JP3932378B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP3932378B2
JP3932378B2 JP2001136325A JP2001136325A JP3932378B2 JP 3932378 B2 JP3932378 B2 JP 3932378B2 JP 2001136325 A JP2001136325 A JP 2001136325A JP 2001136325 A JP2001136325 A JP 2001136325A JP 3932378 B2 JP3932378 B2 JP 3932378B2
Authority
JP
Japan
Prior art keywords
heat medium
temperature
heating
heat
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001136325A
Other languages
Japanese (ja)
Other versions
JP2002115930A (en
Inventor
和平 有田
富幸 松清
義裕 市野
伸二 頓宮
朗 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2001136325A priority Critical patent/JP3932378B2/en
Publication of JP2002115930A publication Critical patent/JP2002115930A/en
Application granted granted Critical
Publication of JP3932378B2 publication Critical patent/JP3932378B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、吸収式冷凍機を含む空気調和装置に係り、特に、熱媒駆動型の吸収式冷凍機を含む空気調和装置に関する。
【0002】
【従来の技術】
加熱された駆動用熱媒により駆動される熱媒駆動型の吸収式冷凍機を含む空気調和装置では、吸収式冷凍機の作動により冷却された冷媒を室内機に供給して冷房を行っている。一方、暖房時には、駆動用熱媒により吸収冷凍機を駆動して室内機に供給される暖房用熱媒を加熱するか、または、吸収冷凍機とは別に設けられた暖房用熱交換器などにより、駆動用熱媒の熱で室内機に供給される暖房用熱媒を加熱している。
【0003】
【発明が解決しようとする課題】
一般に、空気調和装置に対して省エネルギー性の向上が望まれている。これに対し、本願の発明者らは、空気調和装置の暖房運転において、熱媒の熱エネルギーを有効に利用し、さらに、暖房用熱交換器または吸収冷凍機などの作動に関連するエネルギーの消費を抑えて空気調和装置の省エネルギー性を向上することを考えている。すなわち、排熱源から得られる熱媒を室内機へ直接供給して暖房を行うことにより、暖房用熱交換器などを不要にし、また、暖房時に吸収式冷凍機や吸収冷凍機の動作に関わる機器類の作動を停止することで、暖房用熱交換器または吸収式冷凍機の作動に関連するエネルギー消費を抑え、省エネルギー性を向上することを考えている。
【0004】
しかし、加熱された熱媒を室内機へ直接供給した場合、熱媒の温度によっては、暖房時の室内機からの温風の吹き出し温度が高くなり過ぎると、室内の温度分布が均一化し難くなり、快適性が低下する場合がある。また、熱媒の温度が室内機や制御弁などの耐熱温度を超えた場合、空気調和装置の運転に支障をきたす場合もある。このため、熱媒の温度は、機器などの耐熱温度を下回り、さらに、室内の温度分布が均一化し易い程度の温度に調整する必要がある。一方、冷房時に、室内機に供給する冷媒を吸収式冷凍機で冷却する場合、暖房時に要求される温度では吸収式冷凍機を駆動できないかまたは効率よく駆動することができない場合がある。したがって、冷房時に吸収式冷凍機に供給される熱媒の温度は、暖房時よりも高温であることが要求される。このように、冷房時と暖房時では要求される熱媒の温度が異なるため、従来の熱媒駆動型の吸収式冷凍機を含む空気調和装置の配管を変更するだけでは、熱媒の温度によって暖房時に室内の快適性の低下や、空調装置の運転への支障、また、冷暖房効率の低下などの問題が生じる場合がある。
【0005】
本発明の課題は、空気調和装置の省エネルギー性を向上することにある。
【0006】
【課題を解決するための手段】
本発明の空気調和装置は、排熱源からの排熱により熱媒を加熱するに熱交換器を備えた排熱回収器と、該排熱回収器で加熱された熱媒を熱源とする吸収式冷凍機と、該吸収冷凍機に接続された室内機と、前記吸収式冷凍機と前記排熱回収器の熱交換器との間で前記熱媒を循環する往き側及び帰り側の熱媒管路と、前記吸収冷凍機と前記室内機との間で冷水又は温水を循環する往き側及び帰り側の冷温水管路と、前記吸収冷凍機をバイパスして前記往き側熱媒管路と前記帰り側熱媒管路をそれぞれ前記往き側冷温水管路と前記帰り側冷温水管路に接続する往き側及び帰り側のバイパス管路と、前記往き側熱媒管路を前記往き側バイパス管路に接続する分岐部に設けられた冷暖房切り換え弁と、前記冷暖房切り換え弁の前記往き側熱媒管路側の上流側の熱媒の温度を検出する温度センサと、該温度センサの検出温度に基づいて前記排熱回収器を制御して熱媒の温度を制御する制御部とを備えて構成する。
【0007】
さらに、制御部は、前記冷暖房切り換え弁を切り換えて熱媒が吸収式冷凍機へ通流するとき、前記熱媒の検出温度が第1の温度範囲の最高温度で熱媒の加熱を停止し、最低温度で熱媒の加熱を開始し、前記冷暖房切り換え弁を切り換えて熱媒が前記バイパス管路へ通流するとき、前記熱媒の検出温度が第1の温度範囲よりも低い第2の温度範囲の最高温度で熱媒の加熱を停止し、最低温度で熱媒の加熱を開始する構成とする。
【0008】
また、往き側熱媒管路を流れる熱媒を加熱する補助加熱器を設け、制御部は、排熱回収器と補助加熱器を制御して熱媒の温度を制御する構成とすることができる。
【0009】
このような構成とすることにより、暖房時に熱媒がバイパス管路に通流するように冷暖房切り換え弁を切り換えることにより、バイパス管路を介して排熱回収器からの熱媒を室内機に直接供給し、暖房運転を行うことができる。つまり、暖房運転時は、吸収式冷凍機や吸収冷凍機の動作に関わる機器類の作動を停止し、空気調和装置の運転に関わるエネルギーの消費を抑えることができる。しかも、熱媒の温度は、制御部により、熱媒が吸収式冷凍機へ通流するとき、熱媒が前記バイパス管路へ通流するときよりも熱媒の温度を高く調整することができる。すなわち、冷房時の熱媒温度が暖房時の熱媒温度より高くなるように制御することができるため、暖房時の室内の快適性の低下や、空調装置の運転への支障、また、冷暖房効率の低下などを生じ難くできる。したがって、空気調和装置の省エネルギー性を向上できる。
【0010】
ところで、排熱源からの排熱の温度が低く、熱媒が冷房または暖房運転を十分な効率で行える温度にならない場合がある。このような場合、従来の空気調和装置では、排熱源からの熱媒への熱交換を停止し、補助加熱器により熱媒を加熱している。しかし、このような従来の空気調和装置では排熱源からの熱が有効利用されないため、十分な省エネルギー性を得ることができない。
【0011】
これに対し、本発明の空気調和装置は、補助加熱器と、この補助加熱器の動作を制御する制御部とを備えた構成とすることができる。さらに、制御部は、熱媒が吸収式冷凍機へ通流するとき、熱媒温度センサで検出した温度が第1の温度範囲の最高温度よりも低い第3の温度範囲の最高温度で補助加熱器による熱媒の加熱を停止し、最低温度で補助加熱器による熱媒の加熱を開始し、熱媒がバイパス管路へ通流するとき、熱媒温度センサで検出した温度が第2の温度範囲の最高温度よりも低い第4の温度範囲の最高温度で補助加熱器による熱媒の加熱を停止し、最低温度で補助加熱器による熱媒の加熱を開始する構成とする。
【0012】
このような構成とすれば、補助加熱器は、排熱源からの熱が熱媒に回収されている状態で熱媒を加熱し、さらに、排熱回収の開始と停止を行う温度範囲よりも低い温度で熱媒の加熱を停止する。このため、熱媒は、排熱回収を停止するような異常高温状態になった場合以外は排熱の回収を行い、補助加熱器は、排熱の回収では不足した熱を補うように熱媒を加熱する。したがって、補助加熱器を用いる場合に置いても、補助加熱器が消費するエネルギーをできるだけ抑え、排熱源から得た排熱を有効利用できるため、空気調和装置の省エネルギー性を向上できる。
【0013】
また、熱媒温度センサと制御部とは、熱媒の過熱を検出する構成とすれば、1つの熱媒温度センサを、熱媒温度の制御と異常過熱の検知に兼用できるため、温度センサの数を低減できるので好ましい。
【0014】
ここで、バイパス管路を介して排熱回収器からの熱媒を直接室内機に供給することで暖房運転を行う空気調和装置では、暖房運転時、吸収式冷凍機や吸収式冷凍機の動作に関わる機器類の作動を停止させる。このため、これら機器類の停止にともない、熱媒および冷媒が、ほとんど流動しなくなって、管路内などに停滞してしまう。このとき、周囲の気温が低下すると、例えば、流動しなくなった熱媒および冷媒が水などであれば凍結して、空気調和装置を破損させる場合がある。これは、空気調和装置の運転を停止して、熱媒および冷媒が流動しなくなった場合も同様である。
【0015】
これに対し、従来は、管路にヒータなどを巻くなどをして凍結を防止していた。管路にヒータなどを巻いて凍結を防止しようとすると、ヒータの部品の費用や加工費などのイニシャルコストがかかる、ヒータを駆動させるための電気代などのランニングコストがかかる、真空容器内などのヒータが巻けない、巻きにくい場所がある、ヒータを管路に巻く手間がかかるなど好ましくない場合がある。また、水抜きを行い凍結を防止することもできるが、暖房運転を行う場合があるので、水抜きを行うことはできない。また、熱媒および冷媒として不凍液を用いて凍結を防止することもできるが、熱媒および冷媒として不凍液を用いると、不凍液の濃度管理などの保守点検作業が煩雑になるため、不凍液は使用しにくい。
【0016】
本発明の空気調和装置は、前記吸収式冷凍機から前記室内機へ供給される前記冷媒が通流する往き側冷媒管路および前記室内機から前記吸収式冷凍機へ戻される前記冷媒が通流する帰り側冷媒管路を含む冷媒管路と、該冷媒管路に前記吸収式冷凍機と前記室内機の間で前記冷媒を循環させる冷媒用ポンプと、前記冷媒管路内の前記冷媒の温度を検出する冷媒温度センサとが設けられており、前記熱媒管路は、前記熱媒温度調整手段から前記吸収式冷凍機へ供給される前記熱媒が通流する往き側熱媒管路と、前記吸収式冷凍機から前記熱媒温度調整手段へ戻される前記熱媒が通流する帰り側熱媒管路とを含み、前記熱媒管路には、前記熱媒温度調整手段と前記吸収式冷凍機の間で前記熱媒を循環させる熱媒用ポンプが設けられ、前記バイパス管路は、前記往き側熱媒管路と前記往き側冷媒管路とに連通する往き側バイパス管路と、前記帰り側冷媒管路と前記帰り側熱媒管路とに連通する帰り側バイパス管路とを含み、前記冷媒温度センサが検出した前記冷媒の温度が設定した温度より低くなると、前記熱媒温度調整手段から前記吸収式冷凍機に前記熱媒を供給可能に前記冷暖房切り換え弁を切り換え、前記熱媒用ポンプおよび前記冷媒用ポンプの少なくとも一方の運転を行う空気調和装置である。
【0017】
このように、冷媒温度センサが検出した冷媒の温度が所定の温度以下になった場合に、熱媒および冷媒が吸収式冷凍機に供給されるように冷暖房切り換え弁を切り換えて、熱媒用ポンプおよび冷媒用ポンプを運転することにより、熱媒管路内の熱媒および冷媒管路内の冷媒が流動する。これにより、熱媒管路内の熱媒および冷媒管路内の冷媒に流れが生じて、熱媒管路内の熱媒および冷媒管路内の冷媒が凍結するのを防ぐことができ、空気調和装置の破損を防止できる。
【0018】
【発明の実施の形態】
(第1の実施形態)
以下、本発明を適用してなる空気調和装置の第1の実施形態について図1乃至図3を参照して説明する。図1は、本発明を適用してなる空気調和装置の概略構成と動作を示す図である。図2は、冷房時の排熱回収器と補助加熱器の動作を示す図である。図3は、暖房時の排熱回収器と補助加熱器の動作を示す図である。なお、本実施形態では、エンジンを排熱源として、この排熱で熱媒を加熱する場合を一例として説明する。
【0019】
本実施形態の空気調和装置は、図1に示すように、排熱回収器1、補助ボイラ3、吸収式冷凍機5、熱媒管路7、冷暖房切り換え三方弁9a、9b、バイパス管路11、熱媒温度センサ13、制御部15、冷温水管路17、そして室内機である室内機19などで構成されている。排熱回収器1は、排熱源であるエンジン21から排ガス管路23を介して供給された排ガスの熱を、熱媒管路7中を通流する熱媒である水に熱交換部25で回収する。排熱回収器1は、内部に排ガスの流れる流路を切り換えるための図示していない流路切換機構を備えている。この流路切換機構により、排ガスの流れは、排気管路29方向と熱交換部25方向とに切り換えられ、余剰な排熱は、排気管路29より放出される。補助ボイラ3は、排熱回収器1から吸収式冷凍機5に向かって熱媒が通流する往き側熱媒管路7aに設けられている。補助ボイラ3は、バーナ31を備えており、バーナ31の燃焼により熱媒を加熱する。
【0020】
吸収式冷凍機5は、熱媒の熱で吸収液を加熱する再生器を有する熱媒駆動型の吸収式冷凍機である。吸収式冷凍機5は、冷却水管路33を循環する冷却水を冷却するための冷却塔35を備えている。熱媒管路7は、前記のように排熱回収器1から補助ボイラ3を介して吸収式冷凍機5に向かって熱媒が通流する往き側熱媒管路7aと、吸収式冷凍機5から排熱回収器1に向かって熱媒が通流する帰り側熱媒管路7bとからなり、往き側熱媒管路7aに熱媒用ポンプ37を備え、排熱回収器1と吸収式冷凍機5との間で熱媒を循環させている。冷温水管路17は、室内機19に向かって吸収式冷凍機5から冷媒である冷水が通流する往き側冷温水管路17aと、室内機19から吸収式冷凍機5方向に向かって冷水または温水が通流する帰り側冷温水管路17bとからなり、帰り側冷温水管路17bは、冷水用ポンプ39を備えている。
【0021】
バイパス管路11は、往き側熱媒管路7aを通流する熱媒を往き側冷温水管路17aに流す往き側バイパス管路11aと、帰り側冷温水管路17bを通流する熱媒を帰り側熱媒管路7bに流す帰り側バイパス管路11bとからなる。往き側バイパス管路11aは、補助ボイラ3と吸収式冷凍機5の間の往き側熱媒管路7aに設けられた冷暖房切り換え三方弁9aで往き側熱媒管路7aから分岐し、往き側冷温水管路17aに合流するように配管されている。帰り側バイパス管路11bは、帰り側冷温水管路17bに設けられた冷暖房切り換え三方弁9bで帰り側冷温水管路17bから分岐し、帰り側熱媒管路7bに合流するように配管されている。このように、本実施形態の空気調和装置では、吸収式冷凍機5から室内機19へ供給される吸収式冷凍機5で冷却された冷媒である水、つまり、冷水が通流する冷媒管路に、往き側バイパス管路11aを介して、熱媒である加熱された水、つまり、温水が供給されて通流するので、冷媒管路を冷温水管路17と称している。これは、往き側冷温水管路17aと帰り側冷温水管路17bについても同様である。
【0022】
制御部15は、パワーボックス41、補助ボイラ制御部43、冷暖房切り換えスイッチ45、排熱回収器1の流路切換機構、室内機19の動作を制御する室内機制御部47、そして往き側熱媒管路7aの補助ボイラ3と冷暖房切り換え三方弁9aの間に設置された熱媒温度センサ13などと配線51により電気的に接続されている。パワーボックス41は、往き側熱媒管路7aに設けられた熱媒用ポンプ37、2つの冷暖房切り換え三方弁9a、9b、帰り側冷温水管路17bに設けられた冷水用ポンプ39、冷却塔35の図示していない冷却ファン、そして冷却水管路33に設けられた冷却水用ポンプ53などに配線55により電気的に接続されている。
【0023】
また、制御部15は、異常検出機能を有しており、熱媒温度センサ13で検出した熱媒の温度が、設定された異常検出温度になると、警報を発して使用者に異常を知らせると共に、補助ボイラ3のバーナ31を強制停止し、排熱回収器1の流路切換機構を排ガスが排気管路29に流れるように切り換えて排ガスを排出し、熱媒の加熱を停止する。
【0024】
補助ボイラ制御部43は、補助ボイラ3のバーナ31と配線61により電気的に接続されている。なお、本実施形態では、制御部15は、指令信号を発し、この指令信号に応じてパワーボックス41が、パワーボックス41に電気的に接続された機器類のスイッチングを行っている。また、本実施形態では、制御部15、パワーボックス41、そして補助ボイラ制御部43などは、別体に構成されているが、制御部として一体的に構成することもできる。室内機制御部47は、制御部15からの信号などに応じ、冷水または加熱された熱媒である温水を室内機19内に通流させるか否かを切り換えを制御する制御弁65の動作などを制御している。
【0025】
このような構成の空気調和装置では、空調要求があり、運転切り換えスイッチ45により冷房運転が選択されると、制御部15は、パワーボックス41を介して、熱媒及び冷水が、各々吸収式冷凍機5を通って熱媒管路11及び冷温水管路17を循環するように2つの冷暖房切り換え三方弁9a、9bを切り換える。そして、往き側熱媒管路7aに設けられた熱媒用ポンプ37、帰り側冷温水管路17bに設けられた冷水用ポンプ39、冷却塔35の図示していない冷却ファン、そして冷却水管路33に設けられた冷却水用ポンプ53などを作動させる。これにより、熱媒管路11を通流する熱媒が、排熱回収器1でエンジン21からの排熱を回収する。排熱回収器1で加熱された熱媒の熱により吸収式冷凍機5は、冷温水管路17を通流する冷媒である水を冷却する。この吸収式冷凍機5で冷却された冷水が室内機19に通流することにより室内機19から冷風が送出される。
【0026】
このような冷房運転において、吸収式冷凍機5が効率よく水を冷却するため、また、熱媒の温度が下がりすぎて吸収式冷凍機5を駆動できなくなるのを防ぐため、熱媒の温度を所定の範囲内に保つ必要がある。このため、制御部15は、排熱回収器1の流路切換機構を制御し、さらに、補助ボイラ制御部43を介して補助ボイラ3の運転を制御している。冷房時、制御部15は、図2に示すように、T1〜T2の温度範囲で流路切換機構を制御している。このとき、T1>T2とする。すなわち、制御部15は、熱媒温度センサ13で検出した温度がT1になると流路切換機構を排気管路29にエンジン21からの排ガスが流れるように切り換え、排ガスを排気管路29に流して排熱の回収を停止する。つまり、排熱回収器1による排熱回収をオフ状態にする。これにより、熱媒の加熱が停止される。熱媒の加熱が停止されて熱媒の温度が低下し、熱媒温度センサ13で検出した温度がT2になると流路切換機構を熱交換部25にエンジン21からの排ガスが流れるように切り換え、排ガスを熱交換部25に流して排熱の回収を開始する。つまり、排熱回収器1による排熱回収をオン状態にする。これにより、熱媒の加熱を開始する。
【0027】
このとき、もし、エンジン21からの排ガスの温度が低く、熱媒が十分な温度を保てずに低下する場合には、制御部15は、補助ボイラ制御部43を介して、T3〜T4の温度範囲で補助ボイラー3のバーナ31のオン、オフを制御する。このとき、T1>T3かつT2>T4とする。制御部15は、熱媒の温度が低下し、熱媒温度センサ13で検出した温度がT4になるとバーナ31をオンし、熱媒の加熱を開始する。バーナ31による熱媒の加熱で熱媒の温度が上昇し、熱媒温度センサ13で検出した温度がT3になるとバーナ31をオフし、熱媒の加熱を停止する。このとき、温度がT2以下の場合には、排熱回収器1の流路切換機構は、熱交換部25にエンジン21からの排ガスが流れるように切り換えられた状態にあり、熱媒はエンジン21からの排熱を回収している。したがって、補助ボイラー3は、熱媒をT3以上の温度に上昇させるために不足した熱量を補うように動作する。
【0028】
一方、空調要求があり、運転切り換えスイッチ45により暖房運転が選択されると、制御部15は、パワーボックス41を介して、熱媒管路7を通流する熱媒が、バイパス管路11を通って冷温水管路17に流れるように2つの冷暖房切り換え三方弁9a、9bを切り換える。そして、制御部15は、往き側熱媒管路7aに設けられた熱媒用ポンプ37のみを作動させ、帰り側冷温水管路17bに設けられた冷水用ポンプ39、冷却塔35の図示していない冷却ファン、そして冷却水管路33に設けられた冷却水用ポンプ53などを停止する。これにより、熱媒は、吸収式冷凍機5に供給されず、バイパス管路11を介して、排熱回収器1と室内機19との間を循環するようになり、熱媒が室内機19に通流することにより室内機19から温風が吹出される。
【0029】
このような暖房運転において、熱媒温度が高くなり過ぎると、室内機19からの吹出温度が高くなり過ぎ、室内の温度分布が均一化し難くなるなどの現象が生じ、快適性が低下する場合がある。また、空調機19や制御弁65などの耐熱温度を超え、空気調和装置の運転に支障をきたす場合もある。このため、制御部15は、排熱回収器1の流路切換機構を制御し、また、補助ボイラ制御部43を介して補助ボイラ3の運転を制御している。暖房時、制御部15は、図3に示すように、T5〜T6の温度範囲で流路切換機構を制御している。このとき、T4>T5>T6とする。
【0030】
すなわち、制御部15は、熱媒温度センサ13で検出した温度がT5になると流路切換機構を排気管路29にエンジン21からの排ガスが流れるように切り換え、エンジン21からの排ガスを排気管路29に流して排熱の回収を停止する。これにより、熱媒の加熱が停止される。熱媒の加熱が停止されて熱媒の温度が低下し、熱媒温度センサ13で検出した温度がT6になると流路切換機構を熱交換部25にエンジン21からの排ガスが流れるように切り換え、排ガスを熱交換部25に流して排熱の回収を開始する。これにより、熱媒の加熱を開始する。
【0031】
このとき、もし、エンジン21からの排ガスの温度が低く、熱媒が十分な温度を保てずに低下する場合には、制御部15は、補助ボイラ制御部43を介して、T7〜T8の温度範囲で補助ボイラー3のバーナ31のオン、オフを制御する。このとき、T5>T7、T6>T8とする。制御部15は、熱媒の温度が低下し、熱媒温度センサ13で検出した温度がT8になるとバーナ31をオンし、熱媒の加熱を開始する。バーナ31による熱媒の加熱で熱媒の温度が上昇し、熱媒温度センサ13で検出した温度がT7になるとバーナ31をオフし、熱媒の加熱を停止する。
【0032】
このとき、温度がT6以下の場合には、排熱回収器1の流路切換機構は、常に熱交換部25にエンジン21からの排ガスが流れるように切り換えられた状態にあり、エンジン21からの排熱を回収している。したがって、暖房時も、補助ボイラー3は、熱媒をT8以上の温度に上昇させるために不足した熱量を補うように動作している。このように、暖房時は、冷房時よりも低い温度範囲で流路切換機構及び補助ボイラ3が制御されている。すなわち、排熱回収器1、補助ボイラ3、そして制御部15などからなる熱媒温度調整手段は、熱媒が吸収式冷凍機5へ通流するとき、熱媒がバイパス管路11へ通流するときよりも熱媒の温度を高く調整している。
【0033】
なお、本実施形態では、図2及び図3に示すように、T1〜T2の温度範囲よりもT3〜T4の温度範囲が低くなるように制御しているが、T1>T3、T2>T4であれば、T1〜T2の温度範囲及びT3〜T4の温度範囲は、T1〜T2の温度範囲とT4〜T5の温度範囲とが部分的に重なり合うような温度範囲に設定することもできる。同様に、本実施形態では、T5〜T6の温度範囲よりもT7〜T8の温度範囲が低くなるように制御しているが、T5>T7、T6>T8であれば、T5〜T6の温度範囲及びT7〜T8の温度範囲は、T5〜T6の温度範囲とT7〜T8の温度範囲とが部分的に重なり合うような温度範囲に設定することもできる。
【0034】
このように、本実施形態の空気調和装置では、暖房時に熱媒がバイパス管路11に通流するように冷暖房切り換え三方弁9a、9bを切り換えることにより、熱媒を室内機19に直接供給して暖房運転を行うことができる。つまり、暖房運転時は、吸収冷凍機5や吸収式冷凍機5の動作に関わる機器類、例えば冷水用ポンプ39、冷却水用ポンプ53などを停止することができる。しかも、熱媒の温度は、熱媒温度調整手段、すなわち排熱回収器1、熱媒温度センサ13、制御部15などにより、冷房時の熱媒温度が暖房時の熱媒温度よりも高くなるように制御される。このため、暖房時に室内の快適性の低下や、空調装置の運転への支障、また、冷暖房効率の低下などを生じ難くできる。したがって、空気調和装置の省エネルギー性を向上できる。
【0035】
さらに、本実施形態の空気調和装置では、熱媒温度調整手段として、補助ボイラも備えており、熱媒の温度が所望の温度よりも低くなった場合、排熱回収器1の流路切換機構が、熱交換部25にエンジン21からの排ガスが流れるように切り換えられた状態、つまり排熱を熱媒に回収している状態で補助ボイラ3のバーナ31のオン、オフを制御している。このため、熱媒を所望の温度にするために、排熱の回収だけでは不足する熱量を補助ボイラ3が補うため、排熱を効率的に利用することができ、省エネルギー性をより向上できる。ただし、排熱源が常に十分な熱量を有している場合などには、補助ボイラ3は備えていなくてもよい。また、本実施形態では、補助加熱器として補助ボイラ3を備えているが、補助加熱器として、ヒータや熱交換により熱媒の加熱を行うような様々な補助加熱器を用いることもできる。
【0036】
また、本実施形態では、制御部15が、熱媒温度センサ13で検出した温度に応じて排熱回収器1の流路切換機構を制御しているが、排熱回収器1内に流路切換機構の制御部や温度センサなどを設け、制御部15からの冷房運転と暖房運転を識別する運転指令信号を受け、流路切換機構を制御することもできる。さらに、本実施形態では、熱媒及び冷媒に水を用いているが、熱媒及び冷媒は水に限らず様々な流体を用いることができる。
【0037】
また、本実施形態では、熱媒温度調整手段として流路切換機構を有する排熱回収器1などを用いているが、熱媒温度調整手段は、熱媒の温度を調整できれば様々な構成にすることができる。例えば、排熱回収器を熱媒温度調整手段とせず、往き側熱媒管路7aに大気などへ熱媒の熱を放熱する機器を備え、これにより熱媒の温度を調整する構成などにすることもできる。
【0038】
また、本実施形態では、排熱はエンジン21からの排ガスから回収し、室内機として室内機19を備えた構成の空気調和装置を例示している。しかし、本発明は、本実施形態の構成に限らず、様々な構成の空気調和装置、例えば、様々な排熱源を利用し、様々な構成の室内機などを備える空気調和装置に適用できる。排熱源としては、例えば、燃料電池、工業排熱、地熱、温泉などからの様々な排熱を利用できる。さらに、排熱は、排ガスに限らず、例えば、エンジンの冷却水などからも回収できる。
(第2の実施形態)
本発明を適用してなる空気調和装置の第2の実施形態について図4を参照して説明する。図4は、本発明を適用してなる空気調和装置の第2の実施形態の概略構成と動作を示す図である。なお、本実施形態では、第1の実施形態と同一のものには同じ符号を付して説明を省略し、第1の実施形態と相違する構成及び特徴部などについて説明する。
【0039】
本実施形態が第1の実施形態と相違する点は、冷媒である水の温度を検出する冷水温度センサ67、熱媒が排熱回収器1を通らずに循環できるように配管された過熱防止管路73、図示しない制御部からの信号により熱媒を過熱防止管路73に通流させる熱媒過熱防止三方弁75などを設けた点である。
【0040】
本実施形態の空気調和装置は、図4に示すように、排熱回収器1、補助ボイラ3、吸収式冷凍機5、熱媒管路7、冷暖房切り換え三方弁9a、往き側バイパス管路11a、帰り側バイパス管路11b、熱媒温度センサ13、冷温水管路17、室内機19、熱媒用ポンプ37、冷水用ポンプ39、冷水温度センサ67、過熱防止管路73、そして熱媒過熱防止三方弁75などで構成されている。
【0041】
排熱回収器1は、図示しない排熱源、例えば、エンジンなどから供給された排ガスの熱を、熱媒管路7内を通流する熱媒である水に熱交換部25で回収する。補助ボイラ3は、例えば、図示しないバーナを備えており、このバーナの燃焼により熱媒を加熱する。吸収式冷凍機5は、熱媒の熱で吸収液を加熱する再生器69と、気化熱を利用して冷媒を冷却する蒸発器71とを有する熱媒駆動型の吸収式冷凍機である。なお、吸収式冷凍機5は、第1の実施形態と同様に冷却水管路を循環する冷却水を冷却するための冷却塔を備えているが、図4では省略している。
【0042】
熱媒管路7は、排熱回収器1から補助ボイラ3を介して吸収式冷凍機5に向かって熱媒が通流する往き側熱媒管路7aと、吸収式冷凍機5から排熱回収器1に向かって熱媒が通流する帰り側熱媒管路7bとからなり、往き側熱媒管路7aに排熱回収器1により加熱された熱媒を更に加熱する補助ボイラ3と、この補助ボイラ3の下流側に熱媒を循環させる熱媒用ポンプ37とが設けられている。また、熱媒の温度を検出する熱媒温度センサ13は、補助ボイラ3と熱媒用ポンプ37の間の往き側熱媒管路7aに設けられている。更に、熱媒管路7には、熱媒が排熱回収器1を通らずに循環できるように配管された過熱防止管路73が設けられている。過熱防止管路73は、帰り側熱媒管路7bから分岐し、排熱回収器1と補助ボイラ3の間の往き側熱媒管路7aに設けられた熱媒過熱防止三方弁75で往き側熱媒管路7aに合流している。
【0043】
冷温水管路17は、室内機19に向かって吸収式冷凍機5から冷媒としての水、または、往き側バイパス管路11aから供給される熱媒としての水が通流する往き側冷温水管路17aと、室内機19から吸収式冷凍機5方向に向かって冷媒としての水、または、熱媒としての水が通流する帰り側冷温水管路17bとからなり、往き側冷温水管路17aに冷媒である水の温度を検出する冷水温度センサ67が設けられ、帰り側冷温水管路17bに冷媒である水を循環させる冷水用ポンプ39が設けられている。
【0044】
往き側熱媒管路7aを通流する熱媒を往き側冷温水管路17aに流す往き側バイパス管路11aは、熱媒用ポンプ37と吸収式冷凍機5の間の往き側熱媒管路7aに設けられた冷暖房切り換え三方弁9aで往き側熱媒管路7aから分岐し、冷水温度センサ67と室内機19との間の往き側冷温水管路17aの部分に合流するように配管されている。帰り側冷温水管路17bを通流する熱媒を帰り側熱媒管路7bに流す帰り側バイパス管路11bは、冷水用ポンプ39と室内機19の間の帰り側冷温水管路17bで帰り側冷温水管路17bから分岐し、帰り側熱媒管路7aの、吸収式冷凍機5と過熱防止管路73の分岐する点との間の部分に合流するように配管されている。
【0045】
本実施形態の空気調和装置の図示しない制御部は、熱媒温度センサ13で検出した熱媒の温度が、設定された温度以上になると、熱媒が過熱防止管路73に流れるように熱媒過熱防止三方弁75を切り換えて、熱媒の加熱を停止することができる。
【0046】
このような構成の空気調和装置では、空調要求があり、例えば、図示しない運転切り換えスイッチにより冷房運転が選択されると、図示しない制御部は、熱媒及び冷媒である水が、各々吸収式冷凍機5を通って熱媒管路11及び冷温水管路17を循環するように冷暖房切り換え三方弁9aを切り換える。そして、往き側熱媒管路7aに設けられた熱媒用ポンプ37、帰り側冷温水管路17bに設けられた冷水用ポンプ39、図示していない冷却塔の冷却ファン、冷却水管路に設けられた冷却水用ポンプなどを作動させる。これにより、熱媒用ポンプ37により吐出された熱媒が、熱媒管路11を通流して、冷暖房切り換え三方弁9a、吸収式冷凍器5の再生器69、排熱回収器1、熱媒過熱防止三方弁75、補助ボイラ3、熱媒温度センサ13、熱媒用ポンプ37を循環する。熱媒管路7を循環する熱媒が、排熱回収器1で排熱を回収する。この排熱を回収する排熱回収器1で加熱された熱媒の熱により吸収式冷凍機5は、冷温水管路17を通流する冷媒である水を冷却する。冷水用ポンプ39により吐出された冷媒である水が、吸収式冷凍機5の蒸発器71に供給され冷却される。この吸収式冷凍機5で冷却された水が、冷温水管路17を通流して、冷水温度センサ67、室内機19、冷水用ポンプ39を循環する。冷温水管路17を循環する冷媒である水が室内機19に通流することにより室内機19から冷風が送出される。
【0047】
一方、空調要求があり、図示しない運転切り換えスイッチにより暖房運転が選択されると、図示しない制御部は、往き側熱媒管路7aを通流する熱媒が、往き側バイパス管路11aを通って往き側冷温水管路17aに流れるように冷暖房切り換え三方弁9aを切り換える。そして、図示しない制御部は、往き側熱媒管路7aに設けられた熱媒用ポンプ37のみを作動させ、帰り側冷温水管路17bに設けられた冷水用ポンプ39、図示しない冷却塔の冷却ファン、冷却水管路に設けられた冷却水用ポンプなどを停止する。これにより、熱媒用ポンプ37が吐出した熱媒は、吸収式冷凍機5に供給されず、冷暖房切り換え三方弁9aから往き側バイパス管路11aに供給され、往き側バイパス管路11a、帰り側バイパス管路11bを介して、排熱回収器1、熱媒過熱防止三方弁75、補助ボイラ3、熱媒温度センサ13、熱媒用ポンプ37、冷暖房切り替え三方弁9a、室内機19の順で循環するようになり、熱媒が室内機19に通流されることにより室内機19から温風が吹出される。
【0048】
このように、本実施形態の空気調和装置は、暖房時に熱媒が往き側バイパス管路11aに通流するように冷暖房切り換え三方弁9aを切り換えることにより、熱媒を室内機19に直接供給して暖房運転を行うことができる。このとき、省エネルギー向上のため、吸収冷凍機5や吸収式冷凍機5の動作に関わる機器類、例えば、冷水用ポンプ39などを停止する。このため、暖房運転時には、帰り側冷温水管路17bの帰り側バイパス管路11bとの分岐点から、往き側冷温水管路17aの往き側バイパス管路11aとの合流点までの吸収式冷凍機5側の冷温水管路17の内部の冷水が死水、つまり、ほとんど流動しない状態となる。同様に、往き側熱媒管路7aに設けられた冷暖房切り換え三方弁9aから、帰り側熱媒管路7bの帰り側バイパス管路11bとの合流点までの吸収式冷凍機5側の熱媒管路7の内部の熱媒である水が死水となる。死水は、周囲の気温が低下すると、凍結することがあり、この凍結により空気調和装置が破損する場合がある。
【0049】
特に、暖房運転停止後は、暖房運転中に加熱された水が通流していた管路に比べ、加熱された水がほとんど通流しなかった管路、つまり、帰り側冷温水管路17bと帰り側バイパス管路11bとの分岐点から吸収式冷凍機5までの帰り側冷温水管路17b、蒸発器71内の冷水の流路、吸収式冷凍機5から往き側冷温水管路17aと往き側バイパス管路11aとの合流点までの往き側冷温水管路17a、冷暖房切り換え三方弁9aから吸収式冷凍機5までの往き側熱媒管路7a、再生器69内の熱媒の流路、および、吸収式冷凍機5から帰り側熱媒管路7bと帰り側バイパス管路11bとの合流点までの熱媒管路7aの内部の死水の温度は、他の部分の水に比べて低い。このため、周囲の気温が低下した場合、死水は、他の管路内の水に比べ凍結しやすい。
【0050】
これに対し、本実施形態の空気調和装置では、往き側冷温水管路17aに設けられた冷水温度センサ67が死水である水の温度を検出して、この冷水温度センサ67が検出した水の温度が予め設定した温度、例えば、1℃以下になったら、暖房運転から冷房運転に切り換えて死水をなくして、死水の凍結による空気調和装置の破損を防止する。つまり、冷水温度センサ67が検出した水の温度が予め設定した温度以下になったら、冷暖房切り換え三方弁9aを切り換えて、往き側バイパス管路11aに供給されていた熱媒を再生器69に供給するとともに、冷水用ポンプ39を運転して、水を蒸発器71に供給する。このようにすることで、帰り側冷温水管路17bと帰り側バイパス管路11bとの分岐点から吸収式冷凍機5までの帰り側冷温水管路17b、蒸発器71および吸収式冷凍機5から往き側冷温水管路17aと往き側バイパス管路11aとの合流点まで往き側冷温水管路17aの内部の水と、冷暖房切り換え三方弁9aから吸収式冷凍機5までの往き側熱媒管路7a、再生器69および吸収式冷凍機5から帰り側熱媒管路7bと帰り側バイパス管路11bとの合流点までの帰り側熱媒管路7bの内部の熱媒である水とが、流水となり死水ではなくなる。また、熱媒用ポンプ37および冷水用ポンプ39の運転により、熱媒管路7内の熱媒と、冷温水管路11内の水とが流動して、水の温度が上昇し、冷水温度センサ67の検出する水の温度が、予め設定した温度より高くなれば、空気調和装置の冷暖房切り換え三方弁9aを切り換えて、冷房運転から暖房運転に戻す。これにより、熱媒管路7、冷温水管路11および吸収式冷凍機5内の水の凍結を防止して、空気調和装置の破損を防ぐことができる。
【0051】
また、空気調和装置の運転停止中に、水の凍結を防止するため熱媒用ポンプ37および冷水用ポンプ39を駆動させた場合、これら熱媒用ポンプ37および冷水用ポンプ39の駆動により、水の温度が上昇して、冷水温度センサ67の検出値が予め設定した温度より高くなれば、熱媒用ポンプ37および冷水用ポンプ39を停止して、空気調和装置の省エネルギー性を維持することもできる。仮に、熱媒用ポンプ37および冷水用ポンプ39の駆動させたにもかかわらず、水の温度が上昇しない場合、水の凍結防止のため、熱媒用ポンプ37および冷水用ポンプ39を駆動させ続けることもできる。
【0052】
このように、暖房運転中に限らず、空気調和装置内部の水が、周囲の気温の低下などにより凍結する可能性があるときに、冷水温度センサ67により水の温度を検出して、その検出した温度により熱媒用ポンプ37および冷水用ポンプ39を駆動させて、空気調和装置内の水の凍結を防止して、空気調和装置の破損を防ぐこともできる。このように、熱媒用ポンプ37および冷水用ポンプ39を運転することで、空気調和装置の水を流動させて、凍結を防止するため、ヒータ等で加熱することなく、水の凍結を防止することができる。
【0053】
また、図示しない制御部は、水の凍結防止を行う制御以外、第1の実施形態の制御部と同一の制御を行うことができる。また、第1の実施形態の空気調和装置では、2つの冷暖房切り換え三方弁9a、9bが設けられているが、第2の実施形態の空気調和装置のように、少なくとも1つの冷暖房切り換え三方弁9aが、熱媒用ポンプ37と吸収式冷凍機5の間の往き側熱媒管路7aにあればよい。
【0054】
また、本発明の凍結防止機能を有する空気調和装置の熱媒温度調整手段は、図4に示すような、第2の実施形態の空気調和装置における熱媒温度調整手段の構成に限らず、例えば、第1の実施形態の空気調和装置の熱媒温度調整手段とすることもできる。
【0055】
また、本発明の凍結防止機能を有する空気調和装置は、第2の実施形態の空気調和装置の構成に限らず、例えば、第1の実施形態の空気調和装置において、冷水温度センサを設け、この冷水温度センサが検出した水の温度に応じて、熱媒の温度調整を行うとともに、水の凍結防止のために温度検出も行うことにより、熱媒の加熱制御用の温度センサ、つまり冷水温度センサを用いて、死水の凍結を防止することができる。
【0056】
冷水温度センサ67は、死水が発生する帰り側冷温水管路17bと帰り側バイパス管路11bとの分岐点から吸収式冷凍機5までの帰り側冷温水管路17b、または、吸収式冷凍機5から往き側冷温水管路17aと往き側バイパス管路11aとの合流点までの往き側冷温水管路17aに設けられているのが好ましい。このようにすると、室内機19に供給する冷水の温度を制御するために、冷水温度センサ67が設けられている場合、新たに凍結防止用の温度センサを設けることなく、水の温度を検出して、熱媒用ポンプ37および冷水用ポンプ39を運転することで、空気調和装置の水の凍結を防止することができる。
【0057】
また、空気調和装置の運転条件などにより、熱媒用ポンプ37と冷水用ポンプのどちらか一方のポンプを駆動させるだけで、水の凍結を防止できる場合は、どちらか一方のポンプを駆動させればよく、必ずしも熱媒用ポンプ37と冷水用ポンプ39の両方を駆動させる必要はない。更に、冷水温度センサ67の検出値にかかわらず、一定周期で、熱媒用ポンプ37と冷水用ポンプ39を駆動させることもできる。これにより、冷水温度センサ67が検出できない場所の死水の温度が、冷水温度センサ67が検出した温度よりも低下して、熱媒用ポンプ37と冷水用ポンプ39を駆動させる前に、冷水温度センサ67が検出できない場所の死水が凍結するのを防ぐこともできる。
【0058】
また、バイパス管路11に流量調整弁を設け、往き側バイパス管路11a、帰り側バイパス管路11bを通流する熱媒の流量を調節することもできる。
【0059】
【発明の効果】
本発明によれば、空気調和装置の省エネルギー性を向上することができる。
【図面の簡単な説明】
【図1】本発明を適用してなる空気調和装置の第1の実施形態の概略構成と動作を示す図である。
【図2】冷房時の排熱回収器と補助加熱器の動作を示す図である。
【図3】暖房時の排熱回収器と補助加熱器の動作を示す図である。
【図4】本発明を適用してなる空気調和装置の第2の実施形態の概略構成と動作を示す図である。
【符号の説明】
1 排熱回収器
3 補助ボイラ
5 吸収式冷凍機
7 熱媒管路
7a 往き側熱媒管路
7b 帰り側熱媒管路
9a、9b 冷暖房切り換え三方弁
11 バイパス管路
11a 往き側バイパス管路
11b 帰り側バイパス管路
13 熱媒温度センサ
15 制御部
17 冷温水管路
17a 往き側冷温水管路
17b 帰り側冷温水管路
19 室内機
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner including an absorption refrigerator, and more particularly, to an air conditioner including a heat medium driven absorption refrigerator.
[0002]
[Prior art]
In an air conditioner including a heat-medium driven absorption refrigerator driven by a heated driving heat medium, the refrigerant cooled by the operation of the absorption refrigerator is supplied to the indoor unit for cooling. . On the other hand, at the time of heating, the absorption refrigerator is driven by the driving heat medium and the heating heat medium supplied to the indoor unit is heated, or a heating heat exchanger provided separately from the absorption refrigerator is used. The heating heat medium supplied to the indoor unit is heated by the heat of the driving heat medium.
[0003]
[Problems to be solved by the invention]
Generally, improvement of energy saving property is desired for an air conditioner. On the other hand, the inventors of the present application effectively use the heat energy of the heat medium in the heating operation of the air conditioner, and further consume energy related to the operation of the heating heat exchanger or the absorption chiller. The idea is to improve the energy-saving performance of the air conditioner by suppressing the above. In other words, heating is performed by directly supplying the heat medium obtained from the exhaust heat source to the indoor unit, thereby eliminating the need for a heat exchanger for heating and the like, and equipment related to the operation of the absorption refrigerator and absorption refrigerator during heating By stopping the operation of the type, the energy consumption related to the operation of the heat exchanger for heating or the absorption chiller is suppressed, and the energy saving property is improved.
[0004]
However, when the heated heat medium is supplied directly to the indoor unit, depending on the temperature of the heat medium, if the temperature of the hot air blown from the indoor unit during heating becomes too high, the indoor temperature distribution is difficult to be made uniform. The comfort may be reduced. In addition, when the temperature of the heat medium exceeds the heat resistance temperature of the indoor unit or the control valve, the operation of the air conditioner may be hindered. For this reason, it is necessary to adjust the temperature of the heat medium to a temperature that is lower than the heat-resistant temperature of the device and the like, and that the temperature distribution in the room is easily uniformized. On the other hand, when the refrigerant supplied to the indoor unit is cooled by the absorption chiller during cooling, the absorption chiller may not be driven or efficiently driven at the temperature required during heating. Therefore, the temperature of the heat medium supplied to the absorption refrigerator during cooling is required to be higher than that during heating. Thus, since the required temperature of the heat medium is different between the cooling time and the heating time, it is only necessary to change the piping of the air conditioner including the conventional heat medium driving type absorption chiller, depending on the temperature of the heat medium. When heating, problems such as a decrease in indoor comfort, an obstacle to the operation of the air conditioner, and a decrease in cooling / heating efficiency may occur.
[0005]
The subject of this invention is improving the energy-saving property of an air conditioning apparatus.
[0006]
[Means for Solving the Problems]
  The air conditioner of the present invention isAn exhaust heat recovery unit having a heat exchanger for heating the heat medium by exhaust heat from the exhaust heat source, an absorption refrigerator using the heat medium heated by the exhaust heat recovery unit as a heat source, and the absorption refrigerator An indoor unit connected to the heat sink, a forward side and a return side heat medium pipe that circulates the heat medium between the absorption refrigerator and a heat exchanger of the exhaust heat recovery unit, and the absorption refrigerator. The forward and return cold / hot water pipes for circulating cold water or hot water between the indoor units, the forward-side heat medium pipes and the return-side heat medium pipes bypassing the absorption refrigerator, respectively, Cooling / heating provided at the branch side connecting the forward-side cold / hot water pipe, the forward-side and return-side bypass pipes connected to the return-side cold / hot water pipe, and the forward-side heat medium pipe to the forward-side bypass pipe Detecting the temperature of the heat transfer medium upstream of the switching valve and the forward heating medium conduit side of the cooling / heating switching valve A temperature sensor, constituting a control unit for controlling the temperature of the control to the heating medium to the exhaust heat recovery unit on the basis of the temperature detected by the temperature sensor.
[0007]
  further,The control unit switches the cooling / heating switching valve.When the heat medium flows into the absorption refrigerator,The detected temperature of the heat medium isStop heating the heating medium at the highest temperature in the first temperature range, start heating the heating medium at the lowest temperature,Switch the cooling / heating switching valveWhen the heat medium flows into the bypass pipe line,The detected temperature of the heat medium isThe heating medium heating is stopped at the highest temperature in the second temperature range lower than the first temperature range, and the heating medium heating is started at the lowest temperature.
[0008]
  Also,An auxiliary heater that heats the heat medium flowing through the outward-side heat medium pipe line may be provided, and the control unit may control the temperature of the heat medium by controlling the exhaust heat recovery device and the auxiliary heater.
[0009]
  By adopting such a configuration, the heating / cooling switching valve is switched so that the heating medium flows through the bypass pipe during heating, thereby allowing the heating medium to pass through the bypass pipe.Waste heat recovery unitThe heating medium from can be directly supplied to the indoor unit to perform heating operation. That is, during the heating operation, the operation of the devices related to the operation of the absorption chiller and the absorption chiller can be stopped, and the energy consumption related to the operation of the air conditioner can be suppressed. Moreover, the temperature of the heating medium isControl unitThus, when the heat medium flows through the absorption refrigerator, the temperature of the heat medium can be adjusted higher than when the heat medium flows through the bypass pipe. In other words, since the temperature of the heating medium during cooling can be controlled to be higher than the temperature of the heating medium during heating, the indoor comfort during heating is reduced, the operation of the air conditioner is hindered, and the cooling and heating efficiency It is possible to make it difficult to cause a decrease. Therefore, the energy saving property of the air conditioner can be improved.
[0010]
By the way, the temperature of the exhaust heat from an exhaust heat source is low, and a heat medium may not become the temperature which can perform cooling or heating operation with sufficient efficiency. In such a case, in the conventional air conditioning apparatus, heat exchange from the exhaust heat source to the heat medium is stopped, and the heat medium is heated by the auxiliary heater. However, in such a conventional air conditioner, heat from the exhaust heat source is not effectively used, so that sufficient energy saving performance cannot be obtained.
[0011]
  In contrast, the air conditioner of the present invention, SupplementIt is set as the structure provided with the auxiliary heater and the control part which controls operation | movement of this auxiliary heater.be able to.Further, when the heat medium flows into the absorption chiller, the control unit performs auxiliary heating at the maximum temperature in the third temperature range in which the temperature detected by the heat medium temperature sensor is lower than the maximum temperature in the first temperature range. When heating of the heating medium by the heater is stopped, heating of the heating medium by the auxiliary heater is started at the minimum temperature, and the heating medium flows into the bypass pipe, the temperature detected by the heating medium temperature sensor is the second temperature. The heating medium heating by the auxiliary heater is stopped at the highest temperature in the fourth temperature range lower than the highest temperature in the range, and the heating medium heating by the auxiliary heater is started at the lowest temperature.
[0012]
With such a configuration, the auxiliary heater heats the heat medium in a state where the heat from the exhaust heat source is recovered by the heat medium, and further is lower than the temperature range in which the exhaust heat recovery is started and stopped. Stop heating medium at temperature. For this reason, the heat medium collects the exhaust heat except when it becomes an abnormally high temperature state that stops the exhaust heat recovery, and the auxiliary heater heats the heat medium so as to compensate for the heat that is insufficient in the exhaust heat recovery. Heat. Therefore, even when the auxiliary heater is used, the energy consumed by the auxiliary heater can be suppressed as much as possible, and the exhaust heat obtained from the exhaust heat source can be effectively used, so that the energy saving performance of the air conditioner can be improved.
[0013]
Further, if the heat medium temperature sensor and the control unit are configured to detect overheating of the heat medium, one heat medium temperature sensor can be used for both control of the heat medium temperature and detection of abnormal overheat. This is preferable because the number can be reduced.
[0014]
  Where via bypass lineWaste heat recovery unitIn the air conditioner that performs the heating operation by directly supplying the heat medium from the indoor unit, the operation of the absorption chiller and the devices related to the operation of the absorption chiller are stopped during the heating operation. For this reason, with the stoppage of these devices, the heat medium and the refrigerant hardly flow and stagnate in the pipeline. At this time, if the ambient temperature falls, for example, if the heat medium and the refrigerant that have stopped flowing are water or the like, the air conditioner may be damaged by freezing. The same applies to the case where the operation of the air conditioner is stopped and the heat medium and the refrigerant no longer flow.
[0015]
In contrast, conventionally, a freezing has been prevented by, for example, wrapping a heater around a pipeline. If you try to prevent freezing by wrapping a heater or the like around the pipeline, initial costs such as heater parts costs and processing costs, running costs such as electricity costs to drive the heater, etc. There are cases where the heater cannot be wound, there are places where it is difficult to wind, and there is a case where it takes time to wind the heater around the pipeline. In addition, it is possible to prevent water freezing by draining water, but it is not possible to drain water because heating operation may be performed. In addition, it is possible to prevent freezing by using an antifreeze liquid as a heat medium and a refrigerant. However, if an antifreeze liquid is used as a heat medium and a refrigerant, maintenance work such as concentration control of the antifreeze liquid becomes complicated, so the antifreeze liquid is difficult to use. .
[0016]
In the air conditioner of the present invention, the forward refrigerant pipe through which the refrigerant supplied from the absorption chiller to the indoor unit flows and the refrigerant returned from the indoor unit to the absorption chiller flow A refrigerant line including a return refrigerant line, a refrigerant pump for circulating the refrigerant between the absorption chiller and the indoor unit in the refrigerant line, and a temperature of the refrigerant in the refrigerant line A refrigerant temperature sensor for detecting the heat medium, and the heat medium pipe line includes a forward side heat medium pipe line through which the heat medium supplied from the heat medium temperature adjusting means to the absorption chiller flows. A return-side heat medium pipe through which the heat medium returned from the absorption refrigerator to the heat medium temperature adjusting means flows, and the heat medium pipe includes the heat medium temperature adjusting means and the absorption A heat medium pump for circulating the heat medium between the refrigerating machines, and the bypass pipe Are a return side bypass line communicating with the return side refrigerant line and the return side refrigerant line, and a return side bypass line communicating with the return side refrigerant line and the return side heat medium line And when the temperature of the refrigerant detected by the refrigerant temperature sensor is lower than a set temperature, the heating / cooling switching valve is switched so that the heat medium can be supplied from the heat medium temperature adjusting means to the absorption refrigeration machine, An air conditioner that operates at least one of the heat medium pump and the refrigerant pump.
[0017]
As described above, when the temperature of the refrigerant detected by the refrigerant temperature sensor becomes equal to or lower than the predetermined temperature, the heating / cooling pump is switched by switching the cooling / heating switching valve so that the heating medium and the refrigerant are supplied to the absorption refrigerator. When the refrigerant pump is operated, the heat medium in the heat medium pipe and the refrigerant in the refrigerant pipe flow. As a result, it is possible to prevent a flow from occurring in the heat medium in the heat medium pipe and the refrigerant in the refrigerant pipe and prevent the heat medium in the heat medium pipe and the refrigerant in the refrigerant pipe from freezing. Damage to the harmony device can be prevented.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
Hereinafter, a first embodiment of an air conditioner to which the present invention is applied will be described with reference to FIGS. 1 to 3. FIG. 1 is a diagram showing a schematic configuration and operation of an air conditioner to which the present invention is applied. FIG. 2 is a diagram illustrating operations of the exhaust heat recovery device and the auxiliary heater during cooling. FIG. 3 is a diagram illustrating operations of the exhaust heat recovery device and the auxiliary heater during heating. In the present embodiment, the case where the engine is used as an exhaust heat source and the heat medium is heated by the exhaust heat will be described as an example.
[0019]
As shown in FIG. 1, the air conditioner of this embodiment includes an exhaust heat recovery unit 1, an auxiliary boiler 3, an absorption refrigerator 5, a heat medium pipe 7, a cooling / heating switching three-way valve 9 a, 9 b, and a bypass pipe 11. The heat medium temperature sensor 13, the control unit 15, the hot / cold water pipe 17, and the indoor unit 19 that is an indoor unit. The exhaust heat recovery unit 1 uses heat from the engine 21 that is an exhaust heat source through the exhaust gas pipe 23 to the water that is the heat medium that flows through the heat medium pipe 7 in the heat exchange unit 25. to recover. The exhaust heat recovery device 1 includes a channel switching mechanism (not shown) for switching the channel through which exhaust gas flows. By this flow path switching mechanism, the flow of the exhaust gas is switched between the direction of the exhaust pipe 29 and the direction of the heat exchange unit 25, and excess exhaust heat is released from the exhaust pipe 29. The auxiliary boiler 3 is provided in the forward-side heat medium conduit 7 a through which the heat medium flows from the exhaust heat recovery device 1 toward the absorption refrigerator 5. The auxiliary boiler 3 includes a burner 31 and heats the heat medium by combustion of the burner 31.
[0020]
The absorption refrigerator 5 is a heat medium driven absorption refrigerator having a regenerator that heats the absorption liquid with the heat of the heat medium. The absorption chiller 5 includes a cooling tower 35 for cooling the cooling water circulating through the cooling water pipe 33. As described above, the heat medium pipe 7 includes the forward-side heat medium pipe 7a through which the heat medium flows from the exhaust heat recovery device 1 to the absorption chiller 5 through the auxiliary boiler 3, and the absorption chiller. 5, a return-side heat medium conduit 7 b through which the heat medium flows toward the exhaust heat recovery device 1. The forward-side heat medium conduit 7 a includes a heat medium pump 37, and absorbs the exhaust heat recovery device 1. A heat medium is circulated with the type refrigerator 5. The cold / hot water pipe 17 is a forward-side cold / hot water pipe 17 a through which cold water as a refrigerant flows from the absorption chiller 5 toward the indoor unit 19, and cold water or hot water from the indoor unit 19 toward the absorption chiller 5. The return side cold / hot water pipe 17b is provided with a cold water pump 39.
[0021]
The bypass pipeline 11 returns the heat medium flowing through the return side cold / hot water pipe 17b and the return side cold / hot water pipe 17b through which the heat medium flowing through the forward heat medium pipe 7a flows to the forward cold / hot water pipe 17a. It consists of a return side bypass line 11b that flows into the side heat medium line 7b. The forward-side bypass line 11a is branched from the forward-side heat medium line 7a by a cooling / heating switching three-way valve 9a provided in the forward-side heat medium line 7a between the auxiliary boiler 3 and the absorption chiller 5. It pipes so that it may join the cold / hot water pipe line 17a. The return side bypass pipe 11b is piped so as to branch from the return side cold / hot water pipe 17b at the cooling / heating switching three-way valve 9b provided in the return side cold / hot water pipe 17b and to join the return side heat medium pipe 7b. . As described above, in the air conditioner of this embodiment, water that is the refrigerant cooled by the absorption chiller 5 supplied from the absorption chiller 5 to the indoor unit 19, that is, the refrigerant pipe through which cold water flows. In addition, since heated water that is a heating medium, that is, hot water is supplied and flows through the forward bypass bypass line 11 a, the refrigerant pipe is referred to as a cold / hot water pipe 17. The same applies to the outward-side cold / hot water pipe 17a and the return-side cold / hot water pipe 17b.
[0022]
The control unit 15 includes a power box 41, an auxiliary boiler control unit 43, an air conditioning switching switch 45, a flow path switching mechanism of the exhaust heat recovery unit 1, an indoor unit control unit 47 that controls the operation of the indoor unit 19, and a forward side heat medium. The heating medium temperature sensor 13 installed between the auxiliary boiler 3 of the pipe line 7a and the cooling / heating switching three-way valve 9a is electrically connected by the wiring 51. The power box 41 includes a heat medium pump 37 provided in the outgoing heat medium pipe line 7a, two cooling / heating switching three-way valves 9a and 9b, a cold water pump 39 provided in the return side hot / warm water pipe line 17b, and a cooling tower 35. The cooling fan (not shown) and the cooling water pump 53 provided in the cooling water pipe 33 are electrically connected by the wiring 55.
[0023]
The control unit 15 also has an abnormality detection function. When the temperature of the heat medium detected by the heat medium temperature sensor 13 reaches the set abnormality detection temperature, an alarm is issued to notify the user of the abnormality. Then, the burner 31 of the auxiliary boiler 3 is forcibly stopped, the flow path switching mechanism of the exhaust heat recovery device 1 is switched so that the exhaust gas flows to the exhaust pipe 29, exhaust gas is discharged, and heating of the heat medium is stopped.
[0024]
The auxiliary boiler control unit 43 is electrically connected to the burner 31 of the auxiliary boiler 3 and the wiring 61. In the present embodiment, the control unit 15 issues a command signal, and the power box 41 performs switching of devices electrically connected to the power box 41 in accordance with the command signal. Moreover, in this embodiment, although the control part 15, the power box 41, the auxiliary boiler control part 43, etc. are comprised separately, it can also be comprised integrally as a control part. The indoor unit control unit 47 operates the control valve 65 for controlling switching whether or not to pass cold water or hot water, which is a heated heating medium, into the indoor unit 19 according to a signal from the control unit 15 or the like. Is controlling.
[0025]
In the air conditioning apparatus having such a configuration, when there is an air conditioning request and the cooling operation is selected by the operation changeover switch 45, the control unit 15 causes the heat medium and the cold water to respectively absorb the absorption refrigeration via the power box 41. The two air-conditioning switching three-way valves 9a and 9b are switched so as to circulate through the heat medium pipe 11 and the cold / hot water pipe 17 through the machine 5. Then, a heat medium pump 37 provided in the outgoing side heat medium pipe line 7a, a cold water pump 39 provided in the return side cold / hot water pipe line 17b, a cooling fan (not shown) of the cooling tower 35, and a cooling water pipe line 33 The cooling water pump 53 and the like provided in are operated. Thereby, the heat medium flowing through the heat medium pipe 11 recovers the exhaust heat from the engine 21 by the exhaust heat recovery device 1. The absorption refrigerator 5 cools water, which is a refrigerant flowing through the cold / hot water pipe 17, by the heat of the heat medium heated by the exhaust heat recovery device 1. When the cold water cooled by the absorption chiller 5 flows through the indoor unit 19, cold air is sent out from the indoor unit 19.
[0026]
In such a cooling operation, the absorption chiller 5 cools the water efficiently, and the temperature of the heating medium is set to prevent the absorption chiller 5 from being driven because the temperature of the heating medium is too low. It is necessary to keep it within a predetermined range. For this reason, the control unit 15 controls the flow path switching mechanism of the exhaust heat recovery unit 1 and further controls the operation of the auxiliary boiler 3 via the auxiliary boiler control unit 43. During cooling, the control unit 15 controls the flow path switching mechanism in the temperature range of T1 to T2, as shown in FIG. At this time, T1> T2. That is, when the temperature detected by the heat medium temperature sensor 13 reaches T1, the control unit 15 switches the flow path switching mechanism to the exhaust pipe 29 so that the exhaust gas from the engine 21 flows, and flows the exhaust gas to the exhaust pipe 29. Stop exhaust heat recovery. That is, the exhaust heat recovery by the exhaust heat recovery device 1 is turned off. Thereby, heating of the heat medium is stopped. When heating of the heat medium is stopped and the temperature of the heat medium is lowered, and the temperature detected by the heat medium temperature sensor 13 reaches T2, the flow path switching mechanism is switched to the heat exchange unit 25 so that the exhaust gas from the engine 21 flows, The exhaust gas is caused to flow through the heat exchanging unit 25 and the recovery of the exhaust heat is started. That is, the exhaust heat recovery by the exhaust heat recovery device 1 is turned on. Thereby, heating of the heat medium is started.
[0027]
At this time, if the temperature of the exhaust gas from the engine 21 is low and the heat medium falls without maintaining a sufficient temperature, the control unit 15 passes through the auxiliary boiler control unit 43 to T3 to T4. The on / off of the burner 31 of the auxiliary boiler 3 is controlled within the temperature range. At this time, T1> T3 and T2> T4. When the temperature of the heat medium decreases and the temperature detected by the heat medium temperature sensor 13 reaches T4, the control unit 15 turns on the burner 31 and starts heating the heat medium. When the heat medium is heated by the burner 31, the temperature of the heat medium rises. When the temperature detected by the heat medium temperature sensor 13 reaches T3, the burner 31 is turned off and heating of the heat medium is stopped. At this time, when the temperature is equal to or lower than T2, the flow path switching mechanism of the exhaust heat recovery device 1 is switched to allow the exhaust gas from the engine 21 to flow through the heat exchange unit 25, and the heat medium is the engine 21. The exhaust heat from is recovered. Therefore, the auxiliary boiler 3 operates so as to compensate for the heat quantity that is insufficient to raise the heat medium to a temperature equal to or higher than T3.
[0028]
On the other hand, when there is an air conditioning request and the heating operation is selected by the operation changeover switch 45, the control unit 15 causes the heat medium flowing through the heat medium pipe line 7 to pass through the bypass pipe line 11 via the power box 41. The two air-conditioning switching three-way valves 9a and 9b are switched so as to flow into the cold / hot water pipe 17 through. Then, the control unit 15 operates only the heat medium pump 37 provided in the outgoing side heat medium pipe line 7a, and illustrates the cold water pump 39 and the cooling tower 35 provided in the return side cold / hot water pipe line 17b. No cooling fan, and the cooling water pump 53 provided in the cooling water pipe 33 are stopped. As a result, the heat medium is not supplied to the absorption refrigeration machine 5 and circulates between the exhaust heat recovery device 1 and the indoor unit 19 via the bypass line 11, and the heat medium is circulated. The warm air is blown out from the indoor unit 19 by flowing through the indoor unit 19.
[0029]
In such heating operation, if the temperature of the heat medium becomes too high, the temperature of the air blown out from the indoor unit 19 becomes too high, and a phenomenon such as difficulty in uniforming the temperature distribution in the room may occur, resulting in a decrease in comfort. is there. Moreover, the heat-resistant temperature of the air conditioner 19 and the control valve 65 may be exceeded, and the operation of the air conditioner may be hindered. For this reason, the control unit 15 controls the flow path switching mechanism of the exhaust heat recovery device 1 and controls the operation of the auxiliary boiler 3 via the auxiliary boiler control unit 43. During heating, the control unit 15 controls the flow path switching mechanism in a temperature range of T5 to T6, as shown in FIG. At this time, T4> T5> T6.
[0030]
That is, when the temperature detected by the heat medium temperature sensor 13 reaches T5, the control unit 15 switches the flow path switching mechanism so that the exhaust gas from the engine 21 flows to the exhaust pipe 29, and the exhaust gas from the engine 21 is discharged to the exhaust pipe. 29 to stop exhaust heat recovery. Thereby, heating of the heat medium is stopped. When heating of the heat medium is stopped and the temperature of the heat medium is lowered, and the temperature detected by the heat medium temperature sensor 13 reaches T6, the flow path switching mechanism is switched to the heat exchange unit 25 so that the exhaust gas from the engine 21 flows, The exhaust gas is caused to flow through the heat exchanging unit 25 and the recovery of the exhaust heat is started. Thereby, heating of the heat medium is started.
[0031]
At this time, if the temperature of the exhaust gas from the engine 21 is low and the heat medium is lowered without maintaining a sufficient temperature, the control unit 15 is connected to the T7 to T8 via the auxiliary boiler control unit 43. The on / off of the burner 31 of the auxiliary boiler 3 is controlled within the temperature range. At this time, T5> T7 and T6> T8. When the temperature of the heat medium decreases and the temperature detected by the heat medium temperature sensor 13 reaches T8, the control unit 15 turns on the burner 31 and starts heating the heat medium. When the heat medium is heated by the burner 31, the temperature of the heat medium rises. When the temperature detected by the heat medium temperature sensor 13 reaches T7, the burner 31 is turned off and heating of the heat medium is stopped.
[0032]
At this time, when the temperature is equal to or lower than T6, the flow path switching mechanism of the exhaust heat recovery device 1 is always switched so that the exhaust gas from the engine 21 flows to the heat exchanging unit 25. Waste heat is recovered. Accordingly, even during heating, the auxiliary boiler 3 operates so as to compensate for the insufficient amount of heat in order to raise the heat medium to a temperature equal to or higher than T8. Thus, during heating, the flow path switching mechanism and the auxiliary boiler 3 are controlled in a temperature range lower than that during cooling. That is, the heat medium temperature adjusting means including the exhaust heat recovery device 1, the auxiliary boiler 3, the control unit 15, and the like allows the heat medium to flow to the bypass pipe 11 when the heat medium flows to the absorption refrigerator 5. The temperature of the heating medium is adjusted to be higher than when it does.
[0033]
In this embodiment, as shown in FIGS. 2 and 3, the temperature range of T3 to T4 is controlled to be lower than the temperature range of T1 to T2, but T1> T3 and T2> T4. If it exists, the temperature range of T1-T2 and the temperature range of T3-T4 can also be set to a temperature range in which the temperature range of T1-T2 and the temperature range of T4-T5 partially overlap. Similarly, in this embodiment, the temperature range of T7 to T8 is controlled to be lower than the temperature range of T5 to T6. However, if T5> T7 and T6> T8, the temperature range of T5 to T6. The temperature range of T7 to T8 can also be set to a temperature range in which the temperature range of T5 to T6 and the temperature range of T7 to T8 partially overlap.
[0034]
As described above, in the air conditioner of the present embodiment, the heating medium is directly supplied to the indoor unit 19 by switching the cooling / heating switching three-way valves 9a and 9b so that the heating medium flows through the bypass pipe 11 during heating. Heating operation. That is, during the heating operation, the devices related to the operation of the absorption refrigerator 5 and the absorption refrigerator 5, such as the cold water pump 39 and the cooling water pump 53, can be stopped. Moreover, the temperature of the heat medium is higher than the temperature of the heat medium during heating by the heat medium temperature adjusting means, that is, the exhaust heat recovery device 1, the heat medium temperature sensor 13, the control unit 15, and the like. To be controlled. For this reason, it is hard to produce the fall of indoor comfort at the time of heating, the trouble to the driving | operation of an air conditioner, the fall of air-conditioning efficiency, etc. Therefore, the energy saving property of the air conditioner can be improved.
[0035]
Furthermore, in the air conditioning apparatus of this embodiment, an auxiliary boiler is also provided as the heat medium temperature adjusting means. When the temperature of the heat medium becomes lower than a desired temperature, the flow path switching mechanism of the exhaust heat recovery device 1 is provided. However, the on / off state of the burner 31 of the auxiliary boiler 3 is controlled in a state in which the exhaust gas from the engine 21 is switched to the heat exchanging unit 25, that is, in a state where the exhaust heat is recovered in the heat medium. For this reason, in order to make a heat medium into desired temperature, since the auxiliary boiler 3 supplements the heat | fever amount which is insufficient only by collection | recovery of waste heat, waste heat can be utilized efficiently and energy saving property can be improved more. However, when the exhaust heat source always has a sufficient amount of heat, the auxiliary boiler 3 may not be provided. Moreover, in this embodiment, although the auxiliary boiler 3 is provided as an auxiliary heater, various auxiliary heaters which heat a heat medium by a heater or heat exchange can also be used as an auxiliary heater.
[0036]
In the present embodiment, the control unit 15 controls the flow path switching mechanism of the exhaust heat recovery device 1 according to the temperature detected by the heat medium temperature sensor 13. A control unit for the switching mechanism, a temperature sensor, and the like may be provided to receive the operation command signal for identifying the cooling operation and the heating operation from the control unit 15 to control the flow path switching mechanism. Furthermore, in this embodiment, water is used for the heat medium and the refrigerant. However, the heat medium and the refrigerant are not limited to water, and various fluids can be used.
[0037]
In the present embodiment, the exhaust heat recovery device 1 having a flow path switching mechanism is used as the heat medium temperature adjusting means, but the heat medium temperature adjusting means has various configurations as long as the temperature of the heat medium can be adjusted. be able to. For example, the exhaust heat recovery device is not used as the heat medium temperature adjusting means, but the forward heat medium pipe line 7a is provided with a device that radiates the heat of the heat medium to the atmosphere or the like, thereby adjusting the temperature of the heat medium. You can also.
[0038]
Moreover, in this embodiment, exhaust heat is collect | recovered from the waste gas from the engine 21, and the air conditioning apparatus of the structure provided with the indoor unit 19 as an indoor unit is illustrated. However, the present invention is not limited to the configuration of the present embodiment, and can be applied to an air conditioner having various configurations, for example, an air conditioner using various exhaust heat sources and including indoor units having various configurations. As the exhaust heat source, for example, various exhaust heat from a fuel cell, industrial exhaust heat, geothermal heat, hot spring, and the like can be used. Further, the exhaust heat can be recovered not only from exhaust gas but also from engine cooling water, for example.
(Second Embodiment)
A second embodiment of an air conditioner to which the present invention is applied will be described with reference to FIG. FIG. 4 is a diagram showing a schematic configuration and operation of a second embodiment of an air conditioner to which the present invention is applied. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and configurations and features that are different from those in the first embodiment will be described.
[0039]
The present embodiment is different from the first embodiment in that a cold water temperature sensor 67 that detects the temperature of water as a refrigerant, and an overheat prevention piped so that the heat medium can circulate without passing through the exhaust heat recovery device 1. A heat medium overheat prevention three-way valve 75 for allowing the heat medium to flow through the overheat prevention pipe line 73 by a signal from the pipe 73 and a control unit (not shown) is provided.
[0040]
As shown in FIG. 4, the air conditioner of this embodiment includes an exhaust heat recovery unit 1, an auxiliary boiler 3, an absorption refrigerator 5, a heat medium pipe 7, a cooling / heating switching three-way valve 9 a, and a forward bypass pipe 11 a. , Return side bypass line 11b, heat medium temperature sensor 13, cold / hot water line 17, indoor unit 19, heat medium pump 37, cold water pump 39, cold water temperature sensor 67, overheat prevention line 73, and heat medium overheat prevention It consists of a three-way valve 75 and the like.
[0041]
The exhaust heat recovery unit 1 recovers the heat of exhaust gas supplied from an unshown exhaust heat source, for example, an engine or the like, into water, which is a heat medium flowing through the heat medium pipe 7, by the heat exchange unit 25. The auxiliary boiler 3 includes, for example, a burner (not shown), and heats the heat medium by burning the burner. The absorption chiller 5 is a heat medium driven absorption chiller having a regenerator 69 that heats the absorbing liquid with heat of the heat medium and an evaporator 71 that cools the refrigerant using heat of vaporization. The absorption refrigerator 5 includes a cooling tower for cooling the cooling water circulating through the cooling water pipe as in the first embodiment, but is omitted in FIG.
[0042]
The heat medium pipe line 7 is a forward side heat medium pipe line 7 a through which the heat medium flows from the exhaust heat recovery device 1 through the auxiliary boiler 3 toward the absorption type refrigerator 5, and the exhaust heat source from the absorption type refrigerator 5. A return side heat medium pipe line 7b through which the heat medium flows toward the recovery unit 1, and an auxiliary boiler 3 for further heating the heat medium heated by the exhaust heat recovery unit 1 to the forward side heat medium pipe line 7a; A heating medium pump 37 for circulating the heating medium is provided downstream of the auxiliary boiler 3. The heat medium temperature sensor 13 for detecting the temperature of the heat medium is provided in the forward heat medium pipe line 7 a between the auxiliary boiler 3 and the heat medium pump 37. Further, the heat medium pipe line 7 is provided with an overheat prevention pipe line 73 which is piped so that the heat medium can circulate without passing through the exhaust heat recovery device 1. The overheat prevention pipe line 73 branches from the return side heat medium pipe line 7 b and goes by a heat medium overheat prevention three-way valve 75 provided in the forward heat medium pipe line 7 a between the exhaust heat recovery device 1 and the auxiliary boiler 3. It merges with the side heat medium pipe line 7a.
[0043]
The cold / hot water pipe 17 is a forward-side cold / hot water pipe 17a through which water as a refrigerant from the absorption refrigerator 5 or water as a heat medium supplied from the forward-side bypass pipe 11a flows toward the indoor unit 19. And a return-side cold / hot water pipe 17b through which water as a refrigerant or water as a heat medium flows from the indoor unit 19 toward the absorption refrigerator 5 and the refrigerant in the forward-side cold / hot water pipe 17a. A chilled water temperature sensor 67 for detecting the temperature of a certain water is provided, and a chilled water pump 39 for circulating water as a refrigerant in the return side chilled / hot water pipe 17b is provided.
[0044]
The forward side bypass conduit 11 a for flowing the heat medium flowing through the forward side heat medium conduit 7 a to the forward side cold / hot water conduit 17 a is a forward side heat medium conduit between the heat medium pump 37 and the absorption refrigerator 5. The air-conditioning switching three-way valve 9a provided at 7a branches off from the outgoing heat medium pipe line 7a, and is piped so as to join the forward-side cold / hot water pipe line 17a between the cold water temperature sensor 67 and the indoor unit 19. Yes. The return side bypass pipe 11b for flowing the heat medium flowing through the return side cold / hot water pipe line 17b to the return side heat medium pipe line 7b is a return side cold / hot water pipe line 17b between the cold water pump 39 and the indoor unit 19. It branches from the cold / hot water pipe 17b, and is piped so that it may join the part of the return side heat-medium pipe line 7a between the absorption-type refrigerator 5 and the point where the overheat prevention pipe line 73 branches.
[0045]
The control unit (not shown) of the air conditioner according to the present embodiment causes the heat medium to flow through the overheat prevention conduit 73 when the temperature of the heat medium detected by the heat medium temperature sensor 13 is equal to or higher than the set temperature. The heating of the heat medium can be stopped by switching the overheat prevention three-way valve 75.
[0046]
In the air conditioner having such a configuration, there is an air conditioning requirement. For example, when a cooling operation is selected by an operation changeover switch (not shown), the control unit (not shown) The cooling / heating switching three-way valve 9a is switched so as to circulate through the heat medium pipe 11 and the cold / hot water pipe 17 through the machine 5. Then, a heat medium pump 37 provided in the outgoing side heat medium pipe line 7a, a cold water pump 39 provided in the return side cold / hot water pipe line 17b, a cooling fan of a cooling tower not shown, and a cooling water pipe line are provided. Activate the cooling water pump. Thereby, the heat medium discharged by the heat medium pump 37 flows through the heat medium pipe 11, and the air conditioner switching three-way valve 9 a, the regenerator 69 of the absorption refrigerator 5, the exhaust heat recovery device 1, the heat medium. The overheat prevention three-way valve 75, the auxiliary boiler 3, the heat medium temperature sensor 13, and the heat medium pump 37 are circulated. The heat medium circulating in the heat medium pipe 7 recovers the exhaust heat by the exhaust heat recovery device 1. The absorption refrigerator 5 cools water, which is a refrigerant flowing through the cold / hot water pipe 17, by the heat of the heat medium heated by the exhaust heat recovery device 1 that recovers the exhaust heat. Water, which is a refrigerant discharged by the cold water pump 39, is supplied to the evaporator 71 of the absorption refrigerator 5 and cooled. The water cooled by the absorption refrigerator 5 flows through the cold / hot water pipe 17 and circulates through the cold water temperature sensor 67, the indoor unit 19, and the cold water pump 39. Cold air is sent out from the indoor unit 19 when water, which is a refrigerant circulating in the cold / hot water pipe 17, flows through the indoor unit 19.
[0047]
On the other hand, when there is an air conditioning request and heating operation is selected by an operation changeover switch (not shown), the control unit (not shown) causes the heat medium flowing through the outgoing heat medium pipe line 7a to pass through the outgoing bypass pipe line 11a. The cooling / heating switching three-way valve 9a is switched so as to flow to the forward-side cold / hot water pipe 17a. Then, the control unit (not shown) operates only the heat medium pump 37 provided in the forward side heat medium pipe line 7a, and cools the cooling water pump 39 provided in the return side cold / hot water pipe line 17b and a cooling tower (not shown). Stop the fan, the cooling water pump installed in the cooling water pipe, and so on. As a result, the heat medium discharged by the heat medium pump 37 is not supplied to the absorption refrigeration machine 5, but is supplied from the air-conditioning switching three-way valve 9a to the forward bypass pipe 11a, and the forward bypass pipe 11a, the return side The exhaust heat recovery unit 1, the heat medium overheat prevention three-way valve 75, the auxiliary boiler 3, the heat medium temperature sensor 13, the heat medium pump 37, the cooling / heating switching three-way valve 9a, and the indoor unit 19 are arranged in this order via the bypass line 11b. Circulation starts, and the heat medium flows through the indoor unit 19, whereby hot air is blown out from the indoor unit 19.
[0048]
As described above, the air conditioner of the present embodiment directly supplies the heat medium to the indoor unit 19 by switching the cooling / heating switching three-way valve 9a so that the heat medium flows through the forward bypass bypass line 11a during heating. Heating operation. At this time, in order to improve energy saving, the devices related to the operation of the absorption refrigerator 5 and the absorption refrigerator 5, such as the cold water pump 39, are stopped. For this reason, at the time of heating operation, the absorption refrigerator 5 from the branch point of the return side cold / hot water pipe line 17b to the return side bypass pipe line 11b to the junction point of the outgoing side cold / hot water pipe line 17a with the return side bypass pipe line 11a. The cold water inside the hot / cold water pipe line 17 on the side is dead water, that is, it hardly flows. Similarly, the heat medium on the absorption refrigerating machine 5 side from the cooling / heating switching three-way valve 9a provided in the outgoing side heat medium pipe line 7a to the junction with the return side bypass pipe line 11b of the return side heat medium pipe line 7b. Water that is a heat medium inside the pipe 7 becomes dead water. Dead water may freeze when the ambient temperature falls, and this freezing may damage the air conditioner.
[0049]
In particular, after the heating operation is stopped, compared to the pipe line through which the heated water flows during the heating operation, the pipe line through which the heated water hardly flows, that is, the return side cold / hot water pipe line 17b and the return side. Return-side cold / hot water pipe 17b from the branch point to the bypass chiller 11b to the absorption chiller 5, the chilled water flow path in the evaporator 71, the absorption-type chiller 5 going to the chilled / hot water pipe 17a and the outgoing-side bypass pipe Outward side cold / hot water pipe 17a to the junction with the path 11a, Outward side heat medium pipe line 7a from the cooling / heating switching three-way valve 9a to the absorption refrigerator 5, the flow path of the heat medium in the regenerator 69, and absorption The temperature of dead water inside the heat medium pipe line 7a from the type refrigerator 5 to the junction of the return side heat pipe line 7b and the return side bypass pipe line 11b is lower than that of other portions. For this reason, when ambient temperature falls, dead water is easy to freeze compared with the water in another pipe line.
[0050]
On the other hand, in the air conditioner of this embodiment, the cold water temperature sensor 67 provided in the outgoing side cold / hot water pipe 17a detects the temperature of the water which is dead water, and the temperature of the water which this cold water temperature sensor 67 detected is detected. When the temperature becomes a preset temperature, for example, 1 ° C. or less, the heating operation is switched to the cooling operation to eliminate dead water, thereby preventing damage to the air conditioner due to freezing of dead water. That is, when the temperature of the water detected by the cold water temperature sensor 67 becomes equal to or lower than a preset temperature, the cooling / heating switching three-way valve 9a is switched to supply the regenerator 69 with the heat medium that has been supplied to the forward bypass pipeline 11a. At the same time, the cold water pump 39 is operated to supply water to the evaporator 71. By doing in this way, the return side cold / hot water pipe line 17b from the branch point of the return side cold / hot water pipe line 17b and the return side bypass pipe line 11b to the absorption refrigeration machine 5, the evaporator 71, and the absorption chiller machine 5 go. Water in the forward side cold / hot water pipe 17a to the junction of the side cold / hot water pipe 17a and the outgoing side bypass pipe 11a, and the outgoing heat medium pipe line 7a from the cooling / heating switching three-way valve 9a to the absorption refrigerator 5; Water that is the heat medium in the return side heat medium pipe line 7b from the regenerator 69 and the absorption refrigerator 5 to the junction of the return side heat pipe line 7b and the return side bypass pipe line 11b becomes flowing water. It is no longer dead water. Further, the operation of the heat medium pump 37 and the cold water pump 39 causes the heat medium in the heat medium pipe 7 and the water in the cold / hot water pipe 11 to flow, the temperature of the water rises, and the cold water temperature sensor. If the temperature of the water detected by 67 becomes higher than the preset temperature, the cooling / heating switching three-way valve 9a of the air conditioner is switched to return from the cooling operation to the heating operation. Thereby, freezing of the water in the heat-medium pipe line 7, the cold / hot water pipe line 11, and the absorption refrigerating machine 5 can be prevented, and damage to the air conditioner can be prevented.
[0051]
Further, when the heat medium pump 37 and the cold water pump 39 are driven to prevent freezing of the water while the air conditioner is stopped, the heat medium pump 37 and the cold water pump 39 drive the water. If the detected temperature of the cold water temperature sensor 67 becomes higher than a preset temperature, the heat medium pump 37 and the cold water pump 39 are stopped to maintain the energy saving performance of the air conditioner. it can. If the temperature of the water does not rise even though the heat medium pump 37 and the cold water pump 39 are driven, the heat medium pump 37 and the cold water pump 39 are continuously driven to prevent freezing of the water. You can also.
[0052]
In this way, not only during the heating operation, but when there is a possibility that water inside the air conditioner may freeze due to a decrease in ambient temperature, the temperature of the water is detected by the cold water temperature sensor 67, and the detection is performed. The heat medium pump 37 and the cold water pump 39 are driven by the above-described temperatures to prevent the water in the air conditioner from being frozen and to prevent the air conditioner from being damaged. In this way, by operating the heat medium pump 37 and the cold water pump 39, the water in the air conditioner flows to prevent freezing, so that the water is prevented from freezing without being heated by a heater or the like. be able to.
[0053]
Moreover, the control part which is not illustrated can perform the same control as the control part of 1st Embodiment except the control which prevents freezing of water. Moreover, in the air conditioning apparatus of 1st Embodiment, although the two air-conditioning switching three-way valves 9a and 9b are provided, at least 1 air-conditioning switching three-way valve 9a like the air conditioning apparatus of 2nd Embodiment. However, what is necessary is just to exist in the going-out side heat-medium conduit | pipe 7a between the heat medium pump 37 and the absorption refrigerator 5. FIG.
[0054]
Further, the heat medium temperature adjusting means of the air conditioner having the freeze prevention function of the present invention is not limited to the configuration of the heat medium temperature adjusting means in the air conditioner of the second embodiment as shown in FIG. The heat medium temperature adjusting means of the air conditioner of the first embodiment can also be used.
[0055]
Moreover, the air conditioning apparatus having the antifreezing function of the present invention is not limited to the configuration of the air conditioning apparatus of the second embodiment. For example, in the air conditioning apparatus of the first embodiment, a cold water temperature sensor is provided, Depending on the temperature of the water detected by the cold water temperature sensor, the temperature of the heat medium is adjusted and the temperature is also detected to prevent the water from freezing. Can be used to prevent freezing of dead water.
[0056]
The cold water temperature sensor 67 is connected to the return side cold / hot water pipe 17b from the branch point of the return side cold / hot water pipe 17b and the return side bypass pipe 11b where the dead water is generated to the absorption refrigerator 5, or from the absorption refrigerator 5. It is preferable to be provided in the outgoing cold / hot water pipe 17a up to the junction of the outgoing cold / hot water pipe 17a and the outgoing bypass pipe 11a. In this case, in order to control the temperature of the cold water supplied to the indoor unit 19, when the cold water temperature sensor 67 is provided, the temperature of the water is detected without newly providing a temperature sensor for preventing freezing. By operating the heat medium pump 37 and the cold water pump 39, it is possible to prevent water in the air conditioner from being frozen.
[0057]
Also, depending on the operating conditions of the air conditioner, if one of the heat medium pump 37 and the cold water pump can be driven to prevent water from freezing, either pump can be driven. It is not necessary to drive both the heat medium pump 37 and the cold water pump 39. Further, regardless of the detection value of the cold water temperature sensor 67, the heat medium pump 37 and the cold water pump 39 can be driven at a constant cycle. As a result, the temperature of dead water at a location that cannot be detected by the cold water temperature sensor 67 is lower than the temperature detected by the cold water temperature sensor 67 and before the heat medium pump 37 and the cold water pump 39 are driven, the cold water temperature sensor It is also possible to prevent dead water in a place where 67 cannot be detected from freezing.
[0058]
In addition, a flow rate adjusting valve may be provided in the bypass line 11 to adjust the flow rate of the heat medium flowing through the outgoing bypass line 11a and the return bypass line 11b.
[0059]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the energy saving property of an air conditioning apparatus can be improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration and operation of a first embodiment of an air conditioner to which the present invention is applied.
FIG. 2 is a diagram illustrating operations of an exhaust heat recovery device and an auxiliary heater during cooling.
FIG. 3 is a diagram showing operations of an exhaust heat recovery device and an auxiliary heater during heating.
FIG. 4 is a diagram showing a schematic configuration and operation of a second embodiment of an air conditioner to which the present invention is applied.
[Explanation of symbols]
1 Waste heat recovery device
3 Auxiliary boiler
5 absorption refrigerators
7 Heat transfer conduit
7a Outward side heat medium pipe
7b Return side heat medium pipe
9a, 9b Air-conditioning switching three-way valve
11 Bypass pipeline
11a Outward bypass pipeline
11b Return side bypass pipeline
13 Heating medium temperature sensor
15 Control unit
17 Cold and hot water pipeline
17a Outward side cold / hot water pipe
17b Return side cold / hot water pipeline
19 Indoor unit

Claims (1)

排熱源からの排熱により熱媒を加熱するに熱交換器を備えた排熱回収器と、
該排熱回収器で加熱された熱媒を熱源とする吸収式冷凍機と、
該吸収冷凍機に接続された室内機と、
前記吸収式冷凍機と前記排熱回収器の熱交換器との間で前記熱媒を循環する往き側及び帰り側の熱媒管路と、
前記吸収冷凍機と前記室内機との間で冷水又は温水を循環する往き側及び帰り側の冷温水管路と、
前記吸収冷凍機をバイパスして前記往き側熱媒管路と前記帰り側熱媒管路をそれぞれ前記往き側冷温水管路と前記帰り側冷温水管路に接続する往き側及び帰り側のバイパス管路と、
前記往き側熱媒管路を前記往き側バイパス管路に接続する分岐部に設けられた冷暖房切り換え弁と、
前記冷暖房切り換え弁の前記往き側熱媒管路側の上流側の熱媒の温度を検出する温度センサと、
該温度センサの検出温度に基づいて前記排熱回収器を制御して熱媒の温度を制御する制御部とを備え、
前記制御部は、前記冷暖房切り換え弁を切り換えて前記熱媒が前記吸収式冷凍機へ通流するとき、前記熱媒の検出温度が第1の温度範囲の最高温度で前記熱媒の加熱を停止し、最低温度で前記熱媒の加熱を開始し、前記冷暖房切り換え弁を切り換えて前記熱媒が前記バイパス管路へ通流するとき、前記熱媒の検出温度が第1の温度範囲よりも低い第2の温度範囲の最高温度で前記熱媒の加熱を停止し、最低温度で前記熱媒の加熱を開始するように構成されてなる空気調和装置。
An exhaust heat recovery device equipped with a heat exchanger to heat the heat medium by exhaust heat from an exhaust heat source;
An absorption refrigerator using a heat medium heated by the exhaust heat recovery device as a heat source;
An indoor unit connected to the absorption refrigerator;
A forward and return side heat medium conduit for circulating the heat medium between the absorption refrigerator and the heat exchanger of the exhaust heat recovery unit;
A cold / hot water pipe on the forward side and the return side for circulating cold water or hot water between the absorption refrigerator and the indoor unit,
Outbound and return bypass pipes bypassing the absorption refrigerator and connecting the outbound heat medium conduit and the return heat medium conduit to the outbound cold / hot water conduit and the return cold / hot water conduit, respectively. When,
An air conditioning switching valve provided at a branch portion connecting the outgoing heat medium pipe line to the outgoing bypass pipe line,
A temperature sensor for detecting the temperature of the upstream heating medium on the forward heating medium conduit side of the cooling / heating switching valve;
A control unit for controlling the temperature of the heat medium by controlling the exhaust heat recovery unit based on the temperature detected by the temperature sensor;
The control unit stops heating the heating medium when the detected temperature of the heating medium is the highest temperature in the first temperature range when the heating medium is switched to the cooling / heating switching valve and the heating medium flows to the absorption refrigerator. When the heating medium starts to be heated at the lowest temperature, the cooling / heating switching valve is switched, and the heating medium flows through the bypass pipe, the detected temperature of the heating medium is lower than the first temperature range. An air conditioner configured to stop heating the heating medium at a maximum temperature in a second temperature range and start heating the heating medium at a minimum temperature .
JP2001136325A 2000-07-31 2001-05-07 Air conditioner Expired - Lifetime JP3932378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001136325A JP3932378B2 (en) 2000-07-31 2001-05-07 Air conditioner

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-231692 2000-07-31
JP2000231692 2000-07-31
JP2001136325A JP3932378B2 (en) 2000-07-31 2001-05-07 Air conditioner

Publications (2)

Publication Number Publication Date
JP2002115930A JP2002115930A (en) 2002-04-19
JP3932378B2 true JP3932378B2 (en) 2007-06-20

Family

ID=26597061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001136325A Expired - Lifetime JP3932378B2 (en) 2000-07-31 2001-05-07 Air conditioner

Country Status (1)

Country Link
JP (1) JP3932378B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4827307B2 (en) * 2001-03-26 2011-11-30 矢崎総業株式会社 Air conditioner
JP2015001348A (en) * 2013-06-17 2015-01-05 株式会社ワイビーエム Geothermal heat pump device
JP6999628B2 (en) * 2019-11-19 2022-01-18 矢崎エナジーシステム株式会社 Absorption chiller
JP7309593B2 (en) * 2019-12-18 2023-07-18 株式会社日立産機システム Exhaust heat recovery system and gas compressor used therefor

Also Published As

Publication number Publication date
JP2002115930A (en) 2002-04-19

Similar Documents

Publication Publication Date Title
JP4827307B2 (en) Air conditioner
JP4953433B2 (en) Absorption heat pump system
JP2008185245A (en) Compression type heat pump device, operation method of the same, and cogeneration system
CN109186143B (en) Oil cooling device and control method thereof
JP4934009B2 (en) Heat source water supply system
EP1178267B1 (en) Air conditioner
JP3932378B2 (en) Air conditioner
JP6415378B2 (en) Air conditioning system
JP4247521B2 (en) Absorption type water heater
JP2006017440A (en) Heat pump air conditioner
CN111288683A (en) Industrial dehumidification device
JP4310566B2 (en) Air conditioner
JP2007101036A (en) Cold system
JP6551956B1 (en) Power generation system
KR101175635B1 (en) An air conditioning system with non-defrost
JPH0893553A (en) Control method and device for heat supply using cogeneration system
JPS6343664B2 (en)
JP4152221B2 (en) Absorption heat source machine
JPS6018734Y2 (en) Solar heating and cooling equipment
JP6347427B2 (en) Refrigeration system
KR101139760B1 (en) An air conditioning system with prevent the overheat of compressor
JPS6330946Y2 (en)
CN111288684A (en) Cold and hot comprehensive utilization system
JP5598909B2 (en) Exhaust heat absorption chiller / heater and its drain water generation prevention method
JPS6310410Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3932378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250