スケール剥離面積率が2%以下の場合を良好とした。表3には、スケール剥離面積率が2%以下のものを「○」、2%を超えるものを「×」で表示した。
【0053】
耐食性については、鋼板から幅30mm、長さ70mmの試験片を切り出し、「塩水噴霧(5%食塩水、35℃×6時間保持)→湿潤保持(湿度:95%以上、温度:室温で12時間保持)→乾燥(50℃×6時間保持)」を1サイクルとする腐食試験を行い、120サイクル試験後の試験片表面の最大腐食深さをマイクロメータで測定し、最大腐食探さが1.5mm以下の場合を良好とした。表3には、各試験片の最大腐食深さが1.5mm以下のものを「○」、1.5mmを超え1.8mm以下のものを「△」、1.8mmを超えるものを「×」で表示した。
【0054】
熱延条件および各種の性能評価結果を表3に併せて示す。
【0055】
【表3】
Figure 0003941173
【0056】
表3に示されているように、本発明が規定する条件の範囲内で製造された鋼板は、スケール密着性と耐食性に優れていた。また、TS×Elの値が1690以上の範囲にあり、強度に見合った良好な延性が得られた。
【0057】
他方、Al含有量が本発明の規定を下回る鋼N、Oを用いた試番14、15は、スケール密着性と耐食性がよくなかった。Si、P、S、Mnの内のいずれかの元素の含有量が本発明が規定する範囲から外れている鋼P、Q、R、Sを用いた試番16〜19では、スケール密着性がよくなかった。Cu、P、Niの内のいずれかが本発明が規定する範囲から外れた鋼T、U、Vを用いた試番20〜22では、耐食性がよくなかった。AlとCu含有量が共に本発明が規定する範囲から外れた鋼Wを用いた試番23では、スケール密着性と耐食性が共によくなかった。製造条件が本発明が規定する範囲から外れた試番24〜28および30でも、スケール密着性が低下した。
【0058】
また、巻取温度が本発明が規定する範囲よりも低かった試番29では、スケール密着性と耐食性は良好であったが、TS×Elの値が低く、強度に見合った良好な延性が得られなかった。
【0059】
【発明の効果】
本発明の方法により、スケールが付着した状態で成形加工してもスケールが剥離せず、鋼板自体の成形性が良好で、耐食性が優れた熱延鋼板が製造できる。本発明の方法は、特定の化学組成と製造条件の組み合わる方法であるので、容易かつ経済的に実施できる。本発明の方法による鋼板は、耐食性に優れるうえ、加工時のスケール剥離によるプレス金型の手入れ頻度が低減されるので、加工性にも優れる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing hot rolled steel sheets used for automobile parts such as undercarriage parts and bumpers, steel frame building materials, steel pipes and drums, and more specifically, processing without descaling such as pickling. It is related with the manufacturing method of the hot-rolled steel plate excellent in corrosion resistance.
[0002]
[Prior art]
A hot-rolled steel sheet may be processed and used with a scale on the surface of the steel sheet. An oxide scale (hereinafter simply referred to as scale) is formed on the surface of the hot-rolled steel sheet. This scale may be peeled off during the subsequent forming process (bending process, drawing process, etc.). When the scale is partially peeled, the appearance quality of the product is impaired, and the peeled scale deteriorates workability when forming the steel material. For this reason, when used for applications that require forming processing and require appearance quality, the steel sheet with improved formability of the steel itself is used after being descaled in a separate process such as pickling or shot blasting. Is done. On the other hand, from the perspective of pursuing economic efficiency, there is a demand for the development of a hot-rolled steel sheet excellent in scale adhesion that can be processed without being descaled.
[0003]
In addition, when the corrosion resistance of the product is particularly important, there are methods such as using a plated steel plate or applying a heavy anticorrosion coating, but these methods are all costly. For this reason, development of a steel plate with excellent corrosion resistance of the steel itself is desired. For example, JP-A No. 54-9113 proposes a steel plate to which Cu, P, and Ni are added. However, the effect of improving the corrosion resistance of this steel sheet is limited. Further, as in the case of ordinary hot-rolled steel sheets, when the adhesion of the scale is not good, the appearance of the product and workability during processing are hindered.
[0004]
Scale adhesion is affected by its composition, structure, thickness, and the like. Thin and dense scales have excellent adhesion. In order to obtain a thin and dense scale layer, it is important not to expose the steel to a high temperature oxidizing atmosphere. In order to improve the adhesion of the scale, methods such as rapidly cooling the steel after hot rolling or cooling in a non-oxidizing atmosphere have been proposed.
[0005]
In JP-A-61-194112, a steel slab containing 0.04 to 0.5% by weight of Si is hot-rolled at a temperature of Ar 3 + 50 ° C. or lower and then cooled at 40 ° C./second or higher. A method is described in which a scale is thinned by cooling at a speed and winding at 500 ° C. to 360 ° C. to obtain a hot-rolled steel sheet having excellent scale adhesion. However, in steel containing Si, when the slab is heated, a low-melting eutectic compound composed of Fe 2 SiO 4 (firelite) and FeO is formed at the interface between the base iron and the scale, and the base iron and the scale are formed. Bite into both. For this reason, scale removal with high-pressure water or the like before finish rolling cannot be performed completely, and finish rolling may occur with the scale remaining partially. As a result, a thick scale remains in this portion, so the adhesion of the scale is not good.
[0006]
The formability of the hot-rolled steel sheet is improved by sufficiently recovering the rolling strain generated by hot rolling, increasing the crystal grains, and growing pearlite and cementite. For this reason, when the hot-rolled steel sheet is wound at a high temperature, its formability is improved. In the method of lowering the coiling temperature of the steel sheet during hot rolling in order to improve the adhesion of the scale, it is difficult to improve the formability of the hot rolled steel sheet itself.
[0007]
Japanese Patent Application Laid-Open No. 59-222533 discloses a method for producing a hot-rolled steel sheet that is hot-rolled and wound at 700 to 550 ° C. and then cooled to 350 ° C. in a non-oxidizing atmosphere composed of nitrogen gas or Ar gas. Has been proposed. Furthermore, Japanese Patent Laid-Open No. 62-136529 discloses that after hot rolling, the steel sheet is cooled at a cooling rate of 20 to 40 ° C./second and wound at 550 ° C. or lower, and then in a non-oxidizing atmosphere as in the above publication. A method for producing a hot-rolled steel sheet that is cooled to ° C has been proposed. However, these methods are methods in which cooling after winding is performed in a non-oxidizing atmosphere, and equipment for shutting off the air and adjusting the atmosphere is required, so that economical efficiency and productivity are hindered.
[0008]
As described above, the conventional proposal does not disclose a method for economically producing the steel sheet with both scale adhesion, corrosion resistance, and formability.
[0009]
[Problems to be solved by the invention]
An object of this invention is to provide the manufacturing method of the hot-rolled steel plate excellent in scale adhesiveness, corrosion resistance, and formability.
[0010]
[Means for Solving the Problems]
Gist of the present invention are shown in the following (1) to (4), in the manufacturing method of the excellent hot rolled steel sheet scale adhesion and corrosion resistance.
[0011]
(1) By weight, C: 0.2% or less, Si: 0.08% or less, Mn: 0.05-2%, P: 0.01-0.06%, S: 0.015% or less , Al: 0.1 to 1%, Cu: 0.1 to 0.5% and Ni: 0.01 to 0.3%, the finish rolling of steel consisting of iron and unavoidable impurities at 1100 ° C After starting at the following and ending at 900 ° C. or less, forcibly cooling the finished steel plate within 2 seconds after finishing rolling, and rapidly cooling to at least 700 ° C. at a cooling rate of 30 ° C./second or more. Manufacturing a hot-rolled steel sheet excellent in scale adhesion and corrosion resistance, comprising a step of winding at 650 to 550 ° C. and gradually cooling between 550 and 400 ° C. at an average cooling rate of 20 ° C./hour or less. Method.
(2) as the chemical composition of steel, further, by weight%, Nb: 0.1% or less, Ti: 0.1% or less and Cr: characterized in that it contains one or more of the 1% or less (1) A method for producing a hot-rolled steel sheet having excellent scale adhesion and corrosion resistance.
(3) Hot rolling excellent in scale adhesion and corrosion resistance as described in (1) or (2) above, wherein the chemical composition of steel further contains B: 0.005% or less by weight%. A method of manufacturing a steel sheet.
(4) as the chemical composition of steel, further, by weight%, Ca: characterized by containing 0.004% or less, excellent in any of the scale adhesion and corrosion resistance of the above (1) to (3) A method for producing hot rolled steel sheets.
[0012]
The idea on which the present invention is based to solve the above problems will be described below.
[0013]
(1) Al content in steel affects scale adhesion. If finish rolling of steel with the Al content adjusted to a specific range and subsequent cooling conditions are selected and hot rolling is performed, a scale layer having excellent adhesion can be obtained. Furthermore, in steel containing both Al, Cu, P, and Ni, the corrosion resistance of the hot-rolled steel sheet is further improved.
[0014]
The present inventors heated a slab having a thickness of 240 mm made of steel containing Al at various ratios to 1220 ° C. to perform rough rolling, finish rolling was started at 1050 ° C. and ended at 860 ° C., 1 second after the finish rolling is completed, cooling is started at a cooling rate of 30 ° C./second, winding is performed at 600 ° C., and the steel sheet coil is gradually cooled between 550 and 400 ° C. at a cooling rate of 20 ° C./hour, A hot-rolled steel sheet having a thickness of 2.3 mm and a width of 1250 mm was obtained. The chemical composition of the steel is shown in Table 1.
[0015]
[Table 1]
Figure 0003941173
[0016]
The scale thickness, adhesion and corrosion resistance of these hot-rolled steel sheets were evaluated by the following methods.
[0017]
For the adhesion of the scale, the area ratio of the part where the scale on the outer side of the bent part was peeled was determined after a bending test piece was subjected to a 90-degree bending test in which the inner bending radius was 1.5 times the plate thickness. When the scale peeling area ratio is 2% or less, it is judged that the adhesion of the scale is good. In Table 1, the results are indicated by “◯” when the scale peeled area ratio is 2% or less, and by “X” when the ratio exceeds 2%.
[0018]
Corrosion resistance was determined by spraying a test piece having a width of 30 mm and a length of 70 mm obtained from a steel plate with the scales attached to it, spraying 5% hot water at 35 ° C. for 6 hours → holding in a room temperature atmosphere with a humidity of 95% or more for 12 hours → After 120 cycles of corrosion test with “1 hour hold in dry atmosphere at 50 ° C.” performed to remove red rust of the corroded portion found on the surface of the test piece, the maximum value of the corrosion depth in the plate thickness direction Evaluation was made by measuring with a micrometer. When the maximum corrosion depth is 1.5 mm or less, it is judged that the corrosion resistance is good. In Table 1, the results are shown as “◯” when the maximum corrosion depth is 1.5 mm or less, “△” when 1.5 mm or more and 1.8 mm or less, and “×” when 1.8 mm or less. Is displayed.
[0019]
As shown in Table 1, steels (1), (2), (4), and (5) with high Al content have good scale adhesion. On the other hand, steel (3) with a small Al content does not have good scale adhesion. Moreover, the corrosion resistance of steels {circle around (1)} and {circle around (2)} containing both Al and trace amounts of Cu, P, and Ni are much better.
[0020]
The mechanism for improving the adhesion of the scale when processing the steel sheet by containing Al is still unclear, but is presumed as follows. A composite oxide layer of Al and Fe mainly composed of FeAl 2 0 4 is formed at the interface between the scale and the ground iron, which is considered to have been formed by concentration of Al during slab heating or hot rolling. This composite oxide has the same crystal structure (spinel structure) as Fe 3 0 4, which has excellent adhesion to the ground iron. For this reason, this composite oxide layer not only has a high compatibility with the scale layer, but also has a relatively good compatibility with the ground iron, and as a result contributes to the improvement of the adhesion between the scale layer and the ground iron. It is thought that it is doing.
[0021]
Unlike steel with a high Si content, the removability of the scale before finish rolling is satisfactory without any problem even if the Al content is high. This is because the eutectic compound of FeAl 2 O 4 and FeO has a high melting point, and at a normal slab heating temperature, this composite oxide layer does not enter a molten state. For this reason, it is considered that the complex oxide layer does not bite into the scale or the iron-iron interface.
[0022]
The corrosion resistance of steel sheets is further improved by containing Al in addition to trace amounts of Cu, P, Ni, etc. The formation of dense film-like corrosion formed by containing Cu, P, Ni, etc. It is considered that the stability of the product is further increased by coexisting with a stable Al-based oxide.
[0023]
(2) FeO occupying most of the scale layer has the property of eutectoid transformation into Fe and Fe 3 O 4 at 560 ° C. or lower. Therefore, the temperature of the steel sheet is 560 ° C. or less, in the base steel matrix surface Fe and Fe 3 O 4 layer is formed.
[0024]
The composite oxide layer mainly composed of FeAl 2 O 4 that has excellent adhesion to steel does not cover the entire surface of the steel sheet substrate because the Al content is limited, so the composite oxide is partially There are also areas that are not covered with layers, i.e. areas where the adhesion of the scale has not been sufficiently improved. However, the Fe 3 O 4 layer generated by the eutectoid transformation of FeO described above covers not only the FeAl 2 O 4 composite oxide layer but also the steel sheet substrate surface on which the composite oxide layer is not formed. This further strengthens the adhesion between the scale layer and the ground iron.
[0025]
Further, during this transformation, Fe is precipitated between Fe 3 O 4 , and the Fe wedge is fixed as if Fe 3 O 4 is fixed. It is speculated that this also contributes to the improvement of the adhesion of the scale. The above eutectoid transformation of FeO is particularly promoted in the temperature range of 550 to 400 ° C. Therefore, by retaining the hot-rolled steel sheet in this temperature range, the Fe 3 O 4 layer can be uniformly formed at the interface of the steel sheet, and the adhesion of the scale can be further improved.
[0026]
Even if the coil winding temperature is increased to some extent in order to improve the formability of the hot-rolled steel sheet, the adhesion of the scale can be maintained at a good level by utilizing the above eutectoid transformation effect.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0028]
(A) Steel chemical composition C: Used to ensure the strength of the steel sheet. However, if the content exceeds 0.2%, a large amount of cementite (Fe 3 C) is generated on the surface of the steel sheet, so that not only the adhesion of the scale but also the workability and weldability of the steel sheet are impaired. Accordingly, the C content is 0.2% or less. When the formability of the steel sheet is important, the C content is preferably low, and the present invention is effective even with extremely low carbon of about 0.001%. However, since it is not economical to lower C to the extremely low carbon region, the lower limit of the C content is preferably 0.01%.
[0029]
Si: Used as a deoxidizer during steelmaking. It is also widely used as an inexpensive element that increases the strength of steel sheets. However, Si forms a low-melting eutectic compound of Fe and Si at high temperatures, causing problems such as descaling failure before hot rolling and poor adhesion of scale when forming and processing a steel sheet. For this reason, Si content is so preferable that it is low, and makes 0.08% an upper limit. Preferably it is 0.04% or less. In addition, Si may not be used in applications where the formability is more important than the strength of the steel sheet.
[0030]
Mn: While securing the strength of the steel sheet, S present as an impurity in the steel is fixed as MnS, and has the effect of suppressing cracks that may occur during hot rolling. When the Mn content is less than 0.05%, the effect of suppressing cracking cannot be obtained. On the other hand, the content exceeding 2% saturates the action and deteriorates the adhesion of the scale. For this reason, content of Mn shall be 0.05-2%.
[0031]
P: Although it has the effect | action which produces | generates a dense corrosion film and improves corrosion resistance, when the content of P is less than 0.01%, the effect is inadequate. On the other hand, if the content exceeds 0.06%, the adhesion of the scale deteriorates. For this reason, the P content is set to 0.01 to 0.06%.
[0032]
Al: Conventionally, it is mainly used as a deoxidizer during steelmaking, and the effect is sufficiently exhibited in an amount of less than 0.1%. However, Al is the most important element in the present invention for improving the adhesion of the scale of the hot-rolled steel sheet. That is, in steel containing a large amount of Al, during slab heating or during hot rolling, Al dissolved in the steel is concentrated at the interface between the scale and the steel surface, and a composite oxide of Fe and Al A layer is formed. This improves the adhesion of the scale. Since the effect is weak when the Al content is less than 0.1%, the lower limit of the Al content is set to 0.1%. On the other hand, as the Al content increases, the effect of improving the adhesion is saturated and the economy is impaired. For this reason, the upper limit is made 1%.
[0033]
Cu: A main component for improving the corrosion resistance. In steel containing Cu, a dense corrosion film is formed on the surface of the steel and the corrosion resistance is improved. When the Cu content is less than 0.1%, the effect of improving the corrosion resistance by the above action cannot be obtained. On the other hand, even if Cu is contained exceeding 0.5%, not only the corrosion resistance improving effect is saturated but also the scale adhesion is deteriorated. For this reason, Cu content shall be 0.1-0.5%.
[0034]
Ni: In addition to the effect of suppressing the hot workability of steel that may occur with the addition of Cu, it also has the effect of improving corrosion resistance. In order to obtain these effects, it is necessary to contain 0.01 or more of Ni. On the other hand, even if Ni is contained in an amount exceeding 0.3%, the above-described action is saturated and economical efficiency is also impaired. For this reason, the Ni content is set to 0.01 to 0.3%.
[0035]
The hot-rolled steel sheet intended by the present invention is basically composed of the above-described elements and Fe. However, when the strength and formability of the steel sheet are required, the elements described below are contained. May be.
[0036]
When a high-strength hot-rolled steel sheet is required, one or more of Nb, Ti, V, Cr, and Mo may be contained. Nb, Ti and V are precipitated as carbonitrides on the ferrite ground of the steel to increase the strength of the steel sheet, but the effect is weak at less than 0.005%. For this reason, when these elements are contained, the content is preferably 0.005% or more in any case. Even if contained excessively, the effect is saturated and the economic efficiency is impaired. Therefore, the upper limit is preferably 0.1% for Nb and Ti, and 0.2% for V.
[0037]
Cr and Mo increase the strength through transformation strengthening, but the effect is weak at less than 0.01%. For this reason, when these elements are contained, the content is preferably 0.01% or more for any element. Cr is 1%, and Mo is 0.5% is the upper limit of the content in which each element contributes effectively to the strength. For this reason, the upper limit of the content of these elements is preferably 1% for Cr and 0.5% for Mo.
[0038]
When a hot-rolled steel sheet with better formability is required, it is desirable to contain B. B can be expected to have the effect of lowering the yield strength of the steel sheet and improving workability by lowering the Ar3 transformation point of the steel. In order to exhibit the effect, it is preferable to contain 0.001% or more. If it exceeds 0.005%, the effect of improving formability is saturated. Therefore, the upper limit of B is preferably 0.005%.
[0039]
When a hot-rolled steel sheet with better bendability is required, Ca, Zr or a rare earth element is preferably contained for the purpose of controlling the form of inclusions. In order to obtain the effect of improving bendability, it is preferable to contain 0.0002% or more for Ca, 0.01% or more for Zr, and 0.002% or more for rare earth elements. On the other hand, when Ca is contained in an amount of 0.004%, Zr is 0.05%, and rare earth elements are contained in excess of 0.05%, the inclusions in the steel increase and the workability is increased. to degrade. For this reason, the upper limit of the content of these elements is 0.004% for Ca, 0.05% for Zr, and 0.05% for rare earth elements. In order to control the form of inclusions, any one of these elements may be contained, but two or more kinds may be contained in combination.
[0040]
Other than the above components are Fe and inevitable impurities. S as an unavoidable impurity may be concentrated on the surface of the steel during slab heating before hot rolling and during hot rolling to impair the adhesion of the scale. If the S content is 0.015% or less, there is little adverse effect on the scale adhesion. For this reason, S is preferably 0.015% or less.
[0041]
(B) Manufacturing conditions for hot-rolled steel sheet In the present invention, a slab made of steel having the composition described in (A) above is hot-rolled. By specifying the cooling conditions at that time, the formability of the steel sheet and the adhesion of the scale are further improved. Finish rolling at the time of hot rolling starts at 1100 ° C. or less, ends at 900 ° C. or less, starts cooling with water injection within 2 seconds after finishing rolling, and at a cooling rate of 30 ° C./second or more until at least 700 ° C. Quickly cool and wind up at 550 ° C or lower.
[0042]
Slab heating before finish rolling may be performed, or this may be omitted and rough rolling may be performed. Further, when the slab is thin, rough rolling may be omitted. Usually, the scale is removed with high-pressure water or the like before rough rolling and finish rolling. When finish rolling is performed without sufficiently removing the scale, the remaining scale is pushed into the steel plate by rolling, and remains on the steel plate surface as a biting scale. For this reason, the scale of this part after completion | finish of hot rolling becomes thick. In order to produce a hot-rolled steel sheet having excellent scale adhesion, it is necessary to sufficiently remove the scale before finish rolling.
[0043]
The hot deformation resistance of steel becomes lower as the temperature is higher, and the material properties of the steel sheet are preferably higher at the finish rolling temperature. Therefore, it is desirable that the finish rolling temperature is higher. However, since it is expensive to raise the heating temperature of the slab, the finish rolling start temperature is usually 1150 ° C. or lower and the finish rolling end temperature is 950 ° C. or lower. On the other hand, the scale grows exponentially fast as the temperature of the steel increases, and tends to peel off as its thickness increases. For this reason, in order to improve the adhesion of the scale, it is preferable to shorten the time during which the steel sheet is exposed to a high temperature as much as possible.
[0044]
From these viewpoints, in the present invention, finish rolling starts at 1100 ° C. or lower and ends at 900 ° C. or lower. The finishing temperature of finish rolling is preferably 860 ° C. or lower. The lower limit of the temperature at the start and end of finish rolling is preferably 900 ° C. and 750 ° C., respectively. From the viewpoint of improving the adhesion of the scale, it is preferable that the finishing temperature is low. However, if the finishing temperature is further reduced, the load on the rolling mill becomes excessive and rolling becomes difficult.
[0045]
Furthermore, in the present invention, cooling is started within 2 seconds after finishing rolling, and cooling is performed at a cooling rate of 30 ° C./second or more up to at least 700 ° C. Cooling is preferably started within 1 second. The cooling method may be a conventional spray cooling method using cooling water or a laminar flow cooling method, but it is desirable to use further cooling promoting means such as jetting high-pressure water.
[0046]
After cooling to 700 ° C, it is wound up at 650-550 ° C. In order to improve the formability of the steel sheet itself, it is preferable to wind at a high temperature. However, if the winding temperature exceeds 650 ° C., the scale becomes thick and the adhesiveness decreases. On the other hand, when the coiling temperature is less than 550 ° C., the formability of the steel sheet itself is impaired, and the effect of improving the adhesion of the scale cannot be sufficiently obtained for the reasons described below.
[0047]
The coil after winding is cooled by setting the average cooling rate in the temperature range of 550 to 400 ° C. to 20 ° C./hour or less. Below 560 ° C., the eutectoid transformation shown by the reaction formula of 4FeO → Fe 3 O 4 + Fe occurs. By setting the average cooling rate in the temperature range of 550 to 400 ° C. to 20 ° C./hour or less, sufficiently progressing the above eutectoid transformation, and making the scale of the steel sheet substrate surface mainly composed of Fe 3 O 4 , Further improve the adhesion of the scale. When the coiling temperature is less than 550 ° C. or the coil cooling rate after winding is over 20 ° C./hour, the 4FeO → Fe 3 O 4 + Fe eutectoid transformation does not proceed sufficiently and the scale adhesion decreases. . On the other hand, when the coiling temperature exceeds 650 ° C., the amount of scale generated increases and the scale adhesion deteriorates.
[0048]
The coil cooling rate after winding may be appropriately determined by using a method of closely storing a coil in a high temperature state wound immediately after hot rolling or adjusting it using a heat dissipation prevention device such as a heat insulating cover. .
[0049]
【Example】
Table 2 shows the chemical composition of the steel used in the test.
[0050]
[Table 2]
Figure 0003941173
[0051]
Steels A to M are steels in the chemical composition range defined by the present invention, and steels N to W are out of the chemical composition range defined by the present invention, selected as a comparative example. A 240 mm-thick slab of steel having the above chemical composition was heated to 1220 ° C., roughly rolled, finish-rolled, cooled by pouring water, wound and cooled to obtain a steel plate having a thickness of 2.3 mm. The coil cooling rate after winding was appropriately adjusted using a heat insulating cover. The mechanical properties, scale adhesion and corrosion resistance of these steel plates were evaluated by the methods described below.
[0052]
The tensile test was evaluated using the No. 5 test piece prescribed | regulated to JIS-Z-2201. The bending test was performed by taking a test piece having a width of 50 mm and a length of 120 mm and by a method defined in JIS-Z-2248 at a bending radius of 1.5 times the plate thickness and a bending angle of 90 degrees. After removing the floating scale by applying an adhesive tape to the outside of the bending part of this bending test piece, take an enlarged photo of the outside of the bending part and measure the area ratio of the part where the scale is peeled off. The case where the area ratio was 2% or less was considered good. In Table 3, “○” indicates that the scale peeled area ratio is 2% or less, and “×” indicates that the ratio exceeds 2%.
[0053]
For corrosion resistance, a test piece having a width of 30 mm and a length of 70 mm was cut out from the steel sheet, and “salt spray (5% saline, 35 ° C. × 6 hours hold) → wet hold (humidity: 95% or more, temperature: room temperature for 12 hours) Holding) → Drying (50 ° C x 6 hours holding) "is performed as a cycle, and the maximum corrosion depth on the surface of the test piece after 120 cycles is measured with a micrometer. The following cases were considered good. In Table 3, “◯” indicates that the maximum corrosion depth of each test piece is 1.5 mm or less, “Δ” indicates that the maximum corrosion depth is 1.5 mm or more and 1.8 mm or less, and “×” indicates that the test piece exceeds 1.8 mm. Is displayed.
[0054]
Table 3 also shows hot rolling conditions and various performance evaluation results.
[0055]
[Table 3]
Figure 0003941173
[0056]
As shown in Table 3, the steel sheet produced within the range defined by the present invention was excellent in scale adhesion and corrosion resistance. Moreover, the value of TS × El was in the range of 1690 or more, and good ductility corresponding to the strength was obtained.
[0057]
On the other hand, the test numbers 14 and 15 using steels N and O whose Al content is less than that of the present invention did not have good scale adhesion and corrosion resistance. In trial numbers 16 to 19 using steels P, Q, R, and S in which the content of any element of Si, P, S, and Mn is outside the range defined by the present invention, the scale adhesion is low. It was not good. Corrosion resistance was not good in test numbers 20 to 22 using steels T, U, and V in which any one of Cu, P, and Ni deviated from the range defined by the present invention. In Sample No. 23 using steel W in which both Al and Cu contents were out of the range defined by the present invention, both the scale adhesion and the corrosion resistance were not good. Even in the case of trial numbers 24 to 28 and 30 where the manufacturing conditions deviated from the range defined by the present invention, the scale adhesion was lowered.
[0058]
Further, in the trial number 29 in which the coiling temperature was lower than the range specified by the present invention, the scale adhesion and the corrosion resistance were good, but the TS × El value was low, and good ductility corresponding to the strength was obtained. I couldn't.
[0059]
【The invention's effect】
By the method of the present invention, a hot-rolled steel sheet can be produced that does not peel off even if it is formed with the scale attached, has good formability of the steel sheet itself, and has excellent corrosion resistance. Since the method of the present invention is a method of combining a specific chemical composition and production conditions, it can be carried out easily and economically. The steel plate according to the method of the present invention is excellent in corrosion resistance and also excellent in workability because the frequency of care of the press die due to scale peeling during processing is reduced.

Claims (4)

重量%で、C:0.2%以下、Si:0.08%以下、Mn:0.05〜2%、P:0.01〜0.06%、S:0.015%以下、Al:0.1〜1%、Cu:0.1〜0.5%およびNi:0.01〜0.3%を含有し、残部が鉄および不可避不純物からなる鋼の仕上圧延を1100℃以下で開始して900℃以下で終了し、仕上圧延後の鋼板に対して仕上圧延終了後2秒以内に強制冷却を開始し、少なくとも700℃までは冷却速度30℃/秒以上で急冷した後、650〜550℃で巻取り、550〜400℃の間を平均20℃/時以下の冷却速度で徐冷する工程を含むことを特徴とするスケール密着性と耐食性に優れた熱延鋼板の製造方法。  By weight, C: 0.2% or less, Si: 0.08% or less, Mn: 0.05-2%, P: 0.01-0.06%, S: 0.015% or less, Al: Finish rolling of steel containing 0.1 to 1%, Cu: 0.1 to 0.5% and Ni: 0.01 to 0.3% with the balance being iron and inevitable impurities at 1100 ° C or less Then, the cooling is finished at 900 ° C. or less, and forced cooling is started within 2 seconds after finishing rolling on the steel sheet after finish rolling, and after quenching at a cooling rate of 30 ° C./second or more to at least 700 ° C., 650 to A method for producing a hot-rolled steel sheet excellent in scale adhesion and corrosion resistance, comprising a step of winding at 550 ° C. and gradually cooling between 550 and 400 ° C. at an average cooling rate of 20 ° C./hour or less. 鋼の化学成分として、さらに、重量%で、Nb:0.1%以下、Ti:0.1%以下およびCr:1%以下うちの1種以上を含有することを特徴とする、請求項1に記載のスケール密着性と耐食性に優れた熱延鋼板の製造方法。The chemical component of the steel further includes one or more of Nb: 0.1% or less, Ti: 0.1% or less, and Cr: 1% or less in terms of wt%. The manufacturing method of the hot rolled sheet steel excellent in the scale adhesiveness and corrosion resistance of 1. 鋼の化学成分として、さらに、重量%で、B:0.005%以下を含有することを特徴とする、請求項1又は2に記載のスケール密着性と耐食性に優れた熱延鋼板の製造方法。  The method for producing a hot-rolled steel sheet having excellent scale adhesion and corrosion resistance according to claim 1 or 2, further comprising, as a chemical component of steel, B: 0.005% or less by weight%. . 鋼の化学成分として、さらに、重量%で、Ca:0.004%以下含有することを特徴とする、請求項1から3までのいずれかに記載のスケール密着性と耐食性に優れた熱延鋼板の製造方法。The hot rolling excellent in scale adhesion and corrosion resistance according to any one of claims 1 to 3, wherein the chemical component of steel further contains Ca: 0.004% or less by weight%. A method of manufacturing a steel sheet.
JP19973997A 1997-07-25 1997-07-25 Manufacturing method of hot-rolled steel sheet with excellent scale adhesion and corrosion resistance Expired - Fee Related JP3941173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19973997A JP3941173B2 (en) 1997-07-25 1997-07-25 Manufacturing method of hot-rolled steel sheet with excellent scale adhesion and corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19973997A JP3941173B2 (en) 1997-07-25 1997-07-25 Manufacturing method of hot-rolled steel sheet with excellent scale adhesion and corrosion resistance

Publications (2)

Publication Number Publication Date
JPH1143724A JPH1143724A (en) 1999-02-16
JP3941173B2 true JP3941173B2 (en) 2007-07-04

Family

ID=16412832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19973997A Expired - Fee Related JP3941173B2 (en) 1997-07-25 1997-07-25 Manufacturing method of hot-rolled steel sheet with excellent scale adhesion and corrosion resistance

Country Status (1)

Country Link
JP (1) JP3941173B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419080B1 (en) * 1999-09-28 2004-02-18 제이에프이 엔지니어링 가부시키가이샤 Hot-rolled steel sheet having high tensile strength and method for production thereof
DE102013004905A1 (en) * 2012-03-23 2013-09-26 Salzgitter Flachstahl Gmbh Zunderarmer tempered steel and process for producing a low-dispersion component of this steel
JP5799913B2 (en) * 2012-08-02 2015-10-28 新日鐵住金株式会社 Hot rolled steel sheet with excellent scale adhesion and method for producing the same
WO2020065372A1 (en) * 2018-09-25 2020-04-02 Arcelormittal High strength hot rolled steel having excellent scale adhesivness and a method of manufacturing the same
CN115382906A (en) * 2022-08-25 2022-11-25 湖南华菱湘潭钢铁有限公司 Production method of atmospheric corrosion resistant steel plate

Also Published As

Publication number Publication date
JPH1143724A (en) 1999-02-16

Similar Documents

Publication Publication Date Title
JP2005528519A5 (en)
KR20010023573A (en) High strength thin steel sheet, high strength galvannealed steel sheet and manufacturing method thereof
JP3610883B2 (en) Method for producing high-tensile steel sheet with excellent bendability
JP2576894B2 (en) Hot-dip galvanized high-tensile cold-rolled steel sheet excellent in press formability and method for producing the same
JP3941173B2 (en) Manufacturing method of hot-rolled steel sheet with excellent scale adhesion and corrosion resistance
JP3322157B2 (en) Method for producing ferritic stainless steel strip containing Cu
JP2003155541A (en) High strength hot rolled steel sheet having excellent corrosion resistance and stretch-flanging property, and production method therefor
JP5051886B2 (en) Method for producing cold-rolled steel sheet and plated steel sheet
JPS6235463B2 (en)
JPH1036939A (en) Hot rolled steel and production of hot rolled steel sheet
JPH1081919A (en) Production of steel sheet for two-piece can, excellent in non-earing characteristic and surface roughing resistance
JP3347152B2 (en) Method for producing cold-rolled high-strength hot-dip galvanized steel sheet with excellent resistance to pitting corrosion
JPS6115929B2 (en)
JP2812770B2 (en) Manufacturing method of alloyed hot-dip galvanized cold-rolled steel sheet for deep drawing with excellent bake hardenability and powdering resistance
JP3842897B2 (en) Manufacturing method of high workability hot-rolled high-tensile steel sheet with excellent shape freezing property
JPH0466653A (en) Manufacture of hot-dip galvanized steel sheet for high working excellent in surface property
JPS6249323B2 (en)
JP2660640B2 (en) Manufacturing method of alloyed hot-dip galvanized cold-rolled steel sheet for deep drawing with excellent bake hardenability and powdering resistance
JPH0234793A (en) Production of high-strength hot-rolled steel sheet to be worked having excellent scale adhesion
JPH10212560A (en) Hot rolled steel sheet excellent in scale adhesion and corrosion resistance and its production
JP2689810B2 (en) Method for manufacturing high strength hot rolled steel sheet with excellent surface properties
JPH05230543A (en) Production of high strength cold rolled steel sheet excellent in baking hardenability and deep drawability
JP3257715B2 (en) Method for producing high-strength galvannealed steel sheet for high working with excellent plating adhesion
JP3016333B2 (en) Cold drawn steel sheet for deep drawing excellent in corrosion resistance and method for producing the same
JP2660639B2 (en) Manufacturing method of galvannealed cold-rolled steel sheet with excellent deep drawability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040623

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070125

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees