JP3932154B2 - SiC molded body and manufacturing method thereof - Google Patents

SiC molded body and manufacturing method thereof Download PDF

Info

Publication number
JP3932154B2
JP3932154B2 JP29495998A JP29495998A JP3932154B2 JP 3932154 B2 JP3932154 B2 JP 3932154B2 JP 29495998 A JP29495998 A JP 29495998A JP 29495998 A JP29495998 A JP 29495998A JP 3932154 B2 JP3932154 B2 JP 3932154B2
Authority
JP
Japan
Prior art keywords
sic
cvd
molded body
light
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29495998A
Other languages
Japanese (ja)
Other versions
JP2000119064A (en
Inventor
嗣生 宮田
孝臣 杉原
聡浩 黒柳
忠和 岩村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Tokai Carbon Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP29495998A priority Critical patent/JP3932154B2/en
Publication of JP2000119064A publication Critical patent/JP2000119064A/en
Application granted granted Critical
Publication of JP3932154B2 publication Critical patent/JP3932154B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高純度で耐熱性や強度特性に優れ、特に光不透過性に優れ、例えば半導体製造用装置の熱処理装置用遮蔽体、均熱リング等の各種耐熱部材、あるいは半導体製造用装置の拡散炉装置、エッチング装置、CVD装置などに用いられるダミーウエハやサセプター等の各種部材として好適に用いることのできるSiC成形体及びその製造方法に関する。
【0002】
【従来の技術】
SiCは耐熱性、耐蝕性、強度特性等の材質特性が優れており、各種工業用の部材として有用されている。特に、CVD法(化学的気相蒸着法)を利用して作製したSiC成形体(CVD−SiC成形体)は、緻密で高純度であるため半導体製造用の各種部材をはじめ高純度が要求される用途分野において好適に用いられている。
【0003】
このCVD−SiC成形体は、原料ガスを気相反応させて基体面上にSiCの結晶粒を析出させ、結晶粒の成長により被膜を形成したのち基体を除去することにより得られるもので、材質的に緻密、高純度で組織の均質性が高いという特徴がある。
【0004】
CVD法によるSiC成形体として、例えば特開平6−239609号公報には、0.6328ミクロンにおいて約20cm-1以下の減衰定数を有する化学蒸着で堆積した自立β−SiC。3ミクロンにおいて約20cm-1以下の減衰定数を有する化学蒸着で堆積した自立β−SiCが提案されている。このCVD法によるSiC成形体は、純度の高い程得られるSiCの光透過性が高いことが知られており、100%の理論密度であり、高純度、すなわち5ppm 以下の金属不純物、好ましくは約3.5ppm 以下の金属不純物であることが開示されている。
【0005】
しかしながら、このように高純度なCVD法によるSiC成形体は光透過性を有しているためSiC成形体を半導体製造装置や熱処理装置等の各種部材として使用する場合には、用途分野によってはSiCの物理的性質が問題となることがある。例えば、半導体の製造プロセスには急速熱アニーリング(rapid thermal annealing)、急速熱クリーニング(rapid thermal cleaning)、急速熱化学気相堆積(rapid thermal chemical vapor deposition)、急速熱酸化(rapid thermal oxidation)、急速熱窒化(rapid thermal nitridation)などの急速に熱処理する工程(RTPと呼ばれる)があり、特開平9−237789号公報ではウエハ基板が高速加熱によっても面内均一性に優れた性状を呈するように遮蔽体としてSiCにより構成することが提案されており、輻射熱に対して不透明な材質性状が要求されている。
【0006】
また、このRTPではウエハ基板の精確な温度管理が必要となるが、パイロメーターにより測温する場合にはウエハ基板の処理面とは反対の面に黒体キャビティを形成するときにウエハ基板を支持する部材などの光の透過があると外乱光となって精確な温度管理が困難となる問題がある。そのため、特開平8−255800号公報ではウエハ基板を支持する支持リングをシリコンや酸化珪素とし、支持リングを保持するシリンダはパイロメーターの周波数の範囲で不透明となるようシリコンをコートした石英製とすることが提案されている。
【0007】
更に、特開平6−341905号公報では、加熱要素からもれた光が、反射キャビティに入るのを防止するために、隔壁やウエハを支持するガードリングがウエハに沿って配置されて、加熱要素からもれた光を吸収する黒色または灰色を有し、このガードリングはシリコンから作られることが提案されている。しかし、特開平6−341905号公報や特開平8−255800号公報のシリコンやシリコンをコートしたものでは繰り返し使用するための酸洗浄に対する耐蝕性に劣り、コートしたシリコンの厚みが減少して光不透過性が減少する問題がある。
【0008】
また、プラズマエッチング処理においてウエハのエッチング条件を安定化させるために用いるダミーウエハやCVD処理においてウエハの条件を安定させるために用いられるダミーウエハには光透過性が小さいことが要求される。ウエハは搬送用ロボットで支持ボートに装着されるが、ウエハの認識はレーザー光を照射することにより行われるので、ウエハの光透過性が高いとロボットがウエハの位置を的確に認識することができず、反応装置内の所定の位置にウエハを装着することが困難となる。
【0009】
従来、CVD−SiC成形体の結晶形態はβ型であり、高純度の場合には黄色を呈して光透過性を有するため、光透過性を低下させることが困難であった。例えば、光を表面で散乱させて光透過性を低下する手段として表面を粗面化する方法があるが、波長900nmの光を照射した場合、表面粗さRaを10nm以下の鏡面性状としたものは40〜60%の透過率を呈し、表面粗さRaを300〜500nmとしたものでは0.3〜0.8%の透過率を呈して光透過度が低下するが、幅広い波長域において満足すべき光不透過性を付与することは困難である。
【0010】
【発明が解決しようとする課題】
そこで、本発明者らはCVD−SiC成形体の性状と光特性との関係について研究した結果、SiC成形体の材質組織として光を散乱・反射させる層が存在すると光透過性を低くできることを見出した。本発明はこの知見に基づいて開発されたものであり、その目的は高純度で耐熱性や強度特性に優れ、特に光不透過性に優れ、例えば遮蔽体やダミーウエハ等の半導体製造用の各種部材、あるいは熱処理装置用の各種耐熱部材等として好適に用いることのできる高純度でβ型結晶からなるCVD−SiC成形体及びその製造方法を提供することにある。
【0011】
【課題を解決するための手段】
上記の目的を達成するための本発明によるSiC成形体は、CVD法により得られるβ型結晶からなるCVD−SiC成形体であって、その表面部あるいは内部に厚さ2〜20μm の可視光不透過性CVD−SiC層が少なくとも1層形成されてなり、300〜2500nmの波長域における光透過率が0.4%以下であることを構成上の特徴とする。
【0012】
本発明に係るSiC成形体の製造方法は、基体面にCVD反応によりSiC被膜を成膜したのち基体を除去するCVD−SiC成形体の製造方法において、SiC被膜を成膜する過程でCVD反応条件を設定変更して可視光不透過性CVD−SiC層を、CVD−SiC成形体の表面部あるいは内部に少なくとも1層形成することを構成上の特徴とする。
【0013】
また、本発明のSiC成形体の他の製造方法は、基体面にCVD反応によりSiC被膜を成膜したのち基体を除去して得られたCVD−SiC成形体を基材とし、基材面にSiC被膜を成膜する過程でCVD反応条件を設定変更して可視光不透過性CVD−SiC層を、CVD−SiC成形体の表面部あるいは内部に少なくとも1層形成することを構成上の特徴とする。
【0014】
【発明の実施の形態】
本発明のSiC成形体は、例えば図1に例示した断面図に示すようにSiC成形体1はCVD−SiC基材2の上層部に、可視光不透過性のCVD−SiC層3、その上層に可視光透過性のCVD−SiC層4が順次に積層形成された3層構造から構成されている。なお、図1は内部に可視光不透過性のCVD−SiC層3を1層形成した例である。また、図2には内部に可視光不透過性のCVD−SiC層3を2層形成したSiC成形体の断面図を例示した。
【0015】
CVD法によりSiCが析出し基体面にSiC被膜が形成される過程は、まず原料ガスが気相反応して基体面上にSiCの核が生成し、このSiC核が成長してアモルファス質SiCになり、更に微細な多結晶質SiC粒を経て柱状組織の結晶組織へ成長を続けてSiC被膜が形成される。したがって、CVD−SiC成形体の強度特性、熱的特性、光特性等の性状は基体面上に析出して形成されたSiC被膜の粒子性状により異なったものとなる。
【0016】
例えば、粒子径が大きいSiC層から粒子径が小さいSiC層へ光が通過する場合、界面において複雑な光の散乱、屈折、反射等が起こって光が閉じ込められ光透過性が低下する。また、粒子径が小さいSiC層から粒子径が大きいSiC層へ光が通過する場合も同様に光透過性が低下する。本発明のSiC成形体は、粒子性状としてサブミクロンオーダの微小粒子からなる可視光不透過性CVD−SiC層を、CVD−SiC成形体の表面部あるいは内部に少なくとも1層形成することにより光の散乱、屈折、反射等の光特性を変化させて低光透過率としたものである。すなわち、異なる粒子性状の可視光不透過性CVD−SiC層を設けることにより結晶組織に乱れが生じ、光透過率の低下が図られるのである。
【0017】
可視光不透過性CVD−SiC層は可視光線の波長範囲である380〜780nmの波長域の光透過度の減衰効果が大きいばかりでなく、780nmを越える近赤外光から赤外光の波長域における光透過度の減衰効果も大きい。その結果具体的には、300〜2500nmの波長域における光透過率が0.4%以下という、可視光から赤外光の波長域における光透過率が小さいSiC成形体を提供することができる。なお、この可視光不透過性CVD−SiC層3を2層以上形成すると300〜2500nmの波長域における光透過率をより低減させることが可能となり、例えば少なくとも2層形成することにより0.2%以下の低透過率のSiC成形体とすることができる。
【0018】
この可視光不透過性CVD−SiC層の厚さは、1層の厚さが2〜20μm の範囲に設定される。1層の厚さが2μm 未満では光透過度を低下させる効果が小さいためであり、一方、1層の厚さが厚くなると熱衝撃による剥離が生じ易くなるために20μm 以下の厚さに設定される。また、CVD−SiC成形体の厚さは、CVD−SiC自立成形体として強度、物性安定性を保持させる上で400μm 以上であることが好ましい。
【0019】
本発明のSiC成形体は、基体面にCVD反応によりSiC被膜を成膜したのち基体を除去するCVD−SiC成形体の製造方法において、SiC被膜を成膜する過程でCVD反応条件を設定変更して可視光不透過性CVD−SiC層を、CVD−SiC成形体の表面部あるいは内部に少なくとも1層形成することにより製造することができる。
【0020】
この製造方法は図3に例示した工程図のように、除去可能な基体面にCVD反応によりSiCを気相析出させてSiC被膜を成膜する過程で、CVD反応条件を適宜に設定変更してSiC被膜中にサブミクロン級の微小粒子からなる可視光不透過性のCVD−SiC層を少なくとも1層形成した後、基体を除去するものである。
【0021】
除去可能な基体としては、炭素系材料、シリコン等の金属系材料、石英等が用いられるが、加工性が良好で、空気中で熱処理することにより容易に燃焼除去可能な炭素系、特に黒鉛材が好適に用いられる。なお、黒鉛材は可及的に不純物が少ない高純度のものが好ましい。SiC被膜を成膜後、基体を除去する方法は、切削除去、研磨除去、空気中で加熱する燃焼除去、あるいはこれらを適宜に組み合わせて行うことができる。
【0022】
CVD反応は、反応炉内に例えば黒鉛基体をセットし、系内の空気を排気したのち所定の温度に加熱保持し、次いで水素ガスを送入して常圧水素ガス雰囲気に置換した後、水素ガスをキャリアガスとして、トリクロロメチルシラン、トリクロロフェニルシラン、ジクロロメチルシラン、ジクロロジメチルシラン等のハロゲン化有機珪素化合物を原料ガスとして送入し、気相熱分解反応させることによりSiCを析出させて黒鉛基体面にSiC被膜を被着する方法で行われる。気相熱分解させる反応温度はCVD−SiC成形体の強度及び熱伝導率等を高く維持するために1000〜1450℃の温度範囲に設定することが望ましい。
【0023】
SiC被膜の成膜過程は、原料ガスの気相熱分解反応により先ず基体面にSiCの核が生成し、このSiCの核は成長してアモルファス質SiCとなり、次第に微細な多結晶質SiC粒に成長する。更にCVD反応を継続すると微細多結晶質SiC粒は柱状組織の結晶組織へと成長を続けてSiC膜が形成される。この成膜過程において、可視光不透過性CVD−SiC層は、例えば原料ガスであるハロゲン化有機珪素化合物と還元剤である水素ガスとの混合割合、混合ガスの流量、CVD反応温度や反応時間、CVD反応装置の圧力等のCVD反応条件を適宜に設定変更することにより、粒子性状の異なるSiC粒子からなるSiC層を形成することができる。
【0024】
具体的には、例えば、原料ガスであるハロゲン化有機珪素化合物と還元剤である水素ガスとの混合割合を変化させる方法として、反応炉内の水素ガスの分圧を10〜300mmHg/分の割合で漸次減少または増加する方法、CVD反応温度を変化させる方法として、基体の温度を1〜20℃/分の割合で昇温あるいは降温する方法、CVD反応装置の圧力を変化させる方法として、反応炉内の全圧力を10〜50mmHg/分の割合で漸次増加する方法、等を単独または組み合わせて行うことにより、可視光不透過性CVD−SiC層を形成することができる。
【0025】
次いで、原料ガスであるハロゲン化有機珪素化合物と還元剤である水素ガスとの混合割合、混合ガスの流量、CVD反応温度や反応時間、CVD反応装置の圧力等のCVD反応条件を一定に保持すると、SiC被膜の組織はSiC粒子が柱状組織の結晶であり、可視光透過性のCVD−SiC層が形成される。
【0026】
したがって、可視光不透過性CVD−SiC層と可視光透過性のCVD−SiC層の形成を交互に、更に繰り返し行えば、CVD−SiC成形体の表面部あるいは内部に、所望層数の可視光不透過性CVD−SiC層を形成することが可能となる。
【0027】
このようにして、基体面に可視光不透過性CVD−SiC層を少なくとも1層形成したSiC被膜を成膜したのち、基体は切削除去、研磨除去、空気中で加熱する燃焼除去、あるいはこれらを適宜に組み合わせた方法により除去され、本発明のSiC成形体が製造される。
【0028】
また、本発明のSiC成形体は、基体面にCVD反応によりSiC被膜を成膜したのち基体を除去して得られたCVD−SiC成形体を基材として、基材面にSiC被膜を成膜する過程でCVD反応条件を設定変更して可視光不透過性CVD−SiC層を、CVD−SiC成形体の表面部あるいは内部に少なくとも1層形成する方法により製造することもできる。
【0029】
この製造方法は図4に例示した工程図のように、除去可能な黒鉛等の基体面にCVD反応によりSiCを気相析出させてSiC被膜を成膜し、次いで基体を除去して得られたCVD−SiC成形体を基材として、その上にCVD反応条件を適宜に設定変更して、粒子性状の異なるSiC粒子からなる可視光不透過性CVD−SiC層を、CVD−SiC成形体の表面部あるいは内部に少なくとも1層形成するものである。
【0030】
なお、この製造方法においても、図3の工程図に例示した方法に適用されるCVD反応条件の設定変更をはじめ、その他の製造条件はそのまま適用することができ、上述した製造方法、製造条件によりCVD−SiC成形体の表面部あるいは内部に可視光不透過性CVD−SiC層を少なくとも1層形成することができる。すなわち、図4に例示した製造方法は、基体にSiC被膜を成膜したのち基体を除去して得られたCVD−SiC成形体を基材として、その表面にSiC被膜を成膜する過程でCVD反応条件を設定変更して、可視光不透過性CVD−SiC層を形成するものであり、図3に例示した製造方法は、基体にSiC被膜を成膜する過程で可視光不透過性CVD−SiC層を形成し、その後基体を除去するものであり、CVD反応条件を設定変更して可視光不透過性CVD−SiC層を形成する方法、条件に関しては同一の手段が適用される。
【0031】
本発明のSiC成形体の光不透過層及び光透過層の測定は、SiC成形体を積層面方向に対して直角にダイヤモンドカッター等により切断し、厚さ0.1 〜0.15mmに研削及び研磨して鏡面性状として試料とし、この試料をタングステンフィラメントを用いた白色光源により透過光を観察する方法で行う。
【0032】
また、SiC成形体の透過率は、厚さ5mmの金属アルミニウム板を標準試料として、島津製作所製自記分光光度計を用いて光透過率を測定し、次式により算出する。
T=B−A
ここで、T;SiC成形体の透過率
A;金属アルミニウム板の光透過率測定値
B;SiC成形体の光透過率測定値
【0033】
このようにして製造したSiC成形体は、結晶形態が全てβ型からなり、密度が3.2 g/cm3以上、熱伝導率が220W/mK以上、熱膨張係数が3.9〜4.5×10-8/K(室温〜1000℃)等の性状を示し、高エネルギーの照射光を受けても安定であり、また金属不純物の含有量も極めて少なく、グロー放電質量分析において不純物量1 ppm以下、全反射蛍光X線による分析値でも1×1010atom/cm2以下である。したがって、高純度で耐熱性や強度特性に優れるとともに光透過性が非常に小さいSiC成形体を得ることができる。
【0034】
【実施例】
以下、本発明の実施例を比較例と対比して具体的に説明する。
【0035】
比較例
嵩密度1.8 g/cm3、熱膨張係数4.3×10-6/K、灰分20 ppm以下の等方性黒鉛材を直径202mm、厚さ5mmに加工して基体を作製した。この黒鉛基体をCVD反応装置の石英反応管内にセットして、系内を水素ガスで置換後、原料ガスにトリクロロメチルシランを、キャリアガスに水素ガスを用いて、混合ガス中のトリクロロメチルシランの濃度を7.5 vol%、混合ガスを190l/min の流量で反応管内に送入した。CVD反応温度を1400℃、反応時間を30時間に設定してCVD反応を行ってSiC被膜を黒鉛基体面に成膜した。次いで、空気中で加熱して黒鉛基体を燃焼除去したのち、研磨加工して平滑化し、直径200mm、厚さ0.5mmの円板状のSiC成形体を製造した。このCVD−SiC成形体の密度は3.21 g/cm3、熱伝導率は250W/mK、熱膨張係数は4.6×10-6/K(室温〜1000℃)であった。
【0036】
実施例1
比較例のSiC被膜を成膜する過程において、CVD反応温度を1400℃から1200℃に6℃/分の割合で降温させて1200℃の温度に1時間保持し、次いで6℃/分の割合で1400℃に昇温させた。この操作を連続して2回繰り返して行い、合計30時間CVD反応を行った。このようにしてCVD反応条件を設定変更することにより、内部に厚さ20μm の可視光不透過性CVD−SiC層が2層形成されたSiC被膜を成膜した。その後、比較例と同一の方法により黒鉛基体を除去し、研磨加工して直径200mm、厚さ0.5mmの円板状SiC成形体を製造した。このCVD−SiC成形体の密度は3.21 g/cm3、熱伝導率は230W/mK、熱膨張係数は4.2×10-6/K(室温〜1000℃)であった。
【0037】
実施例2
比較例のSiC被膜を成膜する過程において、CVD反応温度を1200℃に設定し、水素ガスの分圧を10mmHg/分の割合で740mmHgから680mmHgに減少させ、その状態に0.5時間保持したのち、再び10mmHg/分の割合で増大して740mmHgに戻した。このようにしてCVD反応条件の設定変更を行って、合計30時間CVD反応を行い、内部に厚さ20μm の可視光不透過性CVD−SiC層を1層形成したSiC被膜を成膜したのち、比較例と同一の方法により黒鉛基体を除去し、研磨加工して直径200mm、厚さ0.5mmの円板状SiC成形体を製造した。このCVD−SiC成形体の密度は3.21 g/cm3、熱伝導率は220W/mK、熱膨張係数は4.2×10-6/K(室温〜1000℃)であった。
【0038】
実施例3
比較例のSiC被膜を成膜する過程において、CVD反応条件として反応温度を1200℃に設定し、CVD反応管内の全圧力を310mmHgから30mmHg/分の割合で増加させながら760mmHgに増圧し、その状態に0.5時間保持したのち30mmHg/分の割合で減圧して310mmHgに戻す操作を2回行った。このようにしてCVD反応条件の設定変更を行って、合計30時間CVD反応を行い、内部に厚さ20μm の可視光不透過性CVD−SiC層を2層形成したSiC被膜を成膜したのち、比較例と同一の方法により黒鉛基体を除去し、研磨加工して直径200mm、厚さ0.5mmの円板状SiC成形体を製造した。このCVD−SiC成形体の密度は3.23 g/cm3、熱伝導率は240W/mK、熱膨張係数は4.3×10-6/K(室温〜1000℃)であった。
【0039】
このようにして製造したSiC成形体について、島津製作所製自記分光光度計を用いて光透過率を測定し、得られた結果を表1に示した。
【0040】
【表1】

Figure 0003932154
【0041】
表1の結果から、CVD法によりSiC被膜を成膜する際にCVD反応条件を設定変更することにより、粒子性状の異なるSiC粒子からなり、可視光線を透過しないSiC層をSiC成形体の内部に1層または2層形成した実施例のSiC成形体は、比較例のSiC成形体に比べて、300〜2500nmの波長域における光透過率が0.15〜0.3%程度以下と小さく、可視光から赤外光の波長域における光不透過性に優れていることが判る。
【0042】
【発明の効果】
以上のとおり、本発明によればCVD−SiC成形体の表面部あるいは内部に厚さ2〜20μm の可視光不透過性CVD−SiC層が少なくとも1層形成されているので、300〜2500nmの可視光から赤外光の波長域における光不透過性に優れ、また緻密、高純度のSiC成形体が提供される。また、その製造方法によればCVD反応によりSiC被膜を成膜する過程において、CVD反応条件を設定変更することにより可視光不透過性CVD−SiC層を形成することができる。したがって、遮蔽体やダミーウエハ等の半導体製造用の各種部材をはじめ熱処理装置用の各種耐熱部材等として好適に用いることのできるSiC成形体及びその製造方法として極めて有用である。
【図面の簡単な説明】
【図1】可視光不透過性CVD−SiC層を1層形成した本発明のSiC成形体を例示した断面図である。
【図2】可視光不透過性CVD−SiC層を2層形成した本発明のSiC成形体を例示した断面図である。
【図3】本発明のSiC成形体の製造プロセスを示したフローチャートである。
【図4】本発明のSiC成形体の他の製造プロセスを示したフローチャートである。
【符号の説明】
1 SiC成形体
2 CVD−SiC基材
3 可視光不透過性CVD−SiC層
4 可視光透過性CVD−SiC層[0001]
BACKGROUND OF THE INVENTION
The present invention is highly pure and excellent in heat resistance and strength characteristics, particularly in light impermeability. For example, a heat treatment apparatus shield for a semiconductor manufacturing apparatus, various heat resistant members such as a soaking ring, or a semiconductor manufacturing apparatus. The present invention relates to a SiC molded body that can be suitably used as various members such as a dummy wafer and a susceptor used in a diffusion furnace apparatus, an etching apparatus, a CVD apparatus, and the like, and a manufacturing method thereof.
[0002]
[Prior art]
SiC is excellent in material properties such as heat resistance, corrosion resistance and strength properties, and is useful as various industrial members. In particular, an SiC molded body (CVD-SiC molded body) produced by using a CVD method (chemical vapor deposition method) is dense and highly pure, so high purity is required including various members for semiconductor manufacturing. It is suitably used in certain application fields.
[0003]
This CVD-SiC molded body is obtained by reacting a raw material gas in a gas phase to precipitate SiC crystal grains on the surface of the substrate, forming a film by growing the crystal grains, and then removing the substrate. It is characterized by high density, high purity and high tissue homogeneity.
[0004]
As a SiC molded body by the CVD method, for example, in Japanese Patent Laid-Open No. 6-239609, free-standing β-SiC deposited by chemical vapor deposition having an attenuation constant of about 20 cm −1 or less at 0.6328 microns. Free-standing β-SiC deposited by chemical vapor deposition with an attenuation constant of about 20 cm -1 or less at 3 microns has been proposed. It is known that the SiC molded body by this CVD method has higher optical transparency of SiC obtained as the purity is higher, and has a theoretical density of 100%, high purity, that is, metal impurities of 5 ppm or less, preferably about It is disclosed that it is a metal impurity of 3.5 ppm or less.
[0005]
However, since the SiC molded body by such a high-purity CVD method has light transmittance, when using the SiC molded body as various members such as a semiconductor manufacturing apparatus and a heat treatment apparatus, depending on the application field, SiC The physical properties of can be problematic. For example, semiconductor manufacturing processes include rapid thermal annealing, rapid thermal cleaning, rapid thermal chemical vapor deposition, rapid thermal oxidation, rapid thermal oxidation, There is a rapid heat treatment process (called RTP) such as rapid thermal nitridation. In Japanese Patent Laid-Open No. 9-237789, the wafer substrate is shielded so as to exhibit excellent in-plane uniformity even by high-speed heating. It has been proposed that the body is made of SiC, and material properties that are opaque to radiant heat are required.
[0006]
In addition, this RTP requires precise temperature control of the wafer substrate, but when measuring with a pyrometer, the wafer substrate is supported when forming a black body cavity on the surface opposite to the processing surface of the wafer substrate. If there is light transmission through a member or the like, there is a problem that it becomes disturbance light and accurate temperature management becomes difficult. Therefore, in JP-A-8-255800, the support ring for supporting the wafer substrate is made of silicon or silicon oxide, and the cylinder for holding the support ring is made of quartz coated with silicon so as to be opaque within the range of the pyrometer frequency. It has been proposed.
[0007]
Further, in JP-A-6-341905, in order to prevent light leaking from the heating element from entering the reflection cavity, a guard ring for supporting the partition walls and the wafer is arranged along the wafer, and the heating element is arranged. It has been proposed that this guard ring be made of silicon, having a black or gray color that absorbs stray light. However, the silicon and silicon-coated ones disclosed in JP-A-6-341905 and JP-A-8-255800 are inferior in corrosion resistance to acid cleaning for repeated use, and the thickness of the coated silicon is reduced, resulting in light insensitivity. There is a problem of reduced permeability.
[0008]
Further, a dummy wafer used for stabilizing the etching conditions of the wafer in the plasma etching process and a dummy wafer used for stabilizing the conditions of the wafer in the CVD process are required to have low light transmittance. Wafers are mounted on a support boat by a transfer robot. However, since wafer recognition is performed by irradiating laser light, the robot can accurately recognize the position of the wafer if the wafer is highly transparent. Therefore, it becomes difficult to mount the wafer at a predetermined position in the reaction apparatus.
[0009]
Conventionally, the crystal form of a CVD-SiC molded body is β-type, and in the case of high purity, it is yellow and has light transmittance, so it has been difficult to reduce the light transmittance. For example, there is a method of roughening the surface as a means to reduce light transmittance by scattering light on the surface. When light with a wavelength of 900 nm is irradiated, the surface roughness Ra is made to have a mirror surface property of 10 nm or less. Exhibits a transmittance of 40 to 60%, and when the surface roughness Ra is 300 to 500 nm, it exhibits a transmittance of 0.3 to 0.8% and the light transmittance decreases, but is satisfactory in a wide wavelength range. It is difficult to impart light opacity that should be achieved.
[0010]
[Problems to be solved by the invention]
Therefore, as a result of studying the relationship between the properties and optical properties of the CVD-SiC molded body, the present inventors have found that if there is a layer that scatters and reflects light as the material structure of the SiC molded body, the light transmission can be lowered. It was. The present invention has been developed based on this finding, and its purpose is high purity, excellent heat resistance and strength characteristics, particularly excellent light impermeability, for example, various members for semiconductor production such as shields and dummy wafers. Alternatively, it is an object of the present invention to provide a CVD-SiC molded body made of a β-type crystal with high purity that can be suitably used as various heat-resistant members for a heat treatment apparatus, and a method for producing the same.
[0011]
[Means for Solving the Problems]
An SiC molded body according to the present invention for achieving the above object is a CVD-SiC molded body made of a β-type crystal obtained by a CVD method, and has a visible light non-visible thickness of 2 to 20 μm on the surface or inside thereof. At least one transmissive CVD-SiC layer is formed, and the light transmittance in a wavelength region of 300 to 2500 nm is 0.4% or less.
[0012]
The SiC molded body manufacturing method according to the present invention is a CVD-SiC molded body manufacturing method in which a SiC film is formed on a substrate surface by a CVD reaction and then the substrate is removed. It is a structural feature that the visible light impervious CVD-SiC layer is formed in at least one layer on the surface or inside of the CVD-SiC molded body by changing the setting.
[0013]
In addition, another manufacturing method of the SiC molded body of the present invention uses a CVD-SiC molded body obtained by forming a SiC film on a substrate surface by a CVD reaction and then removing the substrate as a base material. In the process of forming the SiC film, the CVD reaction conditions are changed and at least one visible light-impermeable CVD-SiC layer is formed on the surface or inside of the CVD-SiC molded body. To do.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
For example, as shown in the cross-sectional view illustrated in FIG. 1, the SiC molded body 1 of the present invention has a SiC molded body 1 in the upper layer portion of the CVD-SiC substrate 2, a visible light-impermeable CVD-SiC layer 3, and an upper layer thereof. In addition, a visible light transmissive CVD-SiC layer 4 is sequentially laminated to form a three-layer structure. FIG. 1 shows an example in which one visible light impermeable CVD-SiC layer 3 is formed. FIG. 2 illustrates a cross-sectional view of a SiC molded body in which two visible light impermeable CVD-SiC layers 3 are formed.
[0015]
In the process of depositing SiC by the CVD method and forming a SiC film on the substrate surface, first, the source gas reacts in a gas phase to generate SiC nuclei on the substrate surface, which grows into amorphous SiC. Then, the SiC film is formed by continuing to grow into a columnar structure through finer polycrystalline SiC grains. Therefore, properties such as strength properties, thermal properties, and optical properties of the CVD-SiC molded body vary depending on the particle properties of the SiC coating formed by deposition on the substrate surface.
[0016]
For example, when light passes from a SiC layer having a large particle diameter to a SiC layer having a small particle diameter, complicated light scattering, refraction, reflection, and the like occur at the interface, and the light is confined and the light transmittance is lowered. Further, when light passes from a SiC layer having a small particle diameter to a SiC layer having a large particle diameter, the light transmittance is similarly reduced. The SiC molded body of the present invention has a visible light impervious CVD-SiC layer composed of fine particles of submicron order as particle properties, and forms at least one layer on the surface or inside of the CVD-SiC molded body. The light transmittance is changed by changing light characteristics such as scattering, refraction, and reflection. That is, by providing a visible light-impermeable CVD-SiC layer having different particle properties, the crystal structure is disturbed, and the light transmittance is reduced.
[0017]
The visible light impervious CVD-SiC layer has not only a large attenuation effect of light transmittance in the wavelength range of 380 to 780 nm, which is the wavelength range of visible light, but also the wavelength range from near infrared light to infrared light exceeding 780 nm. The attenuation effect of the light transmittance is large. As a result, specifically, it is possible to provide a SiC molded body having a light transmittance in the wavelength range from visible light to infrared light having a light transmittance in the wavelength range of 300 to 2500 nm of 0.4% or less. In addition, when two or more visible light impervious CVD-SiC layers 3 are formed, the light transmittance in a wavelength region of 300 to 2500 nm can be further reduced. For example, by forming at least two layers, 0.2% The following low transmittance SiC molded body can be obtained.
[0018]
The thickness of this visible light-impermeable CVD-SiC layer is set so that the thickness of one layer is 2 to 20 μm. This is because if the thickness of one layer is less than 2 μm, the effect of lowering the light transmittance is small. On the other hand, if the thickness of one layer is thick, peeling due to thermal shock is likely to occur, so the thickness is set to 20 μm or less. The In addition, the thickness of the CVD-SiC molded body is preferably 400 μm or more in order to maintain strength and physical property stability as a CVD-SiC free-standing molded body.
[0019]
The SiC molded body of the present invention is a CVD-SiC molded body manufacturing method in which a SiC film is formed on a substrate surface by a CVD reaction and then the substrate is removed. In the process of forming a SiC film, the CVD reaction conditions are changed. The visible light-impermeable CVD-SiC layer can be produced by forming at least one layer on the surface or inside of the CVD-SiC molded body.
[0020]
In this manufacturing method, as shown in the process diagram illustrated in FIG. 3, the CVD reaction conditions are appropriately changed in the process of forming a SiC film by vapor-depositing SiC by a CVD reaction on a removable substrate surface. The substrate is removed after forming at least one visible-light-impermeable CVD-SiC layer composed of fine particles of submicron grade in the SiC film.
[0021]
As a substrate that can be removed, a carbon-based material, a metal-based material such as silicon, quartz, or the like is used, but a carbon-based material, particularly a graphite material, which has good workability and can be easily removed by combustion by heat treatment in air. Are preferably used. The graphite material preferably has a high purity with as few impurities as possible. The method of removing the substrate after forming the SiC coating can be performed by cutting, polishing, burning and heating in air, or a combination thereof.
[0022]
In the CVD reaction, for example, a graphite substrate is set in a reaction furnace, the air in the system is evacuated, heated and held at a predetermined temperature, and then hydrogen gas is fed and replaced with an atmospheric hydrogen gas atmosphere. Using gas as carrier gas, halogenated organosilicon compounds such as trichloromethylsilane, trichlorophenylsilane, dichloromethylsilane, dichlorodimethylsilane, etc. are fed as raw material gas, and SiC is deposited by vapor phase pyrolysis reaction to form graphite. This is performed by a method of depositing a SiC film on the surface of the substrate. The reaction temperature for the vapor phase pyrolysis is desirably set to a temperature range of 1000 to 1450 ° C. in order to maintain the strength and thermal conductivity of the CVD-SiC molded body at a high level.
[0023]
In the film formation process of the SiC film, SiC nuclei are first generated on the substrate surface by the gas phase pyrolysis reaction of the raw material gas, and the SiC nuclei grow to become amorphous SiC and gradually become fine polycrystalline SiC grains. grow up. When the CVD reaction is further continued, the fine polycrystalline SiC grains continue to grow into a columnar structure, and an SiC film is formed. In this film formation process, the visible light-impermeable CVD-SiC layer is composed of, for example, a mixing ratio of a halogenated organosilicon compound as a source gas and hydrogen gas as a reducing agent, a flow rate of the mixed gas, a CVD reaction temperature and a reaction time. By appropriately setting and changing the CVD reaction conditions such as the pressure of the CVD reactor, SiC layers made of SiC particles having different particle properties can be formed.
[0024]
Specifically, for example, as a method of changing the mixing ratio of the halogenated organosilicon compound as the raw material gas and the hydrogen gas as the reducing agent, the partial pressure of the hydrogen gas in the reaction furnace is a rate of 10 to 300 mmHg / min. As a method for gradually decreasing or increasing the temperature, a method for changing the CVD reaction temperature, a method for raising or lowering the temperature of the substrate at a rate of 1 to 20 ° C./min, and a method for changing the pressure of the CVD reactor, A visible light-impermeable CVD-SiC layer can be formed by performing a method of gradually increasing the total pressure at a rate of 10 to 50 mmHg / min, alone or in combination.
[0025]
Next, when the CVD reaction conditions such as the mixing ratio of the halogenated organosilicon compound as the raw material gas and the hydrogen gas as the reducing agent, the flow rate of the mixed gas, the CVD reaction temperature and reaction time, and the pressure of the CVD reactor are kept constant. The structure of the SiC film is a crystal of SiC particles having a columnar structure, and a visible light transmissive CVD-SiC layer is formed.
[0026]
Therefore, if the formation of a visible light-impermeable CVD-SiC layer and a visible light-transmissive CVD-SiC layer are alternately and repeatedly performed, a desired number of layers of visible light are formed on the surface or inside of the CVD-SiC molded body. An impermeable CVD-SiC layer can be formed.
[0027]
In this way, after forming a SiC film having at least one visible light-impermeable CVD-SiC layer formed on the surface of the substrate, the substrate is removed by cutting, polishing, removing by combustion in the air, or removing these. The SiC molded body of the present invention is produced by removing by an appropriately combined method.
[0028]
In addition, the SiC molded body of the present invention is formed by forming a SiC film on a substrate surface using a CVD-SiC molded body obtained by forming a SiC film on a substrate surface by a CVD reaction and then removing the substrate. In this process, the CVD reaction conditions can be changed and the visible light-impermeable CVD-SiC layer can be produced by a method of forming at least one layer on the surface or inside of the CVD-SiC molded body.
[0029]
This manufacturing method was obtained by depositing SiC on the surface of a removable substrate such as graphite by vapor deposition by CVD reaction to form a SiC film, and then removing the substrate, as shown in the process diagram illustrated in FIG. Using a CVD-SiC molded body as a base material, the CVD reaction conditions are appropriately changed on the CVD-SiC molded body, and a visible light-impermeable CVD-SiC layer made of SiC particles having different particle properties is formed on the surface of the CVD-SiC molded body. At least one layer is formed in the part or inside.
[0030]
In this manufacturing method as well, other manufacturing conditions can be applied as they are, including changes in the CVD reaction conditions applied to the method illustrated in the process diagram of FIG. At least one visible light-impermeable CVD-SiC layer can be formed on the surface or inside of the CVD-SiC molded body. That is, the manufacturing method illustrated in FIG. 4 is a process in which a SiC film is formed on a surface of a CVD-SiC molded body obtained by forming a SiC film on a substrate and then removing the substrate. The reaction conditions are changed and a visible light-impermeable CVD-SiC layer is formed. The manufacturing method illustrated in FIG. 3 is a visible light-impermeable CVD-in the process of forming a SiC film on a substrate. The SiC layer is formed, and then the substrate is removed. The same means are applied as to the method and conditions for forming the visible light-impermeable CVD-SiC layer by changing the CVD reaction conditions.
[0031]
The light-impermeable layer and light-transmitting layer of the SiC molded body of the present invention are measured by cutting the SiC molded body at a right angle to the laminated surface direction with a diamond cutter or the like, and grinding and polishing to a thickness of 0.1 to 0.15 mm. A sample is used as a mirror surface property, and this sample is subjected to a method of observing transmitted light with a white light source using a tungsten filament.
[0032]
Further, the transmittance of the SiC molded body is calculated by the following equation by measuring the light transmittance using a self-recording spectrophotometer manufactured by Shimadzu Corporation using a metal aluminum plate having a thickness of 5 mm as a standard sample.
T = BA
Where T: transmittance of SiC molded body A; measured light transmittance B of metal aluminum plate B: measured light transmittance of SiC molded body
The SiC molded body thus produced has a β-type crystal form, a density of 3.2 g / cm 3 or more, a thermal conductivity of 220 W / mK or more, and a thermal expansion coefficient of 3.9 to 4. It exhibits properties such as 5 × 10 −8 / K (room temperature to 1000 ° C.), is stable even when exposed to high-energy irradiation light, has extremely low metal impurity content, and has an impurity content of 1 in glow discharge mass spectrometry. It is 1 × 10 10 atom / cm 2 or less even in the analysis value by the total reflection fluorescent X-ray or less in ppm. Therefore, it is possible to obtain a SiC molded body having high purity, excellent heat resistance and strength characteristics, and extremely low light transmittance.
[0034]
【Example】
Examples of the present invention will be specifically described below in comparison with comparative examples.
[0035]
Comparative Example An isotropic graphite material having a bulk density of 1.8 g / cm 3 , a thermal expansion coefficient of 4.3 × 10 −6 / K, and an ash content of 20 ppm or less was processed into a diameter of 202 mm and a thickness of 5 mm to prepare a substrate. . This graphite substrate is set in a quartz reaction tube of a CVD reactor, and after the system is replaced with hydrogen gas, trichloromethylsilane is used as a source gas and hydrogen gas is used as a carrier gas. The concentration was 7.5 vol%, and the mixed gas was fed into the reaction tube at a flow rate of 190 l / min. The CVD reaction temperature was set to 1400 ° C., the reaction time was set to 30 hours, and a CVD reaction was performed to form a SiC film on the graphite substrate surface. Subsequently, the graphite base was burned and removed by heating in air, and then polished and smoothed to produce a disc-shaped SiC molded body having a diameter of 200 mm and a thickness of 0.5 mm. The density of this CVD-SiC molded product was 3.21 g / cm 3 , the thermal conductivity was 250 W / mK, and the thermal expansion coefficient was 4.6 × 10 −6 / K (room temperature to 1000 ° C.).
[0036]
Example 1
In the process of forming the SiC film of the comparative example, the CVD reaction temperature was lowered from 1400 ° C. to 1200 ° C. at a rate of 6 ° C./min, held at a temperature of 1200 ° C. for 1 hour, and then at a rate of 6 ° C./min. The temperature was raised to 1400 ° C. This operation was repeated twice in succession for a total of 30 hours of CVD reaction. By changing the CVD reaction conditions in this way, a SiC film having two visible light-impermeable CVD-SiC layers with a thickness of 20 μm was formed. Thereafter, the graphite substrate was removed by the same method as in the comparative example and polished to produce a disc-like SiC molded body having a diameter of 200 mm and a thickness of 0.5 mm. The density of this CVD-SiC molded product was 3.21 g / cm 3 , the thermal conductivity was 230 W / mK, and the thermal expansion coefficient was 4.2 × 10 −6 / K (room temperature to 1000 ° C.).
[0037]
Example 2
In the process of forming the SiC film of the comparative example, the CVD reaction temperature was set to 1200 ° C., the hydrogen gas partial pressure was reduced from 740 mmHg to 680 mmHg at a rate of 10 mmHg / min, and the state was maintained for 0.5 hours. After that, it increased again at a rate of 10 mmHg / min and returned to 740 mmHg. After changing the setting of the CVD reaction conditions in this way, the CVD reaction was performed for a total of 30 hours, and after forming a SiC film in which one visible light impermeable CVD-SiC layer having a thickness of 20 μm was formed, The graphite substrate was removed by the same method as in the comparative example and polished to produce a disc-like SiC molded body having a diameter of 200 mm and a thickness of 0.5 mm. The density of this CVD-SiC molded body was 3.21 g / cm 3 , the thermal conductivity was 220 W / mK, and the thermal expansion coefficient was 4.2 × 10 −6 / K (room temperature to 1000 ° C.).
[0038]
Example 3
In the process of forming the SiC film of the comparative example, the reaction temperature was set to 1200 ° C. as a CVD reaction condition, and the total pressure in the CVD reaction tube was increased from 310 mmHg to 760 mmHg while increasing at a rate of 30 mmHg / min. Then, after holding for 0.5 hour, the pressure was reduced at a rate of 30 mmHg / min and returned to 310 mmHg twice. After changing the setting of the CVD reaction conditions in this way, the CVD reaction was performed for a total of 30 hours, and after forming a SiC film in which two visible light impermeable CVD-SiC layers having a thickness of 20 μm were formed, The graphite substrate was removed by the same method as in the comparative example and polished to produce a disc-like SiC molded body having a diameter of 200 mm and a thickness of 0.5 mm. The density of this CVD-SiC molded body was 3.23 g / cm 3 , the thermal conductivity was 240 W / mK, and the thermal expansion coefficient was 4.3 × 10 −6 / K (room temperature to 1000 ° C.).
[0039]
The SiC molded body produced in this way was measured for light transmittance using a self-recording spectrophotometer manufactured by Shimadzu Corporation, and the results obtained are shown in Table 1.
[0040]
[Table 1]
Figure 0003932154
[0041]
From the results in Table 1, by changing the CVD reaction conditions when forming the SiC film by the CVD method, a SiC layer made of SiC particles having different particle properties and not transmitting visible light is placed inside the SiC molded body. The SiC molded body of the example in which one layer or two layers are formed has a light transmittance of about 0.15 to 0.3% or less in the wavelength region of 300 to 2500 nm as compared with the SiC molded body of the comparative example, and is visible. It turns out that it is excellent in the light impermeability in the wavelength range from light to infrared light.
[0042]
【The invention's effect】
As described above, according to the present invention, at least one visible light-impermeable CVD-SiC layer having a thickness of 2 to 20 μm is formed on the surface or inside of a CVD-SiC molded body. A dense, high-purity SiC molded article that is excellent in light impermeability in the wavelength range from light to infrared light is provided. Further, according to the manufacturing method, in the process of forming the SiC film by the CVD reaction, the visible light impermeable CVD-SiC layer can be formed by changing the setting of the CVD reaction conditions. Therefore, it is extremely useful as an SiC molded body that can be suitably used as various heat-resistant members for heat treatment apparatuses as well as various members for semiconductor production such as shields and dummy wafers, and a method for producing the same.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a SiC molded body of the present invention in which one visible light-impermeable CVD-SiC layer is formed.
FIG. 2 is a cross-sectional view illustrating a SiC molded body of the present invention in which two visible light impermeable CVD-SiC layers are formed.
FIG. 3 is a flowchart showing a manufacturing process of the SiC molded body of the present invention.
FIG. 4 is a flowchart showing another manufacturing process of the SiC molded body of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 SiC molded object 2 CVD-SiC base material 3 Visible light impervious CVD-SiC layer 4 Visible light transmissive CVD-SiC layer

Claims (2)

CVD法により得られるβ型結晶からなるCVD−SiC成形体であって、その表面部あるいは内部に厚さ2〜20μmの可視光不透過性CVD−SiC層が少なくとも1層形成されてなり、300〜2500nmの波長域における光透過率が0.4%以下であることを特徴とするSiC成形体。A CVD-SiC molded body made of a β-type crystal obtained by a CVD method, wherein at least one visible light-impermeable CVD-SiC layer having a thickness of 2 to 20 μm is formed on the surface or inside thereof, 300 A SiC molded product having a light transmittance of 0.4% or less in a wavelength range of ˜2500 nm. CVD−SiC成形体の厚さが400μm以上である、請求項1記載のSiC成形体。The SiC molded object of Claim 1 whose thickness of a CVD-SiC molded object is 400 micrometers or more.
JP29495998A 1998-10-16 1998-10-16 SiC molded body and manufacturing method thereof Expired - Fee Related JP3932154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29495998A JP3932154B2 (en) 1998-10-16 1998-10-16 SiC molded body and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29495998A JP3932154B2 (en) 1998-10-16 1998-10-16 SiC molded body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000119064A JP2000119064A (en) 2000-04-25
JP3932154B2 true JP3932154B2 (en) 2007-06-20

Family

ID=17814521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29495998A Expired - Fee Related JP3932154B2 (en) 1998-10-16 1998-10-16 SiC molded body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3932154B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6939821B2 (en) 2000-02-24 2005-09-06 Shipley Company, L.L.C. Low resistivity silicon carbide
JP2002003275A (en) * 2000-06-20 2002-01-09 Tokai Carbon Co Ltd SiC FORMED BODY WITH HINDERING LIGHT TRANSMISSION AND ITS MANUFACTURING METHOD
US8202621B2 (en) * 2001-09-22 2012-06-19 Rohm And Haas Company Opaque low resistivity silicon carbide
JP4404703B2 (en) * 2004-07-01 2010-01-27 東海カーボン株式会社 Light-impermeable SiC molded body and method for producing the same
KR101914289B1 (en) * 2016-08-18 2018-11-01 주식회사 티씨케이 SiC PART FOR SEMICONDUCTOR MANUFACTORING COMPRISING DIFFERENT TRANSMITTANCE MULTILAYER AND METHOD OF MANUFACTURNING THE SAME

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4531870B2 (en) * 1997-10-14 2010-08-25 三井造船株式会社 Multilayer silicon carbide wafer
JP4043003B2 (en) * 1998-02-09 2008-02-06 東海カーボン株式会社 SiC molded body and manufacturing method thereof
JP2000091255A (en) * 1998-07-17 2000-03-31 Asahi Glass Co Ltd Method of loading dummy wafer
JP2000109366A (en) * 1998-10-07 2000-04-18 Ngk Insulators Ltd Light non-transmittive high purity silicon carbide material, light shieldable material for semiconductor treating device, and semiconductor treating device

Also Published As

Publication number Publication date
JP2000119064A (en) 2000-04-25

Similar Documents

Publication Publication Date Title
JP4043003B2 (en) SiC molded body and manufacturing method thereof
JPS63186422A (en) Wafer susceptor
JPH1179846A (en) Silicon carbide formed product
JPH11199323A (en) Dummy wafer
JP3932154B2 (en) SiC molded body and manufacturing method thereof
JP2002047066A (en) FORMED SiC AND ITS MANUFACTURING METHOD
US6939821B2 (en) Low resistivity silicon carbide
JPH08188408A (en) Silicon carbide molded product by chemical vapor deposition and its production
RU2286616C2 (en) Method for producing part incorporating silicon substrate whose surface is covered with silicon carbide film
JPH0127568B2 (en)
JP4404703B2 (en) Light-impermeable SiC molded body and method for producing the same
EP0992608B1 (en) Light-impermeable, high purity silicon carbide material, a light shielding member for a semiconductor-treating apparatus, and a semiconductor-treating apparatus
JP3857446B2 (en) SiC molded body
JP2011074436A (en) Silicon carbide material
JP2002003275A (en) SiC FORMED BODY WITH HINDERING LIGHT TRANSMISSION AND ITS MANUFACTURING METHOD
JP3790029B2 (en) SiC dummy wafer
JP4361177B2 (en) Silicon carbide material and jig for RTP device
JP2003049270A (en) SiC MOLDING AND PRODUCTION METHOD THEREFOR
JP2002097092A (en) Glassy carbon material coated with silicon carbide film and method for producing the same
JPH0146454B2 (en)
Nishino et al. Preparation of ZnO by a nearby vaporizing chemical vapor deposition method
WO2021034214A1 (en) Article with silicon carbide coating and method for producing article with silicon carbide coating
JP3227353B2 (en) Silicon carbide film-coated member and method of manufacturing the same
JP2000211973A (en) Silicon carbide formed product having optical transparency
CN110318037A (en) The manufacturing method of translucency SiC

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140323

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees