JP3928858B2 - Mounting method of electromagnetic water supply valve - Google Patents

Mounting method of electromagnetic water supply valve Download PDF

Info

Publication number
JP3928858B2
JP3928858B2 JP2002305301A JP2002305301A JP3928858B2 JP 3928858 B2 JP3928858 B2 JP 3928858B2 JP 2002305301 A JP2002305301 A JP 2002305301A JP 2002305301 A JP2002305301 A JP 2002305301A JP 3928858 B2 JP3928858 B2 JP 3928858B2
Authority
JP
Japan
Prior art keywords
valve
pressure chamber
water supply
water
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002305301A
Other languages
Japanese (ja)
Other versions
JP2004138211A (en
Inventor
一幸 雨宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2002305301A priority Critical patent/JP3928858B2/en
Priority to KR10-2003-0054863A priority patent/KR100509857B1/en
Publication of JP2004138211A publication Critical patent/JP2004138211A/en
Application granted granted Critical
Publication of JP3928858B2 publication Critical patent/JP3928858B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/08Means in valves for absorbing fluid energy for decreasing pressure or noise level and having a throttling member separate from the closure member, e.g. screens, slots, labyrinths

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Driven Valves (AREA)
  • Valve Housings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電磁式給水弁の取付方法に関する。
【0002】
【従来の技術】
電磁式給水弁は、例えば、温水暖房システム等を構成するシスターンに取り付けられ、循環する温水の補給等に用いられている。従来、ウォーターハンマを抑止して弁体の振動を軽減できる電磁式給水弁が知られている(例えば、特許文献1参照)。
【0003】
図6に示すように、この従来の電磁式給水弁50は、弁体51がダイヤフラム板52、流路板53、およびダイヤフラム54により構成されている。そして、電磁コイル55に通電されていない状態(図6に示す状態)では、バネ56の付勢力によりプランジャ57は、その下端面でダイヤフラム板52の中央を押圧すると共にパイロット穴58を閉塞する。また、バネ56の押圧力によりダイヤフラム54の下面が弁座59を閉塞しているため、流入口60から流入した水は、流出口61から排出されずに、流路板53に形成された流路を経て背圧室62内へ達し、弁体51へ背圧をかけ閉弁力となっている。
【0004】
また、電磁コイル55に通電された状態では、電磁コイル55の周辺に形成される磁気回路の漏洩磁束によりプランジャ57がバネ56の付勢力に抗して上方へ移動し、プランジャ57の下端面はパイロット穴58を開放する。この状態では背圧室62内の水はパイロット穴58から排出され、流出口61へ流れ出す。また、ダイヤフラム板52の背圧も解除されるので、弁体51はダイヤフラム54の弾性力により上方へ移動し、弁座59が開放される。そのため、流入口60に達した水は、開放された弁座59から流出口61へ排出される。
【0005】
【特許文献1】
特開平5−187575号公報 (第3頁、第3−4図)
【0006】
【発明が解決しようとする課題】
しかしながら、上記特許文献1に開示された電磁式給水弁50を、その流出口61を下向きにしてシスターン上部に取り付けた場合には、通水状態から止水状態に変化するとき(止水時)に、背圧室62にエアが残り易い。このとき、残ったエアがクッションの作用をして圧縮、膨張するので、弁体51の振動が継続し易くなり、その結果、止水不良が生じるという不具合があった。
【0007】
本発明はかかる背景に鑑み、止水時の振動を抑えて止水不良を防止することができる電磁式給水弁の取付方法を提供することを目的とする。また、水抜き性のよい電磁式給水弁の取付方法を提供することを他の目的とする。
【0008】
【課題を解決するための手段】
前記の目的を達成するために、本発明の電磁式給水弁の取付方法は、略鉛直方向に流入口と弁座の上流側の1次圧室とが設けられ、略水平方向に流出口と弁座の下流側の2次圧室とが設けられ、1次圧室は2次圧室の外周に設けられ、2次圧室の入口を弁座として略水平方向に開閉するダイヤフラム弁と、該ダイヤフラム弁の背面側に設けられた背圧室と、2次圧室をまたいで流入口と反対側に設けられて1次圧室と背圧室とを連通する連絡穴と、2次圧室と背圧室とを連通するパイロット穴と、該パイロット穴を開閉する電磁弁とを備える電磁式給水弁の取付方法であって、前記電磁式給水弁を、流出口が大気開放されたシスターンの側面に直接接続され、且つ、流入口が下方に向くように取り付け、流入口に水抜き栓を備える給水管路を接続することを特徴とする。
【0009】
かかる本発明によれば、電磁式給水弁を流入口が下方に向くように取り付けたときに、1次圧室と背圧室はダイヤフラム弁を介して水平方向に配置される。そのため、背圧室がダイヤフラム弁の上方に配置された場合に比べて、背圧室内のエアは連絡穴を介して1次圧室に抜け易くなる。また、連絡穴が2次圧室をまたいで流入口と反対側、即ち1次圧室と背圧室の上部において、連通して配置されているので、背圧室内で上方に移動したエアは連絡穴を介して1次圧室に抜け易くなる。従って、背圧室にエアが残りにくいために、給水中にダイヤフラム弁を閉じて止水する制御を行ったときに、ダイヤフラム弁の振動が継続せず、確実に止水することができる。また、電磁式給水弁は下方から上方に向って入水するように配置されるので、水抜き栓を開栓して水抜きする際の1次圧室の水抜き性にすぐれている。そのため、電磁式給水弁内に残留した水が冬季に凍結して弁を破壊することを軽減できる。
【0010】
また、本発明によれば、流出口が大気開放されたシスターンの側面に直接接続されるため、シスターンと流出口を接続する通水管を設けた場合に通水管内に残留した水が冬季に凍結して通水管を破壊するという不具合を克服し、水抜き性のよい電磁式給水弁の取付方法を提供することができる。
【0011】
【発明の実施の形態】
(第1の実施形態)本発明の実施の形態の一例を図1、図2を参照して説明する。図1は本発明の実施形態の一例である温水循環暖房システムの構成を示す構成図である。図1に示すように、温水循環暖房システム1は、暖房機2と床暖房パネル3とが接続された温水回路4と、該温水回路4に給水するための給水管路5とを備える。温水回路4は、暖房機2を加熱する暖房用温水回路6と、床暖房パネル3を加熱する床用温水回路7とにより構成されている。また、温水回路4は、バーナ8により加熱されて循環する温水を昇温させる熱交換器9と、温水を循環させるポンプ10と、給水管路5との接続点に設けられ温水回路4から給水管路5への逆流を防止すると共に、温水の膨張・収縮を吸収するシスターン11とを備えている。
【0012】
暖房用温水回路6は、ポンプ10の吐出側から図1において上方向に分岐され、熱交換器9と、暖房機2に設けられた不図示の熱交換器と、シスターン11とを介してポンプ10の流入側に接続される。なお、シスターン11の側面上部には、オーバーフロー管13が設けられ、シスターン11内を大気に開放させると共に、一定量以上の温水が放出されるようになっている。床用温水回路7は、ポンプ10の吐出側から図1において下方向に分岐され、床暖房パネル3を介してシスターン11の流入側に接続される。
【0013】
また、温水回路4には、暖房用温水回路6から分岐され、暖房機2をバイパスしてシスターン11の流入側に接続されたバイパス通路14が設けられている。
【0014】
給水管路5には、シスターン11の側面上部に直接接続された電磁式給水弁15と、給水管路5と外部の水道管とを接続する手動補水弁16と、電磁式給水弁15と手動補水弁16の間に設けられた水抜き栓17とが備えられている。
【0015】
以上の構成からなる温水循環暖房システム1の作動について説明する。予め、使用者は手動補水弁16を開弁する。そして、電磁式給水弁15は、所定量の水道水をシスターン11に供給するように制御されている。
【0016】
暖房運転が開始されると、暖房用温水回路6では、ポンプ10により常に一定の流量の温水が循環されている。ポンプ10から吐出された温水は、図1において上側に分岐されて熱交換器9により昇温され、温水の一部は暖房機2内の熱交換器の流入側に供給される。この供給された温水の熱量により暖房機2の設置された室内の温度が上昇する。暖房機2を通過した復水はシスターン11の流入側に還流され、シスターン11の流出側からポンプ10の流入側に還流される。一方、熱交換器9を通過した温水の一部は、バイパス通路14を通過してシスターン11に直接供給される。
【0017】
また、床用温水回路7では、ポンプ10から吐出された温水は、図1において下側に分岐され、床暖房パネル3の流入側に供給される。そして、床暖房パネル3に供給された温水の熱により室内の床が暖められ室内が暖房される。床暖房パネル3を通過した復水はシスターン11の流入側に還流され、シスターン11の流出側からポンプ10の流入側に還流される。床用温水回路7には、暖房機2から熱交換器9へ還流される復水と、熱交換器9からバイパス通路14を介して供給される温水がシスターン11により混合されて供給されており、この混合された温水によって床暖房パネル3による暖房が行われる。
【0018】
なお、冬季には、電磁式給水弁15内の水の凍結を防止するために、使用者は、温水循環暖房システム1の使用後に、手動補水弁16を閉弁した後、水抜き栓17を開栓し、給水管路5を介して電磁式給水弁15内に残留している水を排出する。
【0019】
次に、電磁式給水弁15について図2を参照して説明する。電磁式給水弁15は、本体20に形成された流入口21と流出口22間の通水を制御するものである。電磁式給水弁15の鉛直方向には、流入口21と流入室23(本発明の1次圧室に相当する)が連通して形成されている。同様に、水平方向には、流出口22と流出室24(本発明の2次圧室に相当する)が連通して形成されている。流入室23は、流出室24の外周に形成され、流出室24の入口は流入室23に臨んでいる。なお、流出口22は、水平方向に開口するように、シスターン11の側面上部に直接接続され、このとき、流入口21は、鉛直方向下向きに開口する。
【0020】
流入室23と流出室24の間には弁口25が形成され、弁口25には、流入室23と流出室24を仕切る弁座26が固着され、弁座26の上流側に流入室23、下流側に流出室24が配置する。ダイヤフラム27は、ゴム等の柔軟材料で構成され、その中央に形成された中心穴28にダイヤフラム板29が嵌入されるようになっている。そして、ダイヤフラム27とダイヤフラム板29とによりダイヤフラム式の弁体30(本発明のダイヤフラム弁に相当する)が構成される。この弁体30が弁座26に接離して弁口25を開閉する。弁体30の図中右側には背圧室31が設けられている。
【0021】
ダイヤフラム板29の図中流出室24よりも上方の位置には、流入室23と背圧室31とを連通する連絡穴33が穿設されている。また、ダイヤフラム板29の中心位置には、流出室24と背圧室31とを連通するパイロット穴32が穿設され、パイロット穴32の先端には、パイロット弁座34が形成されている。プランジャ35は、パイロット穴32の中心線上にその中心を合わせて配設され、パイロット弁座34に接離してパイロット穴32を開閉する。
【0022】
プランジャ35はバネ36により図中左方向に付勢され、電磁コイル37に通電されていない状態では、バネ36の付勢力によって図中左方に移動してパイロット弁座34に当接する。このとき、パイロット穴32は閉状態となる(図2に示した状態)。
【0023】
また、プランジャ35は、電磁コイル37に通電された状態では、電磁コイル37の周辺に形成される磁気回路の漏洩磁束によりバネ36の付勢力に抗して図中右方に移動する。このとき、プランジャ35がパイロット弁座34から離れてパイロット穴32が開状態となる。なお、パイロット弁座34、プランジャ35、バネ36、及び電磁コイル37により電磁弁が構成される。
【0024】
次に電磁式給水弁15の作動について説明する。電磁コイル37への通電が遮断された状態では、上述したようにプランジャ35がパイロット弁座34に当接してパイロット穴32が閉状態となる。そして、この状態では、流入室23から連絡穴33を介して背圧室31内に水が流れ込んで背圧室31内の水圧が入水圧まで上昇するので、背圧室31内の圧力が流出室24内の圧力よりも高くなる。その結果、弁体30が図中左方に押され、弁体30のダイヤフラム27が弁座26に当接して弁座26が閉状態となり、流入室23から流出室24への通水が遮断される(図2に示した状態)。
【0025】
一方、電磁コイル37に通電された状態では、上述したようにプランジャ35が図中右方向に移動してパイロット弁座34から離れ、パイロット穴32が開状態となる。そしてこの状態では、背圧室31内の水はパイロット穴32を介して流出室24に流出し、背圧室31内は水圧が低下する。そのため、流入室23からの入水圧力により弁体30が図中右方に押され、弁体30が弁座26から離れて弁口25が開状態となり、流入室23から流出室24への通水が可能となる。
【0026】
通水状態から遮断状態に移行するとき、すなわち、電磁コイル37への通電が遮断されて弁体30のダイヤフラム27が弁座26に当接する際に、背圧室31内のエアは、水の中を上昇するので、鉛直上方に穿設された連絡穴33からエアは流入室23に抜けやすくなっている。そのため、背圧室31内にはエアが残りにくくなる。
【0027】
上記実施形態によれば、電磁式給水弁15の背圧室31にクッションの役割をするエアが残りにくいため、止水時にウォーターハンマ等が生じても弁体30の振動が早期に消滅し、止水不良を防止することができる。また、水抜きする際に、電磁式給水弁15の流入室23内の水が抜けやすいので、凍結による弁の破壊を軽減できる。
【0028】
(第2の実施形態)次に、第2の実施形態を説明する。この実施形態では、温水循環暖房システムの構成および動作は第1の実施形態と同一であり、シスターン11に接続される電磁式給水弁として図3に示すものを用いる。尚、第1の実施形態の電磁式給水弁15と同一の構成には同一の参照番号を付与し、異なる点のみ説明する。
【0029】
図3に示すように、電磁式給水弁38のダイヤフラム板39にはパイロット穴は形成されておらず、このダイヤフラム板39とダイヤフラム27とから弁体40(ダイヤフラム弁)が構成される。
【0030】
電磁式給水弁38の本体20には、流出室24に連通するパイロット経路42が穿設されている。パイロット経路42には電磁弁41が嵌入されている。パイロット経路42は、この電磁弁41と第1オリフィス43とを介して、流入室23に接続されると共に、電磁弁41と第2オリフィス44とを介して、背圧室31に接続されている。なお、第1オリフィス43と第2オリフィス44は連通しており、本発明の連絡穴に相当する。
【0031】
電磁弁41は、図4、図5に示すように、第1オリフィス43および第2オリフィス44とパイロット経路42間の通水を制御するものであり、電磁的に駆動される弁体45を弁座46に接離してパイロット穴32を開閉する。
【0032】
次に電磁式給水弁38の作動について説明する。電磁弁41がオフしているときには、パイロット穴32が閉状態(図4に示す状態)となり、背圧室31と流出室24が遮断されると共に、第1オリフィス43および第2オリフィス44を介して流入室23と背圧室31が連通している。そしてこの状態では、流入室23から第1オリフィス43と第2オリフィス44を介して背圧室31内に水が流れ込んで背圧室31内の水圧が入水圧まで上昇し、背圧室31内の圧力が流出室24内の圧力よりも高くなる。その結果、弁体40が図3中左方に押され、弁体40のダイヤフラム27が弁座26に当接して弁口25が閉状態となり、流入室23から流出室24への通水が遮断される。
【0033】
一方、電磁弁41がオンしているときには、パイロット穴32が開状態(図5に示す状態)となり、第1オリフィス43および第2オリフィス44とパイロット経路42とを介して、背圧室31と流出室24が連通する。そしてこの状態では、流入室23および背圧室31内の水圧により、水は流入室23および背圧室31からパイロット穴32を介して流出室24に流出し、背圧室31内の水圧は低下する。そのため、流入室23からの入水圧力により弁体40が図3中右方に押され、弁体40が弁座26から離れて弁口25が開状態となり、流入室23から流出室24への通水が可能となる。
【0034】
上記実施形態によれば、流出室24と背圧室31を連通するパイロット穴32が弁体40(ダイヤフラム弁)とは独立に設けられている。一方、パイロット穴をダイヤフラム弁に穿設した場合には、パイロット穴を開閉する電磁弁のプランジャの固有振動数とダイヤフラム弁の固有振動数とが異なることによって、ダイヤフラム弁の振動が継続しやすくなる。しかし、上記第2の実施形態の電磁式給水弁38の構成によれば、電磁弁41による振動が弁体40(ダイヤフラム弁)へ影響を与えないので、弁体40の振動をより一層早期に消滅させて止水不良を防止することができる。
【図面の簡単な説明】
【図1】第1の実施形態の一例である温水循環暖房システムの構成図。
【図2】第1の実施形態で用いられる電磁式給水弁の構成図。
【図3】第2の実施形態で用いられる電磁式給水弁の構成図。
【図4】図3に示すA部の閉弁時の拡大図
【図5】図3に示すA部の開弁時の拡大図
【図6】従来の電磁式給水弁の構成図。
【符号の説明】
1・・・温水循環暖房システム、5・・・給水管路、11・・・シスターン、15,38・・・電磁式給水弁、17・・・水抜き栓、20・・・本体、21・・・流入口、22・・・流出口、23・・・流入室、24・・・流出室、25・・・弁口、26・・・弁座、27・・・ダイヤフラム、29,39・・・ダイヤフラム板、30,40・・・弁体、31・・・背圧室、32・・・パイロット穴、33・・・連絡穴、34・・・パイロット弁座、35・・・プランジャ、36・・・バネ、37・・・電磁コイル、41・・・電磁弁、42・・・パイロット経路、43・・・第1オリフィス、44・・・第2オリフィス。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for mounting an electromagnetic water supply valve.
[0002]
[Prior art]
The electromagnetic water supply valve is attached to, for example, a systern that constitutes a hot water heating system, and is used for replenishing circulating hot water. 2. Description of the Related Art Conventionally, an electromagnetic water supply valve that can suppress vibration of a valve body by suppressing a water hammer is known (see, for example, Patent Document 1).
[0003]
As shown in FIG. 6, in this conventional electromagnetic water supply valve 50, the valve body 51 is configured by a diaphragm plate 52, a flow path plate 53, and a diaphragm 54. When the electromagnetic coil 55 is not energized (the state shown in FIG. 6), the plunger 57 presses the center of the diaphragm plate 52 with its lower end surface by the biasing force of the spring 56 and closes the pilot hole 58. Further, since the lower surface of the diaphragm 54 closes the valve seat 59 by the pressing force of the spring 56, the water flowing in from the inflow port 60 is not discharged from the outflow port 61, and the flow formed in the flow path plate 53. The pressure reaches the inside of the back pressure chamber 62 through the path, and a back pressure is applied to the valve body 51 to provide a valve closing force.
[0004]
When the electromagnetic coil 55 is energized, the plunger 57 moves upward against the urging force of the spring 56 due to the magnetic flux leaking from the magnetic circuit formed around the electromagnetic coil 55, and the lower end surface of the plunger 57 is The pilot hole 58 is opened. In this state, the water in the back pressure chamber 62 is discharged from the pilot hole 58 and flows out to the outlet 61. Further, since the back pressure of the diaphragm plate 52 is also released, the valve body 51 moves upward by the elastic force of the diaphragm 54 and the valve seat 59 is opened. Therefore, the water that has reached the inlet 60 is discharged from the opened valve seat 59 to the outlet 61.
[0005]
[Patent Document 1]
JP-A-5-187575 (page 3, FIG. 3-4)
[0006]
[Problems to be solved by the invention]
However, when the electromagnetic water supply valve 50 disclosed in Patent Document 1 is attached to the upper part of the cistern with the outflow port 61 facing downward, when the water supply state changes to the water stop state (at the time of water stop) In addition, air tends to remain in the back pressure chamber 62. At this time, the remaining air acts as a cushion and compresses and expands, so that the vibration of the valve body 51 is easily continued, and as a result, there is a problem that a water stop failure occurs.
[0007]
In view of such a background, an object of the present invention is to provide a method for mounting an electromagnetic water supply valve that can suppress vibration during water stop and prevent a water stop failure. Another object of the present invention is to provide an electromagnetic water supply valve mounting method with good drainage.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the electromagnetic water supply valve mounting method of the present invention is provided with an inlet and a primary pressure chamber on the upstream side of the valve seat in a substantially vertical direction, and an outlet in a substantially horizontal direction. A secondary pressure chamber downstream of the valve seat, the primary pressure chamber is provided on the outer periphery of the secondary pressure chamber, and a diaphragm valve that opens and closes in a substantially horizontal direction with the inlet of the secondary pressure chamber as a valve seat; A back pressure chamber provided on the back side of the diaphragm valve, a communication hole provided on the opposite side of the inflow port across the secondary pressure chamber, and a communication hole communicating the primary pressure chamber and the back pressure chamber; A method for mounting an electromagnetic water supply valve comprising a pilot hole communicating with a chamber and a back pressure chamber, and an electromagnetic valve for opening and closing the pilot hole, wherein the electromagnetic water supply valve is connected to a side is directly connected to, and, attached to the inlet faces downward, the water supply conduit to the inlet comprises a drain plug And wherein the connection to Rukoto.
[0009]
According to the present invention, when the electromagnetic water supply valve is attached so that the inlet is directed downward, the primary pressure chamber and the back pressure chamber are arranged in the horizontal direction via the diaphragm valve. Therefore, as compared with the case where the back pressure chamber is disposed above the diaphragm valve, the air in the back pressure chamber is more likely to escape to the primary pressure chamber through the communication hole. In addition, since the communication hole is arranged to communicate with the inlet side across the secondary pressure chamber, that is, on the upper side of the primary pressure chamber and the back pressure chamber, the air that has moved upward in the back pressure chamber is It becomes easy to escape to the primary pressure chamber through the communication hole. Therefore, since air hardly remains in the back pressure chamber, when the control is performed to close the diaphragm valve and stop the water during the water supply, the diaphragm valve does not continue to vibrate and can be stopped without fail. Further, since the electromagnetic water supply valve is arranged so as to allow water to enter from the lower side to the upper side, it is excellent in the water draining property of the primary pressure chamber when the water draining plug is opened to drain water. Therefore, it is possible to reduce the water remaining in the electromagnetic water supply valve from freezing in winter and destroying the valve.
[0010]
Further , according to the present invention, since the outlet is directly connected to the side surface of the cistern that is open to the atmosphere , the water remaining in the water pipe is frozen in the winter when the water pipe connecting the cistern and the outlet is provided. Thus, it is possible to overcome the problem of destroying the water pipe and provide a method for mounting an electromagnetic water supply valve with good drainage.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
(First Embodiment) An example of an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a configuration diagram showing a configuration of a hot water circulation heating system as an example of an embodiment of the present invention. As shown in FIG. 1, the hot water circulation heating system 1 includes a hot water circuit 4 to which a heater 2 and a floor heating panel 3 are connected, and a water supply pipe 5 for supplying water to the hot water circuit 4. The hot water circuit 4 includes a heating hot water circuit 6 that heats the heater 2 and a floor hot water circuit 7 that heats the floor heating panel 3. The hot water circuit 4 is provided at a connection point between the heat exchanger 9 that raises the temperature of the hot water that is heated and circulated by the burner 8, the pump 10 that circulates the hot water, and the water supply pipe 5. A cistern 11 that prevents backflow to the pipe 5 and absorbs expansion and contraction of hot water is provided.
[0012]
The heating hot water circuit 6 is branched upward from the discharge side of the pump 10 in FIG. 1, and is pumped through a heat exchanger 9, a heat exchanger (not shown) provided in the heater 2, and a cistern 11. 10 inflow side. An overflow pipe 13 is provided at the upper part of the side surface of the cistern 11 so that the inside of the cistern 11 is opened to the atmosphere, and a certain amount or more of warm water is discharged. The floor hot water circuit 7 is branched downward in FIG. 1 from the discharge side of the pump 10, and is connected to the inflow side of the cistern 11 through the floor heating panel 3.
[0013]
Further, the hot water circuit 4 is provided with a bypass passage 14 branched from the heating hot water circuit 6 and bypassing the heater 2 and connected to the inflow side of the cistern 11.
[0014]
The water supply line 5 includes an electromagnetic water supply valve 15 that is directly connected to the upper side of the cistern 11, a manual rehydration valve 16 that connects the water supply line 5 and an external water pipe, an electromagnetic water supply valve 15, and a manual operation. a drain plug 17 which is provided between the refill valve 16 is provided.
[0015]
The operation of the hot water circulation heating system 1 having the above configuration will be described. In advance, the user opens the manual refill valve 16. The electromagnetic water supply valve 15 is controlled so as to supply a predetermined amount of tap water to the systern 11.
[0016]
When the heating operation is started, in the hot water circuit 6 for heating, hot water having a constant flow rate is always circulated by the pump 10. The hot water discharged from the pump 10 is branched upward in FIG. 1 and heated by the heat exchanger 9, and a part of the hot water is supplied to the inflow side of the heat exchanger in the heater 2. The temperature of the room in which the heater 2 is installed rises due to the amount of heat of the supplied hot water. The condensate that has passed through the heater 2 is recirculated to the inflow side of the cistern 11 and recirculated from the outflow side of the cistern 11 to the inflow side of the pump 10. On the other hand, a part of the hot water that has passed through the heat exchanger 9 passes through the bypass passage 14 and is directly supplied to the cistern 11.
[0017]
Moreover, in the warm water circuit 7 for floors, the warm water discharged from the pump 10 is branched downward in FIG. 1 and supplied to the inflow side of the floor heating panel 3. Then, the indoor floor is warmed by the heat of the hot water supplied to the floor heating panel 3 to heat the room. Condensate that has passed through the floor heating panel 3 is recirculated to the inflow side of the cistern 11 and recirculated from the outflow side of the cistern 11 to the inflow side of the pump 10. Condensate recirculated from the heater 2 to the heat exchanger 9 and hot water supplied from the heat exchanger 9 via the bypass passage 14 are mixed and supplied to the floor hot water circuit 7 by the cistern 11. Heating by the floor heating panel 3 is performed by the mixed hot water.
[0018]
Incidentally, in winter, in order to prevent freezing of water in the electromagnetic water supply valve in 15, the user, after use of the hot water circulation heating system 1, after closing the manual refill valve 16, the drain plug 17 The plug is opened and water remaining in the electromagnetic water supply valve 15 is discharged through the water supply pipe 5.
[0019]
Next, the electromagnetic water supply valve 15 will be described with reference to FIG. The electromagnetic water supply valve 15 controls water flow between the inlet 21 and the outlet 22 formed in the main body 20. An inlet 21 and an inflow chamber 23 (corresponding to the primary pressure chamber of the present invention) are formed in communication with each other in the vertical direction of the electromagnetic water supply valve 15. Similarly, in the horizontal direction, the outflow port 22 and the outflow chamber 24 (corresponding to the secondary pressure chamber of the present invention) are formed in communication. The inflow chamber 23 is formed on the outer periphery of the outflow chamber 24, and the inlet of the outflow chamber 24 faces the inflow chamber 23. The outflow port 22 is directly connected to the upper part of the side surface of the cistern 11 so as to open in the horizontal direction. At this time, the inflow port 21 opens downward in the vertical direction.
[0020]
A valve port 25 is formed between the inflow chamber 23 and the outflow chamber 24, and a valve seat 26 that partitions the inflow chamber 23 and the outflow chamber 24 is fixed to the valve port 25, and the inflow chamber 23 is located upstream of the valve seat 26. The outflow chamber 24 is disposed on the downstream side. The diaphragm 27 is made of a flexible material such as rubber, and a diaphragm plate 29 is inserted into a center hole 28 formed at the center thereof. The diaphragm 27 and the diaphragm plate 29 constitute a diaphragm type valve element 30 (corresponding to the diaphragm valve of the present invention). The valve body 30 contacts and separates from the valve seat 26 to open and close the valve port 25. A back pressure chamber 31 is provided on the right side of the valve body 30 in the figure.
[0021]
A communication hole 33 for communicating the inflow chamber 23 and the back pressure chamber 31 is formed at a position above the outflow chamber 24 in the drawing of the diaphragm plate 29. A pilot hole 32 that communicates the outflow chamber 24 and the back pressure chamber 31 is formed at the center position of the diaphragm plate 29, and a pilot valve seat 34 is formed at the tip of the pilot hole 32. The plunger 35 is disposed on the center line of the pilot hole 32 so that the center thereof is aligned, and opens and closes the pilot hole 32 by contacting and separating from the pilot valve seat 34.
[0022]
The plunger 35 is urged to the left in the drawing by the spring 36 and moves to the left in the drawing by the urging force of the spring 36 and abuts against the pilot valve seat 34 when the electromagnetic coil 37 is not energized. At this time, the pilot hole 32 is closed (the state shown in FIG. 2).
[0023]
In addition, when the electromagnetic coil 37 is energized, the plunger 35 moves to the right in the figure against the biasing force of the spring 36 due to the leakage magnetic flux of the magnetic circuit formed around the electromagnetic coil 37. At this time, the plunger 35 is separated from the pilot valve seat 34 and the pilot hole 32 is opened. The pilot valve seat 34, the plunger 35, the spring 36, and the electromagnetic coil 37 constitute an electromagnetic valve.
[0024]
Next, the operation of the electromagnetic water supply valve 15 will be described. In the state where the energization to the electromagnetic coil 37 is interrupted, the plunger 35 comes into contact with the pilot valve seat 34 and the pilot hole 32 is closed as described above. In this state, water flows into the back pressure chamber 31 from the inflow chamber 23 through the communication hole 33 and the water pressure in the back pressure chamber 31 rises to the incoming water pressure, so that the pressure in the back pressure chamber 31 flows out. It becomes higher than the pressure in the chamber 24. As a result, the valve body 30 is pushed to the left in the figure, the diaphragm 27 of the valve body 30 comes into contact with the valve seat 26, the valve seat 26 is closed, and water flow from the inflow chamber 23 to the outflow chamber 24 is blocked. (The state shown in FIG. 2).
[0025]
On the other hand, when the electromagnetic coil 37 is energized, the plunger 35 moves to the right in the drawing as described above and moves away from the pilot valve seat 34, and the pilot hole 32 is opened. In this state, the water in the back pressure chamber 31 flows into the outflow chamber 24 through the pilot hole 32, and the water pressure in the back pressure chamber 31 decreases. Therefore, the valve body 30 is pushed to the right in the figure by the incoming water pressure from the inflow chamber 23, the valve body 30 is separated from the valve seat 26 and the valve port 25 is opened, and the passage from the inflow chamber 23 to the outflow chamber 24 is performed. Water becomes possible.
[0026]
When shifting from the water flow state to the shut-off state, that is, when the energization of the electromagnetic coil 37 is cut off and the diaphragm 27 of the valve body 30 abuts the valve seat 26, the air in the back pressure chamber 31 is water. Since it rises inside, air can easily escape to the inflow chamber 23 from the connecting hole 33 formed vertically upward. Therefore, air hardly remains in the back pressure chamber 31.
[0027]
According to the above embodiment, the air acting as a cushion is unlikely to remain in the back pressure chamber 31 of the electromagnetic water supply valve 15. Therefore, even if a water hammer or the like occurs at the time of water stoppage, the vibration of the valve body 30 disappears early, Insufficient water stoppage can be prevented. Further, when draining water, water in the inflow chamber 23 of the electromagnetic water supply valve 15 is easily drained, so that the destruction of the valve due to freezing can be reduced.
[0028]
(Second Embodiment) Next, a second embodiment will be described. In this embodiment, the configuration and operation of the hot water circulation heating system are the same as those of the first embodiment, and the electromagnetic water supply valve connected to the cistern 11 is shown in FIG. In addition, the same reference number is attached | subjected to the structure same as the electromagnetic water supply valve 15 of 1st Embodiment, and only a different point is demonstrated.
[0029]
As shown in FIG. 3, pilot holes are not formed in the diaphragm plate 39 of the electromagnetic water supply valve 38, and a valve body 40 (diaphragm valve) is configured by the diaphragm plate 39 and the diaphragm 27.
[0030]
A pilot path 42 communicating with the outflow chamber 24 is formed in the main body 20 of the electromagnetic water supply valve 38. An electromagnetic valve 41 is fitted in the pilot path 42. The pilot path 42 is connected to the inflow chamber 23 through the electromagnetic valve 41 and the first orifice 43, and is connected to the back pressure chamber 31 through the electromagnetic valve 41 and the second orifice 44. . The first orifice 43 and the second orifice 44 communicate with each other and correspond to the communication hole of the present invention.
[0031]
As shown in FIGS. 4 and 5, the electromagnetic valve 41 controls water flow between the first orifice 43 and the second orifice 44 and the pilot path 42, and controls the electromagnetically driven valve body 45. The pilot hole 32 is opened and closed by contacting and separating from the seat 46.
[0032]
Next, the operation of the electromagnetic water supply valve 38 will be described. When the solenoid valve 41 is off, the pilot hole 32 is closed (the state shown in FIG. 4), the back pressure chamber 31 and the outflow chamber 24 are blocked, and the first orifice 43 and the second orifice 44 are used. The inflow chamber 23 and the back pressure chamber 31 communicate with each other. In this state, water flows from the inflow chamber 23 into the back pressure chamber 31 through the first orifice 43 and the second orifice 44, and the water pressure in the back pressure chamber 31 rises to the incoming water pressure. Becomes higher than the pressure in the outflow chamber 24. As a result, the valve body 40 is pushed to the left in FIG. 3, the diaphragm 27 of the valve body 40 comes into contact with the valve seat 26, the valve port 25 is closed, and water flow from the inflow chamber 23 to the outflow chamber 24 is prevented. Blocked.
[0033]
On the other hand, when the solenoid valve 41 is on, the pilot hole 32 is opened (the state shown in FIG. 5), and the back pressure chamber 31 and the first orifice 43, the second orifice 44, and the pilot path 42 are connected. The outflow chamber 24 communicates. In this state, due to the water pressure in the inflow chamber 23 and the back pressure chamber 31, water flows out from the inflow chamber 23 and the back pressure chamber 31 to the outflow chamber 24 through the pilot hole 32, and the water pressure in the back pressure chamber 31 is descend. Therefore, the valve body 40 is pushed to the right in FIG. 3 by the incoming water pressure from the inflow chamber 23, the valve body 40 is separated from the valve seat 26, and the valve port 25 is opened. Water can be passed.
[0034]
According to the above embodiment, the pilot hole 32 communicating the outflow chamber 24 and the back pressure chamber 31 is provided independently of the valve body 40 (diaphragm valve). On the other hand, when the pilot hole is drilled in the diaphragm valve, the vibration of the diaphragm valve is likely to continue because the natural frequency of the plunger of the solenoid valve that opens and closes the pilot hole is different from the natural frequency of the diaphragm valve. . However, according to the configuration of the electromagnetic water supply valve 38 of the second embodiment, the vibration of the electromagnetic valve 41 does not affect the valve body 40 (diaphragm valve), so that the vibration of the valve body 40 is further accelerated. It can be eliminated to prevent poor water stoppage.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a hot water circulation heating system as an example of a first embodiment.
FIG. 2 is a configuration diagram of an electromagnetic water supply valve used in the first embodiment.
FIG. 3 is a configuration diagram of an electromagnetic water supply valve used in a second embodiment.
4 is an enlarged view of the A portion shown in FIG. 3 when the valve is closed. FIG. 5 is an enlarged view of the portion A shown in FIG. 3 when the valve is opened. FIG. 6 is a configuration diagram of a conventional electromagnetic water supply valve.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Warm water circulation heating system, 5 ... Water supply pipe, 11 ... Sistern, 15, 38 ... Electromagnetic water supply valve, 17 ... Drain plug, 20 ... Main body, 21 ..Inlet, 22 ... Outlet, 23 ... Inlet chamber, 24 ... Outlet chamber, 25 ... Valve, 26 ... Valve seat, 27 ... Diaphragm, 29, 39 .. Diaphragm plate, 30, 40 ... Valve body, 31 ... Back pressure chamber, 32 ... Pilot hole, 33 ... Communication hole, 34 ... Pilot valve seat, 35 ... Plunger, 36 ... Spring, 37 ... Electromagnetic coil, 41 ... Solenoid valve, 42 ... Pilot path, 43 ... First orifice, 44 ... Second orifice.

Claims (1)

略鉛直方向に流入口と弁座の上流側の1次圧室とが設けられ、略水平方向に流出口と弁座の下流側の2次圧室とが設けられ、1次圧室は2次圧室の外周に設けられ、2次圧室の入口を弁座として略水平方向に開閉するダイヤフラム弁と、該ダイヤフラム弁の背面側に設けられた背圧室と、2次圧室をまたいで流入口と反対側に設けられて1次圧室と背圧室とを連通する連絡穴と、2次圧室と背圧室とを連通するパイロット穴と、該パイロット穴を開閉する電磁弁とを備える電磁式給水弁の取付方法であって、
前記電磁式給水弁を、流出口が大気開放されたシスターンの側面に直接接続され、且つ、流入口が下方に向くように取り付け、流入口に水抜き栓を備える給水管路を接続することを特徴とする電磁式給水弁の取付方法。
An inlet and a primary pressure chamber on the upstream side of the valve seat are provided in a substantially vertical direction, and an outlet and a secondary pressure chamber on the downstream side of the valve seat are provided in a substantially horizontal direction, and the primary pressure chamber is 2 A diaphragm valve provided on the outer periphery of the secondary pressure chamber and opening and closing in a substantially horizontal direction with the inlet of the secondary pressure chamber as a valve seat, a back pressure chamber provided on the back side of the diaphragm valve, and the secondary pressure chamber A communication hole that is provided on the opposite side of the inlet and communicates the primary pressure chamber and the back pressure chamber, a pilot hole that communicates the secondary pressure chamber and the back pressure chamber, and an electromagnetic valve that opens and closes the pilot hole An electromagnetic water supply valve mounting method comprising:
The electromagnetic water supply valve, the outlet is connected directly to the side of the cistern that is opened to the atmosphere, and, attached to the inlet faces downward, be tied to the water supply conduit to the inlet comprises a drain plug Mounting method of electromagnetic water supply valve characterized by
JP2002305301A 2002-10-21 2002-10-21 Mounting method of electromagnetic water supply valve Expired - Fee Related JP3928858B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002305301A JP3928858B2 (en) 2002-10-21 2002-10-21 Mounting method of electromagnetic water supply valve
KR10-2003-0054863A KR100509857B1 (en) 2002-10-21 2003-08-08 Mounting method of electromagnetic type water supply valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002305301A JP3928858B2 (en) 2002-10-21 2002-10-21 Mounting method of electromagnetic water supply valve

Publications (2)

Publication Number Publication Date
JP2004138211A JP2004138211A (en) 2004-05-13
JP3928858B2 true JP3928858B2 (en) 2007-06-13

Family

ID=32452451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002305301A Expired - Fee Related JP3928858B2 (en) 2002-10-21 2002-10-21 Mounting method of electromagnetic water supply valve

Country Status (2)

Country Link
JP (1) JP3928858B2 (en)
KR (1) KR100509857B1 (en)

Also Published As

Publication number Publication date
KR100509857B1 (en) 2005-08-23
JP2004138211A (en) 2004-05-13
KR20040034363A (en) 2004-04-28

Similar Documents

Publication Publication Date Title
US20110259560A1 (en) Hot water storage type hot water supply device
JP3928858B2 (en) Mounting method of electromagnetic water supply valve
JP4597918B2 (en) Water supply valve device
JP5720018B2 (en) Pouring solenoid valve
JP4168288B2 (en) Negative pressure breaker
JPH0237226A (en) Reverse flow preventing device for bath burner with hot water feeder
JP4353916B2 (en) Waste water discharge device for heat source device
JPH11311449A (en) Combustion equipment and non-return device thereof having overpressure prevention function
JPH0143220B2 (en)
JP3835281B2 (en) Negative pressure breaker
JPS60259856A (en) Device both for supplying hot water to bathtub and for heating bathtub water additionally
JP3562344B2 (en) How to control the faucet
JP3805095B2 (en) One can two water heater
JP3810191B2 (en) Bath equipment
JPH0720513Y2 (en) Backflow prevention device
JP5216513B2 (en) Water heater
JP3810151B2 (en) Method for controlling hot water supply apparatus and hot water supply apparatus
JP2023031836A (en) Bath hot water supply system
JP2878004B2 (en) Hot water supply path opening and closing device
JPH0587410A (en) Hot water feeding device
JP3786500B2 (en) Water heater
JP3728885B2 (en) Bath circulation device
JP3029904U (en) Heat pump type air conditioner
JP2919766B2 (en) Automatic priming device for bath water heater
JPH0151743B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070301

R150 Certificate of patent or registration of utility model

Ref document number: 3928858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees