JP3940936B2 - Manufacturing method of multilayer printed wiring board - Google Patents

Manufacturing method of multilayer printed wiring board Download PDF

Info

Publication number
JP3940936B2
JP3940936B2 JP17357096A JP17357096A JP3940936B2 JP 3940936 B2 JP3940936 B2 JP 3940936B2 JP 17357096 A JP17357096 A JP 17357096A JP 17357096 A JP17357096 A JP 17357096A JP 3940936 B2 JP3940936 B2 JP 3940936B2
Authority
JP
Japan
Prior art keywords
adhesive
printed wiring
wiring board
layer material
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17357096A
Other languages
Japanese (ja)
Other versions
JPH1022640A (en
Inventor
謙一 池田
隆之 鈴木
正史 田中
貴弘 田邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP17357096A priority Critical patent/JP3940936B2/en
Publication of JPH1022640A publication Critical patent/JPH1022640A/en
Application granted granted Critical
Publication of JP3940936B2 publication Critical patent/JP3940936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、多層プリント配線板及びその製造方法に関する。
【0002】
【従来の技術】
多層プリント配線板は、表面導体層を含めて3層以上に導体パターンがあるプリント配線板である。多層プリント配線板は、両面銅張積層板にエッチングその他の方法で回路を形成した内層材と外層材(内層材と外層材とを総称して構成材という)とを重ねて接着一体化(この工程を積層という)した多層プリント配線板用積層板の外層材表面に回路を形成して得られる。外層材としては、片面銅張積層板又は銅はくが用いられている。内層材相互間及び内層材と外層材間の接着には、ガラスクロスを基材とするエポキシ樹脂プリプレグが用いられている。
【0003】
最近の多層プリント配線板は、高密度配線化し、一つの導体層と他の導体層とを電気的に接続する箇所も多くなっている。導体層間の電気的接続は、配線板を貫通するスルーホールを設け、このスルーホール内壁に銅めっきをすることにより行われている。ところが、スルーホールによる電気的接続においては、電気的接続に必要でない導体層にも穴を通すことになり、電気的接続に必要でない導体層においては、その穴を避けて、配線を行わなければならず、設計の自由度や配線の高密度化の障害となる。そこで、配線板全体を貫通する穴だけを使用するのではなく、電気的接続に必要な導体層のみに穴を設ける、いわゆるインターステイシャルバイアホール(IVH)によるようになってきている。
【0004】
表面導体層の回路と、隣接する内層導体層の回路とをIVHで接続するとき、外層材にIVH用の穴をあけ、この穴と内層材の導体ランドとの位置合わせを行って外層材と内層材とを重ね、IVH用の穴が接着剤樹脂で埋まらないように積層一体化し、次に、得られた積層体全体を貫通するスルーホールを設け、スルーホール内壁及びIVH用の穴内壁に銅めっきを行う。この後、外層銅をエッチングしてIVH付多層プリント配線板とする。このように、あらかじめ穴あけした構成材を積層する方法を先穴あけ法という。穴あけの方法としては、ドリル加工、パンチング加工、レーザー加工等がある。
【0005】
【発明が解決しようとする課題】
近年、電子機器の小型化、軽量化の要求とともに多層プリント配線板も、薄型化が要求され、絶縁層の厚さが30〜100μmの配線板も出現している。多層プリント配線板の構成材である内層材と外層材との接着に用いられるガラスクロスを基材とするプリプレグは、積層後に絶縁層を形成するが、この絶縁層を薄くするために、ガラスクロスを含まない接着剤フィルムを用いることも提案されている。しかしながら、従来の多層プリント配線板は、両面銅張積層板を内層材としているので、薄型化に限度があった。さらに、多層プリント配線板を薄型化するために、外層材として銅はくを用いて、あらかじめ回路を形成した内層材と積層一体化すると、銅はく表面に内層材の凹凸があらわれてしまう。このような凹凸があると、外層材を回路加工するときに、エッチングレジストの密着性を損ねるため、微細パターンを精度よく形成することができなくなる。また、このようにして得られた多層プリント配線板を内層材として用い、これに外層材をさらに積層して高多層化するときには、凹凸の個所がさらに増えたり、また、凹凸の程度も増大してしまう。本発明は、多層プリント配線板を薄型化し、さらに、外層材として銅はくを用いてたときでも表面凹凸が少なく、微細パターンを精度よく形成できる多層プリント配線板の製造方法を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明は、耐熱性プラスチックフィルムの両面に、2官能以上のエポキシ樹脂及びフィルム成形可能な高分子量エポキシ重合体を必須成分として含む接着剤を介して銅はくを張り合わせ、この銅はくをエッチングして内層材用の回路を形成し、この内層材の接着剤をBステージに維持した状態で、前記回路の表面に外層材を重ね、加熱加圧することを特徴とする多層プリント配線板の製造方法である。
【0008】
本発明で、耐熱性プラスチックフィルムとは、融点やガラス転移温度の高いプラスチックフィルムをいう。熱可塑性樹脂で、非晶質のプラスチックについては、ガラス転移温度が90℃より高いもの、結晶質のプラスチックでは融点が200℃より高いものが好ましい。
【0009】
耐熱性プラスチックフィルムと内層材用の銅はくとを接着する接着剤には、積層時に、内層材表面の凹凸を吸収するとともに、外層材に設けたIVH用の穴内に過度に流入にしないこと、及び、積層後は配線板として必要な耐熱性を有することが要求される。したがって、この接着剤は、2官能以上のエポキシ樹脂を接着主成分とし、さらに、フィルム成形可能な高分子量エポキシ重合体を必須成分として含む必要がある。
【0010】
【発明の実施の形態】
以下本発明について詳述する。
本発明で用いられる耐熱性プラスチックフィルムとしては、芳香環又は複素環を主鎖中に有するポリエステル、ポリエチレンナフタレート、ポリアリレート、ポリエーテルサルフォン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリサルホン、ポリフェニレンサルファイド、ポリフェニレンエーテル、芳香環又は複素環を主鎖中に有するポリアミド、ポリアミドエポキシ、アラミド、ポリイミド、フッ素樹脂、ポリカーボネート、液晶ポリマーなどのフィルムが挙げられる。
【0011】
本発明で用いる接着剤における、2官能以上のエポキシ樹脂(以下エポキシ樹脂という)とフィルム成形可能な高分子量エポキシ重合体(以下高分子量エポキシ重合体という)との配合比は、接着性と樹脂流れ性から、高分子量エポキシ重合体100重量部に対して、エポキシ樹脂を5〜200重量部、好ましくは、10〜50重量部とされる。
また、エポキシ樹脂と高分子量エポキシ重合体との合計量は、全接着剤成分の30重量%以上であることが好ましい。30重量%未満であると、銅はくに対する接着性が低下する傾向がある。
【0012】
耐熱性プラスチックフィルムと内層材用の銅はくとを接着する接着剤に用いるエポキシ樹脂としては、分子内に2個以上のエポキシ基を持つ化合物であれば制限はなく、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、レゾール型エポキシ樹脂、ビスフェノール型エポキシ樹脂などのフェノール類のグリシジルエーテルであるエポキシ樹脂(以下、これらを総称してフェノール型エポキシ樹脂という)、脂環式エポキシ樹脂、エポキシ化ポリブタジエン、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂などが挙げられる。これらに可とう性を付与したエポキシ樹脂も使用できる。これらのエポキシ樹脂は、単独で又は組み合わせて使用することもできる。プリント配線板として必要なはんだ耐熱性及び引き剥がし強さを有するためには、フェノール型エポキシ樹脂、又はフェノール型エポキシ樹脂と多官能エポキシ樹脂との混合物が好ましい。
【0013】
前記接着剤には、エポキシ樹脂の硬化剤及び硬化促進剤を使用することが好ましい。硬化剤及び硬化促進剤としては、ノボラック型フェノール樹脂、ジシアンジアミド、酸無水物、アミン類、イミダゾール、フォスフィン類などが挙げられ、これらを単独で又は組み合わせて使用することができる。
【0014】
高分子量エポキシ重合体は、二官能性エポキシ樹脂と二官能性フェノール類とを、二官能性エポキシ樹脂と二官能性フェノール類の配合当量比をエポキシ基1に対してフェノール水酸基0.9〜1.1の範囲で、アルカリ金属化合物、アルカリ土類金属化合物、イミダゾール類、有機リン化合物、アミン類などを触媒として、沸点が130℃以上のアミド系又はケトン系溶媒中で反応固形分濃度50重量%以下で加熱して重合させて得ることができる。このようにして得られた高分子量エポキシ重合体は、ゲル浸透クロマトグラフィーによって測定した重量平均分子量(以下単に重量平均分子量とする)が100,000以上であれば、単独でもフィルム成形可能であり、常温でのフィルム強度、貯蔵弾性率の低下又は成形段階での貯蔵弾性率の低下がない。それゆえ、高分子量エポキシ重合体としては、重量平均分子量が100,000以上のものを用いるのが好ましい。
【0015】
高分子量エポキシ重合体の重量平均分子量が100,000未満であると、常温でのフィルム強度、貯蔵弾性率の低下または成形段階での貯蔵弾性率の低下が発生しやすく、良好な取扱性または良好な先穴明け方式IVH付多層プリント配線板を得ることが困難となる。したがって、重量平均分子量が100,000未満の高分子量エポキシ重合体を用いる場合には、高分子量エポキシ重合体との相溶性を有し、しかも高分子量エポキシ重合体との共通溶剤に可溶でフィルム形成性を有するポリマーであるアクリルゴム、ニトリルゴム、ブチラール樹脂、ポリビニルアルコール、ポリウレタン、ポリアミド、ポリエステル、ポリエーテル、ポリオレフィンまたはこれらの変性品等を組み合わせて用いることが好ましい。かかるポリマーと重量平均分子量が100,000以上の高分子量エポキシ重合体を併せ用いてもよいことはもちろんである。
高分子量エポキシ重合体と前記ポリマーとを併用するとき、耐熱性、接着性、樹脂流れ性等を必要な特性を得るためには、高分子量エポキシ重合体と前記ポリマーとは、高分子量エポキシ重合体100重量部に対し、前記ポリマーを2〜100重量部、好ましくは、10〜30重量部の範囲で配合される。
【0016】
耐熱性プラスチックフィルムと内層材用の銅はくとを接着する接着剤は、積層成形時の昇温により、軟化して流動するが、過度に流動しないように硬化反応を進行させる必要がある。過度に流動しないようにするには、接着剤の樹脂流れを0.1〜3.0%、好ましくは0.5〜1.5%に調整する必要がある。樹脂流れが3.0%を超える場合は、積層成形段階でIVH用の穴に接着剤の樹脂が浸出し、IVHの導通不良を発生しやすいうえに、接着剤層が脆くなり、取扱性が悪くなる。また、接着剤の樹脂流れが0.1%未満では、内層回路面を平坦にすることができず、ボイドが発生しやすくなる。
接着剤の樹脂流れは、硬化反応制御、組成により制御できる。すなわち、構成成分の分子量、硬化促進剤又は硬化剤の種類、配合量又は塗工条件等を適宜の条件とすることにより必要な樹脂流れの接着剤を得ることができる。
なお、ここで、接着剤の樹脂流れとは、縦横とも100mmの両面銅張りフィルム(Bステージまで硬化させた接着剤を介して両面に銅はくを張り合わせた両面銅張りフィルムの外側に耐熱性プラスチックフィルムを介在させて)を、油圧プレスで、温度170℃、圧力14.7MPaで10分間加熱加圧した後、縦及び横の長さをそれぞれ10か所測定し、縦の長さの測定値の平均をa、横の長さの測定値の平均をbとするとき、次の数1によって求められる値である。
【0017】
【数1】
接着剤の樹脂流れ(%)=(a×b/100)−100
【0018】
また、高分子量エポキシ重合体を、架橋剤を用いて適度に架橋させて三次元網目構造とすることを塗工工程中に実施すると、製造工程を増やすことなく多層プリント配線板の耐熱性、耐溶剤性、吸水性及び絶縁信頼性を向上させることができる。架橋剤としては、ポリイソシアネート、活性水素を有する化合物をマスク剤としてイソシアネート基をブロックしたブロック型ポリイソシアネート、エポキシ樹脂、シラノール化合物、金属酸化物、酸無水物等が挙げられる。
【0019】
この中で、架橋剤の反応性制御が容易で接着剤ワニスの保存安定性を確保しやすく、両面銅張りフィルム及び多層プリント配線板の特性低下を誘発しないことから、ブロック型ポリイソシアネートを用いることが望ましい。ブロック型ポリイソシアネートとしては、フェノール系、オキシム系、アルコール系、マスク剤等でブロックされたトリレンジイソシアネート(TDI)、イソフォロンジイソシアネート(IPDI)、ジフェニルメタンジイソシアネート(MDI)、ヘキサメチレンジイソシアネート(HDI)等が挙げられる。多層プリント配線板の耐熱性を向上させるためには、フェノールノボラック系マスク剤でブロックされたTDIが好ましいが、これらのマスク剤、イソシアネート類を組み合わせて用いても差し支えない。
【0020】
難燃性を付与するためには、ハロゲン化されている、特に臭素化されている、高分子量エポキシ重合体を用いるか又は反応型難燃剤を、必要により、耐熱性プラスチックフィルムと内層材用の銅はくとを接着する接着剤に配合する。難燃化するために添加型難燃剤として知られる、燐系難燃剤、チッ素系難燃剤、無機物系難燃剤等を配合することも考えられるが、添加型難燃剤を配合すると、耐溶剤性等の特性が悪いので、反応型難燃剤の配合が望ましい。反応型難燃剤としては、ハロゲン化エポキシ樹脂、特に、臭素化エポキシ樹脂が難燃効果の高さ及び接着剤層が均一となり、多層プリント配線板の特性を考慮した場合最適である。また、多官能ハロゲン化フェノール類、特に、多官能臭素化フェノール類は、エポキシ樹脂の硬化剤としても作用して、良好な多層プリント配線板特性を与えるので好ましい。いずれの場合でも、ハロゲン含有率は、10〜40重量%であるのが好ましく、15〜25重量%であるのがより好ましい。反応型難燃剤として2官能以上のエポキシ樹脂を用いるときには、接着剤の接着性成分であるエポキシ樹脂の一部を構成することになる。
【0021】
耐熱性プラスチックフィルムと内層材用の銅はくとを接着する接着剤には、さらに、シランカップリング剤を添加することが好ましい。接着剤と銅はくとの接着力を向上させるためである。添加するシランカップリング剤としては、エポキシシラン、アミノシラン、尿素シラン等が好ましい。
【0022】
両面銅張りフィルムは、耐熱性プラスチックフィルムの両面に接着剤を塗布乾燥し、銅はくを両面に重ねて加熱接着する方法、銅はくの片面に接着剤を塗布乾燥し、耐熱性プラスチックフィルムを挟んでプレスなどで一体化する方法などによって製造される。もちろん、他の適宜の方法によっても差し支えない。この際に接着剤はBステージまで硬化させておく。
【0023】
両面銅張りフィルムに回路形成したのち、外層材と重ね、加熱加圧して、多層プリント配線板とする。
外層材としては銅はくを用いるのが好ましい。内層材と外層材との接着手段には特に制限がないが、薄型化するためには、耐熱性プラスチックフィルムと内層材の銅はくとを接着する接着剤を、あらかじめフィルム状にして用いる方法、外層材とする銅はく面に塗布してBステージまで硬化させて用いる方法によるのが好ましい。
内層材と外層材との張り合わせは、内層材、外層材等をクッション材を介して鏡板の間に挟んで加熱加圧するが、このとき、鏡板との間に置くクッション材としては、成形温度で流動する性質を有するクッション材が好ましい。このようなクッション材としては、膜厚40〜100μmのポリエチレンシート、ポリ塩化ビニルシートなどがある。また、このクッション材と成形温度で流動しないクッション材、離型シートを組み合わせて用いることが好ましい。成形温度で流動しないクッション材としては、例えば、クラフト紙等が挙げられる。
【0024】
【実施例】
実施例1
二官能エポキシ樹脂としてビスフェノールA型エポキシ樹脂(エポキシ当量:171.5)171.5g、二官能フェノール類としてテトラブロモビスフェノールA(水酸基当量:271.9)271.9g、エーテル化触媒として水酸化リチウム0.66gを、アミド系溶媒であるN,N−ジメチルアセトアミド1037.4gに溶解させた(固形分濃度:30重量%)。これを機械的に撹拌しながら、温度を120℃に保ち(オイルバス使用)そのまま6時間反応させ、固形分濃度が30重量%の、臭素化した高分子量エポキシ重合体のN,N−ジメチルアセトアミド溶液(この溶液を溶液Aとする)を得た。溶液A中に含まれる高分子量エポキシ重合体について、ゲル浸透クロマトグラフィーによる測定から得られた重量平均分子量は500,000であり、また、光散乱法による測定から得られた重量平均分子量は180,000であった。溶液Aの粘度は18,000mPa・sであり、N,N−ジメチルアセトアミドの希薄溶液の還元粘度は1.36dl/gであった。
固形分が100重量部となる量の溶液A、溶液A中に含まれる高分子量エポキシ重合体の架橋剤として作用する、フェノールノボラックでブロックしたトリレンジイソシアネート(TDI)20重量部、ビスフェノールA型エポキシ樹脂(エポキシ当量:171.5)30重量部、その硬化剤として作用するフェノールノボラック(軟化点70℃)をビスフェノールA型エポキシ樹脂と当量になるように配合し、尿素シランカップリング剤0.5重量部を加え、固形分40重量%のワニスを得た。
【0025】
このワニスを、あらかじめマット処理した厚さ25μmのポリイミドフィルム(MCF−5000I、日立化成工業株式会社商品名)の両面に塗布し、100℃で1分間、その後150℃で1分間乾燥してBステージまで硬化させた接着剤付きポリイミドフィルムを得た。接着剤層の厚さは、片面50μmで、臭素含有率は25重量%であった。また、接着剤の樹脂流れは、0.6%であった。
得られた接着剤付きポリイミドフィルムの両面に厚さ18μmの銅はくを重ね、150℃、10MPaで10分間プレスして両面銅張りポリイミドフィルムを得た。この、両面銅張りポリイミドフィルムの銅はくをエッチングして、両面に、ランドを有する配線パターン(ライン幅0.2mm、ライン間隔0.1mm)を形成した。
別に、厚さ18μmの銅はくの片面に、前記と同じワニスを塗布し、100℃で1分間、その後150℃で1分間乾燥してBステージまで硬化させ接着剤付き銅はくを得た。この接着剤付き銅はく5枚を重ねて、NCドリルマシンで直径0.3mmの穴をあけた。
接着剤付き銅はくにあけた穴と、両面銅張りポリイミドフィルムの配線パターンのランドとが重なるようにして位置合わせして、両面銅張りポリイミドフィルムの上下に接着剤付き銅はくの接着剤面側が両面銅張りポリイミドフィルム側に向くようにして重ね、厚さ40μmのポリエチレンシートとクラフト紙3枚を介して鏡板で挟み、真空プレスを用いて加熱加圧した。引き続き、得られた積層板の表面に配線パターンを形成し、先に穴あけ加工した部分と内層回路板の導体ランド部分とをめっきで導通させることによりIVH付4層プリント配線板を得た。
【0026】
実施例2
N,N−ジメチルアセトアミドに代えて、N−メチル−2−ピロリドンを用いたほか実施例1と同様にして、固形分濃度が30重量%の臭素化した高分子量エポキシ重合体のN−メチル−2−ピロリドン溶液(この溶液を溶液Bとする)を得た。溶液B中に含まれる高分子量エポキシ重合体について、ゲル浸透クロマトグラフィーによる測定から得られた重量平均分子量は150,000であり、また、光散乱法による測定から得られた重量平均分子量は90,000であった。溶液Bの粘度は8,000mPa・sであり、N−メチル−2−ピロリドンの希薄溶液の還元粘度は0.90dl/gであった。
溶液Aに代えて固形分が80重量部となる量の溶液Bを用い、変性アクリルゴム20重量部を配合したほかは、実施例1と同様にしてIVH付4層プリント配線板を得た。なお、接着剤の樹脂流れは0.8%であった。ここで用いた変性アクリルゴムは、帝国化学産業株式会社製のエポキシ基含有アクリルゴム、HTR−860P−3(商品名)であり、重量平均分子量100万、エポキシ基をグリシジルメタアクリレートとして3重量%含むエポキシ基含有アクリルゴムである。
【0027】
実施例3
重量平均分子量500,000の臭素化した高分子量エポキシ重合体100重量部に代えて重量平均分子量500,000の臭素化した高分子量エポキシ重合体50重量部と重量平均分子量500,000の臭素化していない高分子量エポキシ重合体50重量部を配合し、ビスフェノールA型エポキシ樹脂30重量部に代えてビスフェノールA型エポキシ樹脂15重量部と臭素化したビスフェノールA型エポキシ樹脂15重量部を配合する以外は実施例1と同様にしてIVH付4層プリント配線板を得た。なお、接着剤の樹脂流れは0.3%であった。
【0028】
実施例4
銅はく厚さを12μmとし、厚さ10μmのポリイミドフィルムを用い、接着剤の厚みが片面25μmとなるようにした以外は実施例1と同様にしてIVH付4層プリント配線板を得た。
【0029】
実施例5
ポリイミドフィルムに代えて厚さ50μmのポリエーテルサルフォンフィルム(住友化学工業株式会社製、商品名VICTREX)を用い、それ以外は実施例1と同様にしてIVH付4層プリント配線板を得た。
【0030】
実施例6
ポリイミドフィルムに代えて厚さ50μmのポリエーテルイミドフィルム(三菱樹脂株式会社製、商品名スペリオ)を用い、それ以外は実施例1と同様にしてIVH付4層プリント配線板を得た。
【0031】
実施例7
ポリイミドフィルムに代えてポリフェニレンサルファイドフィルム(東レ株式会社製、商品名トレリナ)を用い、それ以外は実施例1と同様にしてIVH付4層プリント配線板を得た。
【0032】
比較例
基材厚さ0.1mm、銅はく厚さ35μmのガラス布基材エポキシ樹脂両面銅張積層板の銅はくをエッチングして、両面に配線パターンを形成した。以下実施例1と同様にしてIVH付4層プリント配線板を得た。
【0033】
得られたIVH付4層プリント配線板について、外層回路の表面段差、はんだ耐熱性、熱膨張係数を測定した。また、積層体に設けた穴内への積層成形後の樹脂流れ込み量(穴内壁から穴内に流れ込んだ樹脂先端までの距離)を調べた。その結果を表1に示す。なお、はんだ耐熱性は、4層プリント配線板を260℃のはんだ浴に浸漬してふくれ・はがれを生ずるまでの秒数を測定したもの、表面段差は表面粗さ計で測定したもの、熱膨張係数はTMAを用いて測定したものである。
【0034】
【表1】
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
項 目 実施例1 実施例2 実施例3 実施例4
──────────────────────────────────
表面段差(μm) 5以下 5以下 5以下 5以下
はんだ耐熱性(秒) 180以上 120 150 180以上
熱膨張特性(ppm/℃) 35 45 35 30
樹脂流れ込み量(μm) 25 50 50 0
──────────────────────────────────
項 目 実施例5 実施例6 実施例7 比較例
──────────────────────────────────
表面段差(μm) 5以下 5以下 5以下 15〜25
はんだ耐熱性(秒) 120 120 90 180以上
熱膨張特性(ppm/℃) 50 50 45 30
樹脂流れ込み量(μm) 25 25 25 25
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
【0035】
【発明の効果】
本発明によって、内層材の凹凸が、外層材表面に現れないようにでき、薄型化できる多層プリント配線板の製造方法が提供される。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multilayer printed wiring board and a method for manufacturing the same.
[0002]
[Prior art]
The multilayer printed wiring board is a printed wiring board having a conductor pattern in three or more layers including the surface conductor layer. Multilayer printed wiring boards are laminated and integrated with an inner layer material and an outer layer material (generally referred to as an inner layer material and an outer layer material) formed by etching or other methods on a double-sided copper-clad laminate. It is obtained by forming a circuit on the surface of the outer layer material of the laminated board for multilayer printed wiring boards (the process is called lamination). As the outer layer material, a single-sided copper-clad laminate or copper foil is used. An epoxy resin prepreg based on glass cloth is used for bonding between inner layer materials and between inner layer materials and outer layer materials.
[0003]
Recent multilayer printed wiring boards have high-density wiring, and there are many places where one conductor layer and another conductor layer are electrically connected. Electrical connection between the conductor layers is performed by providing a through hole penetrating the wiring board and plating the inner wall of the through hole with copper. However, in electrical connection using through holes, holes are also passed through conductor layers that are not necessary for electrical connection. In conductor layers that are not required for electrical connection, wiring must be performed avoiding the holes. In other words, it becomes an obstacle to the degree of freedom of design and the high density of wiring. Therefore, instead of using only the holes penetrating the entire wiring board, so-called interstitial via holes (IVH) are provided in which holes are provided only in the conductor layers necessary for electrical connection.
[0004]
When the circuit of the surface conductor layer and the circuit of the adjacent inner layer conductor layer are connected by IVH, a hole for IVH is made in the outer layer material, and the hole and the conductor land of the inner layer material are aligned, and the outer layer material The inner layer material is overlaid and laminated so that the hole for IVH is not filled with adhesive resin, and then a through hole is provided to penetrate the entire laminate, and the inner wall of the through hole and the inner wall of the hole for IVH are provided. Perform copper plating. Thereafter, the outer layer copper is etched to form a multilayer printed wiring board with IVH. Thus, the method of laminating | stacking the component material previously drilled is called a tip drilling method. As a drilling method, there are drilling, punching, laser processing and the like.
[0005]
[Problems to be solved by the invention]
In recent years, multilayer printed wiring boards have been required to be thin with the demands for miniaturization and weight reduction of electronic devices, and wiring boards having an insulating layer thickness of 30 to 100 μm have also appeared. A prepreg based on a glass cloth used for bonding the inner layer material and the outer layer material, which is a constituent material of a multilayer printed wiring board, forms an insulating layer after lamination. To reduce the thickness of this insulating layer, a glass cloth is used. It has also been proposed to use an adhesive film that does not contain. However, since the conventional multilayer printed wiring board uses a double-sided copper-clad laminate as an inner layer material, there has been a limit to reducing the thickness. Furthermore, if the multilayer printed wiring board is made thinner by using copper foil as an outer layer material and integrated with an inner layer material on which a circuit has been formed in advance, irregularities of the inner layer material appear on the surface of the copper foil. If there are such irregularities, the adhesion of the etching resist is impaired when the outer layer material is processed, so that a fine pattern cannot be formed with high accuracy. In addition, when the multilayer printed wiring board obtained in this way is used as an inner layer material and an outer layer material is further laminated thereon to increase the number of layers, the number of irregularities increases and the degree of irregularities also increases. End up. The present invention provides a method for producing a multilayer printed wiring board capable of forming a fine pattern with a small thickness by reducing the thickness of the multilayer printed wiring board, and having less surface irregularities even when copper foil is used as an outer layer material. It is the purpose.
[0006]
[Means for Solving the Problems]
In the present invention, copper foil is bonded to both sides of a heat-resistant plastic film via an adhesive containing, as essential components, a bifunctional or higher functional epoxy resin and a film-formable high molecular weight epoxy polymer, and this copper foil is etched. Forming a circuit for the inner layer material, and superposing the outer layer material on the surface of the circuit while maintaining the adhesive of the inner layer material on the B stage, and heating and pressurizing the multilayer printed wiring board, Is the method .
[0008]
In the present invention, the heat resistant plastic film refers to a plastic film having a high melting point and glass transition temperature. As the thermoplastic resin, an amorphous plastic having a glass transition temperature higher than 90 ° C is preferable, and a crystalline plastic having a melting point higher than 200 ° C is preferable.
[0009]
The adhesive that bonds the heat-resistant plastic film to the copper foil for the inner layer material absorbs irregularities on the surface of the inner layer material during lamination, and does not excessively flow into the IVH holes provided in the outer layer material. And after lamination | stacking, it is requested | required to have heat resistance required as a wiring board. Therefore, this adhesive agent must contain a bifunctional or higher functional epoxy resin as a main component of adhesion, and further contains a high molecular weight epoxy polymer that can be formed into a film as an essential component.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
Examples of the heat-resistant plastic film used in the present invention include polyester, polyethylene naphthalate, polyarylate, polyethersulfone, polyetheretherketone, polyetherimide, polysulfone, and polyphenylenesulfide having an aromatic ring or heterocyclic ring in the main chain. And films of polyamide, polyamide epoxy, aramid, polyimide, fluororesin, polycarbonate, liquid crystal polymer having polyphenylene ether, aromatic ring or heterocyclic ring in the main chain.
[0011]
In the adhesive used in the present invention, the blending ratio of a bifunctional or higher functional epoxy resin (hereinafter referred to as epoxy resin) and a film-formable high molecular weight epoxy polymer (hereinafter referred to as high molecular weight epoxy polymer) is determined as follows. Therefore, the epoxy resin is used in an amount of 5 to 200 parts by weight, preferably 10 to 50 parts by weight, based on 100 parts by weight of the high molecular weight epoxy polymer.
Moreover, it is preferable that the total amount of an epoxy resin and a high molecular weight epoxy polymer is 30 weight% or more of all the adhesive components. If it is less than 30% by weight, the adhesion to copper foil tends to be lowered.
[0012]
The epoxy resin used for the adhesive for bonding the heat-resistant plastic film and the copper foil for the inner layer material is not limited as long as it is a compound having two or more epoxy groups in the molecule. For example, a phenol novolac type epoxy Resins, cresol novolac type epoxy resins, resol type epoxy resins, epoxy resins that are glycidyl ethers of phenols such as bisphenol type epoxy resins (hereinafter collectively referred to as phenol type epoxy resins), alicyclic epoxy resins, epoxy Polybutadiene, glycidyl ester type epoxy resin, glycidylamine type epoxy resin, isocyanurate type epoxy resin and the like. Epoxy resins imparted with flexibility to these can also be used. These epoxy resins can be used alone or in combination. In order to have solder heat resistance and peel strength necessary for a printed wiring board, a phenol type epoxy resin or a mixture of a phenol type epoxy resin and a polyfunctional epoxy resin is preferable.
[0013]
For the adhesive, it is preferable to use an epoxy resin curing agent and a curing accelerator. Examples of the curing agent and the curing accelerator include novolak type phenol resins, dicyandiamide, acid anhydrides, amines, imidazole, and phosphine, and these can be used alone or in combination.
[0014]
The high molecular weight epoxy polymer comprises a bifunctional epoxy resin and a bifunctional phenol, and a mixing equivalent ratio of the bifunctional epoxy resin and the bifunctional phenol with a phenol hydroxyl group of 0.9 to 1 with respect to the epoxy group 1. In the range of 0.1, the reaction solid content concentration is 50 wt.% In an amide or ketone solvent having a boiling point of 130 ° C. or higher, using an alkali metal compound, alkaline earth metal compound, imidazole, organophosphorus compound, amine, etc. as a catalyst. % Or less and polymerized by heating. The high molecular weight epoxy polymer thus obtained can be formed into a film alone if the weight average molecular weight measured by gel permeation chromatography (hereinafter simply referred to as the weight average molecular weight) is 100,000 or more. There is no decrease in film strength at room temperature, storage elastic modulus, or storage elastic modulus at the molding stage. Therefore, it is preferable to use a high molecular weight epoxy polymer having a weight average molecular weight of 100,000 or more.
[0015]
When the weight average molecular weight of the high molecular weight epoxy polymer is less than 100,000, film strength at room temperature, storage elastic modulus or storage elastic modulus at the molding stage is likely to decrease, and good handleability or good It becomes difficult to obtain a multilayer printed wiring board with a leading hole punching system IVH. Therefore, when a high molecular weight epoxy polymer having a weight average molecular weight of less than 100,000 is used, the film has compatibility with the high molecular weight epoxy polymer and is soluble in a common solvent with the high molecular weight epoxy polymer. It is preferable to use acrylic rubber, nitrile rubber, butyral resin, polyvinyl alcohol, polyurethane, polyamide, polyester, polyether, polyolefin, or modified products thereof, which are polymers having formability, in combination. Of course, such a polymer and a high molecular weight epoxy polymer having a weight average molecular weight of 100,000 or more may be used in combination.
When a high molecular weight epoxy polymer and the polymer are used in combination, the high molecular weight epoxy polymer and the polymer need to have a high molecular weight epoxy polymer in order to obtain necessary properties such as heat resistance, adhesiveness, and resin flowability. The said polymer is mix | blended in 2-100 weight part with respect to 100 weight part, Preferably, it is 10-30 weight part.
[0016]
The adhesive that bonds the heat-resistant plastic film and the copper foil for the inner layer material softens and flows due to the temperature rise during the lamination molding, but it is necessary to advance the curing reaction so that it does not flow excessively. In order not to flow excessively, it is necessary to adjust the resin flow of the adhesive to 0.1 to 3.0%, preferably 0.5 to 1.5%. If the resin flow exceeds 3.0%, the adhesive resin will ooze out into the IVH holes during the layering process, and it will easily cause IVH conduction failure, and the adhesive layer will become brittle and handling will be easier. Deteriorate. On the other hand, if the resin flow of the adhesive is less than 0.1%, the inner layer circuit surface cannot be flattened and voids are likely to occur.
The resin flow of the adhesive can be controlled by curing reaction control and composition. That is, the necessary resin flow adhesive can be obtained by setting the molecular weight of the constituent components, the type of curing accelerator or curing agent, the blending amount, or coating conditions as appropriate.
Here, the resin flow of the adhesive is a double-sided copper-clad film of 100 mm in both length and width (the heat resistance is applied to the outside of the double-sided copper-clad film in which copper foil is laminated on both sides through an adhesive cured to the B stage. (With a plastic film in between), press and heat for 10 minutes at a temperature of 170 ° C and a pressure of 14.7 MPa with a hydraulic press, and then measure the vertical and horizontal lengths at 10 locations to measure the vertical length. When the average of the values is a and the average of the measured values of the horizontal length is b, the value is obtained by the following equation (1).
[0017]
[Expression 1]
Adhesive resin flow (%) = (a × b / 100) −100
[0018]
Also, if the high molecular weight epoxy polymer is appropriately crosslinked with a crosslinking agent to form a three-dimensional network structure during the coating process, the heat resistance and resistance of the multilayer printed wiring board can be increased without increasing the number of manufacturing processes. Solvent property, water absorption, and insulation reliability can be improved. Examples of the crosslinking agent include polyisocyanate, block type polyisocyanate in which an isocyanate group is blocked using a compound having active hydrogen as a mask agent, an epoxy resin, a silanol compound, a metal oxide, and an acid anhydride.
[0019]
Among these, the block type polyisocyanate should be used because it is easy to control the reactivity of the cross-linking agent, ensure the storage stability of the adhesive varnish, and does not induce deterioration of the properties of the double-sided copper-clad film and multilayer printed wiring board. Is desirable. Block type polyisocyanates include phenolic, oxime-based, alcohol-based, tolylene diisocyanate (TDI), isophorone diisocyanate (IPDI), diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI), etc. Is mentioned. In order to improve the heat resistance of the multilayer printed wiring board, TDI blocked with a phenol novolac masking agent is preferable, but these masking agents and isocyanates may be used in combination.
[0020]
In order to impart flame retardancy, halogenated, especially brominated, high molecular weight epoxy polymers are used, or reactive flame retardants are used for heat resistant plastic films and inner layer materials as required. It mix | blends with the adhesive agent which adheres copper foil. In order to make it flame retardant, it is also possible to add phosphorous flame retardant, nitrogen flame retardant, inorganic flame retardant, etc. known as additive type flame retardant, but when adding type flame retardant, solvent resistance Therefore, it is desirable to add a reactive flame retardant. As the reactive flame retardant, a halogenated epoxy resin, particularly a brominated epoxy resin, has a high flame retardant effect and a uniform adhesive layer, and is optimal in consideration of the characteristics of the multilayer printed wiring board. In addition, polyfunctional halogenated phenols, particularly polyfunctional brominated phenols, are preferred because they also act as a curing agent for epoxy resins and give good multilayer printed wiring board characteristics. In any case, the halogen content is preferably 10 to 40% by weight, and more preferably 15 to 25% by weight. When a bifunctional or higher functional epoxy resin is used as the reactive flame retardant, it constitutes a part of the epoxy resin that is an adhesive component of the adhesive.
[0021]
It is preferable to further add a silane coupling agent to the adhesive that bonds the heat-resistant plastic film and the copper foil for the inner layer material. This is to improve the adhesive force between the adhesive and the copper foil. As the silane coupling agent to be added, epoxy silane, amino silane, urea silane or the like is preferable.
[0022]
Double-sided copper-clad film is a method in which an adhesive is applied and dried on both sides of a heat-resistant plastic film, and copper foil is laminated on both sides and heated and bonded. It is manufactured by a method of integrating with a press etc. Of course, other appropriate methods may be used. At this time, the adhesive is cured to the B stage.
[0023]
After forming the circuit on the double-sided copper-clad film, it is overlapped with the outer layer material and heated and pressed to obtain a multilayer printed wiring board.
It is preferable to use copper foil as the outer layer material. There are no particular restrictions on the means for bonding the inner layer material and the outer layer material, but in order to reduce the thickness, a method of using an adhesive that bonds the heat-resistant plastic film and the copper foil of the inner layer material in advance in the form of a film is used. It is preferable that the outer layer material is applied to the copper foil surface and cured to the B stage.
The inner layer material and the outer layer material are laminated by heating and pressurizing the inner layer material, outer layer material, etc. between the end plates through the cushion material. At this time, the cushion material placed between the end plate and the end plate material flows at the molding temperature. A cushioning material having the properties of: Examples of such a cushion material include a polyethylene sheet having a film thickness of 40 to 100 μm and a polyvinyl chloride sheet. Moreover, it is preferable to use this cushion material in combination with a cushion material that does not flow at the molding temperature and a release sheet. Examples of the cushion material that does not flow at the molding temperature include kraft paper.
[0024]
【Example】
Example 1
171.5 g of bisphenol A type epoxy resin (epoxy equivalent: 171.5) as a bifunctional epoxy resin, 271.9 g of tetrabromobisphenol A (hydroxyl equivalent: 271.9) as a bifunctional phenol, lithium hydroxide as an etherification catalyst 0.66 g was dissolved in 1037.4 g of N, N-dimethylacetamide as an amide solvent (solid content concentration: 30% by weight). While this was mechanically stirred, the temperature was kept at 120 ° C. (using an oil bath) and reacted for 6 hours as it was, and a brominated high molecular weight epoxy polymer N, N-dimethylacetamide having a solid content concentration of 30% by weight. A solution (this solution is referred to as solution A) was obtained. About the high molecular weight epoxy polymer contained in the solution A, the weight average molecular weight obtained from the measurement by gel permeation chromatography is 500,000, and the weight average molecular weight obtained from the measurement by the light scattering method is 180,000. 000. The viscosity of the solution A was 18,000 mPa · s, and the reduced viscosity of the diluted N, N-dimethylacetamide solution was 1.36 dl / g.
Solution A having a solid content of 100 parts by weight, 20 parts by weight of phenol novolak-blocked tolylene diisocyanate (TDI) acting as a crosslinking agent for the high molecular weight epoxy polymer contained in Solution A, bisphenol A type epoxy 30 parts by weight of a resin (epoxy equivalent: 171.5), a phenol novolak (softening point 70 ° C.) acting as a curing agent thereof is blended so as to be equivalent to a bisphenol A type epoxy resin, and a urea silane coupling agent 0.5 Part by weight was added to obtain a varnish having a solid content of 40% by weight.
[0025]
This varnish was applied to both surfaces of a 25 μm thick polyimide film (MCF-5000I, Hitachi Chemical Co., Ltd.), which had been previously matted, and dried at 100 ° C. for 1 minute and then at 150 ° C. for 1 minute to form a B stage. A polyimide film with an adhesive that was cured up to was obtained. The thickness of the adhesive layer was 50 μm on one side, and the bromine content was 25% by weight. The resin flow of the adhesive was 0.6%.
The obtained polyimide film with adhesive was overlapped with 18 μm thick copper foil and pressed at 150 ° C. and 10 MPa for 10 minutes to obtain a double-sided copper-clad polyimide film. The copper foil of this double-sided copper-clad polyimide film was etched to form a wiring pattern having a land (line width 0.2 mm, line interval 0.1 mm) on both sides.
Separately, the same varnish as described above was applied to one side of a 18 μm thick copper foil, dried at 100 ° C. for 1 minute, then dried at 150 ° C. for 1 minute, and cured to B stage to obtain a copper foil with adhesive. . Five copper foils with adhesive were stacked, and a hole with a diameter of 0.3 mm was made with an NC drill machine.
Align the hole in the copper foil with adhesive with the land of the wiring pattern of the double-sided copper-clad polyimide film, and align the adhesive side of the copper foil with adhesive on the top and bottom of the double-sided copper-clad polyimide film. The layers were stacked so that the sides faced to the double-sided copper-clad polyimide film, sandwiched between a 40 μm thick polyethylene sheet and three kraft papers with a mirror plate, and heated and pressurized using a vacuum press. Subsequently, a wiring pattern was formed on the surface of the resulting laminated board, and the IVH-attached four-layer printed wiring board was obtained by electrically connecting the previously drilled portion and the conductor land portion of the inner layer circuit board by plating.
[0026]
Example 2
In place of N, N-dimethylacetamide, N-methyl-2-pyrrolidone was used, and in the same manner as in Example 1, brominated high molecular weight epoxy polymer N-methyl- A 2-pyrrolidone solution (this solution is referred to as Solution B) was obtained. About the high molecular weight epoxy polymer contained in the solution B, the weight average molecular weight obtained from the measurement by gel permeation chromatography is 150,000, and the weight average molecular weight obtained from the measurement by the light scattering method is 90,000. 000. The viscosity of the solution B was 8,000 mPa · s, and the reduced viscosity of the dilute solution of N-methyl-2-pyrrolidone was 0.90 dl / g.
A 4-layer printed wiring board with IVH was obtained in the same manner as in Example 1 except that Solution B was used in an amount of 80 parts by weight of the solid content instead of Solution A and 20 parts by weight of modified acrylic rubber was blended. The resin flow of the adhesive was 0.8%. The modified acrylic rubber used here is an epoxy group-containing acrylic rubber, HTR-860P-3 (trade name) manufactured by Teikoku Chemical Industry Co., Ltd., having a weight average molecular weight of 1,000,000 and 3% by weight as glycidyl methacrylate as an epoxy group. An epoxy group-containing acrylic rubber.
[0027]
Example 3
Instead of 100 parts by weight of brominated high molecular weight epoxy polymer having a weight average molecular weight of 500,000, 50 parts by weight of brominated high molecular weight epoxy polymer having a weight average molecular weight of 500,000 and brominated having a weight average molecular weight of 500,000. Except for blending 50 parts by weight of a high molecular weight epoxy polymer and blending 15 parts by weight of bisphenol A type epoxy resin and 15 parts by weight of brominated bisphenol A type epoxy resin instead of 30 parts by weight of bisphenol A type epoxy resin In the same manner as in Example 1, a 4-layer printed wiring board with IVH was obtained. The resin flow of the adhesive was 0.3%.
[0028]
Example 4
A 4-layer printed wiring board with IVH was obtained in the same manner as in Example 1 except that the thickness of the copper foil was 12 μm, a polyimide film having a thickness of 10 μm was used, and the thickness of the adhesive was 25 μm on one side.
[0029]
Example 5
A 4-layer printed wiring board with IVH was obtained in the same manner as in Example 1 except that a polyethersulfone film (manufactured by Sumitomo Chemical Co., Ltd., trade name VICTREX) having a thickness of 50 μm was used instead of the polyimide film.
[0030]
Example 6
A 4-layer printed wiring board with IVH was obtained in the same manner as in Example 1 except that a polyetherimide film (Mitsubishi Resin Co., Ltd., trade name Superior) having a thickness of 50 μm was used instead of the polyimide film.
[0031]
Example 7
A 4-layer printed wiring board with IVH was obtained in the same manner as in Example 1 except that a polyphenylene sulfide film (trade name Torelina, manufactured by Toray Industries, Inc.) was used instead of the polyimide film.
[0032]
Comparative Example The copper foil of the glass cloth base epoxy resin double-sided copper clad laminate having a base material thickness of 0.1 mm and a copper foil thickness of 35 μm was etched to form a wiring pattern on both sides. Thereafter, a 4-layer printed wiring board with IVH was obtained in the same manner as in Example 1.
[0033]
About the obtained 4-layer printed wiring board with IVH, the surface level difference of the outer layer circuit, the solder heat resistance, and the thermal expansion coefficient were measured. Further, the amount of resin flow after lamination molding into the hole provided in the laminate (the distance from the inner wall of the hole to the tip of the resin flowing into the hole) was examined. The results are shown in Table 1. The solder heat resistance is measured by measuring the number of seconds until a blistering or peeling occurs when a 4-layer printed wiring board is immersed in a 260 ° C. solder bath. The surface step is measured by a surface roughness meter. The coefficient is measured using TMA.
[0034]
[Table 1]
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Item Example 1 Example 2 Example 3 Example 4
──────────────────────────────────
Surface step (μm) 5 or less 5 or less 5 or less 5 or less Solder heat resistance (seconds) 180 or more 120 150 180 or more Thermal expansion characteristics (ppm / ° C.) 35 45 35 30
Resin flow rate (μm) 25 50 50 0
──────────────────────────────────
Item Example 5 Example 6 Example 7 Comparative Example ──────────────────────────────────
Surface step (μm) 5 or less 5 or less 5 or less 15 to 25
Solder heat resistance (second) 120 120 90 180 or more Thermal expansion characteristics (ppm / ° C.) 50 50 45 30
Resin flow rate (μm) 25 25 25 25
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
[0035]
【The invention's effect】
According to the present invention, there is provided a method for producing a multilayer printed wiring board capable of preventing the unevenness of the inner layer material from appearing on the surface of the outer layer material and reducing the thickness.

Claims (1)

耐熱性プラスチックフィルムの両面に、2官能以上のエポキシ樹脂及びフィルム成形可能な高分子量エポキシ重合体を必須成分として含む接着剤を介して銅はくを張り合わせ、この銅はくをエッチングして内層材用の回路を形成し、この内層材の接着剤をBステージに維持した状態で、前記回路の表面に外層材を重ね、加熱加圧することを特徴とする多層プリント配線板の製造方法。Copper foil is bonded to both sides of a heat-resistant plastic film via an adhesive containing two or more functional epoxy resins and a high-molecular-weight epoxy polymer that can be formed into a film, and the copper foil is etched to form an inner layer material. A method for producing a multilayer printed wiring board , comprising forming a circuit for use and superposing an outer layer material on the surface of the circuit while maintaining the adhesive of the inner layer material on a B stage, and heating and pressing .
JP17357096A 1996-07-03 1996-07-03 Manufacturing method of multilayer printed wiring board Expired - Fee Related JP3940936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17357096A JP3940936B2 (en) 1996-07-03 1996-07-03 Manufacturing method of multilayer printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17357096A JP3940936B2 (en) 1996-07-03 1996-07-03 Manufacturing method of multilayer printed wiring board

Publications (2)

Publication Number Publication Date
JPH1022640A JPH1022640A (en) 1998-01-23
JP3940936B2 true JP3940936B2 (en) 2007-07-04

Family

ID=15963016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17357096A Expired - Fee Related JP3940936B2 (en) 1996-07-03 1996-07-03 Manufacturing method of multilayer printed wiring board

Country Status (1)

Country Link
JP (1) JP3940936B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010329A (en) * 2008-06-26 2010-01-14 Kyocer Slc Technologies Corp Wiring substrate and method for manufacturing therefor

Also Published As

Publication number Publication date
JPH1022640A (en) 1998-01-23

Similar Documents

Publication Publication Date Title
KR100663050B1 (en) An epoxy resin composition, an adhesive film and a prepreg using the same, and a multi-layer print wiring plate using them and a process for preparation thereof
TWI415880B (en) Prepreg, method for making the prepreg, substrate and semiconductor device
JP3184485B2 (en) Resin composition for copper clad laminate, copper foil with resin, multilayer copper clad laminate and multilayer printed wiring board
KR100276747B1 (en) Circuit board using heat resistant resin for adhesive layer
US3936575A (en) Flexible metal-clad laminates and method for manufacturing the same
US7947332B2 (en) Prepreg for printed wiring board, metal foil clad laminate and printed wiring board, and, method for manufacturing multi-layer printed wiring board
CN104053724A (en) Resin Composition, Layered Product, Multilayered Printed Wiring Board, Multilayered Flexible Wiring Board, And Process For Producing Same
KR20080066016A (en) Resin composition, resin film, cover lay film, interlayer adhesive, metal clad laminate and multilayer printed circuit board
KR20080009157A (en) Process for producing prepreg with carrier, prepreg with carrier, process for producing thin-type double sided board, thin-type double sided board, and process for producing multilayered printed wiring board
US5674611A (en) Adhesive for copper foils and an adhesive-applied copper foil
JPH115828A (en) Resin composition for copper-clad laminate, copper foil with resin, multilayer copper-clad laminate and multilayer printed wiring board
KR100747023B1 (en) Multi-layer printed circuit board and fabricating method therefore
JP3940936B2 (en) Manufacturing method of multilayer printed wiring board
TWI445790B (en) A flame retardant adhesive resin composition, and a flexible printed circuit board material using the same
JP4035883B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP4747619B2 (en) Coverlay film and flexible wiring board
JP4390056B2 (en) B-stage resin composition sheet and method for producing copper-clad laminate using the same
JPH11148053A (en) Heat-resistant plastic film laminate and multilayer printed circuit using the same
JPH08259912A (en) Insulating adhesive film and production of multilayer printed wiring board
JP2002252470A (en) Interlayer insulating material film for printed wiring board and multilayer printed wiring board using it
KR100744993B1 (en) Multilayer printed circuit board and fabricating method therefore
KR100722741B1 (en) Multilayer printed circuit board and fabricating method therefore
JP2003096296A (en) Resin composition, prepreg and printed circuit board using the same
JPH10326952A (en) Wiring board and material therefor
JPH08107275A (en) Manufacturing method of laminated board for multilayer printed-wiring board

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060914

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061020

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070321

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees