JP3932494B2 - Amorphous alloy catalyst for methanation reaction of carbon monoxide contained in hydrocarbon reformed gas, amorphous alloy catalyst for methanation reaction used in hydrocarbon reformed gas, and method of use thereof - Google Patents

Amorphous alloy catalyst for methanation reaction of carbon monoxide contained in hydrocarbon reformed gas, amorphous alloy catalyst for methanation reaction used in hydrocarbon reformed gas, and method of use thereof Download PDF

Info

Publication number
JP3932494B2
JP3932494B2 JP08724197A JP8724197A JP3932494B2 JP 3932494 B2 JP3932494 B2 JP 3932494B2 JP 08724197 A JP08724197 A JP 08724197A JP 8724197 A JP8724197 A JP 8724197A JP 3932494 B2 JP3932494 B2 JP 3932494B2
Authority
JP
Japan
Prior art keywords
amorphous alloy
atomic
catalyst
reaction
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08724197A
Other languages
Japanese (ja)
Other versions
JPH10263400A (en
Inventor
功二 橋本
浩樹 幅崎
英二 秋山
波萍 張
健 吉田
倫昭 山崎
宏治 石井
駿平 河野
Original Assignee
株式会社石井鐵工所
功二 橋本
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社石井鐵工所, 功二 橋本 filed Critical 株式会社石井鐵工所
Priority to JP08724197A priority Critical patent/JP3932494B2/en
Publication of JPH10263400A publication Critical patent/JPH10263400A/en
Application granted granted Critical
Publication of JP3932494B2 publication Critical patent/JP3932494B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明は、炭化水素改質ガスの中に含まれる一酸化炭素および二酸化炭素と水素とを反応させてメタンに変換し高エネルギー化すると共に有害な一酸化炭素を無害化する高活性アモルファス合金触媒とその触媒の用法に関するものである。
【0002】
【従来の技術】
炭化水素改質ガスは、例えば都市ガスなどに用いられているガスで、ナフサやLPGなどの石油系原料や石炭ガス(COG)などの石炭系原料等の原料炭化水素ガスを、触媒を用いた水蒸気改質等の改質によって製造されている。その炭化水素改質ガスは、一般的に、一酸化炭素、二酸化炭素、水素、メタンなどの複数のガスを含んだ混合ガスである。
【0003】
有害な一酸化炭素を含む炭化水素改質ガスは、その使用に当り取分け注意を必要とするため、従来は、鉄−クロム系の高温変成用触媒や銅−亜鉛系の低温変成用触媒等の触媒を用いて有害な一酸化炭素を二酸化炭素へ転化変成する一酸化炭素変成法によって無害化していた。
【0004】
また、炭化水素改質ガスの中には、既に酸素と結合している一酸化炭素と二酸化炭素が存在し、その存在は、ガス体積当りのエネルギーを低くする原因となっている。ガス体積当りの高エネルギー化が図れるメタン化、つまり、一酸化炭素と水素を反応させてメタンを生成する一酸化炭素のメタン化、或は二酸化炭素と水素を反応させてメタンを生成する二酸化炭素のメタン化については各種研究が進められており、その一酸化炭素のメタン化用触媒や、二酸化炭素のメタン化用触媒もかなり広く研究されている。
【0005】
例えば、一酸化炭素のメタン化触媒としては、アルミナにルテニウムを担持した触媒などが知られており、二酸化炭素のメタン化触媒としては、本願出願人の一人が関与する特願平8−204543号の発明や特願平9−51598号の発明がある。本願出願人の一人が関与する発明は、アモルファス合金に酸化還元処理を施したものの中に、二酸化炭素と水素の反応で大気圧でも高速にメタンを生成する触媒を見出して出願したものである。
【0006】
特願平8−204543号の発明は、以下の二つの発明からなる。
【0007】
(1)8原子%以下のZrと希土類元素であるY、La、Ce、Nd、Sm、Gd、Tb、Dyの少なくとも1種5原子%以下との合計で80原子%以下含みCo及びNiの少なくとも1種を実質的残部とするアモルファス合金を前駆体とし、これに酸化還元処理を施すことを特徴とする二酸化炭素のメタン化用アモルファス合金触媒。
【0008】
(2)Ti、Nb、Taの少なくとも1種と8原子%以上のZrと希土類元素であるY、La、Ce、Nd、Sm、Gd、Tb、Dyの少なくとも1種5原子%以下との合計で80原子%以下含みCoおよびNiの少なくとも1種を実質的残部とするアモルファス合金を前駆体とし、これに酸化還元処理を施すことを特徴とする二酸化炭素のメタン化用アモルファス合金触媒。
【0009】
特願平9−51598号の発明は、以下の六つの発明からなる。
【0010】
(1)20原子%以上のZrと5原子%を越え15原子%以下の希土類元素であるY、La、Ce、Nd、Sm、Gd、Tb、Dyの群から選ばれる少なくとも1種との合計で80原子%以下含みCoおよびNiの少なくとも1種を実質的残部とするアモルファス合金を前駆体とし、これに酸化還元処理を施すことを特徴とする二酸化炭素のメタン化用アモルファス合金触媒。
【0011】
(2)Ti、Nb、Taの少なくとも1種と10原子%以上のZrとの合計で20原子%以上と希土類元素であるY、La、Ce、Nd、Sm、Gd、Tb、Dyの群から選ばれる少なくとも1種5原子%を越え15原子%以下との合計で80原子%以下含みCoおよびNiの少なくとも1種を実質的残部とするアモルファス合金を前駆体とし、これに酸化還元処理を施すことを特徴とする二酸化炭素のメタン化用アモルファス合金触媒。
【0012】
(3)20原子%以上のZrと15原子%以下のMgとの合計で80原子%以下含みCoおよびNiの少なくとも1種を実質的残部とするアモルファス合金を前駆体とし、これに酸化還元処理を施すことを特徴とする二酸化炭素のメタン化用アモルファス合金触媒。
【0013】
(4)Ti、Nb、Taの少なくとも1種と10原子%以上のZrとの合計で20原子%以上と15原子%以下のMgとの合計で80原子%以下を含みCoおよびNiの少なくとも1種を実質的残部とするアモルファス合金を前駆体とし、これに酸化還元処理を施すことを特徴とする二酸化炭素のメタン化用アモルファス合金触媒。
【0014】
(5)希土類元素であるY、La、Ce、Nd、Sm、Gd、Tb、Dyの群から選ばれる少なくとも1種とMgとの合計で15原子%以下と20原子%以上のZrとの合計で80原子%以下含みCoおよびNiの少なくとも1種を実質的残部とするアモルファス合金を前駆体とし、これに酸化還元処理を施すことを特徴とする二酸化炭素のメタン化用アモルファス合金触媒。
【0015】
(6)Ti、Nb、Taの少なくとも1種と10原子%以上のZrとの合計で20原子%以上と希土類元素であるY、La、Ce、Nd、Sm、Gd、Tb、Dyの群から選ばれる少なくとも1種とMgとの合計で15原子%以下との合計で80原子%以下含みCoおよびNiの少なくとも1種を実質的残部とするアモルファス合金を前駆体とし、これに酸化還元処理を施すことを特徴とする二酸化炭素のメタン化用アモルファス合金触媒。
【0016】
【発明が解決しようとする課題】
上述のように炭化水素改質ガスは、メタンのほか一酸化炭素、二酸化炭素、水素などを含み、既に酸素と結合している一酸化炭素および二酸化炭素が存在することが、ガス体積当りのエネルギーを低くしているだけでなく、有害な一酸化炭素の存在がその取り扱いに特に注意を必要とする。したがって、炭化水素改質ガスに含まれるすべての水素を一酸化炭素および二酸化炭素と反応させて、メタンに変えると共にその際に生じる水を除くことができれば、ガス体積当りのエネルギーは著しく上昇すると共に、有害な一酸化炭素は無害化され、かつ有用なメタンリッチガスを有する炭化水素改質ガスへ変換することができる。
【0017】
しかし上述した一酸化炭素変成法、一酸化炭素のメタン化、二酸化炭素のメタン化の従来技術は、個々のガスに対してそれ相応の成果を得られてはいるものの、例えば既存の触媒上での一酸化炭素と水素との反応は極めて遅いことが知られているように解決策の決定技術となっておらず、一酸化炭素、二酸化炭素、水素などが共存する混合ガスの炭化水素改質ガスに適用して有害な一酸化炭素を無害化し、かつ有用なメタンリッチガスへ変換できる技術は確立されていなかった。よって、炭化水素改質ガスに含まれている大量の一酸化炭素および二酸化炭素を迅速にメタンに変換することのできる高活性な触媒とその用法の出現が待たれていた。
【0018】
本発明は、上述の課題に鑑みてなされたもので、炭化水素改質ガスに含まれている水素を大気圧下で高速に一酸化炭素および二酸化炭素と反応させてメタンに変えると共にその際に生じる水を除いてガス体積当りの高エネルギー化を著しく上昇し、かつ有害な一酸化炭素を無害化する炭化水素改質ガスに含まれる一酸化炭素のメタン化反応用アモルファス合金触媒、炭化水素改質ガスに用いるメタン化反応用アモルファス合金触媒、及びその用法を提供するものである。
【0019】
【課題を解決するための手段】
第1の発明は、20原子%以上80原子%以下のZrを含みCoおよびNiの少なくとも1種を実質的残部とするアモルファス合金を前駆体とし、これに酸化還元処理を施すことを特徴とする炭化水素改質ガスに含まれる一酸化炭素のメタン化反応用アモルファス合金触媒である。
【0020】
第2の発明に係る炭化水素改質ガスに用いるメタン化反応用アモルファス合金触媒は、Ti、Nb、Taの少なくとも1種と10原子%以上のZrと合計で20原子%以上80原子%以下含みCoおよびNiの少なくとも1種を実質的残部とするアモルファス合金を前駆体とし、これに酸化還元処理を施してなるものである。
【0021】
第3の発明に係る炭化水素改質ガスに含まれる一酸化炭素のメタン化反応用アモルファス合金触媒は、20原子%以上のZrと希土類元素であるY、La、Ce、Nd、Sm、Gd、Tb、DyにMgを加えた群から選ばれる少なくとも1種15原子%以下との合計で80原子%以下含みCoおよびNiの少なくとも1種を実質的残部とするアモルファス合金を前駆体とし、これに酸化還元処理を施してなるものである。
【0022】
第4の発明に係る炭化水素改質ガスに用いるメタン化反応用アモルファス合金触媒は、Ti、Nb、Taの少なくとも1種と10原子%以上のZrと合計で20原子%以上と希土類元素であるY、La、Ce、Nd、Sm、Gd、Tb、DyにMgを加えた群から選ばれる少なくとも1種15原子%以下との合計で80原子%以下含みCoおよびNiの少なくとも1種を実質的残部とするアモルファス合金を前駆体とし、これに酸化還元処理を施してなるものである。
【0023】
第5の発明は、上記触媒を充填して形成した複数段の反応管と該複数段の反応管間を直列に接続する経路を設け、上記反応管内で上記触媒によるメタン化反応によって生成された水分を上記経路において冷却除去することを特徴とするメタン化反応用アモルファス合金触媒の用法である。
【0024】
【発明の実施の形態】
本発明の実施の形態を以下詳述する。
【0025】
本発明者らは長年にわたりアモルファス合金の性質の研究を行い、従来本発明者らが用いてきた鉄族金属−バルブメタルアモルファス合金および鉄族金属とZr、Ti、Nb、Taなどのバルブメタルからなるアモルファス合金に酸素との親和力が高い希土類元素あるいはMgを加えたアモルファス合金を作製し、これに酸化還元処理を施して形成した触媒は、一酸化炭素と水素の雰囲気で一酸化炭素が触媒に吸着し続けることによる触媒活性の低下を共存する二酸化炭素によって防止することができ、一酸化炭素を先行して全てメタンに変えると共に残余の水素は二酸化炭素と反応してメタンを生成するきわめて高い活性を備えた触媒であることを見いだし触媒に係る本発明を達成した。
【0026】
その触媒に係る本発明は、特許請求の範囲第1項ないし第4項から成るものであり、CoおよびNiの少なくとも1種とZrあるいはZrの一部をTa、Nb、Tiで置換したアモルファス合金、さらに担体として触媒活性に特に有効な正方晶二酸化ジルコニウム(化1)を安定化する希土類元素あるいはMgを添加したアモルファス合金に酸化還元処理を施して得られるアモルファス合金の酸化還元処理物質からなる炭化水素改質ガスに用いるメタン化反応用アモルファス合金触媒である。
【化1】
ZrO
【0027】
そして、その触媒は、上述のように一酸化炭素、二酸化炭素、水素などが共存する炭化水素改質ガスに作用し、一酸化炭素が触媒に吸着し続けることによる触媒活性の低下を共存する二酸化炭素によって防止することができるように形成したものである。
【0028】
次の表1に、これら第1ないし第4の発明に係る触媒の構成元素および含有率を示す。
【0029】
【表1】

Figure 0003932494
【0030】
一般的に、特定の化学反応に対する高い選択的触媒活性を備えた触媒を得るためには、アルミナ、チタニア、シリカなどセラミックスに白金族元素などを担持するよりは、有効元素を必要量含む合金を前駆体として用い酸化還元処理によって担持触媒に変える方が便利である。しかし、通常の方法で作られる結晶質金属の場合、多種多量の合金元素を添加すると、しばしば、科学的性質の異なる多相構造となることが多く、酸化還元処理を施しても所定の特性を備えることができない。
【0031】
これに対し、上記組成の本発明のアモルファス合金触媒は、構成元素が局在することを許さず所定の元素を均一に固溶している。これらのアモルファス合金を液体急冷法、スパッター法、メカニカルアロイイング法などを用いて作製し、酸化還元処理を施すと、従来では実現しなかった本発明のアモルファス合金固有の優れた触媒活性を備え、迅速に一酸化炭素をメタンに変え、残余の全ての水素が二酸化炭素をメタンに変換する高性能触媒が生じる。
【0032】
すなわち、大気圧で高速に一酸化炭素および二酸化炭素をメタンに変換するアモルファス合金触媒は、上記組成の合金に酸化還元処理を施して得られる本発明の触媒によって実現される。
【0033】
次に、本発明における各成分組成を限定する理由を述べる。NiおよびCoは本発明合金触媒の基礎となる元素であって、バルブメタルであるZrあるいはZrの一部を他のバルブメタルであるTa、Ti、Nbの1種以上と置換したものと共存してアモルファス構造を形成する元素である。また、NiおよびCoは活性元素として触媒反応に寄与する元素であり、Zrは二酸化ジルコニウム(化1)を生じてNiおよびCoに対する担体として働く必須元素である。したがって、本発明触媒のすべての請求項においてNiおよびCoの少なくとも1種は20原子%以上必要であるため他の元素の合計を80原子%以下とする。
【化1】
【0034】
Ti、Nb、TaはZrを置換してNiおよびCoとアモルファス構造を形成する有効元素であるが、酸化物となって担体として働くとき、触媒活性に対する二酸化ジルコニウム(化1)の作用を凌ぐことはないため第2の発明および第4の発明において10原子%以上のZrと共存することならびにアモルファス構造形成のために20原子%以上とする必要がある。
【化1】
【0035】
希土類元素およびMgは、特に触媒活性の高い担体として作用する正方晶二酸化ジルコニウム(化1)を安定化する元素であるが、一定量以上の添加は不要であり、また多量の添加はアモルファス合金作製を困難にするため、第3の発明および第4の発明においては15原子%以下とする。
【化1】
【0036】
また、NiおよびCoの一部を少量のFeで置換することは本発明の目的に何ら支障がない。
【0037】
次に、特許請求の範囲第5項に記載した本発明に係る触媒の用法について説明する。
【0038】
一酸化炭素および二酸化炭素と水素が反応してメタンと水を生成するメタン化反応は、よく知られているように発熱を伴うため、継続して反応させていると温度が上昇して反応に適したガス温度以上となって反応の効率が低下し、また、継続した反応は、反応が平衡状態となって反応の進行が低下し、更にメタン化反応によって生成された水の存在は、体積当たりのガスエネルギーを低下させている。
【0039】
これらの点に鑑みてなされた第5の発明は、触媒を充填した複数段の反応管を直列接続する経路において、メタン化反応によって生成した水を冷却除去する触媒の用法であり、発熱反応によって昇温したガスを元のメタン化反応に適した温度に戻し、生成された水の除去によって反応平衡を生成物側へ片寄らせて反応を促進し、かつ水の除去によってガスの体積当たりの高エネルギー化を達成するものである。
【0040】
図1に基づいて、本発明の触媒の用法の一例を詳述する。図中1は触媒、2はその触媒1を充填して形成した反応管、3は反応管2、2間を直列に接続する経路であり、その経路3には冷媒4によって冷却する冷却器5を設けている。
【0041】
炭化水素改質ガスの導入ガス6は、まず上部から1段目の反応管2へ入り、その反応管2の中で、導入ガス6中の一酸化炭素および二酸化炭素と水素が触媒1によってメタンと水を生じる発熱メタン化反応を行う。その後、経路3において冷却器5で冷却され、メタン化反応に適した元の温度に戻されるとともに、生成している水7を分離除去する。そして2段目の反応管2の上部へ入り、触媒1によって再び上述のメタン化反応を行い、下部から出る。
【0042】
このようなプロセスの用法で炭化水素改質ガスに用いるメタン化反応用触媒を用いることによって、発熱反応で昇温した炭化水素改質ガスは元のメタン化反応に適した温度に戻されて、安定した反応をその後も継続することができるとともに、水の除去によって反応平衡を生成物側へ片寄らせて反応の促進を図ることができ、かつ水の除去によるガス体積当たりの高エネルギー化を図ることができる。
【0043】
なお、図1の事例は、反応管1を2段設け、その間に一つの冷却器5を設けているが、ガス量や昇温状況などとの関係によって、反応管1の設置段数や冷却器5の設置個数は調整して設ける。また、冷却器5を最後の反応管1の後に設け、水の除去によるガス体積当たりの高エネルギー化をより図るようにしてもよい。
【0044】
次に本発明の実施例を示す。
【0045】
【実施例1】
Ni−40原子%Zrの組成となるように原料金属を混合し、アルゴンアーク溶融により原料合金を作製した。この合金をアルゴン雰囲気中で再溶融し、図2に示した単ロール法を用いて超急冷凝固させることにより、厚さ0.01−0.05mm、幅1−3mm、長さ3−20mのアモルファス合金薄板を得た。アモルファス構造形成の確認はX線回折によって行った。この前駆体の合金試料を酸素雰囲気中500度Cで3時間酸化した後、水素雰囲気中300度Cで1時間還元して高活性触媒を得た。
【0046】
なお、図2に示した単ロール法装置による合金薄板の製作を詳述すると、所定組成に作成した原料合金14を石英管12の原料結晶合金挿入口11から挿入し、点線で囲んだ真空チャンバー内をアルゴン雰囲気に置換した後、石英管12の周囲に設置した加熱炉15で原料合金14を再溶融し、モーター16によって高速回転している高速回転ロール17の外周面上に溶融した原料合金14を噴出させ、超急冷凝固させることによって、上述した寸法を有するアモルファス合金薄板を製作するものである。
【0047】
こうして得られた触媒0.5gを内径8mmのガラス管中約2.5cmの長さにつめた反応管2本を電気炉内に設置した。導入ガスは1段目の反応管を通過後反応生成物である水を冷却して除き、さらに2段目の反応管を通過するようにした。反応管に導入したガスは、炭化水素改質ガスの一例成分を有するガスで、その組成を表2に示す。
【0048】
【表2】
Figure 0003932494
【0049】
300度Cにおいて、反応管に種々の速度で上記導入ガスを流し、1段目および2段目の反応管出口における一酸化炭素、二酸化炭素、水素、メタン、ブタン、窒素の量をガスクロマトグラフで測定した。流速を変えて測定した結果を表3に示す。
【0050】
【表3】
Figure 0003932494
【0051】
反応生成物のメタン選択率は99.9%以上であり、残りは微量のエタンであった。以上のように、本発明のNi−40原子%Zr合金に酸化還元処理を施して得られる触媒は、まず一酸化炭素を先行して全てメタンに転換し混合ガスを無害化すると共に、残りのほとんど全ての水素が二酸化炭素をメタンに転換するため、生成する水を冷却して除くことによって、本実施例においては体積当りのエネルギーをほぼ2.24倍に挙げることのできる高性能触媒であることが判明した。
【0052】
【実施例2】
表4の所定組成となるように原料金属を混合し、アルゴンアーク溶融により原料合金を作製した。この合金をアルゴン雰囲気中で再溶融し、図2に示した単ロール法を用いて超急冷凝固させることにより、厚さ0.01−0.05mm、幅1−3mm、長さ3−20mのアモルファス合金薄板を得た。アモルファス構造形成の確認はX線回折によって行った。これら前駆体の合金試料を酸素雰囲気中500度Cで3時間酸化した後、水素雰囲気中300度Cで1時間還元して高活性触媒を得た。
【0053】
こうして得られた触媒0.5gを内径8mmのガラス管中約2.5cmの長さにつめた反応管2本は、直列に接続するガラス管の経路で接続し、その2本の反応管は電気炉内に設置した。用いた導入ガスの組成は、表2に示す組成のものである。導入ガスは1段目の反応管を通過後反応生成物である水を経路において冷却して除き、さらに2段目の反応管を通過するようにした。1段目および2段目の反応管出口における一酸化炭素、二酸化炭素、水素、メタン、ブタン、窒素の量をガスクロマトグラフで測定した。300度Cにおいて導入ガスを流速90ml/minで流し、測定した一酸化炭素のメタンへの変換率および水素のメタンへの変換率の結果を表4に示す。
【0054】
【表4】
Figure 0003932494
【0055】
表3の結果と同様な結果を得た。すなわち、一般的に反応が遅いといわれている一酸化炭素と水素のメタン化反応が先行して炭化水素改質ガスの混合ガスを無害化するとともに、残りの水素が二酸化炭素をメタンに転換するため、生成する水を冷却して除くことによって、体積当たりのエネルギーを大幅に挙げることのできる高性能触媒であることが判明した。
【0056】
また、表3および表4の結果から明らかなように、1段目の反応管を出た炭化水素改質ガスの混合ガスには有害な一酸化炭素がほとんど存在しなくなっているため、1段式反応管による一酸化炭素変成器の実現が可能であることも判明した。
【0057】
【発明の効果】
以上のように本発明のアモルファス合金に酸化還元処理を施して得られる触媒は、通常のアモルファス合金作成法によって容易に製造することができ、反応選択率がほとんど100%メタンであって微量の副産物はエタンであるうえに、反応平衡は常圧でも極端に生成物側に片寄っているため、メタンと共に生成する水を除く以外に、不純物を除いて反応を高圧で何度も繰り返すような特別かつ複雑な施設を必要とせずに、途中で水を除く単純な常圧の施設で迅速に、まず、全ての一酸化炭素をメタンに変換して混合ガスの炭化水素改質ガスを無害化すると共に、残りのほぼ全ての水素は二酸化炭素をメタンに転換し、体積当りのエネルギーを著しく向上させることができる高性能触媒である。
【0058】
また、上記高性能触媒を充填して形成した複数段の反応管を直列に接続する経路においてガス中水分を冷却脱水する用法の発明は、水の除去によって反応平衡を生成物側に移行させて反応を促進させることができ、発熱反応によって昇温したガスをメタン化反応に適した温度に戻して安定した反応を継続させることができ、かつ水の除去によってガス体積当たりの高エネルギー化が図れる。
【0059】
更に無害化され、かつ高エネルギー化された炭化水素改質ガスを用いた都市ガスは、ガス利用者の安全に大きく貢献することとなり、かつやさしい地球環境作りに大きく寄与することとなる。
【0060】
【図面の簡単な説明】
【図1】 本発明の触媒の用法一例を示す概略プロセスフロー説明図である。
【図2】 本発明の合金触媒を製造するための装置の一例を示す概要断面説明図である。
【符号の説明】
1 触媒 2 反応管
3 経路 4 冷媒
5 冷却器 6 導入ガス
7 水
11 原料結晶合金挿入口 12 石英管
13 垂直ノズル 14 原料合金
15 加熱炉 16 モーター
17 高速回転ロール[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a highly active amorphous alloy catalyst which reacts carbon monoxide and carbon dioxide contained in a hydrocarbon reformed gas with hydrogen to convert it into methane to increase energy and detoxify harmful carbon monoxide. And the usage of the catalyst.
[0002]
[Prior art]
The hydrocarbon reformed gas is, for example, a gas used for city gas or the like, and a raw material hydrocarbon gas such as a petroleum-based raw material such as naphtha or LPG or a coal-based raw material such as coal gas (COG) is used as a catalyst. Manufactured by reforming such as steam reforming. The hydrocarbon reformed gas is generally a mixed gas containing a plurality of gases such as carbon monoxide, carbon dioxide, hydrogen, and methane.
[0003]
Since hydrocarbon reformed gas containing harmful carbon monoxide requires special care in its use, conventionally, such as iron-chromium high temperature shift catalyst and copper-zinc low temperature shift catalyst, etc. Hazardous carbon monoxide was detoxified by a carbon monoxide conversion method that converts and converts harmful carbon monoxide to carbon dioxide using a catalyst.
[0004]
Also, in the hydrocarbon reformed gas, carbon monoxide and carbon dioxide that are already bonded to oxygen are present, and the presence thereof causes a reduction in energy per gas volume. Methanation with high energy per gas volume, that is, carbon monoxide methanation that reacts with carbon monoxide and hydrogen to produce methane, or carbon dioxide that reacts with carbon dioxide and hydrogen to produce methane Various studies have been conducted on the methanation of carbon monoxide, and the catalyst for methanation of carbon monoxide and the catalyst for methanation of carbon dioxide have been studied quite widely.
[0005]
For example, as a methanation catalyst for carbon monoxide, a catalyst in which ruthenium is supported on alumina is known, and as a methanation catalyst for carbon dioxide, Japanese Patent Application No. 8-204543 involving one of the present applicants is known. And the invention of Japanese Patent Application No. 9-51598. The invention to which one of the applicants of the present application is concerned is an invention in which an amorphous alloy is subjected to a redox treatment and a catalyst that generates methane at high speed even at atmospheric pressure by the reaction of carbon dioxide and hydrogen is found out.
[0006]
The invention of Japanese Patent Application No. 8-204543 comprises the following two inventions.
[0007]
(1) 8 atomic percent or less of Zr and rare earth elements Y, La, Ce, Nd, Sm, Gd, Tb, Dy, and a total of 80 atomic percent or less including at least one of 5 atomic percent or less of Co and Ni An amorphous alloy catalyst for methanation of carbon dioxide, characterized in that an amorphous alloy having at least one kind as a substantial balance is used as a precursor and subjected to oxidation-reduction treatment.
[0008]
(2) Sum of at least one of Ti, Nb, and Ta, 8 atomic% or more of Zr, and at least one of Y, La, Ce, Nd, Sm, Gd, Tb, and Dy that are rare earth elements of 5 atomic% or less An amorphous alloy catalyst for methanation of carbon dioxide, characterized in that an amorphous alloy containing not more than 80 atomic% and containing substantially at least one of Co and Ni as a precursor is subjected to oxidation-reduction treatment.
[0009]
The invention of Japanese Patent Application No. 9-51598 comprises the following six inventions.
[0010]
(1) Sum of Zr of 20 atomic% or more and at least one selected from the group of Y, La, Ce, Nd, Sm, Gd, Tb, and Dy, which is a rare earth element exceeding 5 atomic% and 15 atomic% or less An amorphous alloy catalyst for methanation of carbon dioxide, characterized in that an amorphous alloy containing not more than 80 atomic% and containing substantially at least one of Co and Ni as a precursor is subjected to oxidation-reduction treatment.
[0011]
(2) From the group of Y, La, Ce, Nd, Sm, Gd, Tb, and Dy, which are rare earth elements, with a total of at least one of Ti, Nb, Ta and 10 atomic% or more of Zr and 20 atomic% or more An amorphous alloy containing at least one selected element and exceeding 5 atomic% and 15 atomic% or less in total and containing 80 atomic% or less and having at least one of Co and Ni as a substantial remainder is used as a precursor and subjected to oxidation-reduction treatment. An amorphous alloy catalyst for methanation of carbon dioxide.
[0012]
(3) An amorphous alloy containing a total of 80 atomic percent or less of Zr of 20 atomic percent or more and Mg of 15 atomic percent or less and having substantially at least one of Co and Ni as a precursor is used as a precursor, and this is subjected to redox treatment. An amorphous alloy catalyst for methanation of carbon dioxide, characterized in that
[0013]
(4) A total of at least one of Ti, Nb, and Ta and 10 atomic% or more of Zr and a total of 20 atomic% or more and 15 atomic% or less of Mg, and 80 atomic% or less, An amorphous alloy catalyst for methanation of carbon dioxide, characterized in that an amorphous alloy having substantially the seed as a precursor is used as a precursor and subjected to oxidation-reduction treatment.
[0014]
(5) Total of 15 at% or less and 20 at% or more of Zr in total of at least one selected from the group consisting of rare earth elements Y, La, Ce, Nd, Sm, Gd, Tb, and Dy and Mg An amorphous alloy catalyst for methanation of carbon dioxide, characterized in that an amorphous alloy containing not more than 80 atomic% and containing substantially at least one of Co and Ni as a precursor is subjected to oxidation-reduction treatment.
[0015]
(6) From the group of Y, La, Ce, Nd, Sm, Gd, Tb, and Dy, which are rare earth elements, with a total of at least one of Ti, Nb, Ta and 10 atomic% or more of Zr and 20 atomic% or more An amorphous alloy containing a total of at least one selected from the group consisting of at least one selected from Mg and not more than 15 atomic% and not exceeding 80 atomic% and having substantially at least one of Co and Ni as a precursor, is subjected to oxidation-reduction treatment. An amorphous alloy catalyst for methanation of carbon dioxide, characterized by being applied.
[0016]
[Problems to be solved by the invention]
As described above, the hydrocarbon reformed gas contains carbon monoxide, carbon dioxide, hydrogen, etc. in addition to methane, and the presence of carbon monoxide and carbon dioxide that are already bonded to oxygen is the energy per gas volume. The presence of harmful carbon monoxide requires special attention in handling. Therefore, if all the hydrogen contained in the hydrocarbon reformed gas can be reacted with carbon monoxide and carbon dioxide to be converted to methane and the water generated at that time can be removed, the energy per gas volume will increase significantly. Harmful carbon monoxide can be detoxified and converted to a hydrocarbon reformed gas with useful methane-rich gas.
[0017]
However, although the above-mentioned conventional techniques for carbon monoxide transformation, carbon monoxide methanation, and carbon dioxide methanation have obtained the corresponding results for individual gases, for example, on the existing catalyst. As it is known that the reaction between carbon monoxide and hydrogen is extremely slow, it is not a solution decision technology, and hydrocarbon reforming of mixed gas in which carbon monoxide, carbon dioxide, hydrogen, etc. coexist A technology that can be applied to gas to detoxify harmful carbon monoxide and convert it into useful methane-rich gas has not been established. Therefore, the advent of a highly active catalyst capable of rapidly converting a large amount of carbon monoxide and carbon dioxide contained in the hydrocarbon reformed gas into methane and its usage have been awaited.
[0018]
The present invention has been made in view of the above-mentioned problems, and at the same time, hydrogen contained in the hydrocarbon reformed gas is reacted with carbon monoxide and carbon dioxide at high speed under atmospheric pressure to be converted into methane. Amorphous alloy catalyst for methanation of carbon monoxide contained in the hydrocarbon reformed gas, which significantly increases the energy increase per gas volume excluding generated water and detoxifies harmful carbon monoxide , hydrocarbon reforming The present invention provides an amorphous alloy catalyst for methanation reaction used for a gas and its usage.
[0019]
[Means for Solving the Problems]
A first invention is characterized in that an amorphous alloy containing 20 atomic% or more and 80 atomic% or less of Zr and having at least one of Co and Ni as a substantial remainder is used as a precursor and subjected to oxidation-reduction treatment. It is an amorphous alloy catalyst for methanation of carbon monoxide contained in hydrocarbon reformed gas.
[0020]
The amorphous alloy catalyst for methanation reaction used for the hydrocarbon reformed gas according to the second invention includes at least one of Ti, Nb, Ta and Zr of 10 atomic% or more and a total of 20 atomic% or more and 80 atomic% or less. An amorphous alloy having at least one of Co and Ni as a substantial remainder is used as a precursor, and this is subjected to oxidation-reduction treatment.
[0021]
The amorphous alloy catalyst for methanation reaction of carbon monoxide contained in the hydrocarbon reformed gas according to the third aspect of the invention comprises 20 atomic% or more of Zr and rare earth elements Y, La, Ce, Nd, Sm, Gd, An amorphous alloy containing a total of at least one of Co and Ni, with a total of at least one selected from the group consisting of Tb and Dy added with Mg and at least one selected from 15 atomic% or less, and having a substantial balance of at least one of Co and Ni as a precursor. It is formed by oxidation-reduction treatment.
[0022]
The amorphous alloy catalyst for methanation reaction used for the hydrocarbon reformed gas according to the fourth invention is at least one of Ti, Nb, Ta and Zr of 10 atomic% or more, and a total of 20 atomic% or more and rare earth elements. Y, La, Ce, Nd, Sm, Gd, Tb, Dy selected from the group consisting of Mg and at least one selected from the group consisting of 15 atomic% or less and a total of 80 atomic% or less, substantially containing at least one of Co and Ni The remaining amorphous alloy is used as a precursor, and this is subjected to oxidation-reduction treatment.
[0023]
According to a fifth aspect of the present invention, a plurality of stages of reaction tubes formed by filling the catalyst and a path connecting the plurality of stages of reaction tubes in series are provided, and the reaction tubes are generated by a methanation reaction using the catalyst in the reaction tubes. This is a method of using an amorphous alloy catalyst for methanation reaction, wherein water is cooled and removed in the above path.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described in detail below.
[0025]
The present inventors have studied the properties of amorphous alloys for many years. From the iron group metal-valve metal amorphous alloys and the iron group metals that have been used by the present inventors, and valve metals such as Zr, Ti, Nb, and Ta. An amorphous alloy made by adding rare earth elements or Mg with high affinity to oxygen to an amorphous alloy, and then applying oxidation-reduction treatment to the amorphous alloy, carbon monoxide is the catalyst in an atmosphere of carbon monoxide and hydrogen. Decrease in catalytic activity due to continued adsorption can be prevented by coexisting carbon dioxide, carbon monoxide is first converted to methane and the remaining hydrogen reacts with carbon dioxide to produce methane. The present invention relating to the catalyst has been achieved.
[0026]
The present invention relating to the catalyst comprises the claims 1 to 4 and is an amorphous alloy in which at least one of Co and Ni and Zr or a part of Zr are substituted with Ta, Nb, or Ti. Further, carbonization comprising an amorphous alloy redox treatment material obtained by subjecting an amorphous alloy to which rare earth elements or Mg added to stabilize tetragonal zirconium dioxide (Chemical Formula 1), which is particularly effective for catalytic activity as a support, is subjected to redox treatment. An amorphous alloy catalyst for methanation reaction used for hydrogen reformed gas.
[Chemical 1]
ZrO 2
[0027]
The catalyst acts on the hydrocarbon reformed gas in which carbon monoxide, carbon dioxide, hydrogen, etc. coexist as described above, and the CO2 coexisting with the decrease in catalytic activity due to the continuous adsorption of carbon monoxide on the catalyst. It is formed so that it can be prevented by carbon.
[0028]
Table 1 below shows the constituent elements and contents of the catalysts according to the first to fourth inventions.
[0029]
[Table 1]
Figure 0003932494
[0030]
In general, in order to obtain a catalyst having a high selective catalytic activity for a specific chemical reaction, an alloy containing a necessary amount of an effective element is used rather than supporting a platinum group element on ceramics such as alumina, titania, and silica. It is more convenient to use it as a precursor and change it to a supported catalyst by oxidation-reduction treatment. However, in the case of a crystalline metal produced by a normal method, adding a large amount of alloying elements often results in a multi-phase structure with different scientific properties, and a predetermined characteristic is obtained even when redox treatment is performed. I can't prepare.
[0031]
On the other hand, the amorphous alloy catalyst of the present invention having the above composition does not allow the constituent elements to be localized and uniformly dissolves the predetermined elements. When these amorphous alloys are produced using a liquid quenching method, a sputtering method, a mechanical alloying method, etc., and subjected to oxidation-reduction treatment, they have excellent catalytic activity inherent to the amorphous alloy of the present invention that has not been realized in the past, A high performance catalyst is created that quickly converts carbon monoxide to methane and all remaining hydrogen converts carbon dioxide to methane.
[0032]
That is, an amorphous alloy catalyst that converts carbon monoxide and carbon dioxide into methane at high speed at atmospheric pressure is realized by the catalyst of the present invention obtained by subjecting an alloy having the above composition to a redox treatment.
[0033]
Next, the reason for limiting each component composition in the present invention will be described. Ni and Co are elements that serve as the basis of the alloy catalyst of the present invention, and coexist with one or more of the valve metal Zr or a part of Zr replaced with one or more of other valve metals Ta, Ti, and Nb. It is an element that forms an amorphous structure. Ni and Co are elements that contribute to the catalytic reaction as active elements, and Zr is an essential element that generates zirconium dioxide (Chemical Formula 1) and serves as a carrier for Ni and Co. Accordingly, in all claims of the catalyst of the present invention, at least one of Ni and Co is required to be 20 atomic% or more, so the total of other elements is 80 atomic% or less.
[Chemical 1]
[0034]
Ti, Nb, and Ta are effective elements that substitute for Zr to form an amorphous structure with Ni and Co. When acting as a support as an oxide, it exceeds the action of zirconium dioxide (Chemical Formula 1) on the catalytic activity. Therefore, in the second and fourth inventions, it is necessary to coexist with 10 atomic% or more of Zr and 20 atomic% or more for forming an amorphous structure.
[Chemical 1]
[0035]
Rare earth elements and Mg are elements that stabilize tetragonal zirconium dioxide (Chemical Formula 1), which acts as a carrier with particularly high catalytic activity, but it is not necessary to add more than a certain amount, and adding a large amount will produce an amorphous alloy. Therefore, in the third and fourth inventions, the content is made 15 atomic% or less.
[Chemical 1]
[0036]
Further, replacing a part of Ni and Co with a small amount of Fe does not hinder the object of the present invention.
[0037]
Next, the usage of the catalyst according to the present invention described in claim 5 will be described.
[0038]
The methanation reaction in which carbon monoxide and carbon dioxide react with hydrogen to produce methane and water, as is well known, generates heat, so if the reaction is continued, the temperature rises and the reaction proceeds. The reaction efficiency decreases when the temperature is higher than the appropriate gas temperature, and the continued reaction decreases the progress of the reaction due to the equilibrium of the reaction, and the presence of water produced by the methanation reaction is The gas energy per hit is reduced.
[0039]
A fifth invention made in view of these points is a method of using a catalyst for cooling and removing water generated by a methanation reaction in a path in which a plurality of reaction tubes filled with a catalyst are connected in series. The heated gas is returned to a temperature suitable for the original methanation reaction, the reaction equilibrium is shifted to the product side by removing the produced water, and the reaction is accelerated. Energy is achieved.
[0040]
An example of the usage of the catalyst of the present invention will be described in detail based on FIG. In the figure, 1 is a catalyst, 2 is a reaction tube formed by filling the catalyst 1, 3 is a path connecting the reaction tubes 2 and 2 in series, and the path 3 is a cooler 5 cooled by a refrigerant 4. Is provided.
[0041]
The introduction gas 6 of the hydrocarbon reformed gas first enters the first-stage reaction tube 2 from above, and in the reaction tube 2, carbon monoxide, carbon dioxide and hydrogen in the introduction gas 6 are methane by the catalyst 1. And exothermic methanation reaction to produce water. Thereafter, the water is cooled by the cooler 5 in the path 3 and returned to the original temperature suitable for the methanation reaction, and the generated water 7 is separated and removed. And it enters into the upper part of the reaction tube 2 of the 2nd stage, performs the above-mentioned methanation reaction again with the catalyst 1, and comes out from the lower part.
[0042]
By using the methanation reaction catalyst used for the hydrocarbon reforming gas in such process usage, the hydrocarbon reforming gas heated by the exothermic reaction is returned to a temperature suitable for the original methanation reaction, A stable reaction can be continued thereafter, and the reaction can be shifted to the product side by removing water to promote the reaction, and the energy per gas volume can be increased by removing water. be able to.
[0043]
In the example of FIG. 1, two reaction tubes 1 are provided, and one cooler 5 is provided between them. However, the number of installed reaction tubes 1 and the number of coolers depending on the amount of gas, the temperature rise condition, and the like. The number of 5 installed is adjusted. In addition, a cooler 5 may be provided after the last reaction tube 1 to increase energy per gas volume by removing water.
[0044]
Next, examples of the present invention will be described.
[0045]
[Example 1]
Raw material metals were mixed so as to have a composition of Ni-40 atomic% Zr, and a raw material alloy was produced by argon arc melting. This alloy is remelted in an argon atmosphere, and is rapidly quenched and solidified using the single roll method shown in FIG. 2 to obtain a thickness of 0.01 to 0.05 mm, a width of 1 to 3 mm, and a length of 3 to 20 m. An amorphous alloy sheet was obtained. Confirmation of the formation of the amorphous structure was performed by X-ray diffraction. This precursor alloy sample was oxidized in an oxygen atmosphere at 500 ° C. for 3 hours, and then reduced in a hydrogen atmosphere at 300 ° C. for 1 hour to obtain a highly active catalyst.
[0046]
The production of the alloy thin plate by the single roll method apparatus shown in FIG. 2 will be described in detail. A raw material alloy 14 having a predetermined composition is inserted from the raw crystal alloy insertion port 11 of the quartz tube 12 and surrounded by a dotted line. After replacing the inside with an argon atmosphere, the raw material alloy 14 is remelted in a heating furnace 15 installed around the quartz tube 12, and the raw material alloy is melted on the outer peripheral surface of a high-speed rotating roll 17 rotating at high speed by a motor 16. The amorphous alloy thin plate having the above-mentioned dimensions is manufactured by ejecting 14 and solidifying it by rapid quenching.
[0047]
Two reaction tubes in which 0.5 g of the catalyst thus obtained was packed to a length of about 2.5 cm in a glass tube having an inner diameter of 8 mm were placed in an electric furnace. The introduced gas was allowed to pass through the first-stage reaction tube, and then the reaction product water was removed by cooling, and further passed through the second-stage reaction tube. The gas introduced into the reaction tube is a gas having an example component of hydrocarbon reforming gas, and the composition thereof is shown in Table 2.
[0048]
[Table 2]
Figure 0003932494
[0049]
At 300 ° C., the introduced gas is allowed to flow through the reaction tube at various speeds, and the amounts of carbon monoxide, carbon dioxide, hydrogen, methane, butane, and nitrogen at the outlets of the first and second reaction tubes are measured with a gas chromatograph. It was measured. Table 3 shows the measurement results obtained by changing the flow rate.
[0050]
[Table 3]
Figure 0003932494
[0051]
The methane selectivity of the reaction product was 99.9% or more, and the remainder was a trace amount of ethane. As described above, the catalyst obtained by subjecting the Ni-40 atomic% Zr alloy of the present invention to the oxidation-reduction treatment first converts carbon monoxide first to all methane to render the mixed gas harmless, and the rest. Almost all hydrogen converts carbon dioxide into methane, so in this example it is a high-performance catalyst that can increase the energy per volume by approximately 2.24 times by cooling and removing the generated water. It has been found.
[0052]
[Example 2]
Raw material metals were mixed so as to have a predetermined composition shown in Table 4, and a raw material alloy was produced by argon arc melting. This alloy is remelted in an argon atmosphere, and is rapidly quenched and solidified using the single roll method shown in FIG. 2 to obtain a thickness of 0.01 to 0.05 mm, a width of 1 to 3 mm, and a length of 3 to 20 m. An amorphous alloy sheet was obtained. Confirmation of the formation of the amorphous structure was performed by X-ray diffraction. These precursor alloy samples were oxidized in an oxygen atmosphere at 500 ° C. for 3 hours, and then reduced in a hydrogen atmosphere at 300 ° C. for 1 hour to obtain a highly active catalyst.
[0053]
Two reaction tubes in which 0.5 g of the catalyst thus obtained was packed to a length of about 2.5 cm in a glass tube having an inner diameter of 8 mm were connected by a glass tube route connected in series, and the two reaction tubes were Installed in an electric furnace. The introduced gas used has the composition shown in Table 2. The introduced gas passed through the first-stage reaction tube, and the reaction product water was removed by cooling in the path, and further passed through the second-stage reaction tube. The amounts of carbon monoxide, carbon dioxide, hydrogen, methane, butane and nitrogen at the outlets of the first and second stage reaction tubes were measured with a gas chromatograph. Table 4 shows the results of the conversion rate of carbon monoxide to methane and the conversion rate of hydrogen to methane measured at a flow rate of 90 ml / min at 300 ° C.
[0054]
[Table 4]
Figure 0003932494
[0055]
Results similar to those in Table 3 were obtained. That is, carbon monoxide and hydrogen methanation reaction, which is generally said to be slow, is preceded by detoxifying the hydrocarbon reformed gas mixture, and the remaining hydrogen converts carbon dioxide to methane. Therefore, it has been found that the catalyst is a high-performance catalyst that can greatly increase the energy per volume by cooling and removing the generated water.
[0056]
Further, as is apparent from the results of Tables 3 and 4, since no harmful carbon monoxide exists in the mixed gas of the hydrocarbon reformed gas exiting the first stage reaction tube, the first stage It was also found that it is possible to realize a carbon monoxide transformer using a reaction tube.
[0057]
【The invention's effect】
As described above, the catalyst obtained by subjecting the amorphous alloy of the present invention to the oxidation-reduction treatment can be easily produced by a normal amorphous alloy preparation method, and the reaction selectivity is almost 100% methane, and a small amount of by-products. In addition to ethane, the reaction equilibrium is extremely biased toward the product even at normal pressure, so in addition to removing water generated with methane, the reaction equilibrium is special and repeats many times at high pressure except for impurities. Without the need for complicated facilities, quickly convert the carbon monoxide to methane by detoxifying the hydrocarbon reformed gas of the mixed gas, quickly and simply at a normal atmospheric pressure facility that removes water along the way. Almost all of the remaining hydrogen is a high performance catalyst that can convert carbon dioxide to methane and significantly increase energy per volume.
[0058]
Further, the invention of a method for cooling and dehydrating moisture in a gas in a path connecting a plurality of stages of reaction tubes formed by filling the above-mentioned high performance catalyst in series transfers the reaction equilibrium to the product side by removing water. The reaction can be promoted, the gas heated by the exothermic reaction can be returned to a temperature suitable for the methanation reaction, and the stable reaction can be continued, and the energy per gas volume can be increased by removing water. .
[0059]
Furthermore, city gas using hydrocarbon reformed gas that has been made harmless and has high energy will greatly contribute to the safety of gas users, and will greatly contribute to the creation of a friendly global environment.
[0060]
[Brief description of the drawings]
FIG. 1 is a schematic process flow explanatory diagram showing an example of usage of a catalyst of the present invention.
FIG. 2 is a schematic cross-sectional explanatory view showing an example of an apparatus for producing the alloy catalyst of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Catalyst 2 Reaction tube 3 Path | route 4 Refrigerant 5 Cooler 6 Introducing gas 7 Water 11 Raw material crystal alloy insertion port 12 Quartz tube 13 Vertical nozzle 14 Raw material alloy 15 Heating furnace 16 Motor 17 High-speed rotation roll

Claims (5)

20原子%以上80原子%以下のZrを含みCoおよびNiの少なくとも1種を実質的残部とするアモルファス合金を前駆体とし、これに酸化還元処理を施すことを特徴とする炭化水素改質ガスに含まれる一酸化炭素のメタン化反応用アモルファス合金触媒。An amorphous alloy substantially balance at least one of Co and Ni comprises 20 atomic% or more and 80 atomic% or less of Zr and the precursor, the hydrocarbon reforming gas, wherein the oxidation reduction treatment is subjected to Amorphous alloy catalyst for methanation reaction of carbon monoxide . Ti、Nb、Taの少なくとも1種と10原子%以上のZrと合計で20原子%以上80原子%以下含みCoおよびNiの少なくとも1種を実質的残部とするアモルファス合金を前駆体とし、これに酸化還元処理を施すことを特徴とする炭化水素改質ガスに用いるメタン化反応用アモルファス合金触媒。  An amorphous alloy containing at least one of Ti, Nb, and Ta and 10 atomic percent or more of Zr and a total of 20 atomic percent or more and 80 atomic percent or less and having substantially at least one of Co and Ni as a precursor, An amorphous alloy catalyst for methanation reaction used for hydrocarbon reformed gas, characterized by oxidation-reduction treatment. 20原子%以上のZrと希土類元素であるY、La、Ce、Nd、Sm、Gd、Tb、DyにMgを加えた群から選ばれる少なくとも1種15原子%以下との合計で80原子%以下含みCoおよびNiの少なくとも1種を実質的残部とするアモルファス合金を前駆体とし、これに酸化還元処理を施すことを特徴とする炭化水素改質ガスに含まれる一酸化炭素のメタン化反応用アモルファス合金触媒。80 atomic% or less in total of 20 atomic% or more of Zr and rare earth elements Y, La, Ce, Nd, Sm, Gd, Tb, and Dy selected from the group consisting of Mg and 15 atomic% or less Amorphous for methanation reaction of carbon monoxide contained in hydrocarbon reformed gas , characterized in that an amorphous alloy containing at least one of Co and Ni as a substantial remainder is used as a precursor, and this is subjected to oxidation-reduction treatment Alloy catalyst. Ti、Nb、Taの少なくとも1種と10原子%以上のZrと合計で20原子%以上と希土類元素であるY、La、Ce、Nd、Sm、Gd、Tb、DyにMgを加えた群から選ばれる少なくとも1種15原子%以下との合計で80原子%以下含みCoおよびNiの少なくとも1種を実質的残部とするアモルファス合金を前駆体とし、これに酸化還元処理を施すことを特徴とする炭化水素改質ガスに用いるメタン化反応用アモルファス合金触媒。  From a group in which Mg is added to at least one of Ti, Nb, Ta, Zr of 10 atomic% or more, and a total of 20 atomic% or more and rare earth elements Y, La, Ce, Nd, Sm, Gd, Tb, and Dy A total of 80 atomic% or less including at least one selected 15 atomic% or less is used as a precursor, and an amorphous alloy having at least one of Co and Ni as a substantial remainder is subjected to oxidation-reduction treatment. Amorphous alloy catalyst for methanation reaction used for hydrocarbon reforming gas. 請求項1乃至4いずれか1項記載の触媒を充填して形成した複数段の反応管と該複数段の反応管間を直列に接続する経路を設け、上記反応管内で上記触媒によるメタン化反応によって生成された水分を上記経路において冷却除去することを特徴とするメタン化反応用アモルファス合金触媒の用法。A multistage reaction tube formed by filling the catalyst according to any one of claims 1 to 4 and a path for connecting the plurality of reaction tubes in series are provided, and the methanation reaction by the catalyst in the reaction tube A method of using an amorphous alloy catalyst for methanation reaction, characterized in that the water generated by the above is cooled and removed in the above path.
JP08724197A 1997-03-24 1997-03-24 Amorphous alloy catalyst for methanation reaction of carbon monoxide contained in hydrocarbon reformed gas, amorphous alloy catalyst for methanation reaction used in hydrocarbon reformed gas, and method of use thereof Expired - Lifetime JP3932494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08724197A JP3932494B2 (en) 1997-03-24 1997-03-24 Amorphous alloy catalyst for methanation reaction of carbon monoxide contained in hydrocarbon reformed gas, amorphous alloy catalyst for methanation reaction used in hydrocarbon reformed gas, and method of use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08724197A JP3932494B2 (en) 1997-03-24 1997-03-24 Amorphous alloy catalyst for methanation reaction of carbon monoxide contained in hydrocarbon reformed gas, amorphous alloy catalyst for methanation reaction used in hydrocarbon reformed gas, and method of use thereof

Publications (2)

Publication Number Publication Date
JPH10263400A JPH10263400A (en) 1998-10-06
JP3932494B2 true JP3932494B2 (en) 2007-06-20

Family

ID=13909325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08724197A Expired - Lifetime JP3932494B2 (en) 1997-03-24 1997-03-24 Amorphous alloy catalyst for methanation reaction of carbon monoxide contained in hydrocarbon reformed gas, amorphous alloy catalyst for methanation reaction used in hydrocarbon reformed gas, and method of use thereof

Country Status (1)

Country Link
JP (1) JP3932494B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100336968B1 (en) * 1999-11-11 2002-05-17 김충섭 Modified Zirconia-supported nickel reforming catalysts and its use for producing synthesis gas from natural gas
US9617196B2 (en) 2007-08-03 2017-04-11 Hitachi Zosen Corporation Catalyst for methanation of carbon oxides, preparation method of the catalyst and process for the methanation
JP5691119B2 (en) * 2007-08-03 2015-04-01 アタカ大機株式会社 Method for producing hydrogenation catalyst and method for producing methane gas using the same
JP2011241182A (en) * 2010-05-19 2011-12-01 Tokyo Gas Co Ltd Method for synthesizing methane from carbon dioxide and hydrogen
JP5562873B2 (en) * 2011-01-05 2014-07-30 東京瓦斯株式会社 Method for synthesizing methane from carbon dioxide and hydrogen
JPWO2014157055A1 (en) * 2013-03-25 2017-02-16 三井金属鉱業株式会社 Carbon monoxide methanation catalyst composition and carbon monoxide methanation catalyst
JP6538688B2 (en) 2014-07-19 2019-07-03 日立造船株式会社 Catalyst for methanation reaction, method for producing catalyst for methanation reaction, and method for producing methane
CN105170159B (en) * 2015-04-17 2018-06-26 浙江工业大学 A kind of support type Ni bases catalyst and its application
JP7432997B2 (en) * 2019-05-24 2024-02-19 三菱重工業株式会社 Composite production system and compound production method

Also Published As

Publication number Publication date
JPH10263400A (en) 1998-10-06

Similar Documents

Publication Publication Date Title
EP0650762B1 (en) Catalyst for methanol reforming, process for producing the same and method for reforming methanol
Galvita et al. Cyclic water gas shift reactor (CWGS) for carbon monoxide removal from hydrogen feed gas for PEM fuel cells
TW585838B (en) Process for nitrous oxide purification
JP3932494B2 (en) Amorphous alloy catalyst for methanation reaction of carbon monoxide contained in hydrocarbon reformed gas, amorphous alloy catalyst for methanation reaction used in hydrocarbon reformed gas, and method of use thereof
JP4557849B2 (en) Method for producing hydrogen from ethanol
WO2012020834A1 (en) Method and apparatus for production of hydrogen
US20080241038A1 (en) Preparation of manganese oxide-ferric oxide-supported nano-gold catalyst and using the same
JP3482122B2 (en) Generation of a low dew point oxygen-free protective atmosphere for performing heat treatment.
Dimitrova et al. Metallurgical slag as a support of catalysts for complete oxidation in the presence of ozone
JPH07112925B2 (en) Metal heat treatment method in furnace under heat treatment atmosphere
RU2554879C2 (en) Method of selective oxidative dehydrogenation of hydrogen-containing gas, mixed with co
JP3819516B2 (en) Amorphous alloy catalysts for methanation of carbon dioxide
JP3819486B2 (en) Amorphous alloy catalysts for methanation of carbon dioxide
US5220108A (en) Amorphous alloy catalysts for decomposition of flons
CN113617181B (en) Method and device for removing hydrocarbons in industrial laughing gas by catalytic oxidation method
JP2977606B2 (en) Noble gas purification method
JPH1190227A (en) Amorphous alloy catalyst for hydrocarbon-modified gas containing sulfur
EP0446710B1 (en) The use of an amorphous alloy catalyst for conversion of carbon dioxide
CN101965311B (en) Process and apparatus for production of hydrogen
TWI320000B (en) Preparation of mangania-titania -supported nano-gold catalysts and its application in preferential oxidation of carbon monoxide in hydrogen stream
BG109348A (en) Method for the processing of natural gas into fuels
JP3226571B2 (en) Amorphous alloy catalyst for carbon dioxide conversion
KR20170138706A (en) Hydrogen production system including unit for removal of carbon monoxide
JPS59109244A (en) Catalyst for conversion reaction of carbon monoxide to hydrogen and its manufacture
Stancheva et al. Oxidation of carbon monoxide and hydrogen on the surface of crystalline and amorphous Cu 60 Zr 40 alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term