JP3937948B2 - ハイブリッド車両の制御装置及び方法、並びにハイブリッド車両 - Google Patents

ハイブリッド車両の制御装置及び方法、並びにハイブリッド車両 Download PDF

Info

Publication number
JP3937948B2
JP3937948B2 JP2002200914A JP2002200914A JP3937948B2 JP 3937948 B2 JP3937948 B2 JP 3937948B2 JP 2002200914 A JP2002200914 A JP 2002200914A JP 2002200914 A JP2002200914 A JP 2002200914A JP 3937948 B2 JP3937948 B2 JP 3937948B2
Authority
JP
Japan
Prior art keywords
engine
motor generator
hybrid vehicle
compression state
power output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002200914A
Other languages
English (en)
Other versions
JP2004044433A (ja
Inventor
孝 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002200914A priority Critical patent/JP3937948B2/ja
Publication of JP2004044433A publication Critical patent/JP2004044433A/ja
Application granted granted Critical
Publication of JP3937948B2 publication Critical patent/JP3937948B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Arrangement Of Transmissions (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エンジンとモータジェネレータ装置とを組合せてなるハイブリッド型の動力出力システムを備えたハイブリッド車両を制御する制御装置及び方法の技術分野に属し、更に、該制御装置が搭載されたハイブリッド車両の技術分野に属する。本発明は特に、このようなエンジンとして、圧縮比等の圧縮状態を変更可能な圧縮状態可変型のエンジンを用いたハイブリッド車両を制御する制御装置等の技術分野に属する。
【0002】
【従来の技術】
ハイブリッド型の動力出力システムは、例えば特開平9-47094号公報、特開2000−324615号公報等に開示されているように、要求される動作状態に応じて適宜、モータジェネレータ装置をエンジンの駆動力で回転されるジェネレータ(発電機)として利用して或いはモータジェネレータ装置に含まれる専用のジェネレータを利用して、バッテリに充電する。また、モータジェネレータ装置をバッテリから電源供給を受けて回転するモータ(電動機)として利用して或いはモータジェネレータ装置に含まれる専用のモータを利用して、駆動軸を単独で或いはエンジンと共に回転させる。これにより、エンジンを基本的に運転効率が高い状態で運転させ続けることができ、燃費性能や排気浄化性能が向上するものとされている。
【0003】
尚、この種のハイブリッド型の動力出力システムは、パラレルハイブリッド方式とシリアルハイブリッド方式とに大別される。前者では、駆動軸をエンジンの出力の一部により回転させると共にモータジェネレータ装置の駆動力により回転させる。後者では、エンジン出力はモータジェネレータ装置による充電に専ら用いられ、駆動軸をモータジェネレータ装置の駆動力により回転させる。
【0004】
このようなハイブリッド車両の動力出力システムを制御する技術としては、例えば、特開2000−204987号公報等に、ハイブリッド車両におけるデコンプ動作を制御することで、エンジン始動時の振動を抑制するエンジン制御方法が開示されている。特開平10−2239号公報等に、ハイブリッド車両において、エンジン吸気弁及び排気弁のタイミング制御によって、エンジンの燃料カット制御時であり且つブレーキ操作による減速時に、ショックを低減するとともに、燃費向上を図るハイブリッド型車両のエンジン制御装置が提案されている。
【0005】
一般に、ハイブリッド車両に対しては、既存の直噴型、ポート噴射型の各種エンジンが利用可能である。この際、ハイブリッド車両以外の一般車両に搭載されるエンジンに対して伝統的に行われているように、例えばエンジン回転数やエンジントルクといった、エンジン動作或いは動力出力システムの動作を規定する複数のパラメータ(本願明細書では適宜、単に“パラメータ”という)の組合せは、エンジン効率を最適化或いは極大化するように選択される。即ち、ハイブリッド型とすることによる燃費向上に加えて、このようにエンジン効率の高められたエンジンを組み入れることによる燃費向上が図られている訳である。
【0006】
伝統的なエンジン以外の場合にも、このようなエンジン効率の最適化或いは極大化は図られている。例えば特開2000−64866号公報、特開平6−241058号公報等には、エンジンの圧縮比を可変に構成された圧縮比可変型のエンジンが開示されている。このエンジンの場合にも、高速通常走行、低速通常走行、加速時、減速時、バッテリー充電時などに各種運転状態に応じて、圧縮比を適宜変更し、これにより、いずれの運転状態においても、エンジン効率を最適化或いは極大化することが可能とされている。
【0007】
【発明が解決しようとする課題】
しかしながら、いずれの型式のエンジンであれ、エンジン単体としてのエンジン効率が高いものをハイブリッド車両に組み込んだ場合、以下の問題点が生じる。
【0008】
即ち、パラレルハイブリッド方式やシリアルハイブリッド方式の如何を問わずに、エンジンの出力をモータジェネレータ装置に伝達したり、モータジェネレータ装置の出力でエンジンの出力をアシストしたりする、例えばプラネタリギヤ等を含んでなる比較的複雑なパワー伝達機構が、当該動力出力システム内に存在している。このため、エンジン効率を最適化或いは極大化するようなパラメータ設定を行っても、動力出力システムの伝達効率やモータジェネレータ装置における発電効率等までも含めた、当該動力出力システム全体或いはハイブリッド車両全体の全体に係るエネルギ効率(本願明細書では適宜、単に“全体効率”という)は、一般に最適化されるものではない。
【0009】
しかも、動力出力システムの伝達機構における伝達効率等の、エンジン効率以外の効率を最適化するようなパラメータ設定を採ろうとすれば、肝心のエンジン効率の低下が顕著となり、ハイブリッド車両における全体効率を向上させることは技術的にみて非常に困難であるという問題点がある。
【0010】
本発明は、上記問題点に鑑みなされたものであり、圧縮比可変型等の圧縮状態可変型のエンジンとモータジェネレータとを組合せてなる動力出力システムを含むハイブリッド車両において、全体効率を高めることが可能なハイブリッド車両の制御装置及び方法、並びに該制御装置を具備してなるハイブリッド車両を提供することを課題とする。
【0011】
【課題を解決するための手段】
本発明のハイブリッド車両の制御装置は上記課題を解決するために、(i)エンジン、該エンジンの燃焼室内における圧縮状態を変更可能である圧縮状態可変手段、及び前記エンジンの出力の少なくとも一部を用いて発電可能であると共に駆動軸を介して駆動力を出力可能なモータジェネレータ装置を含むハイブリッド型の動力出力システムと、(ii)該動力出力システムが搭載される車両本体と、(iii)該車両本体に取り付けられると共に前記駆動軸を介して出力される前記駆動力により駆動される車輪とを備えたハイブリッド車両を制御する制御装置であって、前記ハイブリッド車両において想定される複数種類の運転状態に応じて前記動力出力システムに要求される要求駆動力を達成すべく予め設定された、前記圧縮状態を含む前記動力出力システムの動作を規定する複数のパラメータの組合せの複数のうち、実際の運転状態に応じて前記動力出力システムにおける全体効率を極大的に大きくするものを最適組合せとして選択する選択手段と、該選択された最適組合せにおける前記圧縮状態となるように、少なくとも前記圧縮状態可変手段を制御する制御手段とを備え、前記圧縮状態可変手段は、前記圧縮状態として、前記燃焼室内における圧縮比を変更可能であり、前記動力出力システムは、前記モータジェネレータ装置により充電可能であると共に前記モータジェネレータ装置に電源供給可能な蓄電装置を更に含み、前記制御手段は、前記モータジェネレータ装置が前記蓄電装置を回生のために充電する際に、前記圧縮比を小さくするように前記圧縮状態可変手段を制御する。
【0012】
本発明のハイブリッド車両の制御装置によれば、ハイブリッド型の動力出力システムは、エンジンにおける、圧縮状態を変更可能である圧縮状態可変手段を含む。そして予め、ハイブリッド車両において想定される複数種類の運転状態に応じて動力出力システムに要求される要求駆動力を達成すべく、圧縮状態を含む複数のパラメータの組合せが複数設定されている。このような複数のパラメータの組合せは、予め実験的、経験的、シミュレーション等によって、個々のハイブリッド車両に対して設定可能である。このようなパラメータとしては、例えば燃焼室内の吸気圧縮比(本願明細書では適宜、単に“圧縮比”と呼ぶ)である圧縮状態の他に、エンジン回転数、エンジントルク等がある。その後、ハイブリッド車両の動作時には、選択手段は、このように設定された複数の組合せの中から、例えば、車速、アクセルの踏み込み量等の実際の運転状態に応じて、動力出力システムにおける全体効率を極大的に大きくするものを最適組合せとして選択する。これを受けて、制御手段は、この選択された最適組合せにおける圧縮状態となるように、少なくとも圧縮状態可変手段を制御する。例えば、エンジンにおける燃焼室内の容積及び吸気バルブタイミングの少なくとも一方を制御することで、選択された最適組合せにおける圧縮比となるように、圧縮比可変手段を制御する。この結果、従来の如くエンジン効率を最適化するパラメータ設定によって、システム伝達効率、発電効率等を含むハイブリッド型の動力出力システム或いはハイブリッド車両の全体効率を低めてしまう場合と比較して、本発明によれば全体効率を高めることが可能となる。従来のハイブリッド車両においては、通常は、伝達効率が運転状態によって顕著に違ってくるため、エンジン効率を最適化してしまうと、ハイブリッド車両全体の効率は低くなる場合がある。
【0013】
そして特に、例えば前述した特開2000−64866号公報、特開平6−241058号公報等に開示された圧縮比可変型のエンジンなどの、圧縮状態可変型のエンジンを用いることで、エンジン効率の他にシステム伝達効率、発電効率等を要素とする全体効率を極大的に高める際における、エンジン効率についても比較的高いレベルに維持可能となる。即ち、仮に伝統的な圧縮状態可変型ではないエンジンで、システム伝達効率、発電効率等の他の全体効率の要素を高めるようなパラメータ設定にしてしまうと、エンジン効率が顕著に低下するために全体効率を高めることが実践上困難になったり、更にエンジン効率の低下に伴う排気ガス浄化性能が著しく低下する等の問題がないので、本発明の制御装置は非常に有利である。
【0014】
尚、本願明細書では、このようにパラレル又はシリアルハイブリッド方式の動力出力システムを構成しており、モータジェネレータを一又は複数含む若しくは、ジェネレータ及びモータを一又は複数ずつ含む重電機全体を、それらの接続配線等を含めて「モータジェネレータ装置」と呼ぶことにする。更に、本願明細書では、いずれの形式のハイブリッド型の場合にも、エンジンの出力をモータジェネレータ装置の駆動力で補うことを「アシストする」といい、この際のモータジェネレータ装置の駆動力及び駆動量を夫々、「アシスト力」及び「アシスト量」と呼ぶ。
加えて本発明では特に、前記圧縮状態可変手段は、前記圧縮状態として、前記燃焼室内における圧縮比を変更可能であり、前記動力出力システムは、前記モータジェネレータ装置により充電可能であると共に前記モータジェネレータ装置に電源供給可能な蓄電装置を更に含み、前記制御手段は、前記モータジェネレータ装置が前記蓄電装置を回生のために充電する際に、前記圧縮比を小さくするように圧縮状態可変手段を制御する
従って本発明によれば、例えば、圧縮比可変型のエンジンにおいて、軽負荷時に、圧縮比εを上げ、重負荷時に、圧縮比εを下げるようなこと、エンジン効率の最適化が図られ、この結果、全体効率を極大的に大きく出来る。そして回生のために、モータジェネレータ装置が蓄電装置を充電する際に、即ち回生の最中に、制御手段による制御下で、例えばエンジンにおける燃焼室内の容積や、吸気バルブタイミングを制御するなどにより、圧縮状態可変手段は、圧縮比を小さくする。ここで特に、一般にモータジェネレータ装置による回生の最中には、燃料がカットされて、エンジンが連れ回される状態となる。そして、この場合には、エンジンにおけるポンピング動作によるフリクショントルク分だけ、モータジェネレータ装置における回生効率が低下することになる。しかるに本発明では、モータジェネレータの回生の際には、圧縮比を小さくすることで、このようなエンジンにおけるフリクショントルクを低減でき、モータジェネレータ装置における回生効率が向上する。この結果、当該動力出力システム全体或いはハイブリッド車両全体に係る全体効率も向上する。
本発明のハイブリッド車両の制御装置の一態様では、前記複数のパラメータは、前記エンジンのエンジン回転数及びエンジントルクを更に含み、前記制御手段は、前記選択された最適組合せにおける前記エンジン回転数及び前記エンジントルクとなるように、前記エンジンを更に制御する。
この態様によれば、選択手段は、圧縮比εに加えてエンジン回転数Ne及びエンジントルクTeを含むパラメータの組合せのうち、全体効率が極大的に大きくなるものを選択できる。
この態様では、前記制御手段は、エネルギ再循環モードの際に、前記モータジェネレータ装置の回転数が正から負に移ることで前記全体効率が下がる場合に、前記エンジンのスロットルを全開のままで同一駆動力を達成しつつ前記エンジン回転数を上げることで、前記モータジェネレータ装置の回転数を負から正に戻すように、前記エンジン及び前記圧縮状態可変手段を制御するように構成してもよい。
このように構成すれば、制御手段による制御下で、エネルギ再循環モードにおいては、モータジェネレータ装置の回転数が正から負に移ることで全体効率が下がるが、エンジン及び前記圧縮状態可変手段が、モータジェネレータ装置の回転数を負から正に戻すべく、スロットルを全開のままで同一駆動力を達成しつつエンジン回転数を上げる。尚、かかるエネルギ再循環モードでは、同一駆動力を達成しつつエンジン回転数を上げることから、制御手段は、圧縮比を大きくするように圧縮状態可変手段を制御することになる。典型的には例えば、エンジンの運転点を高回転・低トルク側に移す制御が行われる。従って、エンジン効率の低下分を、発電効率や電動効率の上昇分、或いは発電効率や電動効率及び伝達効率の上昇分が上回るようにできるので、全体効率を高められる。このように、動力出力システムの伝達効率を向上しつつ、エンジン効率の悪化代を最低限にし、ハイブリッド車両全体に係るエネルギ効率、即ち全体効率の向上を図ることが可能となる。
或いは本発明に係る他のハイブリッド車両の制御装置は上記課題を解決するために、(i)エンジン、該エンジンの燃焼室内における圧縮状態を変更可能である圧縮状態可変手段、及び前記エンジンの出力の少なくとも一部を用いて発電可能であると共に駆動軸を介して駆動力を出力可能なモータジェネレータ装置を含むハイブリッド型の動力出力システムと、(ii)該動力出力システムが搭載される車両本体と、(iii)該車両本体に取り付けられると共に前記駆動軸を介して出力される前記駆動力により駆動される車輪とを備えたハイブリッド車両を制御する制御装置であって、前記ハイブリッド車両において想定される複数種類の運転状態に応じて前記動力出力システムに要求される要求駆動力を達成すべく予め設定された、前記圧縮状態を含む前記動力出力システムの動作を規定する複数のパラメータの組合せの複数のうち、実際の運転状態に応じて前記動力出力システムにおける全体効率を極大的に大きくするものを最適組合せとして選択する選択手段と、該選択された最適組合せにおける前記圧縮状態となるように、少なくとも前記圧縮状態可変手段を制御する制御手段とを備え、前記圧縮状態可変手段は、前記圧縮状態として、前記燃焼室内における圧縮比を変更可能であり、前記複数のパラメータは、前記エンジンのエンジン回転数及びエンジントルクを更に含み、前記制御手段は、前記選択された最適組合せにおける前記エンジン回転数及び前記エンジントルクとなるように、前記エンジンを更に制御し、前記制御手段は、エネルギ再循環モードの際に、前記モータジェネレータ装置の回転数が正から負に移ることで前記全体効率が下がる場合に、前記エンジンのスロットルを全開のままで同一駆動力を達成しつつ前記エンジン回転数を上げることで、前記モータジェネレータ装置の回転数を負から正に戻すように、前記エンジン及び前記圧縮状態可変手段を制御する
このように構成された本発明に係る他のハイブリッド車両の制御装置によれば、制御手段による制御下で、エネルギ再循環モードにおいては、モータジェネレータ装置の回転数が正から負に移ることで全体効率が下がるが、エンジン及び前記圧縮状態可変手段が、モータジェネレータ装置の回転数を負から正に戻すべく、スロットルを全開のままで同一駆動力を達成しつつエンジン回転数を上げる。従って、動力出力システムの伝達効率を向上しつつ、エンジン効率の悪化代を最低限にし、ハイブリッド車両全体に係るエネルギ効率、即ち全体効率の向上を図ることが可能となる。
【0015】
本発明のハイブリッド車両の制御装置の一態様では、前記動力出力システムは、前記エンジンの出力を前記駆動軸及び前記モータジェネレータ装置に選択的に伝達すると共に、前記モータジェネレータ装置の出力を前記駆動軸に選択的に伝達するプラネタリギヤを有する伝達機構を更に含み、前記全体効率は、前記伝達機構におけるシステム伝達効率と前記エンジンにおけるエンジン効率との乗算値で近似される。
【0016】
この態様によれば、全体効率を、プラネタリギヤを有する伝達機構におけるシステム伝達効率とエンジンにおけるエンジン効率との乗算値で近似し、この近似された全体効率を圧縮常態可変手段の制御により極大的に高めることで、当該動力出力システム或いはハイブリッド車両における真の全体効率を高められる。
【0017】
或いは本発明のハイブリッド車両の制御装置の他の態様では、前記動力出力システムは、前記エンジンの出力を前記モータジェネレータ装置に直結で伝達すると共に、前記モータジェネレータ装置の出力を前記駆動軸に伝達する伝達機構を更に含み、前記全体効率は、前記モータジェネレータ装置における発電効率と前記エンジンにおけるエンジン効率との乗算値で近似される。
【0018】
この態様によれば、エンジンの出力は、伝達機構によって、モータジェネレータ装置に直結で伝達され、モータジェネレータ装置の出力は、駆動軸に伝達される。この際、モータジェネレータの出力は、例えばCVT(Continuously Variable Transmission:無段変速機)やディファレンシャルギヤ等を介して伝達されてもよい。このような構成において、全体効率を、モータジェネレータ装置における発電効率とエンジン効率との乗算値で近似し、この近似された全体効率を圧縮常態可変手段の制御により極大的に高めることで、当該動力出力システム或いはハイブリッド車両における真の全体効率を高められる。
【0019】
或いは本発明のハイブリッド車両の制御装置の他の態様では、前記動力出力システムは、前記エンジンの出力をトランスミッション経由で前記モータジェネレータ装置に伝達すると共に、前記モータジェネレータ装置の出力を前記駆動軸に伝達する伝達機構を更に含み、前記複数のパラメータは、前記圧縮状態に加えて、前記トランスミッションにおけるギヤ比及び前記モータジェネレータ装置によるアシスト量を更に含む。
【0020】
この態様によれば、エンジンの出力は、伝達機構によって、例えばオートマティック、マニュアル等のトランスミッション経由でモータジェネレータ装置に伝達され、更にモータジェネレータ装置の出力は、駆動軸に伝達される。この際、モータジェネレータの出力は、例えばディファレンシャルギヤ等を介して伝達されてもよい。このような構成において、複数のパラメータとして圧縮状態に加えて、トランスミッションにおけるギヤ比及びモータジェネレータ装置によるアシスト量を含む複数のパラメータの組合せの複数のうちから、選択手段により、実際の運転状態に応じて全体効率を極大的に大きくするものを最適組合せとして選択する。これにより、当該動力出力システム或いはハイブリッド車両における全体効率を高められる。
【0021】
この態様では、前記選択手段は、前記圧縮状態として、(i)前記所定のハイギヤ比とされた前記トランスミッションを介して出力される、前記モータジェネレータ装置によるアシスト力が加算された前記エンジンの出力で、一の要求駆動力を達成する一の圧縮状態と、(ii)前記ハイギヤ比とされた前記トランスミッションを介して出力される、前記モータジェネレータ装置によるアシスト力が加算されていない前記エンジンの出力で、前記一の要求駆動力を達成する他の圧縮状態とのうち、前記全体効率をより高める方の圧縮状態を含む前記組合せを選択するように構成してもよい。
【0022】
このように構成すれば、ハイブリッド型の動力出力システムにおけるジェネレータ装置によるエンジンのアシストの有無によって、同一要求駆動力を達成する、例えば圧縮比等の圧縮状態は2通り存在するが、これらのうち全体効率をより高くする方の圧縮状態を含む組合せが選択される。よって、当該動力出力システム或いはハイブリッド車両における全体効率を向上できる。
【0027】
このエンジン回転数Ne及びエンジントルクTeに係る態様では更に、前記選択手段は、当該ハイブリッド車両における車速及びアクセルの踏み込み量より、前記要求駆動力を算出し、該算出された要求駆動力のうち前記エンジンに割り当てられる要求エンジン出力に対し前記圧縮比を変えたときのエンジン効率を算出し、前記要求エンジン出力に対し前記圧縮比を変えたときの前記エンジン回転数及び前記エンジントルクを算出し、各圧縮比における前記動力出力システム内におけるシステム伝達効率を算出し、前記算出されたエンジン効率及び前記算出されたシステム伝達効率の乗算値で前記全体効率を近似し、該近似された全体効率を極大的に大きくする前記圧縮比を選択するように構成してもよい。
【0028】
このように構成すれば、車速及びアクセルの踏み込み量より、要求駆動力を算出する。該算出された要求駆動力のうち要求エンジン出力(要求エンジントルク)Peに対し圧縮比εを変えたときのエンジン効率を算出する。要求エンジン出力Peに対し圧縮比εを変えたときのエンジン回転数Ne及びエンジントルクTeを算出する。各圧縮比における動力出力システム内におけるシステム伝達効率を算出する。そして、算出されたエンジン効率及び算出されたシステム伝達効率の乗算値で全体効率を近似するので、当該動力出力システム或いはハイブリッド車両における全体効率を向上できる。
【0031】
本発明のハイブリッド車両の制御装置の他の態様では、前記制御手段は、前記エンジンにおける燃焼室内の容積及び吸気バルブタイミングの少なくとも一方を制御することで前記圧縮状態を制御する。
【0032】
この態様によれば、比較的容易且つ精度良く、例えば圧縮比等の圧縮状態を制御可能となる。エンジンにおける燃焼室内の容積は、例えば上死点の位置や下死点の位置をずらすことで、圧縮状態或いは圧縮比を変更できる。また、吸気バルブタイミングをピストン移動に対して遅らせたり早めたりすることで、圧縮状態或いは圧縮比を変更できる。
【0033】
ここでは例えば、特開2000−64866号公報に開示されているように、エンジンのコンロッドと偏心ベアリングとの間の摩擦を増大させるための油圧の供給を、クランクシャフトとの回転に伴う偏心ベアリングとクランクピンとの相対回転位置の変化により制御することで、圧縮比を変更してもよい。或いは、特開平6−241058号公報に開示されているように、このような油圧供給路に制御弁を別途設けて、油圧の供給を制御することで、圧縮比を変更してもよい。
【0034】
尚、本発明に係るハイブリッド型の動力出力システムにおける「モータジェネレータ装置」としては、複数のモータジェネレータを含み、該複数のモータジェネレータのうち少なくとも一つは、エンジンの出力の少なくとも一部を用いて発電して蓄電装置を充電し、複数のモータジェネレータのうち少なくとも一つは、蓄電装置により電源供給されて駆動力を出力する型式のものであってもよい。例えば、エンジンは、モータジェネレータ装置によるアシストを受けつつ駆動軸に対して駆動力を出力可能に構成される。或いは、エンジンは、専らモータジェネレータ装置の充電を行うように構成される。即ち、パラレルハイブリッド方式であってもシリアルハイブリッド方式であっても、本発明のハイブリッド車両の制御装置は、有効に機能する。また、本発明に係る「蓄電装置」としては、例えばバッテリ、大容量コンデンサ等がある。
【0035】
本発明のハイブリッド車両は上記課題を解決するために、上述した本発明のハイブリッド車両の制御装置(但し、その各種態様を含む)、並びに前記動力出力システム、前記車両本体及び前記車輪を備える。
【0036】
本発明のハイブリッド車両によれば、上述した本発明のハイブリッド車両の制御装置を備えるので、全体効率が高く、燃費性能に優れると共に排気ガス浄化性能にも優れる。
【0037】
本発明のハイブリッド車両の制御方法は上記課題を解決するために、(i)エンジン、該エンジンの燃焼室内における圧縮状態を変更可能である圧縮状態可変手段、及び前記エンジンの出力の少なくとも一部を用いて発電可能であると共に駆動軸を介して駆動力を出力可能なモータジェネレータ装置を含むハイブリッド型の動力出力システムと、(ii)該動力出力システムが搭載される車両本体と、(iii)該車両本体に取り付けられると共に前記駆動軸を介して出力される前記駆動力により駆動される車輪とを備えたハイブリッド車両を制御する制御方法であって、前記ハイブリッド車両において想定される複数種類の運転状態に応じて前記動力出力システムに要求される要求駆動力を達成すべく予め設定された、前記圧縮状態を含む前記動力出力システムの動作を規定する複数のパラメータの組合せの複数のうち、実際の運転状態に応じて前記動力出力システムにおける全体効率を極大的に大きくするものを最適組合せとして選択する選択工程と、該選択された最適組合せにおける前記圧縮状態となるように、少なくとも前記圧縮状態可変手段を制御する制御工程とを備え、前記圧縮状態可変手段は、前記圧縮状態として、前記燃焼室内における圧縮比を変更可能であり、前記動力出力システムは、前記モータジェネレータ装置により充電可能であると共に前記モータジェネレータ装置に電源供給可能な蓄電装置を更に含み、前記制御工程は、前記モータジェネレータ装置が前記蓄電装置を回生のために充電する際に、前記圧縮比を小さくするように前記圧縮状態可変手段を制御する。
【0038】
本発明のハイブリッド車両の制御方法によれば、上述した本発明のハイブリッド車両の制御装置の場合と同様に、ハイブリッド車両における全体効率を高められる。
【0039】
本発明のこのような作用及び他の利得は次に説明する実施の形態から明らかにされよう。
【0040】
【発明の実施の形態】
以下本発明の実施形態を図面に基づいて説明する。以下の実施形態では、本発明に係るハイブリッド車両の制御装置を、パラレルハイブリッド方式のハイブリッド車両に適用したものであり、更に、本発明に係るハイブリッド車両の制御方法は、当該ハイブリッド車両において実行されるものである。
【0041】
(ハイブリッド車両の基本構成及び動作)
先ず、本実施形態のハイブリッド車両の構成について図1を用いて説明する。ここに図1は、本実施形態のハイブリッド車両における動力系統のブロック図である。
【0042】
図1において、本実施形態のハイブリッド車両の動力系統は、エンジン150、モータジェネレータ装置の一例を構成するモータジェネレータMG1及びMG2、これらのモータジェネレータMG1及びMG2を夫々駆動する駆動回路191及び192、これらの駆動回路191及び192を制御する制御ユニット190、並びにエンジン150を制御するEFIECU(Electrical Fuel Injection Engine Control Unit)170を備えて構成されている。
【0043】
本実施形態では特に、エンジン150は、その燃焼室内における圧縮比を変更可能に構成された圧縮比可変型のガソリンエンジンである。この圧縮比の変更動作に付いては後に詳述する。
【0044】
エンジン150は、クランクシャフト156を回転させる。エンジン150の運転は、EFIECU170により制御されている。EFIECU170は、内部にCPU、ROM、RAM等を有するワンチップ・マイクロコンピュータであり、CPUがROMに記録されたプログラムに従い、エンジン150の燃料噴射量や回転速度その他の制御を実行する。図示を省略したが、これらの制御を可能とするために、EFIECU170にはエンジン150の運転状態を示す種々のセンサが接続されている。
【0045】
モータジェネレータMG1及びMG2は、同期電動発電機として構成され、外周面に複数個の永久磁石を有するロータ132及び142と、回転磁界を形成する三相コイルが巻回されたステータ133及び143とを備える。ステータ133及び143は、ケース119に固定されている。モータジェネレータMG1及びMG2のステータ133及び143に巻回された三相コイルは、夫々駆動回路191及び192を介してバッテリ194に接続されている。
【0046】
駆動回路191及び192は、各相ごとにスイッチング素子としてのトランジスタを2つ1組で備えたトランジスタインバータである。駆動回路191及び192は夫々、制御ユニット190に接続されている。制御ユニット190からの制御信号によって駆動回路191及び192のトランジスタがスイッチングされると、バッテリ194とモータジェネレータMG1及びMG2との間に電流が流れる。
【0047】
モータジェネレータMG1及びMG2は夫々、バッテリ194からの電力の供給を受けて回転駆動するモータ(電動機)として動作することもできる(以下適宜、この運転状態を“力行”と呼ぶ)。或いは、ロータ132及び142が外力により回転している場合には三相コイルの両端に起電力を生じさせるジェネレータ(発電機)として機能してバッテリ194を充電することもできる(以下適宜、この運転状態を“回生”と呼ぶ)。
【0048】
エンジン150とモータジェネレータMG1及びMG2とは夫々、プラネタリギヤ120を介して機械的に結合されている。プラネタリギヤ120は、遊星歯車とも呼ばれ、以下に示す夫々のギヤに結合された3つの回転軸を有している。プラネタリギヤ120を構成するギヤは、中心で回転するサンギヤ121、サンギヤの周辺を自転しながら公転するプラネタリピニオンギヤ123、及びその外周で回転するリングギヤ122である。プラネタリピニオンギヤ123はプラネタリキャリア124に軸支されている。本実施形態のハイブリッド車両では、エンジン150のクランクシャフト156はダンパ130を介してプラネタリキャリア軸127に結合されている。ダンパ130はクランクシャフト156に生じる捻り振動を吸収するために設けられている。モータジェネレータMG1のロータ132は、サンギヤ軸125に結合されている。モータジェネレータMG2のロータ142は、リングギヤ軸126に結合されている。リングギヤ122の回転は、チェーンベルト129を介して駆動軸112、更に車輪116R及び116Lに伝達される。
【0049】
次に以上の如く構成された本実施形態のハイブリッド車両の動力系統における動作について説明する。
【0050】
先ず、プラネタリギヤ120の動作について図2及び図3を参照して説明する。
【0051】
プラネタリギヤ120は、上述した3つの回転軸のうち、2つの回転軸の回転数及びトルク(以下適宜、両者をまとめて“回転状態”と呼ぶ)が決定されると残余の回転軸の回転状態が決まるという性質を有している。各回転軸の回転状態の関係は、機構学上周知の計算式によって求めることができるが、共線図と呼ばれる図により幾何学的に求めることもできる。
【0052】
図2に共線図の一例を示す。縦軸が各回転軸の回転数を示している。横軸は、各ギヤのギヤ比を距離的な関係で示している。サンギヤ軸125(図中のS)とリングギヤ軸126(図中のR)を両端にとり、位置Sと位置Rの間を1:ρに内分する位置Cをプラネタリキャリア軸127の位置とする。ρはリングギヤ122の歯数に対するサンギヤ121の歯数の比である。こうして定義された位置S、C及びRに、夫々のギヤの回転軸の回転数Ns、Nc及びNrをプロットする。プラネタリギヤ120は、このようにプロットされた3点が必ず一直線に並ぶという性質を有している。この直線を動作共線と呼ぶ。動作共線は2点が決まれば一義的に決まる。従って、動作共線を用いることにより、3つの回転軸のうち2つの回転軸の回転数から残余の回転軸の回転数を求めることができる。
【0053】
また、プラネタリギヤ120では、各回転軸のトルクを動作共線に働く力に置き換えて示したとき、動作共線が剛体として釣り合いが保たれるという性質を有している。具体例として、プラネタリキャリア軸127に作用するトルクをTeとする。このとき、図2に示す通り、トルクTeに相当する大きさの力を位置Cで動作共線に鉛直下から上に作用させる。作用させる方向はトルクTeの方向に応じて定まる。また、リングギヤ軸126から出力されるトルクTrを位置Rにおいて動作共線に、鉛直上から下に作用させる。図中のTes,Terは剛体に作用する力の分配法則に基づいてトルクTeを等価な2つの力に分配したものである。「Tes=ρ/(1+ρ)×Te」「Ter=1/(1+ρ)×Te」なる関係がある。以上の力が作用した状態で、動作共線図が剛体として釣り合いがとれているという条件を考慮すれば、サンギヤ軸125に作用すべきトルクTm1と、リングギヤ軸に作用すべきトルクTm2とを求めることができる。トルクTm1はトルクTesに等しくなり、トルクTm2はトルクTrとトルクTerとの差分に等しくなる。
【0054】
プラネタリキャリア軸127に結合されたエンジン150が回転をしているとき、動作共線に関する上述の条件を満足する条件下で、サンギヤ121およびリングギヤ122は様々な回転状態で回転することができる。サンギヤ121が回転しているときは、その回転動力を利用してモータジェネレータMG1により発電することが可能である。リングギヤ122が回転しているときは、エンジン150から出力された動力を駆動軸112に伝達することが可能である。図1に示した構成を有するハイブリッド車両では、エンジン150から出力された動力を駆動軸に機械的に伝達される動力と、電力として回生される動力に分配し、さらに回生された電力を用いてモータジェネレータMG2を力行して動力のアシストを行なうことによって所望の動力を出力しながら走行することができる。こうした動作状態は、ハイブリッド車両の通常走行時に取り得る状態である。なお、全開加速時等の高負荷時には、バッテリ194からもモータジェネレータMG2に電力が供給され、駆動軸112に伝達する動力を増大している。
【0055】
また、上述のハイブリッド車両では、モータジェネレータMG1またはMG2の動力を駆動軸112から出力することができるため、これらのモータにより出力される動力のみを用いて走行することもできる。従って、車両が走行中であっても、エンジン150は停止していたり、いわゆるアイドル運転していたりすることがある。この動作状態は、発進時或いは低速走行時に取り得る状態である。
【0056】
更に、本実施形態のハイブリッド車両では、エンジン150から出力された動力を2経路に分配するのではなく、駆動軸112側だけに伝達させることもできる。これは、高速定常走行時に取り得る動作状態であり、モータジェネレータMG2は高速走行による慣性によって連れ回された状態となり、モータジェネレータMG2によるアシストなしにエンジン150から出力された動力のみの走行となる。
【0057】
図3は、この高速定常走行時の共線図を示している。図2に示す共線図ではサンギヤ軸125の回転数Nsは正であったが、エンジン150の回転数Neとリングギヤ軸126の回転数Nrとによって、図3に示す共線図のように負となる。このときには、モータジェネレータMG1では、回転の方向とトルクの作用する方向とが同じになるから、モータジェネレータMG1は電動機として動作し、トルクTm1と回転数Nsとの積で表わされる電気エネルギを消費する(逆転力行の状態)。一方、モータジェネレータMG2では、回転の方向とトルクの作用する方向とが逆になるから、モータジェネレータMG2は発電機として動作し、トルクTm2と回転数Nrとの積で表わされる電気エネルギをリングギヤ軸126から回生することになる。
【0058】
このように、本実施形態のハイブリッド車両は、プラネタリギヤ120の作用に基づいて種々の運転状態で走行することができる。
【0059】
続いて、制御ユニット190による制御動作について再び図1を参照して説明する。
【0060】
図1において、本実施形態の動力出力システムの運転全体は、制御ユニット190により制御されている。制御ユニット190は、EFIECU170と同様、内部にCPU、ROM、RAM等を有するワンチップ・マイクロコンピュータである。制御ユニット190はEFIECU170と接続されており、両者は種々の情報を伝達し合うことが可能である。制御ユニット190は、エンジン150の制御に必要となるトルク指令値や回転数の指令値などの情報をEFIECU170に送信することにより、エンジン150の運転を間接的に制御可能に構成されている。制御ユニット190はこうして、動力出力システム全体の運転を制御しているのである。かかる制御を実現するために制御ユニット190には、種々のセンサ、例えば、駆動軸112の回転数を知るためのセンサ144などが設けられている。リングギヤ軸126と駆動軸112とは機械的に結合されているため、本実施形態では、駆動軸112の回転数を知るためのセンサ144をリングギヤ軸126に設け、モータジェネレータMG2の回転を制御するためのセンサと共通にしている。
【0061】
(ハイブリッド車両の動力系統における電気回路)
次に図4を参照して、本実施形態のハイブリッド車両の動力系統に備えられる電気回路について更に詳細に説明する。即ちここでは、図1に示した制御ユニット190、モータジェネレータMG1及びMG2、駆動回路191及び192、並びにバッテリ194の詳細について述べる。
【0062】
図4に示すように、バッテリ194に対して、インバータコンデンサ196と、モータジェネレータMG1に接続される駆動回路191と、モータジェネレータMG2に接続される駆動回路192とが夫々並列に接続されている。
【0063】
バッテリ194は、詳細には、電池モジュール部194aと、SMR(システムメインリレー)194bと、電圧検出回路194cと、電流センサ194d等を備える。SMR194bは、制御ユニット190からの指令により高電圧回路の電源の接続・遮断を行なうもので、電池モジュール部194aの+−両極に配置された2個のリレーR1及びR2から構成される。バッテリ194に2個のリレーR1及びR2を設けたのは、電源の接続時には、まずリレーR2をオンし、続いてリレーR1をオンし、電源の遮断時には、まずリレーR1をオフし、続いてリレーR2をオフすることにより、確実な作動を行なうことを可能とするためである。電圧検出回路194cは、電池モジュール部194aの総電圧値を検出する。電流センサ194dは、電池モジュール部194aからの出力電流値を検出する。電圧検出回路194c及び電流センサ194dの出力信号は、制御ユニット190に送信される。
【0064】
駆動回路191及び192は、バッテリの高電圧直流電流とモータジェネレータMG1及びMG2用の交流電流の変換を行なう電力変換装置であり、詳細には、6個のパワートランジスタで構成される3相ブリッジ回路191a及び192aを夫々備えており、この3相ブリッジ回路191a及び192aにより直流電流と3相交流電流との変換を行なっている。
【0065】
駆動回路191及び192には、電圧検出回路191b及び192bが夫々設けられている。電圧検出回路191b及び192bは、モータジェネレータMG1及びMG2の逆起電圧を夫々検出する。3相ブリッジ回路191a及び192aの各パワートランジスタの駆動は、制御ユニット190により制御されると共に、駆動回路191及び192から制御ユニット190に対し、電圧検出回路191b及び192bにて検出された電圧値や、3相ブリッジ回路191a及び192aとモータジェネレータMG1及びMG2との間に設けられた図示しない電流センサにて検出された電流値など電流制御に必要な情報を送信している。
【0066】
(直噴式ガソリンエンジン)
次に図5を参照して、本実施形態のハイブリッド車両に備えられる直噴式エンジンについて更に詳細に説明する。即ちここでは、図1に示すエンジン150の詳細に付いて述べる。
【0067】
図5に示すように、エンジン150は、燃料室内に燃料を直接噴射する、いわゆる直噴式ガソリンエンジンである。エンジン150は、EFIECU170により制御される。エンジン150は、シリンダブロック514を備えている。シリンダブロック514の内部には、シリンダ516が形成されている。なお、エンジン150は、複数のシリンダを備えているが、説明の便宜上、図5には複数のシリンダのうち1つのシリンダ516を示している。
【0068】
シリンダ516の内部にはピストン518が配設されている。ピストン518は、シリンダ516の内部を、図5における上下方向に摺動することができる。シリンダ516の内部において、ピストン518の上方には燃焼室520が形成されている。燃焼室520には、燃料噴射弁522の噴射口が露出している。エンジン150の運転中、燃料噴射弁522には燃料ポンプ524から燃料が圧送される。燃料噴射弁522及び燃料ポンプ524は、EFIECU170に接続されている。燃料ポンプ524は、EFIECU170から供給される制御信号に応じて燃料噴射弁522側へ燃料を圧送する。また、燃料噴射弁522は、EFIECU170から供給される制御信号に応じて燃焼室520内へ燃料を噴射する。
【0069】
また、燃焼室520には、点火プラグ526の先端が露出している。点火プラグ526は、EFIECU170から点火信号を供給されることにより、燃焼室520内の燃料に点火する。燃焼室520には、排気弁528を介して排気管530が連通している。燃焼室520には、また、吸気弁532を介して吸気マニホールド534の各枝管が連通している。吸気マニホールド534は、その上流側においてサージタンク536に連通している。サージタンク536の更に上流側には吸気管538が連通している。
【0070】
吸気管538には、スロットル弁540が配設されている。スロットル弁540は、スロットルモータ542に連結されている。そして、スロットルモータ542は、EFIECU170に接続されている。スロットルモータ542は、EFIECU170から供給される制御信号に応じてスロットル弁540の開度を変化させる。スロットル弁540の近傍には、スロットル開度センサ544が配設されている。スロットル開度センサ544は、スロットル弁540の開度(以下適宜、スロットル開度SCと称す)に応じた電気信号をEFIECU170に向けて出力する。EFIECU170は、スロットル開度センサ544の出力信号に基づいてスロットル開度SCを検出する。
【0071】
EFIECU170には、また、イグニッションスイッチ576(以下、IGスイッチ576と称す)が接続されている。EFIECU170は、IGスイッチ576の出力信号に基づき、IGスイッチ576のオン/オフ状態を検出する。IGスイッチ576がオン状態からオフ状態とされると、燃料噴射弁522による燃料噴射、点火プラグ526による燃料の点火、及び、フューエルポンプ524による燃料の圧送が停止され、エンジン150の運転が停止される。
【0072】
アクセルペダル578の近傍には、アクセル開度センサ580が配設されている。アクセル開度センサ580は、アクセルペダル578の踏み込み量(以下適宜、アクセル開度ACと称す)に応じた電気信号をEFIECU170に向けて出力する。EFIECU170は、アクセル開度センサの出力信号に基づいてアクセル開度ACを検出する。
【0073】
本実施形態では、吸気管538には、ターボ過給装置539が設けられており、例えば排気管530側に設けられたタービンに連動するタービンにより、吸気管538内に圧縮空気をターボ過給するように構成されている。また、ターボ過給装置539の回転軸は、モータジェネレータMG1及びMG2とは異なる専用のモータジェネレータによって駆動され、その回転数増大によってターボ過給による過給圧が高められるように構成されている。即ち、「ターボアシスト」が実行可能に構成されている。尚、係る専用のモータジェネレータは、排気管530側におけるエンジン150の排気エネルギーを発電により回生可能に構成されている。更に、ターボ過給装置539は、EFIECU170による制御を受けて、特定タイミングで筒内圧力を可変に高めるように構成してもよい。
【0074】
本実施形態では、排気管530には、三元触媒装置531が設けられており、これにより排気ガス浄化性能が高められている。尚、三元触媒装置531は、一定温度以上の高温でないと、その浄化性能が顕著に低下する。そこで、三元触媒装置531には、温度センサ531Tが取り付けられており、その触媒温度TCAが検出され、触媒温度情報としてEFIECU170に入力される。或いは、このような触媒温度TCAは、エンジン150におけるエンジン回転数等の他の検出情報に基づいて間接的に推定してもよい。このように検出又は推定された触媒温度TCAは、当該触媒温度TCAが一定温度以下に低下しないようにエンジン制御するのに用いられる。
【0075】
以上説明した本実施形態に係るエンジン150では、次に説明する“可変圧縮比装置”を備えており、EFIECU170等による制御下で、燃焼室520内における圧縮比を変更可能に構成されている。
【0076】
(圧縮比を変更させるための可変圧縮比装置)
次に、本発明に係る圧縮状態可変手段の一例としての、エンジンの燃焼室内における圧縮比を変更可能に構成された可変圧縮比装置について図6から図13を参照して説明する。ここでは、例えば上述した直噴式ガソリンエンジンを、圧縮比可変型のエンジンとして機能させるべく、エンジンに設けられる可変圧縮比装置について説明する。尚、このような可変圧縮比装置の更なる詳細については、特開2000−64866号項に詳しい。
【0077】
図6は、本実施形態で用いることが可能な可変圧縮比装置の実施形態の部分断面側面図、図7は、図6の一部分を拡大した拡大図、図8〜図14はコンロッドとクランクピンと偏心ベアリングとの相対回転位置関係を経時的に示した軸方向部分断面図である。
【0078】
図6〜図14において、可変圧縮比装置は、コンロッド1の大端部2、クランクシャフト11、クランクピン12、クランクアーム13及びクランクジャーナル14を含む。可変圧縮比装置は、内燃機関の圧縮比を変更するためにコンロッドの大端部2とクランクピン12との間に挿入された偏心ベアリング21、偏心ベアリング21に設けられたフランジ22、及び偏心ベアリング21の内周に形成されたロックピン係合穴23を備える。可変圧縮装置には、偏心ベアリング21とコンロッドの大端部2との間を潤滑するためにクランクシャフト油圧供給路31と連通可能な潤滑用油圧供給路24、オイルポンプ(図示せず)からクランクピン12の外周まで延びているクランクシャフト油圧供給路31、偏心ベアリング21の内周に形成された周方向に延びている周溝状油圧供給路32、偏心ベアリング21の内周に形成されておりかつ周溝状油圧供給路32から軸方向に延びている軸方向油圧供給路33が形成されている。可変圧縮比装置は更に、クランクピン12と偏心ベアリング21とを固定するためにロックピン係合穴23と係合可能なロックピン41、圧縮比を高圧縮に固定すべくロックピン41をロックピン係合穴23の側に付勢するためのロックピンスプリング42、圧縮比が高圧縮である時にロックピン係合穴23内に係合する高圧縮用係合端43、及び圧縮比が低圧縮である時にロックピン係合穴23内に係合する低圧縮用係合端44を備えて構成されている。また、圧縮比を低圧縮に固定すべくロックピン41をロックピン係合穴23の側に付勢するために油圧を供給するロックピン用油圧供給路45が形成されている。
【0079】
図8に示すように、圧縮比が高圧縮に固定されている時、ロックピン41には、ロックピン用油圧供給路45を介して油圧が供給されておらず、そのため、ロックピン係合穴23にはロックピン41の高圧縮用係合端が係合しており、クランクピン12と偏心ベアリング21とは、相対回転位置が変化しないように固定されている。また、クランクシャフト油圧供給路31は、潤滑用油圧供給路24を介して、コンロッド1と偏心ベアリング21との間に連通しており、コンロッド1と偏心ベアリング21との間が潤滑される。クランクシャフトの回転中、クランクピン12と偏心ベアリング21とは摺動せず、偏心ベアリング21とコンロッド1とが摺動する。
【0080】
圧縮比が高圧縮から低圧縮に変更される時、まず、図9に示すように、ロックピン用油圧供給路45を介してロックピン41に油圧が供給され、クランクピン12と偏心ベアリング21との固定が解除される。それゆえ、偏心ベアリング21及びコンロッド1だけでなく、クランクピン12及び偏心ベアリング21も、クランクシャフトの回転に伴って摺動可能となる。
【0081】
図10に示すように、クランクシャフトが回転すると、クランクピン12と偏心ベアリング21とが摺動し、クランクピン12と偏心ベアリング21との相対回転位置が変化する。その結果、クランクシャフト油圧供給路31は、潤滑用油圧供給路24と連通されなくなり、代わりに周溝状油圧供給路32と連通される。図7に詳細に示すように、周溝状油圧供給路32は、軸方向油圧供給路33を介してフランジ22の右側(図7)端面まで連通している。そのため、油圧供給路31、32及び33を介して供給された油圧は、偏心ベアリング21を左側(図7)に、つまり、フランジ22をコンロッド1の軸方向端面に押圧する。その結果、コンロッド1と偏心ベアリング21との間の摩擦が増大される。一方、周溝状油圧供給路32は、周方向に延びてクランクピン12と偏心ベアリング21との間に形成されているため、クランクピン12と偏心ベアリング21との間は潤滑される。それゆえ、図11及び図12に示すように、クランクシャフトの回転中、コンロッド1と偏心ベアリング21との間に大きな摩擦が発生している状態で、クランクピン12は偏心ベアリング21に対して回転する。
【0082】
偏心ベアリング21とクランクピン12との相対回転位置が図12に示した状態になると、上述したように、ロックピン41にはロックピン用油圧供給路45を介して油圧が供給されているため、図13に示すように、ロックピン41の低圧縮用係合端44がロックピン係合穴23と係合する。その結果、クランクピン12と偏心ベアリング21とは、相対回転位置が変化しないように固定され、圧縮比が低圧縮に固定される。また、図8に示した状態と同様に、クランクシャフト油圧供給路31は、潤滑用油圧供給路24を介して、コンロッド1と偏心ベアリング21との間に連通しており、コンロッド1と偏心ベアリング21との間が潤滑される。図13及び図14に示すように、圧縮比が固定されている時、クランクシャフトの回転中、クランクピン12と偏心ベアリング21とは摺動せず、偏心ベアリング21とコンロッド1とが摺動する。
【0083】
上述したように本実施形態によれば、コンロッド1と偏心ベアリング21との間の摩擦を増大させるために油圧を供給する油圧供給路31、32及び33が、クランクシャフトの回転に伴う偏心ベアリング21とクランクピン12との相対回転位置の変化により連通制御される。このため、本実施形態によれば、係る連通制御のために特別の制御弁を有しない。
【0084】
但し、例えば特開平6−241058号公報に開示されている如き、このような連通制御用の制御弁を備えた可変圧縮装置を用いて、以下に説明する本実施形態に係る圧縮比可変型のエンジンを構築することも可能である。
【0085】
(エンジンにおける圧縮比の最適化方法)
次に、上述したパラレルハイブリッド方式のハイブリッド車両に備えられた圧縮比可変型のエンジンにおける、圧縮比の最適化方法について、図15から図17を参照して説明する。ここに、図15は、圧縮比を変更したときの、エンジンWOT(ワイドオープンスロットル:全負荷)線が変化する様子を概略的に示した特性図である。図16は、当該最適化方法を示すフローチャートであり、図17は、その主要工程における圧縮比の変化に対する各種効率が変化する様子を図式的に示す概念図である。
【0086】
先ず図15に示すように、エンジン回転数Neを横軸にとり且つエンジントルクTeを縦軸にとった特性図(以下適宜、単に“特性図”と呼ぶ)上に示されるエンジンWOT線は、図中“↑ε小”の矢印のように圧縮比ε(即ち、エンジンの燃焼室内の吸気圧縮比)を小さくする程に、同一のエンジン回転数Neで得られるエンジントルクTeは大きくなる。即ち、同一エンジンであれば、圧縮比εを小さくした方が、大きなエンジントルクTeが得られるようになる。
【0087】
一般にハイブリッド車両の通常走行時には、エンジン回転数Ne及びエンジントルクのTeの組合せ条件或いは特性図上の“運転点(運転ポイント)”を、このようなWOT線上に設定すれば、エンジン効率は良くなる。そして、特性図上で適当な範囲内であれば、圧縮比εを小さくしてもエンジン燃費は殆ど変化しない。但し、パラレルハイブリッド方式の動力出力システムでは、エンジンWOT線上で、圧縮比εを高くすると、ノッキングが発生しやすくなるので、燃費を向上させるためには、吸気バルブタイミングを使って空気量を、ある程度絞ることが望ましい。この際、空気量を絞ると、エンジントルクTeは減少するので、“全負荷”となる運転点ばかりでなく、エンジン回転数Neが低い運転条件では、軽負荷となる運転点も選定するとよいことになる。
【0088】
ここで特に、本願発明者の研究によれば、パラレルハイブリッド方式のハイブリッド車両では、高車速で定常走行するエネルギ再循環モードにおいては特に、仮に、特性図上で上述の如くエンジン効率のよい運転点を選定しても、モータジェネレータ装置における発電効率や電動効率、プラネタリギヤ等を含む駆動力の伝達機構における伝達効率等を含めた動力出力システムの全体或いはハイブリッド車両の全体に係る全体効率(システム効率)は、悪くなることが確認されている。加えて、定常走行においては一般に、要求エンジントルクは、本来少ないので、エンジン効率を高める運転点を選定することは、全体効率を高めることから大きく外れる可能性もある。
【0089】
因みに、伝統的なマニュアルやオートマティックのトランスミッションを有する車両の場合には、車速の高低等の運転状態の変化によっては、エンジントルクが変速ギヤを介して車軸へ伝わる伝達効率は殆ど変わらない。
【0090】
これに対して、ハイブリッド車両、特にプラネタリギヤを備えたパラレルハイブリッド方式のものでは、車速の高低、アクセルの踏み込み量等の運転状態の変化によって、伝達効率が大きく変わる。より具体的には、前述したプラネタリギヤを用いたハイブリッド型の動力出力システムの場合には、モータジェネレータは、運転状態の変化に対応するエンジン回転数Neの変化に応じて、“力行”状態になったり“回生”状態になったりする。このため、例えば、同じような運転状態に対して、発電可能であるのに、車軸にエンジントルクTeを伝えるためにモータジェネレータでエネルギを消費してしまったり、過剰・不要な駆動力を回生で抑える動作とアシスト動作とが、モータジェネレータの回転数変化の状況によっては、二つのモータジェネレータ(例えば、MG1、MG2)間で同じに行われたりして、伝達効率が大きく変わる。
【0091】
ここで本実施形態の理論によれば、例えば、モータジェネレータ(MG1等)の回転数が正から負に移ることで全体効率が顕著に下がる場合には、同一駆動力を達成しつつエンジン回転数Neを上げることによって、即ち、エンジン効率を多少低下させつつモータジェネレータ(MG1等)の回転数を負から正に戻すことによって、エンジン効率の低下分を、発電効率やシステムの伝達効率の上昇分が上回るようにする。この結果、全体効率を高められるのである。
【0092】
他方で、本願発明者の研究によれば、一般的なエンジンでこのようにエンジン効率を低めつつ全体効率を高めることは、特性図上でエンジン効率が高い運転点から顕著に外れた運転点で動作させるとエンジン効率の低下が著しいが故に、技術的に困難である。
【0093】
これらの考察の結果、本実施形態では、上述した圧縮比可変型のエンジンを用いる。しかも、運転点を規定するパラメータ(以下適宜、単に“運転点パラメータ”という)として、“圧縮比ε”を、基本となる運転点パラメータである“エンジン回転数Ne”及び“エンジントルクTe”に加えて、これら複数の運転点パラメータの組合せとして、全体効率を高めるのに最適なものを選択することとする。更に、これらの選択された運転点パラメータに従って、実際のエンジン動作及びモータジェネレータ動作を行うように制御する。
【0094】
図16において先ず、エンジンの圧縮比を最適化するための“エンジン圧縮比最適化ロジック”が、例えば割り込み処理により定期的に或いは不定期に繰り返し開始される(ステップS10)。すると、車速センサで検出される車速とアクセル開度ACとに基づいて、当該エンジン150並びにモータジェネレータMG1及びMG2に対し車両走行のために駆動軸(或いはリングギヤ軸)において要求されている要求エンジンパワーPeが算出される(ステップS11)。
【0095】
続いて、同一要求エンジンパワーPeに対して、圧縮比εを変えたときの、エンジン効率を算出する(ステップS12)。
【0096】
ここでは例えば、図17の上段左側に示した、当該ハイブリッド車両に固有のマップとしてWOT(全負荷)を前提として作成した、要求エンジンパワーPeと圧縮比εとにより規定されるエンジン効率を示すマップ901から算出する。これにより例えば図17の上段右側に示したグラフ902に示した如き、圧縮比εの関数であるエンジン効率が算出される。このようなマップ901は、予め個々のエンジンについて、要求エンジンパワーPeに対するWOT前提で圧縮比を変えた場合の燃費率或いは燃費率変化をマップ化することで容易に作成可能である。そして、マップ901を一旦作成しておけば、これは、同一種類のエンジンである限り有効である。その後、実際のハイブリッド車両の動作中に、要求エンジンパワーPeが決まったときに、この予め作成されて、例えばEFIECU170の内蔵メモリに保持されたマップ901を参照することによって、横軸が圧縮比εで、縦軸がエンジン効率であるグラフ902を、比較的迅速且つ簡単に作成できる。
【0097】
再び図16に戻り、続いて、要求エンジンパワーPeから、圧縮比を変えたときのエンジン回転数Ne及びエンジントルクTeを算出する(ステップS13)。これと並行して或いは相前後して、各圧縮比εにおける、当該動力出力システムにおけるエンジン効率を除いた伝達効率、発電効率、電動効率等を総合したHVシステム効率を算出する(ステップS13)。ここでのエンジン回転数Ne及びエンジントルクTeは、予め想定される各種の車速、アクセルの踏み込み量等の運転状態について夫々、同一要求アクセルパワーPeに対して圧縮比εを変えたときに、どのエンジン回転数Ne及びどのエンジントルクPeになるかを予めマップ化しておき、これを参照することで算出できる。このような予め作成されたマップは、例えばEFIECU170の内蔵メモリに保持しておけばよい。他方、ここでのHVシステム効率は、例えば、モータジェネレータ装置、バッテリー、プラネタリギヤを含む伝達機構等の効率マップから算出する。このような効率マップについても、当該ハイブリッド車両に固有のマップとして予め作成しておき、例えばEFIECU170の内蔵メモリに保持しておけばよい。以上の結果、図17の中段に示した如き、横軸が圧縮比εで、縦軸がHVエンジン効率であるグラフ903を、比較的迅速且つ簡単に作成できる。
【0098】
再び図16に戻り、続いて、ステップS12で算出した圧縮比εの関数であるエンジン効率(図17の上段のグラフ902)と、ステップS13で算出した圧縮比εの関数であるHVシステム効率(図17の中段のグラフ903)とを合計する。より具体的には、ここでは、各圧縮比εにおけるエンジン効率とシステム効率との乗算値(掛算結果)を算出し、これを全体効率の近似値として採用する。これにより例えば図17の下段に示したグラフ904に示した如き、圧縮比εの関数である全体効率が算出される。
【0099】
グラフ902に示したエンジン効率は、燃料噴射・燃料量に対して、エンジン・クランク軸上でどれだけパワーを出すか、或いはどれだけエネルギが得られるかを示す効率である。他方、HVシステム効率は、エンジンのクランク軸上で出してるパワーが、どれだけ車軸に伝わるかを示す効率である。従って、燃料噴射・燃料量に対して、どれだけ車軸上でパワーを出すかを示す全体効率を、これらの乗算値として、比較的高精度で近似できるのである。そして、このようにして求めた全体効率を極大的に大きする即ち全体効率を最適化する圧縮比εを選択する。具体的には、グラフ904における全体効率の極大値に対応する圧縮比εを選択する(ステップS14)。
【0100】
その後、当該割り込み処理による圧縮比最適化ロジックを終了する。
【0101】
このように、制御ユニット190及びEFIECU170による制御下で、現在の車速、アクセルの踏み込み量等の運転状態に応じて、運転点パラメータの組合せとしての圧縮比ε、エンジン回転数Ne及びエンジントルクTeが設定され、これらの運転点パラメータを示す情報等が、制御ユニット190から、EFIECU170に対して送信され、EFIECU170によってエンジン150及び可変圧縮比装置(図6から図14参照)の制御が行われ、エンジン150においては、その燃料噴射量或いはスロットルの開度等の動作状態が制御される。これと並行して、モータジェネレータMG1及びMG2においては、図2及び図3に示した如き共線図或いは所謂比例積分制御(PI制御)によって、それらの回転数が制御される。より具体的には、モータジェネレータMG1及びMG2の制御は例えば、設定されたエンジン回転数Ne及びエンジントルクTeに応じて各モータの三相コイルに印加する電圧が設定され、現時点での印加電圧との偏差に応じて、駆動回路191及び192のトランジスタのスイッチングが行われる。
【0102】
以上により、複数の運転点パラメータとして圧縮比ε、並びにエンジン回転数Ne及びエンジントルクTeの組合せからのうち、全体効率を最適化する組合せが、ハイブリッド車両の動作中にリアルタイムで選択されたことになる。そして、このように選択された圧縮比ε、並びにエンジン回転数Ne及びエンジントルクTeをに従って、エンジン150及びモータジェネレータ装置を動作させるので、エンジン効率自体については極大化されていないものの、全体効率が極大化された状態で、或いは極大化された状態に近い状態で、動作させられる。従来の技術によれば、図17の上段に示したグラフ902に示した如き、エンジン効率のみを考慮して、エンジン効率を極大化するような選択や制御を行うが故に、図17の下段に示したグラフ904に示した如き全体効率を極大化することはできない。更に、図17のグラフ902〜904から分かるように、圧縮比εの変化に対して、各効率は、敏感に変化するため、エンジン効率にのみ着目した制御では、全体効率が顕著に低下する事態を招く場合も多くなるのである。
【0103】
以上説明したように本実施形態の最適化方法によれば、ハイブリッド車両の全体効率を高めることができる。
【0104】
(変形形態)
上述した実施形態の如き構成の場合、ハイブリッド車両は、減速時に、MG2により回生するが、エンジン150のピストン、シリンダ等の機構部における負のフリクショントルク(負の摩擦トルク)によって、回生エネルギが多少減っている。特に圧縮比εが高くなると、エンジン150における連れ回し時のポンピング部のフリクショントルクが大きくなり、このうち燃焼室内における空気を圧縮する際の抵抗が無視し得ない程に大きくなる。これに対して、理想的には、回生時だけ、エンジンの燃焼室内における圧縮比ε=0とできれば、圧縮工程でも、フリクショントルクは、概ね機械分だけにできる筈である。
【0105】
そこで、本変形形態では、車両の減速エネルギーを、モータジェネレータで回生する回生時には、圧縮比εを小さくして、エンジンフリクション(ポンピングフリクション)を低減する。より具体的には、制御ユニット190及びEFIECU170による制御下で、車速センサ、加速度センサ等によって減速状態が検出された場合、或いはモータジェネレータが回生状態になることが検出された場合には、圧縮比εを小さくするように、エンジン150及び可変圧縮比装置(図6から図14参照)の制御が行われ、エンジン150においては、その燃料噴射量或いはスロットルの開度等の動作状態が制御される。
【0106】
以上の結果、本変形形態によれば、モータジェネレータ装置の回生の最中に、圧縮比εを小さくするので、エンジン150におけるポンピング動作によるフリクショントルクを低減でき、モータジェネレータ装置における回生効率を向上させられる。この結果、当該動力出力システム全体或いはハイブリッド車両全体に係る全体効率を一層向上させることが可能となる。
【0107】
加えて、より好ましくは、このような回生時に、エンジン150に対する燃料をカットする、即ち燃料噴射或いは燃料供給を一時的に停止するとよい。また、圧縮比εを小さくするためにエンジン150の吸気弁や排気弁を一時的に開放状態に固定してもよい。これらにより、回生時には、エンジン150は単純に連れ回される状態とされるので、一層の燃費向上を図れる。
【0108】
(その他の変形形態)
本発明を適用するハイブリッド車両の構成としては、図1に示した構成の他、種々の構成が可能である。
【0109】
上述の実施形態では、図1に示したようにモータジェネレータMG2がリングギヤ軸126に結合されているが、モータジェネレータMG2が、エンジン150のクランクシャフト156に直結したプラネタリキャリア軸127に結合された構成をとることもできる。或いは、図1では、エンジン150から出力された動力の一部を駆動軸112に伝達するための動力調整装置としてプラネタリギヤ120等を用いた機械分配型動力調整装置を用いていたのに対し、動力調整装置として、対ロータ電動機等を用いた電気分配型動力調整装置を用いることも可能である。例えば、プラネタリギヤ120およびモータジェネレータMG1に代えて、クラッチモータCMを備えて構成してもよい。
【0110】
例えば、図18及び図19を参照して次に説明するような、パラレルハイブリッド方式の一具体例においても、上述した本実施形態と類似の、エンジン圧縮比の最適化方法が可能であり、これにより同様或いは類似の技術的効果が得られる。ここに図18は、一具体例における動力出力システムの概略構成を示すブロック図であり、図19は、圧縮比の最適化の様子を示す特性図である。
【0111】
図18に示すように、本具体例では、エンジン150の出力は、直結でモータジェネレータMG201に伝達され、更にその出力はCVT(Constantly Valuable Transmission)202及びデファレンシャルギヤ(DFギヤ)203を介して車軸に出力される。このような構成の場合、図19に示したように、特性図上におけるエンジンの使用域、即ち運転点の選定場所に応じて、同一の要求発電量(即ち、“等Pe線”)に対して、モータジェネレータMG201における発電トルクが異なる。これは、エンジン150に直結されたモータジェネレータMG201の場合には、モータジェネレータの回転数は、常にエンジン回転数に等しいからである。このように本具体例では、エンジンの使用域により、モータジェネレータMG201の発電効率が異なるので、エンジン効率とモータジェネレータの発電効率との乗算値で、全体効率を近似して、これを極大化する圧縮比εを選択すれば、上述の実施形態と同様に、全体効率を高めることが可能となる。
【0112】
また例えば、図20から図22を参照して次に説明するような、シリアルハイブリッド方式の他の具体例においても、上述した本実施形態と類似の、エンジン圧縮比の最適化方法が可能であり、これにより同様或いは類似の技術的効果が得られる。ここに図20は、他の具体例における動力出力システムの概略構成を示すブロック図であり、図21は、圧縮比の最適化の様子を示す、車軸(プロペラシャフト)上の回転数Np及び車軸上のトルクTpの関係を示す一の特性図であり、図22は、圧縮比の最適化の様子を示す他の特性図である。
【0113】
図20に示すように、本具体例では、エンジン150の出力は、マニュアル、オートマティック等のトランスミッション(T/M)301を介して、モータジェネレータ302に伝達される。更にその出力はデファレンシャルギヤ(DFギヤ)303を介して車軸に出力される。図21及び図22の特性図には夫々、トランスミッション301がローギヤである場合のペラ軸(プロペラシャフト或いは車軸)上のエンジンWOT線(“EngWOT線”)と、トランスミッション301がハイギヤである場合のペラ軸上のエンジンWOT線とが、示されている。
【0114】
本具体例では、例えば図21に示すように、トランスミッション301がハイギヤとされた際のエンジン150のWOT線上のエンジントルクよりも大きい要求駆動力(図21中、“要求ペラ軸パワー”で示した運転点に対応する駆動力)が、要求される場合、トランスミッション301をシフトダウン(ローギヤにチェンジ)する変わりに、モータジェネレータ302によるアシストを行い且つこのアシストを行うことを前提に全体効率を極大化する圧縮比ε1を選択する。ここでは現在選択中の圧縮比εをε1に低下させる。これにより、要求駆動力を出力することで、燃費向上が可能となる。或いは本具体例では、例えば図22に示すように、トランスミッション301がハイギヤとされた際のエンジン150のWOT線上のエンジントルクよりも大きい要求駆動力が要求される場合、トランスミッション301をシフトダウンする変わりに、モータジェネレータ302によるアシストを行うことなく且つこのアシストを行わないことを前提に全体効率を極大化する圧縮比ε2を選択する。ここでは現在選択中の圧縮比εをε2に低下させる。これにより、要求駆動力を出力することで、燃費向上が可能となる。仮に、モータジェネレータ302を有しない伝統的なエンジンシステムであれば、この場合には、トランスミッションをシフトダウンせざるを得ないので、燃費が低下する。これに対して、図20から図22に示した本具体例では、トランスミッション301のシフトダウンというエネルギ損失の大きい動作を行わないことで、燃費向上を図れる。加えて、同一の要求駆動力に対して、常に図21に示した圧縮比ε1を選択してもよいし、図22に示した圧縮比ε2を選択してもよく、更に、これら二つの圧縮比ε1及び圧縮比ε2のうち、全体効率がより高くなる方を選択してもよい。
【0115】
このように本具体例では、運転点パラメータとして、圧縮比ε加えて、モータジェネレータ302のアシスト量及びトランスミッション301におけるギヤ比を用いて、これらの組合せとして、全体効率を極大化する最適組合せを選択することになり、上述の実施形態と同様に全体効率を高めることが可能となる。
【0116】
上述の実施形態では、モータジェネレータ装置が同期電動機からなるモータジェネレータを複数備えてなるが、その少なくとも一部に代えて又は加えて、誘導電動機、バーニアモータ、直流電動機、超伝導モータ、ステップモータ等を用いることも可能である。
【0117】
上述の実施形態では、エンジン150としてガソリンにより運転される直噴型のガソリンエンジンを用いていたが、その他に、伝統的なポート噴射型のガソリンエンジン、ディーゼルエンジン、タービンエンジン、ジェットエンジン等の各種の内燃あるいは外燃機関を用いることができる。
【0118】
但し、いずれのエンジンの場合にも、前述した可変圧縮比装置と同様の又は異なる圧縮比可変手段が設けられる。
【0119】
加えて、本発明のハイブリッド車両の制御装置は、既存の若しくは現在開発中又は今後開発される各種パラレルハイブリッド方式や各種シリアルハイブリッド方式の車両にも適用してもよい。
【0120】
本発明は、上述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴なうハイブリッド車両の制御装置及び方法並びにそのような制御装置を備えたハイブリッド車両もまた本発明の技術的範囲に含まれるものである。
【0121】
【発明の効果】
以上詳細に説明したように、本発明によれば、ハイブリッド車両において、エンジンに係るエンジン効率のみならず、モータジェネレータ装置に係る発電効率、電動効率、更に、伝達機構における伝達効率等を含めた動力出力システム全体或いはハイブリッド車両全体にかかる全体効率を高められる。
【図面の簡単な説明】
【図1】本発明の実施形態のハイブリッド車両における動力系統のブロック図である。
【図2】本実施形態に係るハイブリッド車両の基本的動作を説明するための共線図である。
【図3】本実施形態に係るハイブリッド車両が高速定常走行している場合の共線図である。
【図4】本実施形態に係るハイブリッド車両のバッテリ及びモータ駆動回路の構成を示す。
【図5】本実施形態に係るエンジンの構造の概略構成図である。
【図6】本実施形態に用いることが可能な可変圧縮比装置の部分断面側面図である。
【図7】図6の一部分を拡大した拡大図である。
【図8】図6に示した可変圧縮比装置に係る、コンロッドとクランクピンと偏心ベアリングとの相対回転位置関係を経時的に示した軸方向部分断面図(その1)である。
【図9】図6に示した可変圧縮比装置に係る、コンロッドとクランクピンと偏心ベアリングとの相対回転位置関係を経時的に示した軸方向部分断面図(その2)である。
【図10】図6に示した可変圧縮比装置に係る、コンロッドとクランクピンと偏心ベアリングとの相対回転位置関係を経時的に示した軸方向部分断面図(その3)である。
【図11】図6に示した可変圧縮比装置に係る、コンロッドとクランクピンと偏心ベアリングとの相対回転位置関係を経時的に示した軸方向部分断面図(その4)である。
【図12】図6に示した可変圧縮比装置に係る、コンロッドとクランクピンと偏心ベアリングとの相対回転位置関係を経時的に示した軸方向部分断面図(その5)である。
【図13】図6に示した可変圧縮比装置に係る、コンロッドとクランクピンと偏心ベアリングとの相対回転位置関係を経時的に示した軸方向部分断面図(その6)である。
【図14】図6に示した可変圧縮比装置に係る、コンロッドとクランクピンと偏心ベアリングとの相対回転位置関係を経時的に示した軸方向部分断面図(その7)である。
【図15】本実施形態のエンジン圧縮比の最適化方法において、圧縮比を変更したときの、エンジンWOT線が変化する様子を概略的に示した特性図である。
【図16】本実施形態のエンジン圧縮比の最適化方法を示すフローチャートである。
【図17】本実施形態のエンジン圧縮比の最適化方法における、主要工程における圧縮比の変化に対する各種効率が変化する様子を図式的に示す概念図である。
【図18】本実施形態の一変形形態として、パラレルハイブリッド方式の一具体例における動力出力システムの概略構成を示すブロック図である。
【図19】図18に示した具体例における圧縮比の最適化の様子を示す特性図である。
【図20】本実施形態の一変形形態として、シリアルハイブリッド方式の他の具体例における動力出力システムの概略構成を示すブロック図である。
【図21】図20に示した具体例における圧縮比の最適化の様子を示す、車軸上の回転数Np及び車軸上のトルクTpの関係を示す一の特性図である。
【図22】図20に示した具体例における圧縮比の最適化の様子を示す、車軸上の回転数Np及び車軸上のトルクTpの関係を示す他の特性図である。
【符号の説明】
120 プラネタリギヤ
150 エンジン
170 EFIECU
190 制御ユニット(ECU)
194 バッテリ
MG1、MG2 モータジェネレータ
578 アクセルペダル
580 アクセル開度センサ

Claims (9)

  1. (i)エンジン、該エンジンの燃焼室内における圧縮状態を変更可能である圧縮状態可変手段、及び前記エンジンの出力の少なくとも一部を用いて発電可能であると共に駆動軸を介して駆動力を出力可能なモータジェネレータ装置を含むハイブリッド型の動力出力システムと、(ii)該動力出力システムが搭載される車両本体と、(iii)該車両本体に取り付けられると共に前記駆動軸を介して出力される前記駆動力により駆動される車輪とを備えたハイブリッド車両を制御する制御装置であって、
    前記ハイブリッド車両において想定される複数種類の運転状態に応じて前記動力出力システムに要求される要求駆動力を達成すべく予め設定された、前記圧縮状態を含む前記動力出力システムの動作を規定する複数のパラメータの組合せの複数のうち、実際の運転状態に応じて前記動力出力システムにおける全体効率を極大的に大きくするものを最適組合せとして選択する選択手段と、
    該選択された最適組合せにおける前記圧縮状態となるように、少なくとも前記圧縮状態可変手段を制御する制御手段と
    を備え、
    前記圧縮状態可変手段は、前記圧縮状態として、前記燃焼室内における圧縮比を変更可能であり、
    前記動力出力システムは、前記モータジェネレータ装置により充電可能であると共に前記モータジェネレータ装置に電源供給可能な蓄電装置を更に含み、
    前記制御手段は、前記モータジェネレータ装置が前記蓄電装置を回生のために充電する際に、前記圧縮比を小さくするように前記圧縮状態可変手段を制御する
    ことを特徴とするハイブリッド車両の制御装置。
  2. 前記複数のパラメータは、前記エンジンのエンジン回転数及びエンジントルクを更に含み、
    前記制御手段は、前記選択された最適組合せにおける前記エンジン回転数及び前記エンジントルクとなるように、前記エンジンを更に制御することを特徴とする請求項1に記載のハイブリッド車両の制御装置。
  3. 前記制御手段は、エネルギ再循環モードの際に、前記モータジェネレータ装置の回転数が正から負に移ることで前記全体効率が下がる場合に、前記エンジンのスロットルを全開のままで同一駆動力を達成しつつ前記エンジン回転数を上げることで、前記モータジェネレータ装置の回転数を負から正に戻すように、前記エンジン及び前記圧縮状態可変手段を制御することを特徴とする請求項2に記載のハイブリッド車両の制御装置。
  4. (i)エンジン、該エンジンの燃焼室内における圧縮状態を変更可能である圧縮状態可変手段、及び前記エンジンの出力の少なくとも一部を用いて発電可能であると共に駆動軸を介して駆動力を出力可能なモータジェネレータ装置を含むハイブリッド型の動力出力システムと、(ii)該動力出力システムが搭載される車両本体と、(iii)該車両本体に取り付けられると共に前記駆動軸を介して出力される前記駆動力により駆動される車輪とを備えたハイブリッド車両を制御する制御装置であって、
    前記ハイブリッド車両において想定される複数種類の運転状態に応じて前記動力出力システムに要求される要求駆動力を達成すべく予め設定された、前記圧縮状態を含む前記動力出力システムの動作を規定する複数のパラメータの組合せの複数のうち、実際の運転状態に応じて前記動力出力システムにおける全体効率を極大的に大きくするものを最適組合せとして選択する選択手段と、
    該選択された最適組合せにおける前記圧縮状態となるように、少なくとも前記圧縮状態可変手段を制御する制御手段と
    を備え、
    前記圧縮状態可変手段は、前記圧縮状態として、前記燃焼室内における圧縮比を変更可能であり、
    前記複数のパラメータは、前記エンジンのエンジン回転数及びエンジントルクを更に含み、
    前記制御手段は、前記選択された最適組合せにおける前記エンジン回転数及び前記エンジントルクとなるように、前記エンジンを更に制御し、
    前記制御手段は、エネルギ再循環モードの際に、前記モータジェネレータ装置の回転数が正から負に移ることで前記全体効率が下がる場合に、前記エンジンのスロットルを全開のままで同一駆動力を達成しつつ前記エンジン回転数を上げることで、前記モータジェネレータ装置の回転数を負から正に戻すように、前記エンジン及び前記圧縮状態可変手段を制御する
    ことを特徴とするハイブリッド車両の制御装置。
  5. 前記動力出力システムは、前記エンジンの出力を前記駆動軸及び前記モータジェネレータ装置に選択的に伝達すると共に、前記モータジェネレータ装置の出力を前記駆動軸に選択的に伝達するプラネタリギヤを有する伝達機構を更に含み、
    前記全体効率は、前記伝達機構におけるシステム伝達効率と前記エンジンにおけるエンジン効率との乗算値で近似されることを特徴とする請求項1から4のいずれか一項に記載のハイブリッド車両の制御装置。
  6. 前記動力出力システムは、前記エンジンの出力を前記モータジェネレータ装置に直結で伝達すると共に、前記モータジェネレータ装置の出力を前記駆動軸に伝達する伝達機構を更に含み、
    前記全体効率は、前記モータジェネレータ装置における発電効率と前記エンジンにおけるエンジン効率との乗算値で近似されることを特徴とする請求項1から4のいずれか一項に記載のハイブリッド車両の制御装置。
  7. 前記動力出力システムは、前記エンジンの出力をトランスミッション経由で前記モータジェネレータ装置に伝達すると共に、前記モータジェネレータ装置の出力を前記駆動軸に伝達する伝達機構を更に含み、
    前記複数のパラメータは、前記圧縮状態に加えて、前記トランスミッションにおけるギヤ比及び前記モータジェネレータ装置によるアシスト量を更に含むことを特徴とする請求項1から4のいずれか一項に記載のハイブリッド車両の制御装置。
  8. 請求項1からのいずれか一項に記載の制御装置、並びに前記動力出力システム、前記車両本体及び前記車輪を備えたことを特徴とするハイブリッド車両。
  9. (i)エンジン、該エンジンの燃焼室内における圧縮状態を変更可能である圧縮状態可変手段、及び前記エンジンの出力の少なくとも一部を用いて発電可能であると共に駆動軸を介して駆動力を出力可能なモータジェネレータ装置を含むハイブリッド型の動力出力システムと、(ii)該動力出力システムが搭載される車両本体と、(iii)該車両本体に取り付けられると共に前記駆動軸を介して出力される前記駆動力により駆動される車輪とを備えたハイブリッド車両を制御する制御方法であって、
    前記ハイブリッド車両において想定される複数種類の運転状態に応じて前記動力出力システムに要求される要求駆動力を達成すべく予め設定された、前記圧縮状態を含む前記動力出力システムの動作を規定する複数のパラメータの組合せの複数のうち、実際の運転状態に応じて前記動力出力システムにおける全体効率を極大的に大きくするものを最適組合せとして選択する選択工程と、
    該選択された最適組合せにおける前記圧縮状態となるように、少なくとも前記圧縮状態可変手段を制御する制御工程と
    を備え、
    前記圧縮状態可変手段は、前記圧縮状態として、前記燃焼室内における圧縮比を変更可能であり、
    前記動力出力システムは、前記モータジェネレータ装置により充電可能であると共に前記モータジェネレータ装置に電源供給可能な蓄電装置を更に含み、
    前記制御工程は、前記モータジェネレータ装置が前記蓄電装置を回生のために充電する際に、前記圧縮比を小さくするように前記圧縮状態可変手段を制御する
    ことを特徴とするハイブリッド車両の制御方法。
JP2002200914A 2002-07-10 2002-07-10 ハイブリッド車両の制御装置及び方法、並びにハイブリッド車両 Expired - Fee Related JP3937948B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002200914A JP3937948B2 (ja) 2002-07-10 2002-07-10 ハイブリッド車両の制御装置及び方法、並びにハイブリッド車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002200914A JP3937948B2 (ja) 2002-07-10 2002-07-10 ハイブリッド車両の制御装置及び方法、並びにハイブリッド車両

Publications (2)

Publication Number Publication Date
JP2004044433A JP2004044433A (ja) 2004-02-12
JP3937948B2 true JP3937948B2 (ja) 2007-06-27

Family

ID=31707591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002200914A Expired - Fee Related JP3937948B2 (ja) 2002-07-10 2002-07-10 ハイブリッド車両の制御装置及び方法、並びにハイブリッド車両

Country Status (1)

Country Link
JP (1) JP3937948B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004043527A1 (de) * 2004-09-08 2006-03-23 Siemens Ag Verfahren zum Steuern des Verdichtungsverhältnisses einer fremdgezündeten Brennkraftmaschine mit diskret einstellbaren Verdichtungsverhältnissen
JP5163000B2 (ja) * 2007-08-02 2013-03-13 日産自動車株式会社 ハイブリッド車両の回生制御装置
JP5167851B2 (ja) * 2008-02-18 2013-03-21 トヨタ自動車株式会社 車両用駆動装置の制御装置
JP4905590B2 (ja) * 2009-01-07 2012-03-28 トヨタ自動車株式会社 エンジン制御装置
JP4858645B2 (ja) 2009-04-02 2012-01-18 トヨタ自動車株式会社 エンジン制御装置
JP5408016B2 (ja) * 2010-04-15 2014-02-05 トヨタ自動車株式会社 内燃機関の制御装置
KR102575172B1 (ko) * 2018-04-06 2023-09-05 현대자동차 주식회사 가변 압축비 엔진의 제어 장치 및 방법

Also Published As

Publication number Publication date
JP2004044433A (ja) 2004-02-12

Similar Documents

Publication Publication Date Title
US8250864B2 (en) Method for controlling the torque of a hybrid drive unit and hybrid drive unit
US7527111B2 (en) Driving device for hybrid vehicle, and hybrid vehicle incorporating the same
JP4317535B2 (ja) ハイブリッド二輪車の駆動装置及びハイブリッド二輪車
US8136615B2 (en) Method for operating an internal combustion engine
US20060145482A1 (en) Vehicle powertrain that compensates for a prime mover having slow transient response
CN101734138A (zh) 混合动力系及用于控制混合动力系的方法
US20150175157A1 (en) Hybrid vehicle
JP2016117451A (ja) 車両の制御装置
JP2009137531A (ja) 車両の動力出力装置
CN115126608B (zh) 车辆控制装置
JP3216590B2 (ja) 原動機の運転制御装置およびハイブリッド車輌の運転制御装置
JP2004011456A (ja) ハイブリッド車両
JP3937948B2 (ja) ハイブリッド車両の制御装置及び方法、並びにハイブリッド車両
CN115123246A (zh) 车辆控制装置
JP3775355B2 (ja) ハイブリッド型の動力出力装置及びその制御方法、並びにハイブリッド車両
JP3809816B2 (ja) 動力出力装置
CN1986268B (zh) 混合动力汽车驱动***
JP7196715B2 (ja) ハイブリッド車両およびハイブリッド車両の制御方法
JP2004142590A (ja) 動力出力装置及びその制御方法並びにハイブリッド車両
JP3931744B2 (ja) ハイブリッド型の動力出力装置及びその制御方法、並びにハイブリッド車両
JP3925498B2 (ja) ハイブリッド車両の制御装置
JP2004176545A (ja) 動力出力装置及びその制御方法並びに車両
JP3963125B2 (ja) 内燃機関の制御装置及びハイブリッド車両
JP7192634B2 (ja) ハイブリッド車両およびハイブリッド車両の制御方法
JP2012153250A (ja) 車両の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees