JP3933320B2 - Operation method of water treatment apparatus equipped with membrane separator - Google Patents

Operation method of water treatment apparatus equipped with membrane separator Download PDF

Info

Publication number
JP3933320B2
JP3933320B2 JP25904898A JP25904898A JP3933320B2 JP 3933320 B2 JP3933320 B2 JP 3933320B2 JP 25904898 A JP25904898 A JP 25904898A JP 25904898 A JP25904898 A JP 25904898A JP 3933320 B2 JP3933320 B2 JP 3933320B2
Authority
JP
Japan
Prior art keywords
membrane
water
tank
activated sludge
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25904898A
Other languages
Japanese (ja)
Other versions
JP2000084554A (en
Inventor
清司 和泉
山田  豊
一彦 刈谷
進 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP25904898A priority Critical patent/JP3933320B2/en
Publication of JP2000084554A publication Critical patent/JP2000084554A/en
Application granted granted Critical
Publication of JP3933320B2 publication Critical patent/JP3933320B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水量変動の大きい有機性汚水、下水などを処理対象として、活性汚泥処理と膜分離とを行う、膜分離装置を備えた水処理装置の運転方法に関する。
【0002】
【従来の技術】
従来より、膜を利用して有機性汚水、下水など(以下、汚水と称す)を処理する膜分離活性汚泥処理が知られている。この処理では通常、図6に示したように、流入する汚水41を前処理設備42で夾雑物や砂を除去した後、流量調整槽43に貯溜し、定流量にて曝気槽44に送って、汚水41中の有機物質を活性汚泥により分解除去し、必要に応じて脱窒素する一方で、槽内の活性汚泥混合液をその中に浸漬設置した膜分離装置45により濾過して膜透過水46を導出し、処理水槽47を経て放流するようにしている。このとき、曝気槽44の活性汚泥濃度が著しく高くならないように、余剰汚泥48を連続または間欠で引き抜き、汚泥貯溜槽49に貯溜するようにしている。
【0003】
このような膜分離活性汚泥処理は、処理水質が安定し、システムの維持管理も容易なことから、広く普及し始めている。
【0004】
【発明が解決しようとする課題】
ところが、浸漬型の膜分離装置は通常、曝気装置の上方に膜を配置して、曝気の気泡流を膜面洗浄や液流生起に利用するようにしているため、曝気装置の影響を受け易い。
【0005】
すなわち、散気管などにより均一に適正な空気量で曝気が行われていれば、膜面が均一に洗浄され、濾過も安定するが、散気管が目詰まりするとその直上の膜面には堆積物が生じ易くなる。この点において、連続曝気を行っていても全ての散気孔から絶えず均一に空気が噴出するとは限らず、たとえば散気管が水平に配設されていない場合には、噴出量の多い散気孔が存在する一方で、その対極に位置する散気孔は負圧気味になり、その散気孔を通じて汚泥が散気管内に侵入するなどの現象が局部的には生じており、散気管内に侵入した汚泥は長期間の内には供給される空気によって乾燥され、かさぶた状となり、散気管が目詰まりしてしまうという問題がある。
【0006】
また、流入汚水量と濾過量とのバランスをとるために濾過を停止した時も、曝気により生じる圧力差で若干の濾過が行われるため、濾板の表面に有機濾過膜を配置した分離膜を配列するようにした膜分離装置にあっては、濾過膜の透過液側に濾液が滞留して、濾過膜が膨らむことがあり、その状態で曝気の気泡流に曝されると、濾過膜が振動して疲労し易く、破断に至ることがある。
【0007】
本発明は上記問題を解決するもので、散気装置(曝気装置)の閉塞および濾過膜の疲労破断を防止できるようにすることを目的とするものである。
【0008】
【課題を解決するための手段】
上記課題を解決するために本発明は、給気源に給気管を介して連通する散気装置から曝気空気が噴出する状態において、生物処理槽の内部に流入する被処理水を活性汚泥処理するとともに、槽内の活性汚泥混合液を、気装置の上方に外圧型分離膜を配置した膜分離装置により濾過し、膜面を透過した透過水を分離膜の透過側に連通した透過水導出系を通じて槽外へ導出するに際し、槽内の活性汚泥混合液の水位が通常水位である間は透過水導出系を通じて透過水を処理水槽へ送り、槽内の活性汚泥混合液の水位が所定の下限水位に低下した時に、透過水導出系を通じて導出する透過水を、返送管により給気管の途中に注入して散気装置から噴出する曝気空気とともに槽内に返送し、その後に活性汚泥混合液の水位が所定の上方水位まで上昇した時に、透過水の注入を停止するようにした膜分離装置を備えた水処理装置の運転方法を提供する。
【0009】
上記した運転方法は、分離膜として、膜支持体の表面に濾過膜を設けた平板状膜カートリッジが使用された膜分離装置を備えた水処理装置において、より有利に行える。
【0010】
上記した構成によれば、活性汚泥混合液の水位が所定の下限水位に低下する都度、透過水によって、気装置の内部や散気孔に付着した汚泥を気装置の外部へ除去し、残留した汚泥も湿潤状態として固着防止できるので、気装置の閉塞を防止することができ、それにより分離膜の膜面への堆積を防止できる。
【0011】
その際、水位に関わりなく絶えず濾過が行われるので、膜支持体の表面に濾過膜を配置した平板状膜カートリッジを分離膜とする膜分離装置にあっては、濾過膜は膜支持体に張りついた状態にあり、従来の濾過膜の膨らみに起因する疲労破断の問題は生じない。
【0012】
濾過方式は、透過水導出系を通じて分離膜の透過側に吸引圧を作用させる吸引濾過方式であっても、活性汚泥混合液の水頭を濾過駆動圧とする重力濾過方式であってもよい。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照しながら説明する。
図1に示した第1実施形態における水処理装置は、流入する原水1を前処理する前処理設備2と、前処理設備2に原水供給系3を介して連通した流量調整槽4と、流量調整槽4に原水供給系5を介して連通し、内部に膜分離装置6を設置した生物処理槽7と、膜分離装置6に透過水導出系8を介して連通した処理水槽9と、生物処理槽7に汚泥移送系10を介して連通した汚泥貯溜槽11とを備えている。処理水槽9には、放流路に至る放流管12が開口し、汚泥貯溜槽11には、汚泥引抜管13が開口している。
【0014】
詳細には、前処理設備2はスクリーン2aと夾雑物や砂を貯溜する夾雑物貯溜槽2bとを有している。
原水供給系3は、スクリーン透過側の夾雑物貯溜槽2bの内部で一端が開口し、他端が流量調整槽4の内部で開口した原水供給管3aと、この原水供給管3aに介装された原水供給ポンプ3bとからなる。
【0015】
原水供給系5は、流量調整槽4の内部で一端が開口し、他端が生物処理槽7の内部で開口した原水供給管5aと、この原水供給管5aに介装された原水供給ポンプ5bとからなる。
【0016】
生物処理槽7には、槽内の活性汚泥混合液14の水位を検知するレベル計15が設けられている。
膜分離装置6は、活性汚泥混合液14中に浸漬設置されていて、図2にも示したように、上下が開口した箱枠状のケース16の内部に平板状膜カートリッジ17を、膜面が上下方向に沿うように、かつ適当膜間隙(6〜10mm)をおいて配列しており、膜カートリッジ17の下方に、槽外のブロワ18やコンプレッサなどの給気源に給気管19を介して連通する散気装置20を配設している。散気装置20は複数の散気孔20aを有している。
【0017】
膜カートリッジ17は、濾板17aの表裏各面に有機濾過膜17bを配置し、濾板17aと濾過膜17bとの間、および濾板17aの内部に形成された透過液流路に連通する透過水ノズル17cを濾板17aに形成したものであり、各膜カートリッジ17の透過水ノズル17cにチューブ21を介して連通する集水管22がケース16に取り付けて設けられている。
【0018】
透過水導出系8は、膜分離装置6の集水管22に一端において連通し、他端が処理水槽9内に開口し、ポンプ装置23を介装した透過水導出管24と、透過水導出管24におけるポンプ装置23の吐出側に弁装置25を介して連通し、給気管19の管路途中に導かれた返送管26とを有している。また、弁装置25と前出のレベル計15とに電気的に接続して、レベル計15からの電気信号に応じて弁装置25を開閉操作する制御装置27を有している。
【0019】
汚泥移送系10は、生物処理槽7内の下部で一端が開口し、他端が汚泥貯溜槽11の内部で開口した汚泥移送管10aと、この汚泥移送管10aに設けられた汚泥ポンプ(好ましくはエアリフトポンプ)10b,弁装置10cとからなる。
【0020】
上記した構成における作用を説明する。
原水1は前処理設備2に流入し、原水1中の夾雑物はスクリーン2aにより分離されるとともに砂等は夾雑物貯溜槽2bで沈降して残留し、端部の原水が原水供給系3によって流量調整槽4へ送られる。
【0021】
流量調整槽4に流入した原水1は貯溜されつつ、原水供給系5によって生物処理槽7へ送られる。
生物処理槽7では、流量調整槽4からの原水1が流入し、散気装置20の各散気孔20aより曝気空気が噴出する状態において、原水1中のBODが活性汚泥により酸化分解される。
【0022】
このとき、膜分離装置6のケース16の内部において、曝気空気の気泡流とそれより生起された上昇液流とが膜カートリッジ17,17間の間隙を上向きに通過し、それにより濾過膜17bの膜面が洗浄され、濃度分極が防止される状態において、ポンプ装置23より作用する吸引圧によって、活性汚泥混合液14が濾過膜17bの膜面で濾過され、膜面を透過した透過水28が透過水導出管24の内部に流入する。
【0023】
またこのとき、活性汚泥混合液14の水位がレベル計15によって測定され、測定値が電気信号として制御装置27に送られていて、通常水位を示す電気信号が送られている間は、透過水28は透過水導出管24を通じて処理水槽9へ送られる。そして、適宜に、放流管12を通じて放流される。
【0024】
一方、所定の下限水位LLを示す電気信号が送られると、制御装置27により弁装置25が開閉操作されて返送管26側が開放され、透過水28は返送管26,給気管19を通じて散気装置20へと送られ、散気孔20aを通じて生物処理槽7の内部に流入する。
【0025】
その後に、活性汚泥混合液14の水位が上昇して、レベル計15によって、所定の上方水位HLを示す電気信号が送られると、制御装置27により弁装置25が開閉操作されて返送管26側が閉塞され、透過水28は処理水槽9へ送られる。
【0026】
このようにして、生物処理槽7内の活性汚泥混合液14の水位が所定の下限水位LLに低下する都度、透過水28によって散気装置20が洗浄されるため、散気装置20の閉塞は生じにくく、それに起因する膜カートリッジ17の膜面への堆積物も生じにくい。
【0027】
その際に、活性汚泥混合液14は所定の下限水位LLより低下することがないので、膜カートリッジ17が露出することはなく、かつ膜カートリッジ17で絶えず濾過が行われるため、濾過膜17bは濾板17aに張りついた状態にあり、従来の濾過膜の膨らみに起因する疲労破断の問題は生じない。
【0028】
生物処理槽7内の底部に蓄積してくる汚泥29は適宜に汚泥移送系10により汚泥貯溜槽11へと移送され、汚泥引抜管13を通じて引き抜かれる。
図3に示した第2実施形態における水処理装置は、第1実施形態のものとほぼ同様の構成を有している。
【0029】
ただし、膜透過水導出管24はポンプ装置を介装することなく、処理水槽9内において、活性汚泥混合液15の所定の下限水位LLに対応する位置(膜カートリッジ17の上端よりやや高い位置でもある)で開口していて、生物処理槽7内で、活性汚泥混合液15の水頭を濾過駆動圧として重力濾過が行われ、下限水位LLで濾過停止するようになっている。
【0030】
このような装置構成によれば、重力濾過による透過水28は透過水導出管24を通じて処理水槽9に導出され、処理水槽9内の透過水28が、活性汚泥混合液15の水位に応じて、返送管30を通じて曝気装置20へ送り込まれる。この場合も上記と同様にして、散気装置20の閉塞、膜カートリッジ17の膜面への堆積物、濾過膜17bの疲労を防止できる。
【0031】
図4に示した第3実施形態における水処理装置は、第2実施形態のものとほぼ同様の構成を有している。
ただし、生物処理槽7は、原水供給管5aが開口する脱窒部7aと、脱窒部7aに連通する硝化部7bとに区分されていて、硝化部7bに膜分離装置6が設置されている。そして、脱窒部7aと硝化部7bとの間で原水流入量の2〜5倍程度の活性汚泥混合液14を循環する循環系32が設けられ、硝化部7bにレベル計15が設けられている。
【0032】
このような装置構成によれば、第2実施形態のものと同様の作用効果が得られるうえに、高い窒素除去効果が得られる。
脱窒部7aと硝化部7bとでバランスがとれるようであれば、レベル計15は脱窒部7aと硝化部7bのいずれに設けてもよい。
【0033】
このような、窒素除去を目的とした装置構成を、第1実施形態の水処理装置に適用してもよい。
さらに、図5に示したように、生物処理槽7内の活性汚泥混合液14を流量調整槽4に導く越流路7cを設け、流量調整槽4にレベル計15を設けて、生物処理槽7内の水位は一定に維持し、流量調整槽4内の所定の下限水位LLと所定の上方水位HLとにおいて、透過水28の注入を開始し、停止するようにしても、上記した各実施形態におけるのと同様の効果が得られる。
【0034】
膜分離装置6としては、上記したような有機濾過膜を有した平板状膜カートリッジタイプのものが、濾過膜の疲労、散気装置の閉塞を防止できるという本発明の利点を有効に利用できるが、管状セラミック膜や中空糸状膜等、他の形状や材料からなる膜を備えたタイプの膜分離装置を設置しても、散気装置の閉塞を防止できるという利点を利用できる。
【0035】
なお、上記した各実施形態は、本発明の特徴的構成である生物処理槽7と透過水導出系8との例示を目的とするものであり、本発明の範囲を逸脱しない範囲で種々変更可能である。
【0036】
【発明の効果】
以上のように、本発明の方法によれば、活性汚泥混合液が所定の下限水位に低下する都度、透過水によって曝気装置を洗浄することになるので、曝気装置の閉塞および分離膜の膜面への堆積を防止することができる。したがって、曝気以外の手段によって膜洗浄する頻度を低減することができ、水逆洗を省略して、薬液洗浄だけで対応することも可能である。
【0037】
その際、水位に関わりなく絶えず濾過が行われるので、膜支持体の表面に濾過膜を配置した平板状膜カートリッジを有した膜分離装置にあっては、濾過膜は膜支持体に張りついた状態にあり、従来の濾過膜の膨らみに起因する疲労破断の問題は生じない。したがって、膜寿命は長くなる。
【図面の簡単な説明】
【図1】本発明の第1実施形態における膜分離装置を備えた水処理装置の運転方法を説明する装置構成図である。
【図2】膜分離装置の全体構成を示した斜視図である。
【図3】本発明の第2実施形態における膜分離装置を備えた水処理装置の運転方法を説明する装置構成図である。
【図4】本発明の第3実施形態における膜分離装置を備えた水処理装置の運転方法を説明する装置構成図である。
【図5】本発明の第4実施形態における膜分離装置を備えた水処理装置の運転方法を説明する装置構成図である。
【図6】従来の膜分離装置を備えた水処理装置における処理フローを示したブロック図である。
【符号の説明】
1 原水
6 膜分離装置
7 生物処理槽
8 透過水導出系
9 処理水槽
14 活性汚泥混合液
15 レベル計
17 膜カートリッジ(分離膜)
17a 濾板
17b 濾過膜
20 曝気装置
26 返送管
27 制御装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for operating a water treatment apparatus equipped with a membrane separation device that performs activated sludge treatment and membrane separation on organic sewage, sewage, and the like that have a large amount of water fluctuation.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a membrane separation activated sludge treatment that treats organic sewage, sewage, etc. (hereinafter referred to as sewage) using a membrane is known. In this process, usually, as shown in FIG. 6, the inflowing sewage 41 is removed in the pretreatment facility 42, and then stored in the flow rate adjustment tank 43 and sent to the aeration tank 44 at a constant flow rate. The organic substance in the sewage 41 is decomposed and removed by activated sludge, and denitrified as necessary. On the other hand, the activated sludge mixed liquid in the tank is filtered by a membrane separator 45 installed in the tank and permeated through the membrane. 46 is led out and discharged through the treated water tank 47. At this time, the excess sludge 48 is continuously or intermittently extracted and stored in the sludge storage tank 49 so that the activated sludge concentration in the aeration tank 44 does not become extremely high.
[0003]
Such membrane-separated activated sludge treatment has begun to spread widely since the quality of treated water is stable and system maintenance is easy.
[0004]
[Problems to be solved by the invention]
However, the submerged membrane separation device is usually susceptible to the influence of the aeration device because the membrane is disposed above the aeration device so that the bubble flow of the aeration is used for cleaning the membrane surface and generating the liquid flow. .
[0005]
In other words, if the aeration tube is used to uniformly aerate the air with an appropriate amount of air, the membrane surface is evenly cleaned and the filtration is stable, but if the aeration tube is clogged, deposits are deposited on the membrane surface immediately above it. Is likely to occur. In this regard, even if continuous aeration is performed, air is not always ejected uniformly from all the diffuser holes. For example, if the diffuser pipes are not arranged horizontally, there are diffuser holes with a large amount of ejection. On the other hand, the air diffuser located at the opposite electrode has a negative pressure, and there is a local phenomenon such as sludge entering the air diffuser through the air diffuser, and the sludge that has entered the air diffuser is Within a long period of time, there is a problem in that it is dried by the supplied air, becomes a scab, and the diffuser tube becomes clogged.
[0006]
In addition, even when filtration is stopped to balance the amount of influent sewage and the amount of filtration, since a slight filtration is performed due to the pressure difference caused by aeration, a separation membrane with an organic filtration membrane disposed on the surface of the filter plate is used. In a membrane separation apparatus arranged in a row, the filtrate may stay on the permeate side of the filtration membrane, and the filtration membrane may swell. It is easy to get tired by vibration and may break.
[0007]
An object of the present invention is to solve the above-mentioned problems and to prevent blockage of an aeration device (aeration device) and fatigue breakage of a filtration membrane.
[0008]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention performs activated sludge treatment of water to be treated flowing into a biological treatment tank in a state where aeration air is ejected from an air diffuser communicating with an air supply source via an air supply pipe. with the activated sludge mixture in the tank, diffusing over the air device is filtered by membrane separation apparatus arranged EXTRA-permeate outlet communicating with the permeate that has passed through the membrane surface to the permeate side of the separation membrane When the activated sludge mixed liquid in the tank is at the normal water level, the permeated water is sent to the treated water tank through the permeated water deriving system, and the water level of the activated sludge mixed liquid in the tank is set to a predetermined level. When the water level drops to the lower limit water level, the permeated water derived through the permeated water deriving system is injected into the tank along the supply pipe by the return pipe and returned to the tank together with the aerated air ejected from the diffuser , and then the activated sludge mixed liquid Water level rises to a certain upper water level And when, to provide a method of operating as the membrane separation unit water treatment device provided with a stop injection of permeate.
[0009]
The above operating method can be performed more advantageously in a water treatment apparatus equipped with a membrane separation device using a flat membrane cartridge having a filtration membrane on the surface of a membrane support as a separation membrane.
[0010]
With the above arrangement, the active each time the water level of the sludge mixture is reduced to a predetermined lower limit level, the permeate, is removed to the outside of the diffuser diffusing the gas apparatus sludge adhering to the inside or diffusing pores of the gas apparatus, residual since sludge can anti-sticking as wet state, dusting can be prevented clogging of a gas device, thereby preventing deposition on the membrane surface of the separation membrane.
[0011]
At that time, since the filtration is continuously performed regardless of the water level, in a membrane separation apparatus using a flat membrane cartridge in which a filtration membrane is disposed on the surface of the membrane support as a separation membrane, the filtration membrane is stretched on the membrane support. In this state, there is no problem of fatigue fracture due to the swelling of the conventional filter membrane.
[0012]
The filtration method may be a suction filtration method in which a suction pressure is applied to the permeation side of the separation membrane through a permeate discharge system, or a gravity filtration method in which the head of the activated sludge mixed liquid is used as a filtration driving pressure.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
The water treatment apparatus according to the first embodiment shown in FIG. 1 includes a pretreatment facility 2 for pretreatment of inflowing raw water 1, a flow rate adjusting tank 4 communicated with the pretreatment facility 2 via a raw water supply system 3, and a flow rate. A biological treatment tank 7 communicating with the adjustment tank 4 via the raw water supply system 5 and having a membrane separation device 6 installed therein; a treatment water tank 9 communicating with the membrane separation apparatus 6 via the permeate discharge system 8; A sludge storage tank 11 communicated with the treatment tank 7 via a sludge transfer system 10 is provided. In the treated water tank 9, a discharge pipe 12 reaching the discharge channel is opened, and in the sludge storage tank 11, a sludge extraction pipe 13 is opened.
[0014]
Specifically, the pretreatment facility 2 includes a screen 2a and a foreign matter storage tank 2b for storing foreign matter and sand.
The raw water supply system 3 is interposed in a raw water supply pipe 3a having one end opened inside the foreign substance storage tank 2b on the screen transmission side and the other end opened inside the flow rate adjusting tank 4, and the raw water supply pipe 3a. And raw water supply pump 3b.
[0015]
The raw water supply system 5 has a raw water supply pipe 5a having one end opened inside the flow rate adjusting tank 4 and the other end opened inside the biological treatment tank 7, and a raw water supply pump 5b interposed in the raw water supply pipe 5a. It consists of.
[0016]
The biological treatment tank 7 is provided with a level meter 15 for detecting the water level of the activated sludge mixed liquid 14 in the tank.
The membrane separation device 6 is immersed in the activated sludge mixed solution 14 and, as shown in FIG. 2, a plate-like membrane cartridge 17 is placed inside a box-shaped case 16 opened at the top and bottom. Are arranged along the vertical direction and with an appropriate membrane gap (6 to 10 mm), and below the membrane cartridge 17 is connected to an air supply source such as a blower 18 outside the tank or a compressor via an air supply pipe 19. A diffuser device 20 communicating with each other is provided. The air diffuser 20 has a plurality of air holes 20a.
[0017]
The membrane cartridge 17 has organic filtration membranes 17b disposed on the front and back surfaces of the filter plate 17a, and is connected to the permeate channel formed between the filter plate 17a and the filtration membrane 17b and inside the filter plate 17a. A water nozzle 17 c is formed on the filter plate 17 a, and a water collecting pipe 22 communicating with the permeated water nozzle 17 c of each membrane cartridge 17 through the tube 21 is attached to the case 16.
[0018]
The permeated water lead-out system 8 communicates at one end with the water collecting pipe 22 of the membrane separation device 6, the other end opens into the treated water tank 9, and a permeated water lead-out pipe 24 with a pump device 23 interposed therebetween, and the permeated water lead-out pipe. 24 has a return pipe 26 that communicates with the discharge side of the pump device 23 through a valve device 25 and that is led in the middle of the air supply pipe 19. Further, a control device 27 is provided which is electrically connected to the valve device 25 and the above level meter 15 and opens and closes the valve device 25 in accordance with an electric signal from the level meter 15.
[0019]
The sludge transfer system 10 includes a sludge transfer pipe 10a having one end opened in the lower part of the biological treatment tank 7 and the other end opened inside the sludge storage tank 11, and a sludge pump provided in the sludge transfer pipe 10a (preferably Is an air lift pump) 10b and a valve device 10c.
[0020]
The operation of the above configuration will be described.
The raw water 1 flows into the pretreatment facility 2, the contaminants in the raw water 1 are separated by the screen 2 a and the sand etc. settles and remains in the foreign matter storage tank 2 b, and the raw water at the end is fed by the raw water supply system 3. It is sent to the flow rate adjustment tank 4.
[0021]
The raw water 1 flowing into the flow rate adjusting tank 4 is stored and sent to the biological treatment tank 7 by the raw water supply system 5.
In the biological treatment tank 7, the raw water 1 from the flow rate adjustment tank 4 flows in, and the aerated air is ejected from the air diffuser holes 20 a of the air diffuser 20, so that the BOD in the raw water 1 is oxidized and decomposed by the activated sludge.
[0022]
At this time, in the case 16 of the membrane separation device 6, the bubble flow of the aerated air and the rising liquid flow generated thereby pass upward through the gap between the membrane cartridges 17 and 17, and thereby the filtration membrane 17b In a state where the membrane surface is washed and concentration polarization is prevented, the activated sludge mixed liquid 14 is filtered by the membrane surface of the filtration membrane 17b by the suction pressure acting from the pump device 23, and the permeated water 28 that has permeated the membrane surface is obtained. It flows into the permeated water outlet pipe 24.
[0023]
At this time, the water level of the activated sludge mixed liquid 14 is measured by the level meter 15, and the measured value is sent as an electric signal to the control device 27, while the electric signal indicating the normal water level is being sent. 28 is sent to the treated water tank 9 through the permeated water outlet tube 24. And it discharges through the discharge pipe 12 suitably.
[0024]
On the other hand, when an electric signal indicating a predetermined lower limit water level LL is sent, the control device 27 opens and closes the valve device 25 to open the return pipe 26 side, and the permeated water 28 is diffused through the return pipe 26 and the air supply pipe 19. 20 and flows into the biological treatment tank 7 through the air holes 20a.
[0025]
Thereafter, when the water level of the activated sludge mixed liquid 14 rises and an electric signal indicating a predetermined upper water level HL is sent by the level meter 15, the valve device 25 is opened and closed by the control device 27, and the return pipe 26 side is opened. The permeated water 28 is blocked and sent to the treated water tank 9.
[0026]
In this way, every time the water level of the activated sludge mixed liquid 14 in the biological treatment tank 7 is lowered to the predetermined lower limit water level LL, the diffuser 20 is washed by the permeated water 28. It is difficult to occur, and deposits on the film surface of the film cartridge 17 due to this hardly occur.
[0027]
At that time, since the activated sludge mixed liquid 14 does not fall below the predetermined lower limit water level LL, the membrane cartridge 17 is not exposed and the membrane cartridge 17 is continuously filtered. There is no problem of fatigue rupture due to the swelling of the conventional filter membrane because it is stuck to the plate 17a.
[0028]
The sludge 29 accumulated at the bottom in the biological treatment tank 7 is appropriately transferred to the sludge storage tank 11 by the sludge transfer system 10 and extracted through the sludge extraction pipe 13.
The water treatment apparatus according to the second embodiment shown in FIG. 3 has a configuration substantially similar to that of the first embodiment.
[0029]
However, the membrane permeated water outlet pipe 24 is not provided with a pump device, and is located in the treated water tank 9 at a position corresponding to the predetermined lower limit water level LL of the activated sludge mixed liquid 15 (even at a position slightly higher than the upper end of the membrane cartridge 17). In the biological treatment tank 7, gravity filtration is performed using the head of the activated sludge mixed liquid 15 as a filtration driving pressure, and the filtration is stopped at the lower limit water level LL.
[0030]
According to such an apparatus configuration, the permeated water 28 by gravity filtration is led out to the treated water tank 9 through the permeated water outlet pipe 24, and the permeated water 28 in the treated water tank 9 depends on the water level of the activated sludge mixed liquid 15. It is sent to the aeration device 20 through the return pipe 30. In this case as well, it is possible to prevent the air diffuser 20 from being blocked, deposits on the membrane surface of the membrane cartridge 17, and fatigue of the filtration membrane 17b.
[0031]
The water treatment apparatus in the third embodiment shown in FIG. 4 has a configuration substantially similar to that of the second embodiment.
However, the biological treatment tank 7 is divided into a denitrification section 7a where the raw water supply pipe 5a is opened and a nitrification section 7b communicating with the denitrification section 7a, and the membrane separation device 6 is installed in the nitrification section 7b. Yes. And the circulation system 32 which circulates the activated sludge mixed liquid 14 about 2 to 5 times the amount of raw water inflow between the denitrification part 7a and the nitrification part 7b is provided, and the level meter 15 is provided in the nitrification part 7b. Yes.
[0032]
According to such an apparatus configuration, the same effects as those of the second embodiment can be obtained, and a high nitrogen removing effect can be obtained.
As long as the denitrification unit 7a and the nitrification unit 7b are balanced, the level meter 15 may be provided in either the denitrification unit 7a or the nitrification unit 7b.
[0033]
Such an apparatus configuration for the purpose of removing nitrogen may be applied to the water treatment apparatus of the first embodiment.
Further, as shown in FIG. 5, an overflow channel 7 c that guides the activated sludge mixed liquid 14 in the biological treatment tank 7 to the flow rate adjustment tank 4 is provided, and a level meter 15 is provided in the flow rate adjustment tank 4, thereby providing a biological treatment tank. 7, the water level in the flow rate adjusting tank 4 is maintained constant, and the injection of the permeated water 28 is started and stopped at the predetermined lower limit water level LL and the predetermined upper water level HL in the flow rate adjusting tank 4. The same effect as in the embodiment can be obtained.
[0034]
As the membrane separation device 6, a flat membrane cartridge type having an organic filtration membrane as described above can effectively utilize the advantages of the present invention that can prevent fatigue of the filtration membrane and blockage of the diffuser. Even if a membrane separation device of a type including a membrane made of another shape or material, such as a tubular ceramic membrane or a hollow fiber membrane, is installed, the advantage that the air diffuser can be blocked can be utilized.
[0035]
Each of the above-described embodiments is intended to exemplify the biological treatment tank 7 and the permeated water lead-out system 8 which are characteristic configurations of the present invention, and various modifications can be made without departing from the scope of the present invention. It is.
[0036]
【The invention's effect】
As described above, according to the method of the present invention, every time the activated sludge mixed liquid is lowered to the predetermined lower limit water level, the aeration apparatus is washed with permeated water. It is possible to prevent deposition on the surface. Therefore, it is possible to reduce the frequency of membrane cleaning by means other than aeration, and it is possible to omit only the water backwashing and cope with the chemical cleaning alone.
[0037]
At that time, since the filtration is continuously performed regardless of the water level, in the membrane separation apparatus having the flat membrane cartridge in which the filtration membrane is arranged on the surface of the membrane support, the filtration membrane sticks to the membrane support. The problem of fatigue fracture due to the swelling of the conventional filtration membrane is not caused. Therefore, the film life is increased.
[Brief description of the drawings]
FIG. 1 is an apparatus configuration diagram illustrating a method for operating a water treatment apparatus including a membrane separation apparatus according to a first embodiment of the present invention.
FIG. 2 is a perspective view showing the overall configuration of the membrane separation apparatus.
FIG. 3 is an apparatus configuration diagram illustrating an operation method of a water treatment apparatus including a membrane separation apparatus according to a second embodiment of the present invention.
FIG. 4 is an apparatus configuration diagram illustrating an operation method of a water treatment apparatus including a membrane separation apparatus according to a third embodiment of the present invention.
FIG. 5 is an apparatus configuration diagram illustrating an operation method of a water treatment apparatus including a membrane separation apparatus according to a fourth embodiment of the present invention.
FIG. 6 is a block diagram showing a processing flow in a water treatment apparatus equipped with a conventional membrane separation apparatus.
[Explanation of symbols]
1 Raw Water 6 Membrane Separator 7 Biological Treatment Tank 8 Permeate Derivation System 9 Treated Water Tank
14 Activated sludge mixture
15 level meter
17 Membrane cartridge (separation membrane)
17a filter plate
17b Filtration membrane
20 Aeration equipment
26 Return tube
27 Control unit

Claims (2)

給気源に給気管を介して連通する散気装置から曝気空気が噴出する状態において、生物処理槽の内部に流入する被処理水を活性汚泥処理するとともに、槽内の活性汚泥混合液を、散気装置の上方に外圧型分離膜を配置した膜分離装置により濾過し、膜面を透過した透過水を分離膜の透過側に連通した透過水導出系を通じて槽外へ導出するに際し、槽内の活性汚泥混合液の水位が通常水位である間は透過水導出系を通じて透過水を処理水槽へ送り、槽内の活性汚泥混合液の水位が所定の下限水位に低下した時に、透過水導出系を通じて導出する透過水を、返送管により給気管の途中に注入して散気装置から噴出する曝気空気とともに槽内に返送し、その後に活性汚泥混合液の水位が所定の上方水位まで上昇した時に、透過水の注入を停止することを特徴とする膜分離装置を備えた水処理装置の運転方法。 In the state in which aeration air is ejected from an air diffuser communicating with an air supply source through an air supply pipe, the water to be treated flowing into the biological treatment tank is treated with activated sludge , and the activated sludge mixed liquid in the tank is When the permeated water filtered through the membrane separator with the external pressure type separation membrane above the diffuser and permeated through the membrane surface is led out of the tank through the permeate outlet system connected to the permeate side of the separation membrane , While the water level of the activated sludge mixed liquid is normal, the permeated water derivation system is used when the permeated water is sent to the treated water tank through the permeated water deriving system and the water level of the activated sludge mixed liquid in the tank is lowered to the predetermined lower limit water level. When the permeated water derived through the air is injected into the air supply pipe through the return pipe and returned to the tank together with the aerated air ejected from the diffuser , the water level of the activated sludge mixture rises to a predetermined upper water level. Stop permeate injection How the operation of the water treatment apparatus having a membrane separation device according to claim. 分離膜として、膜支持体の表面に濾過膜を設けた平板状膜カートリッジが使用されたことを特徴とする請求項1記載の膜分離装置を備えた水処理装置の運転方法。  The operation method of the water treatment apparatus provided with the membrane separation apparatus according to claim 1, wherein a flat membrane cartridge having a filtration membrane on the surface of the membrane support is used as the separation membrane.
JP25904898A 1998-09-14 1998-09-14 Operation method of water treatment apparatus equipped with membrane separator Expired - Fee Related JP3933320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25904898A JP3933320B2 (en) 1998-09-14 1998-09-14 Operation method of water treatment apparatus equipped with membrane separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25904898A JP3933320B2 (en) 1998-09-14 1998-09-14 Operation method of water treatment apparatus equipped with membrane separator

Publications (2)

Publication Number Publication Date
JP2000084554A JP2000084554A (en) 2000-03-28
JP3933320B2 true JP3933320B2 (en) 2007-06-20

Family

ID=17328618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25904898A Expired - Fee Related JP3933320B2 (en) 1998-09-14 1998-09-14 Operation method of water treatment apparatus equipped with membrane separator

Country Status (1)

Country Link
JP (1) JP3933320B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101842450B1 (en) * 2018-01-04 2018-05-14 해성엔지니어링 주식회사 Continuous circulating wastewater reusing system using ceramic membrane

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4530621B2 (en) * 2003-04-07 2010-08-25 株式会社クボタ Cleaning method for air diffuser
JP5080739B2 (en) * 2005-12-26 2012-11-21 三菱レイヨン株式会社 Activated sludge treatment equipment
JP2012152669A (en) * 2011-01-24 2012-08-16 Kubota Corp Method of operating membrane separation device
KR101367229B1 (en) 2012-01-03 2014-02-25 (주)필로스 Operating method of advanced treatment process use of submerged membrane and advanced treatment apparatus thereof
CN112744908B (en) * 2020-12-14 2022-08-12 安徽国星生物化学有限公司 Aeration biological filter bed capable of knowing sewage treatment effect in real time based on 5G technology

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101842450B1 (en) * 2018-01-04 2018-05-14 해성엔지니어링 주식회사 Continuous circulating wastewater reusing system using ceramic membrane

Also Published As

Publication number Publication date
JP2000084554A (en) 2000-03-28

Similar Documents

Publication Publication Date Title
KR100225776B1 (en) Membrane device and membrane treating device
US5651889A (en) Sludge treatment membrane apparatus
KR101233775B1 (en) Apparatus having a bioreactor and membrane filtration module for treatment of an incoming fluid
JP2008229628A (en) Water treatment apparatus and water treatment method
JPH07155758A (en) Waste water treating device
JP3933320B2 (en) Operation method of water treatment apparatus equipped with membrane separator
JPH09117647A (en) Operation of air diffusion device
JPH07256282A (en) Membrane separation small-sized combined purifying tank
JP3773360B2 (en) Septic tank with membrane separation
JP2001029751A (en) Separation apparatus and solid-liquid separation method
JP3257933B2 (en) Chemical cleaning method for membrane cartridge
JP4046445B2 (en) Wastewater treatment method
JP3659833B2 (en) Operation method of multi-stage submerged membrane separator
JPH11197685A (en) Method for treating membrane-separated activated sludge
JP3442353B2 (en) Maintenance management method of immersion type membrane separation device
JP2000084555A (en) Method for operating water treating apparatus having membrane separator
JP3654799B2 (en) Nitrogen-containing wastewater treatment equipment
JP2003033764A (en) Method and apparatus for washing filtration body by using ozone
JP4023959B2 (en) High-concentration wastewater treatment method
JP3160609B2 (en) Membrane equipment and membrane treatment equipment
JPH08141566A (en) Wastewater treatment apparatus
JP3832969B2 (en) Operation method of membrane separator
JP2003305313A (en) Solid-liquid separation method and apparatus therefor
JPH09308882A (en) Water treatment apparatus
JPH07275669A (en) Membrane separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070313

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees