JP3933809B2 - Metal diaphragm type pulsation absorber - Google Patents

Metal diaphragm type pulsation absorber Download PDF

Info

Publication number
JP3933809B2
JP3933809B2 JP07281599A JP7281599A JP3933809B2 JP 3933809 B2 JP3933809 B2 JP 3933809B2 JP 07281599 A JP07281599 A JP 07281599A JP 7281599 A JP7281599 A JP 7281599A JP 3933809 B2 JP3933809 B2 JP 3933809B2
Authority
JP
Japan
Prior art keywords
pressure
filter
recess
high pressure
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07281599A
Other languages
Japanese (ja)
Other versions
JP2000266183A (en
Inventor
善彦 大西
繁信 栃山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP07281599A priority Critical patent/JP3933809B2/en
Publication of JP2000266183A publication Critical patent/JP2000266183A/en
Application granted granted Critical
Publication of JP3933809B2 publication Critical patent/JP3933809B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Diaphragms And Bellows (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、高圧燃料ポンプの金属ダイヤフラム式脈動吸収装置に関するものである。
【0002】
【従来の技術】
いわゆる筒内噴射式エンジンあるいは直接噴射式エンジンと呼ばれている、燃料をエンジンのシリンダ内で噴射する方式のエンジンとしては、ディーゼルエンジンが広く知られているが、近年、火花点火エンジン(ガソリンエンジン)においても、筒内噴射式のものが提案されている。このような、筒内噴射式エンジンでは、十分に高い燃料噴射圧が得られるようにされているとともに、噴射の安定性のため、燃圧脈動が小さいことが要求される。このため、構造が簡単で、製造コストが安価で、コンパクトである単気筒式の高圧燃料ポンプが公知となっている。一方、単気筒ではプランジャが1本であるため、吐出される燃料の圧力にかなりの脈動幅があるため、この脈動を吸収する金属ベローズ式や金属ダイヤフラム式の脈動吸収装置が提案されている。
【0003】
図6は従来の自動車の燃料供給系統を示す模式図である。図6において、1は燃料噴射機器であるディリバリパイプ、2はディリバリパイプ1のインジェクタであって、図示しないエンジンの気筒数と対応している。3はエンジンのハウジングに装着される高圧燃料ポンプ、4は高圧燃料ポンプ3の高圧ポンプである。この高圧ポンプ4は、エンジンの1/2の回転数で回転する図示しないカムにより駆動されるピストンと、このピストンを往復移動可能に収納するシリンダとにより燃料を高圧に加圧する要素である。5は高圧ポンプ4の吸入口に接続された低圧通路、6は低圧通路5に配置されたフィルタ、7は高圧ポンプ4とフィルタ6との間で低圧通路5に接続された金属ベローズ式の低圧脈動吸収装置、9は高圧ポンプ4の吐出口に接続された高圧通路、10は高圧通路9に接続されたダイヤフラム式の高圧脈動吸収装置、12は高圧脈動吸収装置10よりも吐出側で高圧通路9に配置された高圧チェックバルブ、13は高圧チェックバルブ12よりも吐出側で高圧通路9より分岐された高圧戻し通路、14は高圧戻し通路13に配置されたフィルタ、15はフィルタ14よりも下流側で高圧戻し通路13に配置された高圧レギュレータ、16は高圧ポンプ4のドレン通路、17は高圧燃料ポンプ3の高圧通路9とディリバリパイプ1とを接続した高圧配管、18は燃料タンク、19は燃料タンク18の内部に設けられた低圧ポンプ、20は低圧ポンプ19の吸入側のフィルタ、21は低圧ポンプ19の吐出側と高圧燃料ポンプ3の吸入側とを接続した低圧配管、22は低圧配管21に配置された低圧チェックバルブ、23は低圧チェックバルブ22よりも高圧燃料ポンプ3側で低圧配管21に配置されたフィルタ、24は低圧配管21のフィルタ23よりも高圧燃料ポンプ3側と燃料タンク18とを接続した低圧戻し配管、25は低圧戻し配管24に配置された低圧レギュレータ、26は高圧燃料ポンプ3のドレン通路16と燃料タンク18とを接続したドレン配管、27は高圧燃料ポンプ3の高圧戻し通路13と燃料タンク18とを接続した高圧戻し配管、28は燃料タンク18の内部に入れられた燃料である。
【0004】
次に前記燃料供給系統の動作について説明する。低圧ポンプ19が燃料28をフィルタ20を経由して吸入し低圧に加圧して吐出する。この低圧の燃料28は低圧チェックバルブ22とフィルタ23とを順に経由しつつ低圧配管21により高圧燃料ポンプ3に送られる。低圧配管21における燃料圧力が低圧レギュレータ25による低圧設定値を越えた場合、低圧配管21における燃料28の一部が低圧レギュレータ25を経由して低圧戻し配管24により燃料タンク18に戻されることにより、燃料タンク18より高圧燃料ポンプ3側に送られる燃料28の圧力が所定の低圧に調整される。高圧燃料ポンプ3に到達した燃料28は低圧通路5においてフィルタ6と低圧脈動吸収装置7とを順に経由して高圧ポンプ4に吸入される。高圧ポンプ4は吸入した燃料28を高圧に加圧して高圧通路9に吐出するとともに高圧ポンプ4のピストンとシリンダとの間から漏れた燃料28をドレン通路16に流出する。ドレン通路16に流出した燃料はドレン配管26を経由して燃料タンク18に戻る。高圧通路9に送られた燃料28は高圧脈動吸収装置10と高圧チェックバルブ12とを順に経由してディリバリパイプ1に送られる。高圧通路9における燃料圧力が高圧レギュレータ15による高圧設定値を越えた場合、高圧通路9における燃料28の一部がフィルタ14と高圧レギュレータ15とを順に経由して高圧戻し通路13と高圧戻し配管27とにより燃料タンク18に戻されることにより、高圧燃料ポンプ3よりディリバリパイプ1側に送られる燃料28の圧力が所定の高圧に調整される。この状態において、エンジンの各気筒における燃料噴射時期に対応するディリバリパイプ1のインジェクタ2が高圧の燃料を上記燃料噴射時期の気筒内に噴射する。
【0005】
図7は前記高圧燃料ポンプ3の高圧脈動吸収装置10まわりを示す断面図である。図7において、高圧脈動吸収装置10は高圧燃料ポンプ3のボディ30に形成された収納凹部31に収容され、燃料の脈動吸収装置である。100は高圧容器の一方であるケース、101は高圧容器の他方であるプレートであって、ボディ30の収納凹部31の底部に収納される。102はケース100と共働して第1高圧室103を形成するとともにプレート101と共働して第2高圧室104を形成する可撓性の薄い金属円板状のダイヤフラムである。ダイヤフラム102の周縁部はケース100とプレート101との間に封止支持されている。105は環状の締結ねじであって、ボディ30のねじ部32に締結されてケース100とダイヤフラム102とプレート101とを収納凹部31の底部に押圧固着する。プレート101の外周面と収納凹部31の内周面との嵌合面はオーリングのようなシール部材33により燃料漏れ防止されている。ボディ30には高圧通路9の高圧ポンプ4側を構成する第1通路部34と高圧通路9の高圧チェックバルブ12側を構成する第2通路部35とが収納凹部31の底部に連通するように形成されている。そして、ケース100は下面(ダイヤフラム102側面)にダイヤフラム102の移動を規制する上方に窪む皿形の第1高圧室側ストッパ106が形成されている。また、プレート101は、下面(第1・第2通路部34,35側面)に第1・第2通路部34,35のそれぞれに連なる連絡凹部107が形成され、上面(ダイヤフラム102側面)にダイヤフラム102の移動を規制する下方に窪む皿形の第2高圧室側ストッパ108が形成され、連絡凹部107と第2高圧室側ストッパ108との中間に連絡凹部107と第2高圧室側ストッパ108とに開口する複数の貫通孔109が形成されている。第1高圧室103には図示しないガスがケース100に設けられたガス充填口部110を介して所定圧力に充填され止め栓111で封止されている。この所定圧力は第1通路部34より連絡凹部107を経由して第2通路部35を通過する高圧の燃料の脈動を吸収するために必要な圧力である。第2高圧室104には高圧の燃料の一部が連絡凹部107より貫通孔109を経由して満たされる。105aは締結ねじ105を操作する工具用孔である。112はダイヤフラム102の周縁部をケース100とプレート101とに封止支持した溶接である。
【0006】
次に前記高圧脈動吸収装置10の動作について説明する。第1高圧室103にガスが満たされ、第2高圧室104に燃料が満たされた状態において、エンジン駆動により図6の燃料供給系統が動作を開始すると、矢印で示すように高圧ポンプ4より吐出された高圧の燃料が第1通路部34より連絡凹部107を経由して第2通路部35へと流れる。この燃料に脈動が発生すると、第1高圧室103の内部のガス圧とダイヤフラム102自身のばね力との総和により、ダイヤフラム102がケース100側に撓んだり、ダイヤフラム102がプレート101側に撓むことにより、ダイヤフラム102が上記燃料の脈動を吸収する。そして、運転者が自動車のキースイッチをオフ操作することにより、エンジンが停止すると、上記矢印で示す燃料の流れが止まり、第2高圧室104内の燃料の圧力が低下する。それに伴い、第1高圧室103内部のガスの圧力が第2高圧室104の内部における燃料圧とダイヤフラム102自身のばね力との総和よりも増加することにより、ダイヤフラム102が撓み、最終的にはダイヤフラム102が第2高圧室側ストッパ108に接触する。また、第1高圧室103よりガスが抜けて、第1高圧室103のガス圧が低下したり、燃料の脈動圧が突発的に高くなり、ダイヤフラム102の撓みが大きくなると、最終的にはダイヤフラム102が第1高圧室側ストッパ106に接触する。
【0007】
【発明が解決しようとする課題】
前記従来の金属ダイヤフラム式脈動吸収装置である高圧脈動吸収装置10は以上のように構成されているので、作動時にはダイヤフラム102が第1・第2高圧室側ストッパ106,108とに隙間を有する位置に可動し、また、ダイヤフラム102は厚さが薄い程燃料の脈動を良好に低減する。一方、燃料が第1通路部34より連絡凹部107を経由して第2通路部35へと流れる過程において、燃料に混入された金属粉のような異物が貫通孔109より第2高圧室104に侵入することがある。第2高圧室104に異物が侵入した場合、上記ダイヤフラム102の可動による第2高圧室104内での燃料の動きにより、異物は第2高圧室104の周囲に堆積する。そして、高圧燃料ポンプ3の動作停止により、ダイヤフラム102が第2高圧室側ストッパ108に接触する際、ダイヤフラム102が上記第2高圧室104の周囲に堆積した異物を第2高圧室側ストッパ108との間に挟み込み、ダイヤフラム102が異物により変形される。その変形部に局部的に高い応力が発生し、ダイヤフラム102が亀裂を生じて破損する可能性があった。
【0008】
この発明の目的は上記課題を解決するためになされたもので、高圧室への異物侵入を防止することによって、ダイヤフラムの耐久性を向上することができる高圧燃料ポンプの金属ダイヤフラム式脈動吸収装置を提供することである。
【0009】
【課題を解決するための手段】
請求項1の発明に係る金属ダイヤフラム式脈動吸収装置は、高圧燃料ポンプのボディには、高圧燃料ポンプにおけるボディの外側面から内部に窪む収納凹部と、ボディに内蔵された高圧ポンプの吐出口を収納凹部の底面に連通する第1通路部と、収納凹部の底面を高圧燃料ポンプから燃料の供給を受けるディリバリパイプの側に連通する第2通路部とが形成され、高圧脈動吸収装置における高圧容器の内部には、可撓性を有する金属円板状のダイヤフラムでガスの満たされる第1高圧室と、第1通路部から第2通路部に流れる燃料の満たされる第2高圧室とが区画形成され、高圧容器の下面には当該下面から高圧容器の内部に窪む連絡凹部が形成され、高圧容器の連絡凹部の底面と第2高圧室とを隔てる部分には連絡凹部と第2高圧室とに開口する貫通孔が形成され、高圧容器の下面と収納凹部の底面とが互いに対向するように、高圧容器がボディの外側から収納凹部の内部に取り付けられた金属ダイヤフラム式脈動吸収装置において、連絡凹部に収納される板状のフィルタが外フランジ部と外フランジ部で囲まれた空間を覆うように外フランジ部に結合されたメッシュ部とを備えており、板状のフィルタの外フランジ部が筒状で上下方向の厚さが収納凹部の底面とこれに対向する連絡凹部の底面との間の寸法よりも大きい寸法に設定され、板状のフィルタのメッシュ部が外フランジ部の内周面における上下方向の中間に結合しており、板状のフィルタが連絡凹部に収納され、板状のフィルタの外フランジ部が収納凹部の底面とこれに対向する連絡凹部の底面とで挟持されることによって、板状のフィルタのメッシュ部が収納凹部の底面とこれに対向する連絡凹部の底面とより離隔配置されたことを特徴とする。
【0010】
請求項2の発明に係る金属ダイヤフラム式脈動吸収装置は、請求項1に記載のフィルタが外フランジ部と同心円形な内フランジ部と、外フランジ部および内フランジ部を互いに連結する複数のブリッジ片とを備え、外フランジ部と内フランジ部および複数のブリッジ片のそれぞれで囲まれた空間がメッシュ部で覆われた構造であって、内フランジ部とブリッジ片のそれぞれが収納凹部の底面より離隔配置され、複数のブリッジ片が連絡凹部の底面に接触したことを特徴とする。
【0011】
請求項3の発明に係る金属ダイヤフラム式脈動吸収装置は、高圧燃料ポンプのボディには、高圧燃料ポンプにおけるボディの外側面から内部に窪む収納凹部と、ボディに内蔵された高圧ポンプの吐出口を収納凹部の底面に連通する第1通路部と、収納凹部の底面を高圧燃料ポンプから燃料の供給を受けるディリバリパイプの側に連通する第2通路部とが形成され、高圧脈動吸収装置における高圧容器の内部には、可撓性を有する金属円板状のダイヤフラムでガスの満たされる第1高圧室と、第1通路部から第2通路部に流れる燃料の満たされる第2高圧室とが区画形成され、高圧容器の下面には当該下面から高圧容器の内部に窪む連絡凹部が形成され、高圧容器の連絡凹部の底面と第2高圧室とを隔てる部分には連絡凹部と第2高圧室とに開口する貫通孔が形成され、高圧容器の下面と収納凹部の底面とが互いに対向するように、高圧容器がボディの外側から収納凹部の内部に取り付けられた金属ダイヤフラム式脈動吸収装置において、第1通路部に設けられるフィルタが開口側フランジ部と底部と周壁としてのメッシュ部とからなる有底筒状に形成され、フィルタの開口側フランジ部の外径が第1通路部内径よりも大きい寸法に設定され、フィルタのメッシュ部および底部のそれぞれの外径が第1通路部の内径よりも小さい寸法に設定され、フィルタが第1通路部に収納されることによって、開口側フランジ部が第1通路部に圧入装着され、メッシュ部の外周面と第1通路部の内周面との間に隙間が形成されたことを特徴とする。
【0015】
【発明の実施の形態】
実施の形態1.
図1はこの発明の実施の形態1に係る燃料供給系統を示す模式図、図2は同燃料系統における高圧燃料ポンプ3の高圧脈動吸収装置10まわりを示す断面図、図3はフィルタ11を示す平面図である。図1において、フィルタ11は高圧ポンプ4と高圧チェックバルブ12間の高圧通路9から高圧脈動吸収装置10へ分岐した高圧通路に設けられ、燃料に混入された金属粉のような異物が高圧脈動吸収装置10の第2高圧室104(図2参照)に侵入しないようにすることによって、ダイヤフラム102(図2参照)の耐久性を向上する特徴がある。フィルタ11以外のデイバリパイプ1、インジェクタ2、高圧ポンプ4、低圧通路5、フィルタ6、低圧脈動吸収装置7、高圧通路9、高圧脈動吸収装置10、高圧チェックバルブ12、高圧戻し通路13、フィルタ14、高圧レギュレータ15、ドレン通路16、高圧配管17、燃料タンク18、低圧ポンプ19、フィルタ20、低圧配管21、低圧チェックバルブ22、フィルタ23、低圧戻し配管24、低圧レギュレータ25、ドレン配管26、高圧戻し配管27、燃料28などの要素は従来の図6と同じである。
【0016】
図2において、フィルタ11は、ナイロンのような耐燃料性の合成樹脂により円板状に形成される。そして、フィルタ11は連絡凹部107に圧入装着される。このフィルタ以外のデイバリパイプ1、インジェクタ2、高圧ポンプ4、低圧通路5、高圧チェックバルブ12、高圧戻し通路13、ボディ30、収納凹部31、ねじ部32、シール部材33、第1通路部34、第2通路部35、ケース100、プレート101、ダイヤフラム102、第1高圧室103、第2高圧室104、締結ねじ105、工具用孔105a、第1高圧室側ストッパ106、連絡凹部107、第2高圧室側ストッパ108、貫通孔109、ガス充填口部110、止め栓111、溶接112などの要素は図7と同一である。
【0017】
図3において、フィルタ11は外フランジ部11aおよび内フランジ部11bを同心円形に備え、外フランジ部11aおよび内フランジ部11bが複数のブリッジ片11cにより互いに連結され、外フランジ部11aと内フランジ部11bおよび複数のブリッジ片11cのそれぞれで囲まれた空間がメッシュ部11dで覆われる。メッシュ部11dの全周縁では、メッシュ部11dの網を区画形成する各メッシュ要素が外フランジ部11aと内フランジ部11bおよび複数のブリッジ片11cのそれぞれに結合する。
【0018】
再び、図2を参照し、フィルタ11の連絡凹部107への装着について説明する。ケース100とプレート101とダイヤフラム102とを溶接112により結合した形態の要素がボディ30の収納凹部31に挿入される以前において、フィルタ11が連絡凹部107に圧入装着される。このフィルタ11の圧入によって、フィルタ11の外フランジ部11aの外周面が連絡凹部107の内周面に接触し、外フランジ部11aの底面と内フランジ部11bの底面とブリッジ片11c(図3参照)の底面それぞれが連絡凹部107の上面に接触し、メッシュ部11dが連絡凹部107の上面より平行に離隔する。その状態において、上記ケース100とプレート101とダイヤフラム102とを溶接112により結合した形態の要素が収納凹部31に挿入された後、締結ねじ105がケース30のねじ部32に締結されてケース100とダイヤフラム102とプレート101とを収納凹部31の底部に押圧固着する。これによって、フィルタ11の外フランジ部11aの表面が収納凹部31の底面に接触し、メッシュ部11dが収納凹部31の底面より平行に離隔し、内フランジ部11bの表面およびブリッジ片11cの表面が収納凹部31の底面より離隔する。
【0019】
実施の形態1の構造によれば、フィルタ11が高圧ポンプ4と高圧脈動吸収装置10と間の高圧通路9に設けられたことにより、フィルタ11が燃料に混入された金属粉のような異物を高圧脈動吸収装置10の第2高圧室104に侵入しないように除去する。このため、ダイヤフラム102が第2高圧室側ストッパ108に接触する際、ダイヤフラム102が従来のような異物により変形を受けることがなく、ダイヤフラム102の耐久性が向上できる。
【0020】
また、実施の形態1の構造によれば、フィルタ11が高圧脈動吸収装置10の連絡凹部107という高圧通路9から高圧脈動吸収装置10に分岐した高圧通路に設けられているので、高圧ポンプ4より高圧チェックバルブ12側に流れる燃料に対しフィルタ11が圧力を損失させることが無い。
【0021】
実施の形態1の構造によれば、フィルタ11が連絡凹部107に圧入装着される板状に形成されたので、フィルタ11を収納する部分である連絡凹部107の高さを従来装置に対し変更することなく構成できる。
【0022】
また、実施の形態1の構造によれば、フィルタ11の外フランジ部11aが連絡凹部107の底面と収納凹部31の底面とによって挟持されたので、フィルタ11が連絡凹部107の内部において浮動することはなく、フィルタ11と連絡凹部107嵌合部の摩耗を防止することができ、フィルタ11の耐久性を向上させることができる。
【0023】
また、実施の形態1の構造によれば、フィルタ11の内フランジ部11bとブリッジ片11cおよびメッシュ部11dのそれぞれが収納凹部31の底面より離隔配置されたので、高圧ポンプ4より高圧チェックバルブ12側に流れる燃料に対しフィルタ11が圧力を損失させることが無いためフィルタ11のメッシュサイズをより小さく設定することができる。
【0024】
また、フィルタ11は高圧ポンプ4と高圧チェックバルブ12間の高圧通路9から高圧脈動吸収装置10へ分岐した高圧通路に設けられ、フィルタ11が異物によりメッシュが目詰まりした場合でも、高圧ポンプ4と高圧チェックバルブ12間の高圧通路9は確保され、圧力が損失することは無い。
【0025】
実施の形態2.
実施の形態1ではフィルタ11を高圧脈動吸収装置10に設置したが、図4および図5に示すように、フィルタ11Aを第1通路部34に配置することも可能である。図4はこの発明の実施の形態2に係る燃料供給系統を示す模式図、図5は同燃料系統における高圧燃料ポンプ3の高圧脈動吸収装置10まわりを示す断面図である。図4において、フィルタ11Aは高圧ポンプ4と高圧チェックバルブ12間の高圧通路9の高圧ポンプ4と高圧脈動吸収装置10の間の高圧通路9に設けられ、燃料に混入された金属粉のような異物が高圧脈動吸収装置10の第2高圧室104(図5参照)に侵入しないようにしている。図5において、フィルタ11Aはナイロンのような耐燃料性の合成樹脂により有底筒状に形成される。フィルタ11Aは、開口側フランジ部11eの外径が第1通路部34の内径よりも大きい寸法に設定され、開口側フランジ部11eおよび底部11fのそれぞれ以外の周壁がメッシュ部11gとして形成され、メッシュ部11gおよび底部11fのそれぞれの外径が第1通路部34の内径よりも小さい寸法に設定される。そして、フィルタ11Aが第1通路部34に収納される際、開口側フランジ部11eが第1通路部34に圧入装着され、メッシュ部11gの外周面と第1通路部34の内周面との間に隙間が形成される。メッシュ部11gの網目の大きさが粗いと小さな異物が高圧脈動吸収装置10の連絡凹部107側に侵入する可能性が高いが、メッシュ部11gの網目の大きさが細かいとメッシュ部11gが第1通路部34より連絡凹部107側に流れる燃料への大きな抵抗となる可能性が高い。このため、メッシュ部11gの網目の大きさは、高圧ポンプ4より高圧脈動吸収装置10側へ流れる燃料に混入される異物の大きさと燃料に対する許容される抵抗との双方が両立する程度に設定されるのが好ましい。また、フィルタ11Aは連絡凹部107に最も近い形態で第1通路部34に設置されたが、高圧ポンプ4から高圧脈動吸収装置10間の高圧通路であればボディ30内部のどの位置でも適用できる。
【0026】
【発明の効果】
以上のように、請求項1の発明によれば、高圧燃料ポンプのボディには、高圧燃料ポンプにおけるボディの外側面から内部に窪む収納凹部と、ボディに内蔵された高圧ポンプの吐出口を収納凹部の底面に連通する第1通路部と、収納凹部の底面を高圧燃料ポンプから燃料の供給を受けるディリバリパイプの側に連通する第2通路部とが形成され、高圧脈動吸収装置における高圧容器の内部には、可撓性を有する金属円板状のダイヤフラムでガスの満たされる第1高圧室と、第1通路部から第2通路部に流れる燃料の満たされる第2高圧室とが区画形成され、高圧容器の下面には当該下面から高圧容器の内部に窪む連絡凹部が形成され、高圧容器の連絡凹部の底面と第2高圧室とを隔てる部分には連絡凹部と第2高圧室とに開口する貫通孔が形成され、高圧容器の下面と収納凹部の底面とが互いに対向するように、高圧容器がボディの外側から収納凹部の内部に取り付けられた金属ダイヤフラム式脈動吸収装置において、連絡凹部に収納される板状のフィルタが外フランジ部と外フランジ部で囲まれた空間を覆うように外フランジ部に結合されたメッシュ部とを備えており、板状のフィルタの外フランジ部が筒状で上下方向の厚さが収納凹部の底面とこれに対向する連絡凹部の底面との間の寸法よりも大きい寸法に設定され、板状のフィルタのメッシュ部が外フランジ部の内周面における上下方向の中間に結合しており、板状のフィルタが連絡凹部に収納され、板状のフィルタの外フランジ部が収納凹部の底面とこれに対向する連絡凹部の底面とで挟持され、板状のフィルタのメッシュ部が収納凹部の底面とこれに対向する連絡凹部の底面とより離隔配置されたことにより、フィルタが高圧ポンプから高圧脈動吸収装置の高圧室側に侵入しないように異物を除去することができ、異物によりダイヤフラムが変形を受けることがなく、ダイヤフラムの耐久性が向上でき、フィルタが連絡凹部の内部において浮動することはなく、フィルタと連絡凹部との嵌合部の摩耗を防止して、フィルタの耐久性を向上させることができ、フィルタのメッシュ部が収納凹部の底面とこれに対向する連絡凹部の底面とより離隔配置されて、高圧ポンプよりディリバリパイプの側に流れる燃料に対しフィルタが圧力を損失させることが無く、フィルタのメッシュサイズをより小さく設定することができる。
【0027】
請求項2の発明によれば、フィルタが外フランジ部と同心円形な内フランジ部と、外フランジ部および内フランジ部を互いに連結する複数のブリッジ片とを備え、外フランジ部と内フランジ部および複数のブリッジ片のそれぞれで囲まれた空間がメッシュ部で覆われた構造であって、内フランジ部とブリッジ片のそれぞれが収納凹部の底面より離隔配置され、複数のブリッジ片が連絡凹部の底面に接触したので、高圧ポンプよりディリバリパイプ間に圧力の損失を発生させること無くフィルタを設けることができ、メッシュ部が連絡凹部の底面と収納凹部の底面との側に揺れ動くことが低下し、メッシュ部の耐久性を向上することができる。
【0028】
請求項3の発明によれば、高圧燃料ポンプのボディには、高圧燃料ポンプにおけるボディの外側面から内部に窪む収納凹部と、ボディに内蔵された高圧ポンプの吐出口を収納凹部の底面に連通する第1通路部と、収納凹部の底面を高圧燃料ポンプから燃料の供給を受けるディリバリパイプの側に連通する第2通路部とが形成され、高圧脈動吸収装置における高圧容器の内部には、可撓性を有する金属円板状のダイヤフラムでガスの満たされる第1高圧室と、第1通路部から第2通路部に流れる燃料の満たされる第2高圧室とが区画形成され、高圧容器の下面には当該下面から高圧容器の内部に窪む連絡凹部が形成され、高圧容器の連絡凹部の底面と第2高圧室とを隔てる部分には連絡凹部と第2高圧室とに開口する貫通孔が形成され、高圧容器の下面と収納凹部の底面とが互いに対向するように、高圧容器がボディの外側から収納凹部の内部に取り付けられた金属ダイヤフラム式脈動吸収装置において、第1通路部に設けられるフィルタが開口側フランジ部と底部と周壁としてのメッシュ部とからなる有底筒状に形成され、フィルタの開口側フランジ部の外径が第1通路部内径よりも大きい寸法に設定され、フィルタのメッシュ部および底部のそれぞれの外径が第1通路部の内径よりも小さい寸法に設定され、フィルタが第1通路部に収納されることによって、開口側フランジ部が第1通路部に圧入装着され、メッシュ部の外周面と第1通路部の内周面との間に隙間が形成されたので、フィルタを収納する部分の高さを変更すること無く、フィルタを第1通路部に設けることができる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1に係る自動車の燃料供給系統を示す模式図である。
【図2】 同実施の形態1に係る高圧燃料ポンプの高圧脈動吸収装置まわりを示す断面図である。
【図3】 同実施の形態1に係るフィルタを示す平面図である。
【図4】 この発明の実施の形態2に係る自動車の燃料供給系統を示す模式図である。
【図5】 同実施の形態2に係る高圧燃料ポンプの高圧脈動吸収装置まわりを示す断面図である。
【図6】 従来の自動車の燃料供給系統を示す模式図である。
【図7】 同従来の高圧燃料ポンプの低圧脈動吸収装置まわりを示す断面図である。
【符号の説明】
10 高圧脈動吸収装置、30 ボディ、31収納凹部、 100 ケース、
101 プレート、11 フィルタ、11a 外フランジ部、
11b メッシュ部、102 ダイヤフラム、104 第2高圧室、
107 連絡凹部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal diaphragm type pulsation absorbing device for a high-pressure fuel pump.
[0002]
[Prior art]
A diesel engine is widely known as a so-called in-cylinder injection engine or a direct injection engine that injects fuel into a cylinder of the engine. Recently, a spark ignition engine (a gasoline engine) In-cylinder injection type is also proposed. In such an in-cylinder injection engine, a sufficiently high fuel injection pressure is obtained, and a small fuel pressure pulsation is required for the stability of injection. For this reason, single-cylinder high-pressure fuel pumps that have a simple structure, are inexpensive to manufacture, and are compact are known. On the other hand, since the single cylinder has a single plunger and the pressure of the discharged fuel has a considerable pulsation width, a metal bellows type or metal diaphragm type pulsation absorbing device that absorbs this pulsation has been proposed.
[0003]
FIG. 6 is a schematic diagram showing a conventional automobile fuel supply system. In FIG. 6, 1 is a delivery pipe that is a fuel injection device, and 2 is an injector of the delivery pipe 1, which corresponds to the number of cylinders of an engine (not shown). 3 is a high-pressure fuel pump mounted on the engine housing, and 4 is a high-pressure pump of the high-pressure fuel pump 3. The high-pressure pump 4 is an element that pressurizes fuel to a high pressure by a piston that is driven by a cam (not shown) that rotates at half the rotational speed of the engine and a cylinder that accommodates the piston so as to be capable of reciprocating. 5 is a low pressure passage connected to the suction port of the high pressure pump 4, 6 is a filter disposed in the low pressure passage 5, and 7 is a metal bellows type low pressure connected to the low pressure passage 5 between the high pressure pump 4 and the filter 6. The pulsation absorber 9 is a high pressure passage connected to the discharge port of the high pressure pump 4, 10 is a diaphragm type high pressure pulsation absorber connected to the high pressure passage 9, and 12 is a high pressure passage on the discharge side of the high pressure pulsation absorber 10. 9 is a high pressure check valve, 13 is a high pressure return passage branched from the high pressure passage 9 on the discharge side of the high pressure check valve 12, 14 is a filter disposed in the high pressure return passage 13, and 15 is downstream of the filter 14. A high pressure regulator disposed in the high pressure return passage 13 on the side, 16 is a drain passage of the high pressure pump 4, and 17 is a high pressure connecting the high pressure passage 9 of the high pressure fuel pump 3 and the delivery pipe 1. Piping, 18 is a fuel tank, 19 is a low-pressure pump provided inside the fuel tank 18, 20 is a filter on the suction side of the low-pressure pump 19, 21 is a discharge side of the low-pressure pump 19 and a suction side of the high-pressure fuel pump 3. The connected low pressure pipe, 22 is a low pressure check valve arranged in the low pressure pipe 21, 23 is a filter arranged in the low pressure pipe 21 on the high pressure fuel pump 3 side than the low pressure check valve 22, and 24 is from the filter 23 of the low pressure pipe 21. The low pressure return pipe connecting the high pressure fuel pump 3 side and the fuel tank 18, 25 is a low pressure regulator arranged in the low pressure return pipe 24, and 26 is a drain connecting the drain passage 16 of the high pressure fuel pump 3 and the fuel tank 18. A pipe 27, a high pressure return pipe connecting the high pressure return passage 13 of the high pressure fuel pump 3 and the fuel tank 18, and 28 an interior of the fuel tank 18. Is a fuel that has been put.
[0004]
Next, the operation of the fuel supply system will be described. The low-pressure pump 19 sucks the fuel 28 through the filter 20, pressurizes it to a low pressure, and discharges it. The low-pressure fuel 28 is sent to the high-pressure fuel pump 3 through the low-pressure pipe 21 while sequentially passing through the low-pressure check valve 22 and the filter 23. When the fuel pressure in the low pressure pipe 21 exceeds the low pressure set value by the low pressure regulator 25, a part of the fuel 28 in the low pressure pipe 21 is returned to the fuel tank 18 by the low pressure return pipe 24 via the low pressure regulator 25. The pressure of the fuel 28 sent from the fuel tank 18 to the high pressure fuel pump 3 side is adjusted to a predetermined low pressure. The fuel 28 that has reached the high-pressure fuel pump 3 is sucked into the high-pressure pump 4 through the filter 6 and the low-pressure pulsation absorber 7 in this order in the low-pressure passage 5. The high-pressure pump 4 pressurizes the sucked fuel 28 to a high pressure and discharges the fuel 28 to the high-pressure passage 9. The fuel 28 leaked from between the piston and the cylinder of the high-pressure pump 4 flows out to the drain passage 16. The fuel that has flowed into the drain passage 16 returns to the fuel tank 18 via the drain pipe 26. The fuel 28 sent to the high pressure passage 9 is sent to the delivery pipe 1 through the high pressure pulsation absorbing device 10 and the high pressure check valve 12 in order. When the fuel pressure in the high pressure passage 9 exceeds the high pressure set value by the high pressure regulator 15, a part of the fuel 28 in the high pressure passage 9 passes through the filter 14 and the high pressure regulator 15 in order, and the high pressure return passage 13 and the high pressure return pipe 27. Thus, the pressure of the fuel 28 sent from the high-pressure fuel pump 3 to the delivery pipe 1 side is adjusted to a predetermined high pressure. In this state, the injector 2 of the delivery pipe 1 corresponding to the fuel injection timing in each cylinder of the engine injects high-pressure fuel into the cylinder at the fuel injection timing.
[0005]
FIG. 7 is a sectional view showing the periphery of the high-pressure pulsation absorbing device 10 of the high-pressure fuel pump 3. In FIG. 7, the high-pressure pulsation absorber 10 is housed in a housing recess 31 formed in the body 30 of the high-pressure fuel pump 3 and is a fuel pulsation absorber. Reference numeral 100 denotes a case which is one of the high-pressure containers, and reference numeral 101 denotes a plate which is the other of the high-pressure containers, and is housed in the bottom of the housing recess 31 of the body 30. Reference numeral 102 denotes a flexible thin metal disk-like diaphragm that cooperates with the case 100 to form the first high-pressure chamber 103 and cooperates with the plate 101 to form the second high-pressure chamber 104. The peripheral edge of the diaphragm 102 is sealed and supported between the case 100 and the plate 101. An annular fastening screw 105 is fastened to the screw portion 32 of the body 30 to press and fix the case 100, the diaphragm 102, and the plate 101 to the bottom portion of the storage recess 31. The fitting surface between the outer peripheral surface of the plate 101 and the inner peripheral surface of the storage recess 31 is prevented from leaking fuel by a seal member 33 such as an O-ring. In the body 30, a first passage portion 34 constituting the high-pressure passage 9 side of the high-pressure passage 9 and a second passage portion 35 constituting the high-pressure check valve 12 side of the high-pressure passage 9 communicate with the bottom of the housing recess 31. Is formed. The case 100 is formed with a dish-shaped first high pressure chamber-side stopper 106 that is recessed upward to restrict the movement of the diaphragm 102 on the lower surface (side surface of the diaphragm 102). In addition, the plate 101 has communication recesses 107 formed on the lower surface (side surfaces of the first and second passage portions 34 and 35) and connected to each of the first and second passage portions 34 and 35, and the diaphragm on the upper surface (side surface of the diaphragm 102). A dish-shaped second high-pressure chamber-side stopper 108 that is recessed downward to restrict the movement of 102 is formed, and the communication recess 107 and the second high-pressure chamber-side stopper 108 are intermediate between the communication recess 107 and the second high-pressure chamber-side stopper 108. A plurality of through-holes 109 are formed so as to open to each other. The first high pressure chamber 103 is filled with a gas (not shown) at a predetermined pressure via a gas filling port portion 110 provided in the case 100 and sealed with a stopper 111. This predetermined pressure is a pressure necessary to absorb the pulsation of the high-pressure fuel passing through the second passage portion 35 from the first passage portion 34 via the communication recess 107. The second high-pressure chamber 104 is filled with part of the high-pressure fuel from the communication recess 107 via the through hole 109. Reference numeral 105 a denotes a tool hole for operating the fastening screw 105. Reference numeral 112 denotes welding in which the peripheral portion of the diaphragm 102 is sealed and supported by the case 100 and the plate 101.
[0006]
Next, the operation of the high pressure pulsation absorbing device 10 will be described. When the first high-pressure chamber 103 is filled with gas and the second high-pressure chamber 104 is filled with fuel, when the fuel supply system in FIG. 6 starts operating by driving the engine, the fuel is discharged from the high-pressure pump 4 as indicated by an arrow. The high-pressure fuel thus produced flows from the first passage portion 34 to the second passage portion 35 via the communication recess 107. When pulsation occurs in the fuel, the diaphragm 102 bends toward the case 100 or the diaphragm 102 bends toward the plate 101 due to the sum of the gas pressure inside the first high pressure chamber 103 and the spring force of the diaphragm 102 itself. Thus, the diaphragm 102 absorbs the pulsation of the fuel. When the driver stops the engine by turning off the key switch of the automobile, the fuel flow indicated by the arrow stops, and the fuel pressure in the second high-pressure chamber 104 decreases. Accordingly, the pressure of the gas inside the first high pressure chamber 103 increases more than the sum of the fuel pressure inside the second high pressure chamber 104 and the spring force of the diaphragm 102 itself, so that the diaphragm 102 bends and eventually The diaphragm 102 contacts the second high pressure chamber side stopper 108. Further, when gas escapes from the first high-pressure chamber 103 and the gas pressure in the first high-pressure chamber 103 decreases, or the pulsation pressure of the fuel suddenly increases and the deflection of the diaphragm 102 increases, the diaphragm finally becomes. 102 contacts the first high-pressure chamber stopper 106.
[0007]
[Problems to be solved by the invention]
Since the conventional high-pressure pulsation absorbing device 10 which is a conventional metal diaphragm type pulsation absorbing device is configured as described above, the position where the diaphragm 102 has a gap between the first and second high-pressure chamber side stoppers 106 and 108 during operation. In addition, the thinner the diaphragm 102, the better the fuel pulsation. On the other hand, in the process in which the fuel flows from the first passage portion 34 to the second passage portion 35 via the communication recess 107, foreign matters such as metal powder mixed in the fuel enter the second high pressure chamber 104 through the through hole 109. May invade. When foreign matter enters the second high-pressure chamber 104, the foreign matter accumulates around the second high-pressure chamber 104 due to the movement of fuel in the second high-pressure chamber 104 due to the movement of the diaphragm 102. When the diaphragm 102 comes into contact with the second high-pressure chamber side stopper 108 by stopping the operation of the high-pressure fuel pump 3, the foreign matter accumulated in the periphery of the second high-pressure chamber 104 is collected by the diaphragm 102 with the second high-pressure chamber side stopper 108. The diaphragm 102 is deformed by the foreign matter. A high stress is locally generated in the deformed portion, and the diaphragm 102 may be cracked and damaged.
[0008]
An object of the present invention is to solve the above-described problems. A metal diaphragm type pulsation absorbing device for a high-pressure fuel pump that can improve the durability of the diaphragm by preventing foreign matter from entering the high-pressure chamber. Is to provide.
[0009]
[Means for Solving the Problems]
The metal diaphragm type pulsation absorbing device according to the first aspect of the present invention is characterized in that the body of the high-pressure fuel pump has a housing recess recessed from the outer surface of the body in the high-pressure fuel pump and a discharge port of the high-pressure pump built in the body. In the high pressure pulsation absorbing device, and a first passage portion that communicates with the bottom surface of the housing recess and a second passage portion that communicates the bottom surface of the housing recess with the delivery pipe receiving fuel from the high pressure fuel pump. Inside the high-pressure vessel are a first high-pressure chamber filled with gas with a flexible metal disk-like diaphragm and a second high-pressure chamber filled with fuel flowing from the first passage portion to the second passage portion. A communication recess is formed in the lower surface of the high-pressure vessel and is recessed from the lower surface to the inside of the high-pressure vessel. A communication recess and a second high-pressure chamber are formed in a portion separating the bottom surface of the communication recess and the second high-pressure chamber. Open to room Through hole is formed to, as the bottom surface of the lower surface and the receiving recess of the high-pressure vessel are opposed to each other, a high-pressure vessel at a metal diaphragm type pulsation absorber device attached to the inside of the housing recess from the outside of the body, A plate-like filter stored in the communication recess Provided with an outer flange part and a mesh part joined to the outer flange part so as to cover the space surrounded by the outer flange part The plate-shaped filter has an outer flange portion that is cylindrical and has a thickness in the vertical direction that is larger than the size between the bottom surface of the storage recess and the bottom surface of the communication recess facing the storage recess. The mesh part of the filter is connected to the middle in the vertical direction on the inner peripheral surface of the outer flange part, The plate-shaped filter is stored in the communication recess, and the outer flange portion of the plate-shaped filter is sandwiched between the bottom surface of the storage recess and the bottom surface of the communication recess facing the storage recess. By The mesh portion of the plate-like filter is spaced apart from the bottom surface of the storage recess and the bottom surface of the communication recess facing the storage recess.
[0010]
A metal diaphragm type pulsation absorbing device according to a second aspect of the present invention is the metal diaphragm type pulsation absorbing device, wherein the filter according to the first aspect connects the outer flange portion and the inner flange portion to each other, and a plurality of bridge pieces that connect the outer flange portion and the inner flange portion to each other. A space surrounded by each of the outer flange portion, the inner flange portion, and the plurality of bridge pieces is covered with a mesh portion, and the inner flange portion and the bridge piece When Are spaced apart from the bottom of the storage recess. Multiple bridge pieces contact the bottom of the contact recess It is characterized by that.
[0011]
According to a third aspect of the present invention, the metal diaphragm type pulsation absorber includes a housing recess recessed from the outer surface of the body of the high-pressure fuel pump into the body of the high-pressure fuel pump, and a discharge port of the high-pressure pump built into the body. In the high pressure pulsation absorbing device, and a first passage portion that communicates with the bottom surface of the housing recess and a second passage portion that communicates the bottom surface of the housing recess with the delivery pipe receiving fuel from the high pressure fuel pump. Inside the high-pressure vessel are a first high-pressure chamber filled with gas with a flexible metal disk-like diaphragm and a second high-pressure chamber filled with fuel flowing from the first passage portion to the second passage portion. A communication recess is formed in the lower surface of the high-pressure vessel and is recessed from the lower surface to the inside of the high-pressure vessel. A communication recess and a second high-pressure chamber are formed in a portion separating the bottom surface of the communication recess and the second high-pressure chamber. Open to room Through hole is formed to, as the bottom surface of the lower surface and the receiving recess of the high-pressure vessel are opposed to each other, a high-pressure vessel at a metal diaphragm type pulsation absorber device attached to the inside of the housing recess from the outside of the body The second Provided in one passage The filter is formed in a bottomed cylindrical shape including an opening-side flange portion, a bottom portion, and a mesh portion as a peripheral wall, and the outer diameter of the opening-side flange portion of the filter is set to be larger than the inner diameter of the first passage portion. The outer diameter of each of the mesh part and the bottom part is set to be smaller than the inner diameter of the first passage part, and the filter is housed in the first passage part, so that the opening side flange part is press-fitted to the first passage part. A gap is formed between the outer peripheral surface of the mesh portion and the inner peripheral surface of the first passage portion. It is characterized by that.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
1 is a schematic diagram showing a fuel supply system according to Embodiment 1 of the present invention, FIG. 2 is a sectional view showing the periphery of a high-pressure pulsation absorber 10 of a high-pressure fuel pump 3 in the fuel system, and FIG. It is a top view. In FIG. 1, a filter 11 is provided in a high-pressure passage that branches from a high-pressure passage 9 between a high-pressure pump 4 and a high-pressure check valve 12 to a high-pressure pulsation absorber 10, and foreign matter such as metal powder mixed in fuel absorbs high-pressure pulsation. By preventing the device 10 from entering the second high-pressure chamber 104 (see FIG. 2), the durability of the diaphragm 102 (see FIG. 2) is improved. Delivery pipe 1 other than filter 11, injector 2, high pressure pump 4, low pressure passage 5, filter 6, low pressure pulsation absorber 7, high pressure passage 9, high pressure pulsation absorber 10, high pressure check valve 12, high pressure return passage 13, filter 14, high pressure regulator 15, drain passage 16, high pressure pipe 17, fuel tank 18, low pressure pump 19, filter 20, low pressure pipe 21, low pressure check valve 22, filter 23, low pressure return pipe 24, low pressure regulator 25, drain pipe 26, Elements such as the high pressure return pipe 27 and the fuel 28 are the same as those in the conventional FIG.
[0016]
In FIG. 2, the filter 11 is formed in a disk shape from a fuel-resistant synthetic resin such as nylon. The filter 11 is press-fitted into the communication recess 107. Other than this filter, delivery pipe 1, injector 2, high pressure pump 4, low pressure passage 5, high pressure check valve 12, high pressure return passage 13, body 30, housing recess 31, screw 32, seal member 33, first passage 34 , Second passage portion 35, case 100, plate 101, diaphragm 102, first high pressure chamber 103, second high pressure chamber 104, fastening screw 105, tool hole 105a, first high pressure chamber side stopper 106, communication recess 107, first 2 The elements such as the high pressure chamber side stopper 108, the through hole 109, the gas filling port portion 110, the stopper plug 111, and the weld 112 are the same as those in FIG.
[0017]
In FIG. 3, the filter 11 is provided with an outer flange portion 11a and an inner flange portion 11b in a concentric circle, the outer flange portion 11a and the inner flange portion 11b are connected to each other by a plurality of bridge pieces 11c, and the outer flange portion 11a and the inner flange portion. A space surrounded by each of 11b and the plurality of bridge pieces 11c is covered with a mesh portion 11d. At the entire periphery of the mesh portion 11d, the mesh elements that define the mesh of the mesh portion 11d are coupled to the outer flange portion 11a, the inner flange portion 11b, and the plurality of bridge pieces 11c.
[0018]
With reference to FIG. 2 again, attachment of the filter 11 to the communication recess 107 will be described. The filter 11 is press-fitted into the communication recess 107 before the element having the form in which the case 100, the plate 101, and the diaphragm 102 are joined by welding 112 is inserted into the storage recess 31 of the body 30. By the press-fitting of the filter 11, the outer peripheral surface of the outer flange portion 11a of the filter 11 comes into contact with the inner peripheral surface of the communication recess 107, and the bottom surface of the outer flange portion 11a, the bottom surface of the inner flange portion 11b, and the bridge piece 11c (see FIG. 3). ) Are in contact with the upper surface of the connecting recess 107, and the mesh portion 11d is spaced apart from the upper surface of the connecting recess 107 in parallel. In that state, after the element of the form in which the case 100, the plate 101, and the diaphragm 102 are joined by welding 112 is inserted into the housing recess 31, the fastening screw 105 is fastened to the screw portion 32 of the case 30 to The diaphragm 102 and the plate 101 are pressed and fixed to the bottom of the storage recess 31. As a result, the surface of the outer flange portion 11a of the filter 11 comes into contact with the bottom surface of the storage recess 31, the mesh portion 11d is separated in parallel from the bottom surface of the storage recess 31, and the surface of the inner flange portion 11b and the surface of the bridge piece 11c are Separated from the bottom surface of the storage recess 31.
[0019]
According to the structure of the first embodiment, the filter 11 is provided in the high-pressure passage 9 between the high-pressure pump 4 and the high-pressure pulsation absorber 10, so that the filter 11 can remove foreign matters such as metal powder mixed in the fuel. The high pressure pulsation absorber 10 is removed so as not to enter the second high pressure chamber 104. For this reason, when the diaphragm 102 contacts the second high-pressure chamber stopper 108, the diaphragm 102 is not deformed by a foreign substance as in the prior art, and the durability of the diaphragm 102 can be improved.
[0020]
Further, according to the structure of the first embodiment, the filter 11 is provided in the high-pressure passage that branches from the high-pressure passage 9 of the high-pressure pulsation absorbing device 10 to the high-pressure pulsation absorbing device 10. The filter 11 does not cause a pressure loss with respect to the fuel flowing to the high pressure check valve 12 side.
[0021]
According to the structure of the first embodiment, since the filter 11 is formed in a plate shape that is press-fitted and fitted into the communication recess 107, the height of the communication recess 107, which is a part for housing the filter 11, is changed with respect to the conventional device. It can be configured without.
[0022]
Further, according to the structure of the first embodiment, the outer flange portion 11 a of the filter 11 is sandwiched between the bottom surface of the communication recess 107 and the bottom surface of the storage recess 31, so that the filter 11 floats inside the connection recess 107. However, the wear of the filter 11 and the connecting recess 107 fitting portion can be prevented, and the durability of the filter 11 can be improved.
[0023]
Further, according to the structure of the first embodiment, the inner flange portion 11b, the bridge piece 11c, and the mesh portion 11d of the filter 11 are spaced apart from the bottom surface of the storage recess 31, so that the high-pressure check valve 12 is higher than the high-pressure pump 4. Since the filter 11 does not lose pressure with respect to the fuel flowing to the side, the mesh size of the filter 11 can be set smaller.
[0024]
The filter 11 is provided in a high-pressure passage that branches from the high-pressure passage 9 between the high-pressure pump 4 and the high-pressure check valve 12 to the high-pressure pulsation absorber 10, and even when the filter 11 is clogged with foreign matter, The high-pressure passage 9 between the high-pressure check valves 12 is secured, and no pressure is lost.
[0025]
Embodiment 2. FIG.
In the first embodiment, the filter 11 is installed in the high-pressure pulsation absorbing device 10, but the filter 11 </ b> A can be arranged in the first passage portion 34 as shown in FIGS. 4 and 5. 4 is a schematic view showing a fuel supply system according to Embodiment 2 of the present invention, and FIG. 5 is a cross-sectional view showing the periphery of the high-pressure pulsation absorbing device 10 of the high-pressure fuel pump 3 in the fuel system. In FIG. 4, the filter 11A is provided in the high pressure passage 9 between the high pressure pump 4 and the high pressure pulsation absorber 10 in the high pressure passage 9 between the high pressure pump 4 and the high pressure check valve 12, and is like metal powder mixed in the fuel. Foreign matter is prevented from entering the second high pressure chamber 104 (see FIG. 5) of the high pressure pulsation absorbing device 10. In FIG. 5, the filter 11 </ b> A is formed in a bottomed cylindrical shape with a fuel-resistant synthetic resin such as nylon. The filter 11A is configured such that the outer diameter of the opening-side flange portion 11e is set to be larger than the inner diameter of the first passage portion 34, and peripheral walls other than the opening-side flange portion 11e and the bottom portion 11f are formed as a mesh portion 11g. The outer diameters of the portion 11g and the bottom portion 11f are set to be smaller than the inner diameter of the first passage portion 34. When the filter 11A is housed in the first passage portion 34, the opening-side flange portion 11e is press-fitted into the first passage portion 34, and the outer peripheral surface of the mesh portion 11g and the inner peripheral surface of the first passage portion 34 are A gap is formed between them. If the mesh size of the mesh portion 11g is coarse, there is a high possibility that small foreign matter will enter the connecting recess 107 side of the high-pressure pulsation absorber 10. However, if the mesh size of the mesh portion 11g is fine, the mesh portion 11g is the first. There is a high possibility of a large resistance to the fuel flowing from the passage portion 34 toward the connecting recess 107. For this reason, the mesh size of the mesh portion 11g is set such that both the size of the foreign matter mixed in the fuel flowing from the high-pressure pump 4 toward the high-pressure pulsation absorber 10 and the allowable resistance to the fuel are compatible. It is preferable. In addition, the filter 11A is installed in the first passage portion 34 in a form closest to the communication recess 107, but can be applied to any position inside the body 30 as long as it is a high-pressure passage between the high-pressure pump 4 and the high-pressure pulsation absorber 10.
[0026]
【The invention's effect】
As described above, according to the first aspect of the present invention, the body of the high-pressure fuel pump is provided with the housing recess recessed from the outer surface of the body in the high-pressure fuel pump and the discharge port of the high-pressure pump built in the body. A first passage portion that communicates with the bottom surface of the housing recess and a second passage portion that communicates the bottom surface of the housing recess with the delivery pipe receiving fuel from the high-pressure fuel pump are formed. The container is partitioned into a first high pressure chamber filled with gas with a flexible metal disk-like diaphragm and a second high pressure chamber filled with fuel flowing from the first passage portion to the second passage portion. A communication recess is formed on the lower surface of the high-pressure vessel and is recessed from the lower surface to the inside of the high-pressure vessel. A communication recess and the second high-pressure chamber are provided in a portion separating the bottom surface of the communication recess of the high-pressure vessel and the second high-pressure chamber. Through-holes open at Is, as a bottom surface of the lower surface and the receiving recess of the high-pressure vessel are opposed to each other, a high-pressure vessel at a metal diaphragm type pulsation absorber device attached to the inside of the housing recess from the outside of the body, A plate-like filter stored in the communication recess Provided with an outer flange part and a mesh part joined to the outer flange part so as to cover the space surrounded by the outer flange part The plate-shaped filter has an outer flange portion that is cylindrical and has a thickness in the vertical direction that is larger than the size between the bottom surface of the storage recess and the bottom surface of the communication recess facing the storage recess. The mesh part of the filter is connected to the middle in the vertical direction on the inner peripheral surface of the outer flange part, The plate-shaped filter is housed in the communication recess, the outer flange portion of the plate-shaped filter is sandwiched between the bottom surface of the storage recess and the bottom surface of the communication recess facing the storage recess, and the mesh portion of the plate-shaped filter is the bottom surface of the storage recess Since the filter is spaced apart from the bottom surface of the communication recess facing this, foreign matter can be removed so that the filter does not enter the high-pressure chamber side of the high-pressure pulsation absorber from the high-pressure pump, and the foreign matter can deform the diaphragm. The durability of the diaphragm can be improved without being received, the filter will not float inside the connecting recess, and the wear of the fitting portion between the filter and the connecting recess is prevented, thereby improving the durability of the filter. The mesh portion of the filter is spaced apart from the bottom surface of the storage recess and the bottom surface of the communication recess facing it, and flows from the high-pressure pump to the delivery pipe side. That the filter is not be lost pressure to the fuel, it can be set smaller mesh size of the filter.
[0027]
According to the invention of claim 2, the filter includes an inner flange portion concentric with the outer flange portion, and a plurality of bridge pieces that connect the outer flange portion and the inner flange portion to each other, the outer flange portion, the inner flange portion, and The space surrounded by each of the plurality of bridge pieces is covered with a mesh portion, and the inner flange portion and the bridge piece When Are spaced apart from the bottom of the storage recess. Multiple bridge pieces contact the bottom of the contact recess Therefore, a filter can be installed without causing pressure loss between the delivery pipes from the high pressure pump. , The mesh part will be less likely to swing to the side of the bottom of the contact recess and the bottom of the storage recess, and the durability of the mesh part can be improved The
[0028]
According to the invention of claim 3, the body of the high-pressure fuel pump has a housing recess recessed inward from the outer surface of the body of the high-pressure fuel pump, and a discharge port of the high-pressure pump built in the body on the bottom surface of the housing recess. A first passage portion that communicates and a second passage portion that communicates the bottom surface of the housing recess to the delivery pipe side that receives the supply of fuel from the high-pressure fuel pump are formed inside the high-pressure vessel in the high-pressure pulsation absorber. And a first high pressure chamber filled with gas with a flexible metal disk-shaped diaphragm, and a second high pressure chamber filled with fuel flowing from the first passage portion to the second passage portion are partitioned to form a high pressure vessel A communication recess that is recessed from the lower surface to the inside of the high-pressure vessel is formed on the lower surface of the high-pressure vessel. A portion that separates the bottom surface of the communication recess of the high-pressure vessel from the second high-pressure chamber is opened through the communication recess and the second high-pressure chamber. Holes are formed and high pressure capacity As the lower surface of the bottom surface of the housing recess are opposed to each other, a high-pressure vessel at a metal diaphragm type pulsation absorber device attached to the inside of the housing recess from the outside of the body The second Provided in one passage The filter is formed in a bottomed cylindrical shape including an opening-side flange portion, a bottom portion, and a mesh portion as a peripheral wall, and the outer diameter of the opening-side flange portion of the filter is set to be larger than the inner diameter of the first passage portion. The outer diameter of each of the mesh part and the bottom part is set to be smaller than the inner diameter of the first passage part, and the filter is housed in the first passage part, so that the opening side flange part is press-fit into the first passage part. And a gap is formed between the outer peripheral surface of the mesh portion and the inner peripheral surface of the first passage portion. Therefore, without changing the height of the part that stores the filter, Filter in the first passage Can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a fuel supply system for an automobile according to Embodiment 1 of the present invention.
FIG. 2 is a sectional view showing the periphery of a high-pressure pulsation absorbing device of the high-pressure fuel pump according to the first embodiment.
FIG. 3 is a plan view showing the filter according to the first embodiment.
FIG. 4 is a schematic diagram showing a fuel supply system for an automobile according to Embodiment 2 of the present invention.
5 is a cross-sectional view showing the periphery of a high-pressure pulsation absorbing device of a high-pressure fuel pump according to Embodiment 2. FIG.
FIG. 6 is a schematic view showing a conventional automobile fuel supply system.
FIG. 7 is a cross-sectional view showing the periphery of the low-pressure pulsation absorbing device of the conventional high-pressure fuel pump.
[Explanation of symbols]
10 high pressure pulsation absorbing device, 30 body, 31 storage recess, 100 case,
101 plate, 11 filter, 11a outer flange,
11b Mesh part, 102 Diaphragm, 104 Second high pressure chamber,
107 Communication recess.

Claims (3)

高圧燃料ポンプのボディには、高圧燃料ポンプにおけるボディの外側面から内部に窪む収納凹部と、ボディに内蔵された高圧ポンプの吐出口を収納凹部の底面に連通する第1通路部と、収納凹部の底面を高圧燃料ポンプから燃料の供給を受けるディリバリパイプの側に連通する第2通路部とが形成され、高圧脈動吸収装置における高圧容器の内部には、可撓性を有する金属円板状のダイヤフラムでガスの満たされる第1高圧室と、第1通路部から第2通路部に流れる燃料の満たされる第2高圧室とが区画形成され、高圧容器の下面には当該下面から高圧容器の内部に窪む連絡凹部が形成され、高圧容器の連絡凹部の底面と第2高圧室とを隔てる部分には連絡凹部と第2高圧室とに開口する貫通孔が形成され、高圧容器の下面と収納凹部の底面とが互いに対向するように、高圧容器がボディの外側から収納凹部の内部に取り付けられた金属ダイヤフラム式脈動吸収装置において、連絡凹部に収納される板状のフィルタが外フランジ部と外フランジ部で囲まれた空間を覆うように外フランジ部に結合されたメッシュ部とを備えており、板状のフィルタの外フランジ部が筒状で上下方向の厚さが収納凹部の底面とこれに対向する連絡凹部の底面との間の寸法よりも大きい寸法に設定され、板状のフィルタのメッシュ部が外フランジ部の内周面における上下方向の中間に結合しており、板状のフィルタが連絡凹部に収納され、板状のフィルタの外フランジ部が収納凹部の底面とこれに対向する連絡凹部の底面とで挟持されることによって、板状のフィルタのメッシュ部が収納凹部の底面とこれに対向する連絡凹部の底面とより離隔配置されたことを特徴とする金属ダイヤフラム式脈動吸収装置。The body of the high-pressure fuel pump includes a storage recess that is recessed from the outer surface of the body in the high-pressure fuel pump, a first passage portion that communicates the discharge port of the high-pressure pump built in the body with the bottom surface of the storage recess, and storage A second passage portion that communicates the bottom surface of the recess to the delivery pipe side that receives fuel from the high-pressure fuel pump, and a flexible metal disk is provided inside the high-pressure vessel of the high-pressure pulsation absorber. A first high pressure chamber filled with gas with a diaphragm-like diaphragm and a second high pressure chamber filled with fuel flowing from the first passage portion to the second passage portion are partitioned and formed on the lower surface of the high pressure vessel from the lower surface to the high pressure vessel. And a through hole is formed in a portion separating the bottom surface of the communication concave portion of the high pressure vessel and the second high pressure chamber, and a through hole is formed in the communication concave portion and the second high pressure chamber. And bottom of storage recess As but opposite to each other, in the metal diaphragm type pulsation absorber device attached to the inside of the housing recess high pressure vessel from the outside of the body, a plate-shaped filter housed in the contact recess surrounded by an outer flange and the outer flange portion The outer flange of the plate-like filter is cylindrical and the thickness in the vertical direction is opposed to the bottom of the storage recess. The dimension is set to be larger than the dimension between the bottom surface of the recess, the mesh part of the plate-like filter is connected to the middle in the vertical direction on the inner peripheral surface of the outer flange part, and the plate-like filter becomes the communication recess. housed, plate-shaped outer flange portion of the filter by the Rukoto is sandwiched between the bottom surface of the contact recess to the bottom surface facing to the housing recess, the bottom surface Toko mesh portion of the plate-like filter housing recess Metal diaphragm type pulsation absorber, characterized in that it is more spaced apart from the bottom surface of the opposing contact recess. フィルタが外フランジ部と同心円形な内フランジ部と、外フランジ部および内フランジ部を互いに連結する複数のブリッジ片とを備え、外フランジ部と内フランジ部および複数のブリッジ片のそれぞれで囲まれた空間がメッシュ部で覆われた構造であって、内フランジ部とブリッジ片のそれぞれが収納凹部の底面より離隔配置され、複数のブリッジ片が連絡凹部の底面に接触したことを特徴とする請求項1記載の金属ダイヤフラム式脈動吸収装置。The filter includes an inner flange portion concentric with the outer flange portion, and a plurality of bridge pieces connecting the outer flange portion and the inner flange portion to each other, and is surrounded by each of the outer flange portion, the inner flange portion, and the plurality of bridge pieces. space is a structure covered with a mesh portion, is spaced from the bottom surface of each storage recess of an inner flange portion and the bridge piece, and wherein a plurality of bridge pieces is in contact with the bottom surface of the contact recess The metal diaphragm type pulsation absorbing device according to claim 1. 高圧燃料ポンプのボディには、高圧燃料ポンプにおけるボディの外側面から内部に窪む収納凹部と、ボディに内蔵された高圧ポンプの吐出口を収納凹部の底面に連通する第1通路部と、収納凹部の底面を高圧燃料ポンプから燃料の供給を受けるディリバリパイプの側に連通する第2通路部とが形成され、高圧脈動吸収装置における高圧容器の内部には、可撓性を有する金属円板状のダイヤフラムでガスの満たされる第1高圧室と、第1通路部から第2通路部に流れる燃料の満たされる第2高圧室とが区画形成され、高圧容器の下面には当該下面から高圧容器の内部に窪む連絡凹部が形成され、高圧容器の連絡凹部の底面と第2高圧室とを隔てる部分には連絡凹部と第2高圧室とに開口する貫通孔が形成され、高圧容器の下面と収納凹部の底面とが互いに対向するように、高圧容器がボディの外側から収納凹部の内部に取り付けられた金属ダイヤフラム式脈動吸収装置において、第1通路部に設けられるフィルタが開口側フランジ部と底部と周壁としてのメッシュ部とからなる有底筒状に形成され、フィルタの開口側フランジ部の外径が第1通路部内径よりも大きい寸法に設定され、フィルタのメッシュ部および底部のそれぞれの外径が第1通路部の内径よりも小さい寸法に設定され、フィルタが第1通路部に収納されることによって、開口側フランジ部が第1通路部に圧入装着され、メッシュ部の外周面と第1通路部の内周面との間に隙間が形成されたことを特徴とする金属ダイヤフラム式脈動吸収装置。The body of the high-pressure fuel pump includes a storage recess that is recessed from the outer surface of the body in the high-pressure fuel pump, a first passage portion that communicates the discharge port of the high-pressure pump built in the body with the bottom surface of the storage recess, and storage A second passage portion that communicates the bottom surface of the recess to the delivery pipe side that receives fuel from the high-pressure fuel pump, and a flexible metal disk is provided inside the high-pressure vessel of the high-pressure pulsation absorber. A first high pressure chamber filled with gas with a diaphragm-like diaphragm and a second high pressure chamber filled with fuel flowing from the first passage portion to the second passage portion are partitioned and formed on the lower surface of the high pressure vessel from the lower surface to the high pressure vessel. And a through hole is formed in a portion separating the bottom surface of the communication concave portion of the high pressure vessel and the second high pressure chamber, and a through hole is formed in the communication concave portion and the second high pressure chamber. And bottom of storage recess As but opposite to each other, in the metal diaphragm type pulsation absorber device attached to the inside of the housing recess high pressure vessel from the outside of the body, the filter that is provided in the first passage portion of the opening-side flange portion and a bottom portion and a peripheral wall The filter is formed in a bottomed cylindrical shape composed of a mesh portion, the outer diameter of the opening flange portion of the filter is set to be larger than the inner diameter of the first passage portion, and the outer diameter of each of the mesh portion and the bottom portion of the filter is the first. The size is set to be smaller than the inner diameter of the passage portion, and the filter is housed in the first passage portion, whereby the opening-side flange portion is press-fitted to the first passage portion, and the outer peripheral surface of the mesh portion and the first passage portion A metal diaphragm type pulsation absorbing device, characterized in that a gap is formed between the inner peripheral surface and the inner peripheral surface .
JP07281599A 1999-03-17 1999-03-17 Metal diaphragm type pulsation absorber Expired - Fee Related JP3933809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07281599A JP3933809B2 (en) 1999-03-17 1999-03-17 Metal diaphragm type pulsation absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07281599A JP3933809B2 (en) 1999-03-17 1999-03-17 Metal diaphragm type pulsation absorber

Publications (2)

Publication Number Publication Date
JP2000266183A JP2000266183A (en) 2000-09-26
JP3933809B2 true JP3933809B2 (en) 2007-06-20

Family

ID=13500301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07281599A Expired - Fee Related JP3933809B2 (en) 1999-03-17 1999-03-17 Metal diaphragm type pulsation absorber

Country Status (1)

Country Link
JP (1) JP3933809B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3823060B2 (en) 2002-03-04 2006-09-20 株式会社日立製作所 High pressure fuel supply pump

Also Published As

Publication number Publication date
JP2000266183A (en) 2000-09-26

Similar Documents

Publication Publication Date Title
US6079450A (en) Metal diaphragm type pulsation absorber for high-pressure fuel pump
US7513240B2 (en) High pressure fuel pump provided with damper
US7604462B2 (en) High pressure pump having plunger
US6053712A (en) Cylinder injection high-pressure fuel pump
US6062830A (en) Diaphragm type damper
KR19990030160A (en) High pressure fuel pump body of internal injection engine
US6293296B1 (en) High-pressure fuel pump device
US8262376B2 (en) High-pressure pump
US5697770A (en) Pump using a single diaphragm having preformed oppositely directed bulges forming inlet and outlet valve closing bodies
JP3933809B2 (en) Metal diaphragm type pulsation absorber
EP0947745B1 (en) Sealing device for a high-pressure vessel
JP3638842B2 (en) Fuel supply device
JP3696729B2 (en) High pressure accumulator
KR100746893B1 (en) Return valve for gas automobile&#39;s fuel feeding system
JP2000249018A (en) Metal bellows type pulsation absorbing device
US20030039558A1 (en) Fuel pump
JP4153618B2 (en) Plunger pump
CA2052539C (en) Tandem fuel pump assembly for internal combustion engine
JP3455419B2 (en) Diaphragm stopper structure of high pressure accumulator
JP3563277B2 (en) Fuel supply device for internal combustion engine
CN110608119A (en) Fuel pump
JPS6120359Y2 (en)
KR100463058B1 (en) Vent valve structure
JPH0942502A (en) Pressure controlling valve
JPH0814129A (en) Fuel excessive feed prevention system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050314

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050324

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees