JP3835281B2 - Negative pressure breaker - Google Patents

Negative pressure breaker Download PDF

Info

Publication number
JP3835281B2
JP3835281B2 JP2001390952A JP2001390952A JP3835281B2 JP 3835281 B2 JP3835281 B2 JP 3835281B2 JP 2001390952 A JP2001390952 A JP 2001390952A JP 2001390952 A JP2001390952 A JP 2001390952A JP 3835281 B2 JP3835281 B2 JP 3835281B2
Authority
JP
Japan
Prior art keywords
valve
negative pressure
water supply
hot water
closing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001390952A
Other languages
Japanese (ja)
Other versions
JP2003185247A (en
Inventor
誠 濱田
亮二 大内
克博 藤原
秀仁 市丸
晶 吉田
恒男 船引
学 清水
逸夫 永井
直人 小針
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2001390952A priority Critical patent/JP3835281B2/en
Publication of JP2003185247A publication Critical patent/JP2003185247A/en
Application granted granted Critical
Publication of JP3835281B2 publication Critical patent/JP3835281B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control For Baths (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、上水道から直接に又は受水槽からポンプ圧送により間接に供給される浄水が分岐路を通して大気開放の貯槽へ直接又は間接に注水可能とされたものにおいて、浄水供給路側での負圧発生の際にその負圧を破壊(解消)して貯槽側から浄水供給路側への逆流発生を阻止するための負圧破壊装置に関する。
【0002】
【従来の技術】
従来、この種の負圧破壊装置として、例えば給湯装置に設置されたものが知られている。この給湯装置は、浄水の給水を受ける給湯回路により湯を台所等の給湯栓に対し給湯する一方、浴槽や洗濯槽等の大気開放する貯槽へ上記給湯回路から分岐した注湯路(分岐路)又は浄水供給路から分岐した注水路(分岐路)を通して湯又は水を直接に又は間接に注湯(注水)し得るように構成されており、上記注湯路や注水路に対し負圧破壊装置が設置されている。このような負圧破壊装置は、水道水(浄水)が給水される給湯回路内(又は給水回路内)に例えば水道水供給側の断水あるいは停電等に起因して負圧が生じた場合に、浴槽や洗濯槽等の貯槽の湯水が逆流して給湯回路内(又は注水路回路内)に、つまり浄水供給路内に流入する事態の発生を阻止するために設けられるものであり、上記負圧破壊装置により給湯回路等と上記貯槽との間を注湯可能にしつつも縁切り可能な状態に接続するようにしている。つまり、浄水が充満している給湯回路等に対し雑水である浴槽や洗濯槽内の湯水が逆流して混入してしまう事態の発生を防止するために負圧破壊装置が介装されている。この逆流防止性能を実現するための従来の負圧破壊装置の例を図1に示す給湯装置10に設置された例に基づいて説明する。
【0003】
この給湯装置10は貯槽として浴槽3に対し注湯し得るようにした給湯器付き風呂釜を例にしたものである。すなわち、給湯回路2の給湯側に介装された流量調整弁(水量サーボ弁)31の下流から注湯回路500が分岐され、この注湯回路500を介して給湯回路2と追い焚き循環回路4とが連通接続されて給湯回路2から浴槽3に対し注湯可能となっている。そして、この注湯回路500に対し、上流側からバキュームブレーカ(負圧破壊弁)501、注水用開閉弁である注湯電磁弁502及び2段の逆止弁54,55の順に並ぶ負圧破壊装置を介装させて注湯及び縁切りの双方を行うようにしている。上記のバキュームブレーカ501は回路内に所定の負圧が生じたときに外気(エア)を吸い込んで負圧状態を解消するもの、注湯電磁弁502は注湯回路500を開閉切換して注湯及び遮断の切換を行うもの、また、2段の逆止弁54,55は注湯方向(順方向)への流通を許容しつつ逆方向への流通を阻止するものである。
【0004】
上記バキュームブレーカ501は、弁体をバネにより弁座に押し付けて常時は閉状態に維持しつつ、回路内に負圧が作用したときには上記弁体がばねに抗して開きエアを回路内に吸い込んで上記負圧を解消(破壊)するようになっている。また、上記注湯電磁弁502は、図6に例示するようにパイロット式のダイヤフラム弁により構成されている。すなわち、弁体であるダイヤフラム弁524を挟んで同図の上側にダイヤフラム室525が区画形成される一方、ダイヤフラム弁524の同図の下側において内筒部522を挟んで外周側範囲に給湯回路2と連通する流通口523が形成され、内周側範囲が浴槽3側と連通されている。そして、上記内筒部522の先端の弁座521に上記ダイヤフラム弁524が押し付けられることにより給湯回路2側と浴槽3側とを遮断した状態、つまり閉弁状態になるようになっており、この閉弁状態においてはブリード孔524cを通して給湯回路2側から給水圧がダイヤフラム室525にブリードインされ、この給水圧がダイヤフラム弁524に対し閉弁維持圧として作用する。つまり、給水圧が高圧であればある程、より高い圧力で閉弁側に押し付けられて閉シール性能を発揮する。一方、注湯時には電磁石527に通電することによりプランジャ528をプランジャバネ528aに抗して図6において上動させ、これにより、センター孔524dを開いてダイヤフラム室525と浴槽3側とを連通させてダイヤフラム弁524を開弁させるようになっている。
【0005】
ここで、上述の負圧が生じる場合としては、本来は給水圧(正圧)が作用している給湯回路2側(給湯一次側;浄水供給路側)において給水元である水道の断水や、受水槽等から各集合住宅(マンション等)の上階へポンプ圧送している場合に停電によるポンプ停止等が発生することにより、給湯一次側の圧力が低下して負圧を生じる場合がある。
【0006】
【発明が解決しようとする課題】
ところが、上記従来の負圧破壊装置においては、上記注湯電磁弁502はその閉弁状態において注湯方向とは逆向きの所定の圧力を受けたときには開弁が許容される構造になっており、給湯一次側で負圧が生じた際にバキュームブレーカ501の開弁による吸気作動のタイミングと、上記注湯電磁弁502の開弁してしまうタイミングとが非特定であると、つまり個別の開作動特性に基づきばらばらに開弁してしまうと、バキュームブレーカ501を介装しているにも拘わらず浴槽3側からの逆流入を招くおそれがある。
【0007】
すなわち、上述の如く注湯電磁弁502のダイヤフラム弁524は主としてダイヤフラム室525内の内圧(給水圧)により閉弁状態が維持されるようになっているため、上記プランジャバネ528aは、本来は、プランジャ528の過度の作動抵抗にならぬようにしつつ、浴槽3の水面からの大気圧が作用するセンター孔524dを閉止し得るようなできるだけ弱いバネ荷重に設定されている。このため、給湯回路2側から負圧が作用すると、ダイヤフラム室525も負圧となり開弁側への抵抗要素が主としてプランジャバネ528aだけであるため容易にダイヤフラム弁524が開弁することになる。上記の負圧を受けるとバキュームブレーカ501も開くことになるが、バキュームブレーカ501と注湯電磁弁502との両者の開作動タイミングが非特定であると、注湯電磁弁502が一瞬でも先に開弁してしまった場合には浴槽3側からの逆流入が生じる。
【0008】
以上のような逆流入の不都合は、注湯接続対象が浴槽ではなくて給湯回路(又は給水回路)から洗濯槽に対し自動注湯可能に接続した場合にも同様に生じることになる。
【0009】
本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、負圧破壊弁と注水用開閉弁とにより浄水供給路側から大気開放の貯槽に対し注水を可能としつつも縁切りを確保しようとする負圧破壊装置において、上記貯槽側からの逆流入防止の十分なる確保を図り得る負圧破壊装置を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明では、注水用開閉弁において作動効率を優先しつつ低圧から高圧までの給水圧に対する高い閉シール性能を確保した構成を採用しながらも、給水一次側が負圧状態に陥った際に注水用開閉弁の開弁タイミングよりも必ず先に負圧破壊弁が吸気作動し始めるようにしたものである。
【0011】
具体的には、本発明では、浄水が所定の給水圧を受けて供給される浄水供給路に対しこの浄水供給路から分岐する分岐路を通して大気開放の貯槽が注水可能に接続され、上記分岐路に対し負圧破壊弁を上流側に、注水用開閉弁を下流側にそれぞれ介装してなる負圧破壊装置を対象として、以下の特定事項を備えることとした。
【0012】
すなわち、上記負圧破壊弁として、弁体を弁座に押し付けてエア吸い込み口を閉弁状態に維持するバネを備え所定の負圧を受けて上記バネに抗して開弁し外気を内部に吸い込む構成とする。一方、上記注水用開閉弁として、パイロット式ダイヤフラム弁により構成され、浄水供給路からの給水圧をダイヤフラム室に導いて弁体である上記ダイヤフラム弁に対し閉弁維持圧として作用させるように構成されて、その閉弁状態において注水方向とは逆向きの所定の圧力を受けたときには開弁が許容される構造を有するものとすると共に、上記負圧破壊弁が外気を吸い込み始めることになる吸気作動圧と少なくとも同等の負圧を浄水供給路側から受けても開弁せずに閉弁状態に維持する閉弁保持手段として上記ダイヤフラム弁を閉止側に弾性付勢する閉付勢バネを備えるものとする。そして、上記負圧破壊弁が負圧を受けて開弁作動する開弁特性と、上記注水用開閉弁が逆向き圧力を受けて開弁作動する開弁特性とを、上記負圧破壊弁を閉弁状態に維持するバネ荷重を上記注水用開閉弁を閉弁状態に維持するバネ荷重よりも弱く設定することにより、上記浄水供給路から負圧を受けたとき負圧破壊弁の吸気開始タイミングの方が上記注水用開閉弁の開弁開始タイミングよりも先になるように関係付けることとした(請求項1)。
【0013】
上記の特定事項を異なる表現により具体的に言い換えると、次のようになる。すなわち、上記負圧破壊弁として所定の負圧を受けて開弁し外気を内部に吸い込む構成とする一方、上記注水用開閉弁としてその閉弁状態において注水方向とは逆向きの所定の圧力を受けたときには開弁が許容される構造を有するものとし、上記注水用開閉弁において、逆向き圧力を受けて開弁し始めることになる開弁作動圧として、上記負圧破壊弁が負圧を受けて外気を吸い込み始めることになる設定吸気作動圧よりも絶対値において大きくなるように設定することとする
【0014】
なお、本発明における「大気開放の貯槽」とは、その底部に注水を受けた貯留水が自由水面を形成し、この自由水面に大気圧が作用することになるような貯槽のことであり、例えば給湯装置の場合であると、浄水供給路としての給湯回路から入浴用の湯張り(水張り)のための注湯を受ける浴槽、又は、上記給湯回路から洗濯用湯水の湯張り(水張り)のための注湯を受ける洗濯槽等が上記貯槽として挙げられる。
【0015】
この本発明によれば、注水用開閉弁が閉弁状態のときに浄水供給路側(給水一次側)が万一負圧状態に陥っても、負圧破壊弁が注水用開閉弁よりも必ず先に開いてエアを吸い込むことになり、このエア吸い込みにより負圧状態が解消される。そして、この負圧状態の解消により注水用開閉弁をそのまま閉弁状態に維持させることが可能となり、この結果、注水用開閉弁が負圧破壊弁よりも先に開弁してしまうことによる逆流入の発生を確実に回避することが可能になる。
【0016】
すなわち、上記注水用開閉弁として、上記負圧破壊弁が外気を吸い込み始めることになる吸気作動圧と少なくとも同等の負圧を浄水供給路側から受けても開弁せずに閉弁状態に維持する閉弁保持手段を備え、このような閉弁保持手段を具備して特定の負圧状態になるまでは積極的に閉弁状態に維持させるようにすることにより、負圧作用時には注水用開閉弁よりも必ず先に負圧破壊弁が開弁して吸気作動を開始させ得るようになる。
【0017】
又、ダイヤフラム弁を閉止側に弾性付勢する閉付勢バネを用いてダイヤフラム弁を閉止側に対しより強く押し付けることにより、上記の負圧破壊弁の吸気作動が必ず先に生じるようにすることが可能になる。
【0018】
このような閉付勢バネとしては、従来の技術欄において説明したプランジャバネを上述の開弁作動特性を満足する程度により強いバネ特性にしてもよいが、より積極的には上記ダイヤフラム弁を弁座に対し押し付けるように直接に弾性付勢するように配設されたもの(請求項)を追加採用することができ、あるいは、上記ダイヤフラム弁を開閉方向に弾性変位可能に支持しつつ閉弁状態に維持するダイヤフラム弁自体の弾性抵抗機能により構成することもできる(請求項)。
【0021】
以上の請求項1〜請求項のいずれかの負圧破壊装置は次のようなものを対象として好適に適用される。すなわち、上記浄水供給路が、浄水の給水を受け加熱源により加熱して給湯栓側に給湯する給湯回路又は浄水の給水を受けて給水栓側に給水する給水回路であり、この給湯回路又は給水回路に対し大気開放の貯槽が分岐路を通して注湯又は注水可能に接続されたものである(請求項)。なお、この場合、上記給湯回路から貯槽へは、給湯回路の加熱源を加熱作動させた場合に注ぎ込まれる注湯に加え、上記加熱源を非加熱作動のまま給水を注ぎ込む場合の注水がある。
【0022】
【発明の効果】
以上、説明したように、請求項1の本発明の負圧破壊装置によれば、注水用開閉弁が閉弁状態のときに給水一次側が万一負圧状態に陥っても、負圧破壊弁が注水用開閉弁よりも必ず先に開いてエアを吸い込むことになるため、そのエア吸い込みにより負圧状態を解消することができる一方、この負圧状態の解消により注水用開閉弁をそのまま閉弁状態に維持させることができる。この結果、注水用開閉弁が負圧破壊弁よりも先に開弁してしまうことによる逆流入の発生を確実に回避することができる。
【0023】
加えて、上記負圧破壊弁がエアを吸い込み始めることになる吸気作動圧と少なくとも同等の負圧を給湯回路側から受けても開弁せずに閉弁状態に維持する閉弁保持手段を注水用開閉弁に備えることにより、特定の負圧状態になるまでは注水用開閉弁を積極的に閉弁状態に維持させることができ、負圧破壊弁を確実に先に開弁させ、その吸気作動により負圧状態を解消して逆流入の発生等を確実に阻止することができる。
【0024】
請求項2又は請求項3によれば、注水用開閉弁をダイヤフラム弁により構成する場合に好適に適用し得る閉付勢バネを提供することができ、そして、上記閉付勢バネとして採用し得る具体的構成を特定して提供することができる。
【0027】
さらに、請求項によれば、本発明の負圧破壊装置を好適に適用し得る具体的対象の構成を特定することができ、浴槽や洗濯槽等の貯槽側から給湯回路又は給水回路への逆流入の発生を確実に防止することができる。

【0028】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
【0029】
<第1実施形態>
図1は、本発明の第1実施形態に係る負圧破壊装置を適用した給湯装置1としての給湯器付き風呂釜の全体概要を示している。つまり、本第1実施形態は浄水供給路としての給湯回路2から分岐する注湯路(分岐路)50を通して貯槽としての浴槽3に注湯・注水可能とした場合に本発明を適用したものである。
【0030】
上記給湯装置1は、給湯機能を実現する給湯回路2と、浴槽3内の湯水の追い焚き機能を実現する強制循環式の追い焚き循環回路4と、上記給湯回路2と追い焚き循環回路4とを接続して上記浴槽3に対する湯張り機能を実現する注湯回路5とを備えたものである。
【0031】
上記給湯回路2は、水道管に接続された給水路21から導入される水を給湯側熱交換器22において燃焼バーナ23の燃焼熱との熱交換加熱により加熱し、加熱後の湯を出湯路24及び給湯路25を通して下流端の給湯栓26a,26bまで給湯させるようになっている。ここで、図示省略の燃焼缶体内に配設された上記熱交換器22及び燃焼バーナ23が加熱源を構成している。上記給水路21と出湯路24との間にはバイパス路27が設けられて、調整弁27aによる水の混合調節制御により設定温度への温度調整が行われるようになっている。上記給湯栓26aは台所等に配設されたカランであり、上記給湯栓26bは浴室や洗面台等に設置されたシャワーカランである。
【0032】
上記給水路21には入水流量センサ28と、入水温度センサ29とが配設されている。また、上記出湯路24には上記給湯栓26a,26bもしくは注湯回路5に供給される湯水の温度を検出する給湯温度センサ30と、流量調整弁31とが上流側から順に配設されている。給湯温度や注湯温度を所定の設定温度になるように燃焼バーナ23の燃焼を制御する給湯制御が図示省略のコントローラにより行われ、このコントローラでは主として上記入水流量センサ28、入水温度センサ29及び給湯温度センサ30からの各検出値に基づいて上記給湯制御を行うようになっている。
【0033】
上記追い焚き循環回路4は、それぞれ浴槽3に連通接続された戻り路41及び往き路42からなる循環路43を備え、上記戻り路41から循環ポンプ44の作動により風呂側熱交換器45に戻される浴槽3内の湯水を燃焼バーナ46の燃焼熱により熱交換加熱し、加熱後の湯水を往き路42を通して再び上記浴槽3内に供給して追い焚きさせるようになっている。
【0034】
上記戻り路41には、循環湯水の循環方向上流側から順に、水圧検出により浴槽3の水位を検出する水位センサ47と、上記循環ポンプ44と、循環流の通過によりフラップが開いて循環判定のON指令が出力される水流スイッチ48と、浴槽3内から風呂側熱交換器45に戻される循環湯水の温度を検出する戻り温度センサ49とが配設されている。上記水位センサ47からの検出値に基づいて所定水位までの注湯制御が上記コントローラにより行われ、上記戻り温度センサ49からの検出値に基づいて追い焚き時における浴槽3内の湯水温度が把握されて所定温度までの追い焚き制御が上記コントローラにより行われ、上記水流スイッチ48からの出力信号により追い焚き制御において循環作動が正常か否かの判定が上記コントローラにより行われることになる。
【0035】
上記注湯回路5は、上流端が上記流量調整弁31の下流側から分岐し、下流端が上記循環路43のいずれかの位置(図1では戻り路41の循環ポンプ44よりも下流側位置を例示)に連通する分岐路としての注湯路50を備えており、この注湯路50を通して上記給湯回路2からの湯水を追い焚き循環回路4に流入させて浴槽3に注湯し得るようになっている。上記注湯回路5の注湯路50には、上流側から順に、所定の負圧を受けて開弁し外部からエアを吸い込むことにより負圧を解消(破壊)する負圧破壊弁(バキュームブレーカ)51と、上記コントローラにより開閉制御されて注湯(注水)か遮断かの切換を行う注水用開閉弁としての注湯電磁弁52と、注湯流量を検出する注湯流量センサ53と、それぞれ浴槽3側への流通をのみ許容する構造を有する二段配置の逆止弁54,55とが配設されている。上記注湯流量センサ53からの検出値に基づいて浴槽3への湯張り量の把握が上記コントローラにより行われる。
【0036】
なお、上記負圧破壊弁51及び注湯電磁弁52の詳細説明に入る前に、上記コントローラによる注湯制御を次に付記する。例えばリモコンの湯張りスイッチがON作されると、注湯電磁弁52を開いて燃焼バーナ23の燃焼を開始し、以後、上記リモコン等に設定された所定温度になるように上記燃焼バーナ23の燃焼作動や流量調整弁31の開度調整が行われる。これにより、上記所定温度の湯が給湯回路2から注湯回路5及び追い焚き循環回路4を通して浴槽3に落とし込まれ、水位センサ47による検出水位が所定水位に到達するか、もしくは注湯流量センサ53による積算湯量が所定湯量に到達すると上記注湯電磁弁52を閉じ燃焼バーナ23の燃焼作動を停止して終了する。
【0037】
上記負圧破壊弁51は、図2に詳細を示すように、大気に開放されたエア吸い込み口511と、このエア吸い込み口511と注湯路50とを連通させる分岐連通路512と、この連通路512内に介装されて弁座513に対し開閉方向に移動可能な弁体514と、この弁体514を上記弁座513の側に押し付けて閉弁状態に維持するよう初期バネ荷重を付与するバネ515とを備えている。なお、上記弁体514は上記弁座513に着座するゴム層と、上記開閉方向のみへの移動案内をさせるためのガイド部とを一体に備えており、また、上記バネ515は圧縮コイルスプリングにより構成されて受け部材516と上記弁体514との間に掛け渡されている。そして、上記バネ515のバネ荷重は、注湯路50内の圧力が負圧に陥れば弁体514が開弁するように比較的弱いもの(後述)に設定されている。
【0038】
また、上記注湯電磁弁52は、図3に詳細を示すように、閉弁保持手段としての後述の閉付勢バネ529の追加によって、負圧作用時に上記負圧破壊弁51の開弁し始めるタイミングが注湯電磁弁52の開弁してしまうタイミングよりも必ず先になるように構成したものである。すなわち、上記注湯電磁弁52は、先端周囲に弁座521が形成され内部が下流側(浴槽3側)に連通する内筒部522と、この内筒部522の外周側のドーナッツ環状空間により構成され上流側(給湯回路2側)に連通する流通口523と、上記弁座521及び流通口523を覆うように配設され弾性変形により弁座521に対し接離可能に開閉するダイヤフラム弁524と、このダイヤフラム弁524を挟み弁座521と逆側に区画形成されたダイヤフラム室525と、プランジャガイド526により上記開閉方向に進退案内され電磁石527により進退作動されるプランジャ528とを備えている。
【0039】
上記ダイヤフラム弁524はディスクプレート524aと、外周縁が押圧固定されたゴムダイヤフラム524bとから構成され、上記流通口523とダイヤフラム室525とを連通させて同圧にするブリード孔524cと、上記内筒部522と連通するセンター孔524dとを有している。そして、上記プランジャ528は非通電時にはプランジャバネ528aにより閉弁位置に復帰して閉弁状態の上記センター孔524dを閉止する一方(ノーマルクローズ;図3参照)、通電時には上記電磁石527によりプランジャバネ528aに抗して後退(図3において上動)されセンター孔524dをダイヤフラム室525と連通させてダイヤフラム弁524を開弁状態に変換させるようになっている。この開弁状態では流通口523と内筒部522とが互いに連通されて注湯が可能となり、上記閉弁状態ではプランジャ528の先端のゴムシール部により上記センター孔524dが閉止されることになる。
【0040】
このような注湯電磁弁52においては、ダイヤフラム弁524が閉弁状態では給湯一次側(給湯回路2側)からの給水圧が流通口523と、ブリード孔524cを通してブリードインされたダイヤフラム室525とに共に作用する一方、二次側(浴槽3側)からは内筒部522の内断面積部分に対し浴槽3の水面からの大気圧が作用することになる。通常時には、主としてこのような一次側及び二次側の差圧に基づき閉弁状態に維持されるようになっている。つまり、給水圧が高圧になればダイヤフラム室525内の内圧も高圧になり、上記差圧がより高くなってダイヤフラム弁524がより強く弁座521に対し押し付けられて低圧〜高圧までの閉止シール性能を発揮するようになっている。
【0041】
そして、このような構造の注湯電磁弁52において、さらに上記ダイヤフラム弁524を閉弁側に弾性付勢する閉付勢バネ529が配設されている。この閉付勢バネ529は、例えばダイヤフラム室525の一側を区画するプランジャガイド526と上記ディスクプレート524aとの間に掛け渡した圧縮コイルスプリングにより構成され、ダイヤフラム弁524を直接に弁座521側に押し付けるように配設されている。
【0042】
そして、本実施形態では、負圧破壊性能を優先させるため負圧破壊弁51が負圧を受けて開作動し始める開作動圧力(吸気開始圧力:絶対値)を比較的小さくする一方(例えば水位上昇基準の1/2の35mmHO)、上記注湯電磁弁52が負圧を受けて開弁し始める開作動圧力(絶対値)を上記負圧破壊弁51のそれよりも大きくするという特性を付与している。
|負圧破壊弁の開作動圧力|<|注湯電磁弁の逆圧による開作動圧力|
【0043】
具体的には、負圧破壊弁51のバネ515(図2参照)のバネ荷重値と、上記注湯電磁弁52の閉付勢バネ529のバネ荷重値(正確にはプランジャバネ528aの比較的小さいバネ荷重値を付加したバネ荷重値)とを上記特性になるようにそれぞれ設定する。つまり、特性上は負圧破壊弁51を閉弁状態に維持するバネ荷重を注湯電磁弁52を閉弁状態に維持するバネ荷重よりも弱くして、負圧が作用したときに負圧破壊弁51の開弁タイミングが注湯電磁弁52のそれよりも先になるようにするものである。
【0044】
以上の構成を有する第1実施形態によれば、給湯一次側(給水一次側)が万一負圧状態になっても、負圧破壊弁51が注湯電磁弁52よりも必ず先に開いてエアを吸い込み、このエア吸い込みにより負圧状態が解消され、負圧状態が解消される結果、注湯電磁弁52は上記閉付勢バネ529等により閉弁状態に維持されることになる。従って、従来構造の給湯装置10における負圧破壊装置において給湯回路2側に負圧発生時に注湯電磁弁502(図6参照)が負圧破壊弁501よりも先に開弁してしまうことに伴い生じる浴槽3側からの逆流入を回避することができる。
【0045】
<第2実施形態>
図4は、本発明の第2実施形態の負圧破壊装置を適用した給湯装置1a(図1参照)において採用された注湯電磁弁(注水用開閉弁)52aを示している。この注湯電磁弁52aは、ダイヤフラム弁524を構成するゴムダイヤフラム524bの弁座521から離れる側への弾性抵抗機能を特定の特性まで増強することによって、負圧作用時に負圧破壊弁51の開弁し始めるタイミングが注湯電磁弁52aの開弁してしまうタイミングよりも必ず先になるように構成したものである。すなわち、ダイヤフラム弁524自体が有する上記弾性抵抗機能によって閉付勢バネを構成しかつこれにより閉弁保持手段を構成するものである。なお、この第2実施形態のその他の構成要素は第1実施形態のものと同様構成であるため、同一構成要素には同一符号を付してその詳細な説明は省略する。
【0046】
上記ダイヤフラム弁524の弾性抵抗機能を増強する手段としては、ゴムダイヤフラム524b自体の素材もしくは肉厚等の変更等により実現し得るものであるが、この第2実施形態では上記ゴムダイヤフラム524bの外周縁524b′の締結固定位置を従来構造のもの(図6参照)から変更することにより実現している。
【0047】
すなわち、上記ゴムダイヤフラム524bの外周縁524b′の固定位置を例えば弁座521位置よりも少なくとも図4において下方位置に変化させている。これにより、ダイヤフラム弁524を閉弁状態に維持させ開弁させようとする外圧に対し抵抗するゴムダイヤフラム524bの弾性張力を増加させることができる。この弾性張力の増加程度は第1実施形態で説明した閉付勢バネ529のバネ荷重設定と同等のものを発揮する程度にすればよく、これにより、第1実施形態の如く閉付勢バネ529を新たに追加することなく第1実施形態の場合と同様の作用・効果を得ることができる。
【0048】
<第3実施形態>
第3実施形態の負圧破壊装置を適用した給湯装置1b(図1参照)において採用された注湯電磁弁(注水用開閉弁)52bは、図6に示すようにプランジャバネ528bとして従来のプランジャバネ528aのバネ荷重設定よりも特定の特性まで増大させたバネ荷重に設定したものを用いることによって、負圧作用時に負圧破壊弁51の開弁し始めるタイミングが注湯電磁弁52bの開弁してしまうタイミングよりも必ず先になるように構成したものである。すなわち、バネ荷重をより大きく設定したプランジャバネ528bによって閉付勢バネを構成しかつこれにより閉弁保持手段を構成するものである。なお、この第3実施形態のその他の構成要素の内容も第1実施形態のものと同様構成であるため、同一構成要素には同一符号を付してその詳細な説明は省略する。
【0049】
上記プランジャバネ528bは、従来のプランジャバネ528aの比較的弱い設定バネ荷重に対し第1実施形態における閉付勢バネ529の設定バネ荷重分を追加した値をバネ荷重として設定したものである。
【0050】
この第3実施形態の場合、上記プランジャバネ528bが従来よりも所定量増大されたバネ荷重を有する点で、注湯時の通電時にプランジャ528を後退させる際の抵抗が増大し作動負荷を増大させる必要があるものの、第1実施形態の如く閉付勢バネ529を新たに追加することなく第1実施形態の場合と同様の作用・効果を得ることができることになる。
【0051】
<第4実施形態>
図5は、本発明の第4実施形態の負圧破壊装置を適用した給湯装置1c(図1参照)において採用された注湯電磁弁(注水用開閉弁)52cを示している。この注湯電磁弁52cは、給湯回路2側から負圧が作用したときにその負圧がダイヤフラム室525に伝搬されるのを遮断するためのチェックボール530を追加することによって、給湯回路2側に負圧が発生してもダイヤフラム弁524が開弁してしまわないように構成したものである。上記チェックボール530がブリード孔524cを遮断する逆止要素を構成しかつこれを含んで遮断手段を構成するものである。なお、この第4実施形態のその他の構成要素は第1実施形態のものと同様構成であるため、同一構成要素には同一符号を付してその詳細な説明は省略する。
【0052】
本実施形態の上記ブリード孔524cはダイヤフラム室525側位置が拡径されており、この拡径された部位のブリード孔524cに対し上記チェックボール530がダイヤフラム室525側から装入されている。そして、その装入後にチェックボール530よりもダイヤフラム室525側の開口部近傍位置に脱落防止部材としてピン530aを貫通させ、これにより、上記チェックボール530がダイヤフラム室525側に飛び出さないようにしている。
【0053】
このような注湯電磁弁52cの場合には、通常時(給湯回路2側に負圧発生のないとき)には給湯回路2側から正圧である給水圧を上記ブリード孔524cから受けてチェックボール530が拡径孔内をピン530a側に押し上げられ、これにより、流通口523とダイヤフラム室525とが連通状態になる。これにより、上記給水圧がダイヤフラム室525内に伝搬され、この給水圧に基づきダイヤフラム弁524を閉状態に維持させることができる。一方、上記給湯回路2側から負圧を受けると、上記チェックボール530がブリード孔524cの小径孔側に引き付けられてブリード孔524cを遮断することになる(図5に示す状態参照)。これにより、負圧がダイヤフラム室525には伝搬されずにダイヤフラム室525をそれまでの内圧に保つことができ、この内圧及び流通口523に作用する負圧が共にダイヤフラム弁524に対し閉弁側に作用するため、ダイヤフラム弁524を閉弁状態に維持させることができる。
【0054】
従って、給湯回路2側に負圧が発生しても注湯電磁部52cを確実に閉弁状態に維持しつつ負圧破壊弁51の吸気作動により上記負圧を解消させることができる。これにより、従来構造の給湯装置10において給湯回路2側に負圧発生時に注湯電磁弁502(図6参照)が負圧破壊弁501よりも先に開弁してしまうことに伴い生じる浴槽3側からの逆流入を回避することができる。
【0055】
<他の実施形態>
なお、本発明は上記第1〜第4実施形態に限定されるものではなく、その他種々の実施形態を包含するものである。すなわち、上記第1〜第4実施形態では、閉弁保持手段又は遮断手段として閉付勢バネ529(図3参照)、ゴムダイヤフラム524b(図4参照)、プランジャバネ528b(図6参照)、あるいは、チェックボール530(図5参照)を個別に用いているが、これに限らず、閉弁保持手段(閉付勢ばね)として上記の閉付勢バネ529、ゴムダイヤフラム524b、及び、プランジャバネ528bから選択した2種以上を組み合わせて構成してもよい。また、上記閉弁保持手段として上記の閉付勢バネ529、ゴムダイヤフラム524b、及び、プランジャバネ528bから選択した1又は2種以上の組み合わせに対し上記遮断手段としての上記チェックボール530をさらに組み合わせるようにしてもよい。
【0056】
また、上記第1〜第4実施形態では、給湯回路2から浴槽3への注湯を間に追い焚き循環回路4を介して行う給湯装置を例にして負圧破壊装置を適用した場合を示したが、これに限らず、追い焚き循環回路4を省略して、つまり、風呂釜部分を省略して給湯回路2から浴槽3に対し直接に注湯する構成の給湯装置に本発明の負圧破壊装置を適用してもよい。この場合の「注湯」は所定温度の湯となる。
【0057】
上記第1〜第4実施形態では、給湯回路2からの注湯先が浴槽3である場合の給湯装置を例して負圧破壊装置を適用した場合を説明したが、これに限らず、給湯回路2からの注湯先を洗濯槽とする給湯装置に本発明の負圧破壊装置を適用してもよく、この場合にも同様の作用効果を得ることができる。この場合には、給湯回路2からの分岐路である注湯路50の下流端を洗濯槽の底部に連通接続し、注湯電磁弁(注水用開閉弁)52,52a〜52cの開閉切換により上記洗濯槽に対し自動的に洗濯用の湯水を注湯し得るようにすればよい。上記洗濯槽が大気開放の貯槽であり、ここで使用されている湯水は雑水となり、浴槽の場合と同様に逆流を防止する必要がある。
【0058】
さらに、本発明の負圧破壊装置を上記第1〜第4実施形態で説明した給湯装置以外に適用することもできる。例えば、上水道管路(浄水供給路)から、あるいは、受水槽からポンプ圧送による給水圧により浄水が供給される管路(例えば浄水を給水栓に給水する給水回路等の浄水供給路)から分岐する分岐管を大気開放の貯槽(例えば上述の浴槽又は洗濯槽)の底部に連通接続し、注水用開閉弁の開閉切換により注水可能とした場合に、上記分岐管に上記第1〜第4実施形態のいずれかの負圧破壊装置を介装させるようにしてもよい。この場合にも、上記貯槽から上記浄水供給路側への逆流発生を上記各実施形態と同様に確実に防止し得ることになる。
【図面の簡単な説明】
【図1】本発明の実施形態を適用した給湯装置を示す模式図である。
【図2】本実施形態の負圧破壊弁の詳細断面説明図である。
【図3】第1実施形態の注湯電磁弁の詳細断面説明図である。
【図4】第2実施形態の注湯電磁弁の図3対応図である。
【図5】第4実施形態の注湯電磁弁の部分拡大断面説明図である。
【図6】第3実施形態及び従来の注湯電磁弁の図3対応図である。
【符号の説明】
1,1a〜1c 給湯装置(負圧破壊装置の適用対象)
2 給湯回路(浄水供給路)
3 浴槽(貯槽)
22 熱交換器(加熱源)
23 燃焼バーナ(加熱源)
26a カラン(給湯栓)
26b シャワーカラン(給湯栓)
50 注湯路(分岐路)
51 負圧破壊弁
52,52a〜52c 注湯電磁弁(注水用開閉弁)
524 ダイヤフラム弁
524b ゴムダイヤフラム(図4において閉付勢バネ、閉弁保持手段)
524c ブリード孔
525 ダイヤフラム室
528b プランジャバネ(閉付勢バネ、閉弁保持手段)
529 閉付勢バネ(閉弁保持手段)
530 チェックボール(逆止要素、遮断手段)
[0001]
BACKGROUND OF THE INVENTION
In the present invention, purified water supplied directly from a water supply or indirectly from a water receiving tank by pumping can be directly or indirectly injected into a storage tank open to the atmosphere through a branch path, and negative pressure is generated on the side of the purified water supply path. The present invention relates to a negative pressure breaking device for destroying (releasing) the negative pressure at the time of preventing the backflow from the storage tank side to the purified water supply path side.
[0002]
[Prior art]
Conventionally, as this kind of negative pressure breaking device, for example, a device installed in a hot water supply device is known. This hot water supply device supplies hot water to a hot water tap of a kitchen or the like by a hot water supply circuit that receives purified water, and a water pouring path (branch path) branched from the hot water supply circuit to a storage tank that is open to the atmosphere such as a bathtub or a washing tub Or it is configured so that hot water or water can be poured directly or indirectly through a water injection channel (branch channel) branched from the purified water supply channel, and a negative pressure breaker for the above water injection channel or water injection channel. Is installed. Such a negative pressure destruction device is, for example, when a negative pressure is generated in a hot water supply circuit (or in a water supply circuit) to which tap water (purified water) is supplied due to, for example, a water cut or a power failure on the side of the tap water supply, The negative pressure is provided to prevent the occurrence of a situation in which hot water from a storage tank such as a bathtub or a washing tub flows backward and flows into the hot water supply circuit (or the water injection circuit), that is, into the purified water supply channel. While the hot water supply circuit or the like and the storage tank can be poured by the destruction device, they are connected to each other so that they can be cut off. In other words, a negative pressure destruction device is installed to prevent the occurrence of a situation where hot water in a bathtub or washing tub, which is miscellaneous water, flows backward into a hot water supply circuit or the like that is filled with purified water. . An example of a conventional negative pressure breaking device for realizing the backflow prevention performance will be described based on an example installed in the hot water supply device 10 shown in FIG.
[0003]
This hot water supply apparatus 10 is an example of a hot water heater-equipped bath pot that can pour hot water into the bathtub 3 as a storage tank. That is, a hot water supply circuit 500 is branched from the downstream of a flow rate adjustment valve (water amount servo valve) 31 provided on the hot water supply side of the hot water supply circuit 2, and the hot water supply circuit 2 and the recirculation circuit 4 through the hot water supply circuit 500. Can be connected to the bathtub 3 from the hot water supply circuit 2. Then, with respect to the pouring circuit 500, a vacuum breaker (negative pressure breaking valve) 501 from the upstream side, a pouring electromagnetic valve 502 which is an on / off valve for pouring water, and two-stage check valves 54 and 55 are arranged in this order. An apparatus is interposed to perform both pouring and edge cutting. The above vacuum breaker 501 sucks outside air (air) when a predetermined negative pressure is generated in the circuit and cancels the negative pressure state. A pouring solenoid valve 502 switches the pouring circuit 500 to open and close to pour hot water. Further, the two-stage check valves 54 and 55 are configured to block the flow in the reverse direction while allowing the flow in the pouring direction (forward direction).
[0004]
The vacuum breaker 501 presses the valve element against the valve seat with a spring to keep it normally closed. When a negative pressure is applied to the circuit, the valve element opens against the spring and sucks air into the circuit. The above negative pressure is eliminated (destroyed). Further, the pouring electromagnetic valve 502 is constituted by a pilot type diaphragm valve as illustrated in FIG. That is, a diaphragm chamber 525 is defined on the upper side of the drawing with the diaphragm valve 524 as a valve element interposed therebetween, while a hot water supply circuit is provided on the outer peripheral side of the diaphragm valve 524 with the inner cylinder portion 522 being sandwiched therebetween. 2 is formed, and the inner peripheral side range communicates with the bathtub 3 side. And, when the diaphragm valve 524 is pressed against the valve seat 521 at the tip of the inner cylinder 522, the hot water supply circuit 2 side and the bathtub 3 side are shut off, that is, the valve is closed. In the closed state, the feed water pressure is bleed into the diaphragm chamber 525 from the hot water supply circuit 2 side through the bleed hole 524c, and this feed water pressure acts on the diaphragm valve 524 as a valve closing maintaining pressure. In other words, the higher the feed water pressure, the higher the pressure is pushed toward the valve closing side, and the closed sealing performance is exhibited. On the other hand, during pouring, the electromagnet 527 is energized to move the plunger 528 upward in FIG. 6 against the plunger spring 528a, thereby opening the center hole 524d and allowing the diaphragm chamber 525 to communicate with the bathtub 3 side. The diaphragm valve 524 is opened.
[0005]
Here, in the case where the above-described negative pressure occurs, the water supply source 2 side (hot water supply primary side; purified water supply side) on which the supply water pressure (positive pressure) is originally acting, When pumps are pumped from an aquarium or the like to the upper floor of each housing complex (condominium, etc.), a pump stop or the like due to a power failure may occur, resulting in a decrease in the pressure on the primary side of the hot water supply and negative pressure.
[0006]
[Problems to be solved by the invention]
However, in the conventional negative pressure breaking device, the pouring electromagnetic valve 502 has a structure in which the valve opening is permitted when a predetermined pressure in the direction opposite to the pouring direction is received in the closed state. When the negative pressure is generated on the primary side of the hot water supply, the timing of the intake operation due to the opening of the vacuum breaker 501 and the timing at which the pouring electromagnetic valve 502 is opened are unspecified, that is, individually opened. If the valves are opened based on the operating characteristics, there is a risk of causing a reverse inflow from the bathtub 3 side even though the vacuum breaker 501 is interposed.
[0007]
That is, as described above, the diaphragm valve 524 of the pouring electromagnetic valve 502 is maintained in a closed state mainly by the internal pressure (feed water pressure) in the diaphragm chamber 525. Therefore, the plunger spring 528a originally has The spring load is set to be as weak as possible so that the center hole 524d on which the atmospheric pressure from the water surface of the bathtub 3 acts can be closed while keeping the excessive operating resistance of the plunger 528. For this reason, when negative pressure is applied from the hot water supply circuit 2 side, the diaphragm chamber 525 also becomes negative pressure, and the diaphragm valve 524 is easily opened because the only resistance element to the valve opening side is the plunger spring 528a. When the negative pressure is received, the vacuum breaker 501 is also opened. However, if the opening operation timings of both the vacuum breaker 501 and the pouring electromagnetic valve 502 are unspecified, the pouring electromagnetic valve 502 is moved forward even for a moment. When the valve is opened, reverse inflow from the bathtub 3 side occurs.
[0008]
The inconvenience of reverse inflow as described above also occurs when the pouring connection target is not a bathtub but is connected to the washing tub from a hot water supply circuit (or a water supply circuit) so that automatic pouring is possible.
[0009]
The present invention has been made in view of such circumstances, and an object thereof is to enable water injection from a purified water supply path side to a storage tank open to the atmosphere by a negative pressure destruction valve and a water injection opening / closing valve. Another object of the present invention is to provide a negative pressure breaking device capable of ensuring sufficient prevention of reverse inflow from the storage tank side in a negative pressure breaking device which attempts to ensure edge cutting.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, the water supply primary side has a negative pressure while adopting a configuration that secures a high sealing performance with respect to the water supply pressure from low pressure to high pressure while giving priority to the operation efficiency in the on-off valve for water injection. When falling into a state, the negative pressure release valve always starts the intake operation before the opening timing of the on-off valve for water injection.
[0011]
Specifically, in the present invention, a storage tank that is open to the atmosphere is connected to a purified water supply path supplied with purified water under a predetermined supply water pressure through a branch path branched from the purified water supply path so that water can be injected, and the branch path On the other hand, the following specific matters are provided for a negative pressure breaking device in which a negative pressure breaking valve is provided upstream and a water injection on-off valve is provided downstream.
[0012]
That is, the negative pressure release valve Equipped with a spring that presses the valve body against the valve seat and keeps the air suction port closed Under constant negative pressure Open against the spring It is configured to draw outside air into the valve. The one On the other hand, as the above water injection valve The pilot-type diaphragm valve is configured to guide the water supply pressure from the purified water supply path to the diaphragm chamber and to act as the valve-closing maintaining pressure on the diaphragm valve as the valve body. When the valve is closed, the valve is allowed to open when a predetermined pressure opposite to the direction of water injection is received. In addition, the above-described valve closing holding means for maintaining the valve closing state without opening even if the negative pressure breaking valve receives a negative pressure at least equivalent to the intake working pressure from which the outside air starts to be sucked in from outside. A closing biasing spring that elastically biases the diaphragm valve toward the closing side is provided. And A valve opening characteristic in which the negative pressure release valve is opened by receiving a negative pressure, and a valve opening characteristic in which the water injection on / off valve is opened by receiving a reverse pressure; By setting the spring load for maintaining the negative pressure release valve in the closed state to be weaker than the spring load for maintaining the water injection on / off valve in the closed state. When negative pressure is received from the purified water supply passage, the intake start timing of the negative pressure release valve is related to the opening start timing of the water injection on-off valve (claim 1).
[0013]
The above-mentioned specific items are specifically expressed in different expressions as follows. In other words, the negative pressure release valve is configured to receive a predetermined negative pressure and open to suck in the outside air, while the water injection on / off valve has a predetermined pressure opposite to the water injection direction in the closed state. When the valve is received, the valve is allowed to open, and in the irrigating on-off valve, the negative pressure breaking valve generates a negative pressure as a valve opening operating pressure that receives a reverse pressure and starts to open. Set to be larger in absolute value than the set intake air pressure that will start to suck in outside air Do .
[0014]
In the present invention, the `` storage tank open to the atmosphere '' is a storage tank in which the stored water that has been injected into the bottom forms a free water surface, and atmospheric pressure acts on the free water surface, For example, in the case of a hot water supply device, a bathtub that receives pouring for bathing (water filling) for bathing from a hot water supply circuit as a purified water supply path, or a hot water filling (water filling) for washing hot water from the hot water supply circuit. Examples of the storage tank include a washing tub that receives pouring hot water.
[0015]
According to the present invention, even if the purified water supply channel side (primary water supply side) is in a negative pressure state when the water injection on / off valve is closed, the negative pressure release valve must always be ahead of the water injection on / off valve. The air is sucked in and the negative pressure state is eliminated by the air sucking. Then, by eliminating this negative pressure state, it is possible to maintain the water injection on-off valve as it is, and as a result, the back-flow caused by the water injection on-off valve opening before the negative pressure release valve. It is possible to reliably avoid the occurrence of intrusion.
[0016]
That is, As the water injection opening / closing valve, the valve that maintains the valve closing state without opening even if the negative pressure destruction valve receives a negative pressure from the purified water supply path side that is at least equivalent to the intake operating pressure at which the outside air starts to be sucked in. Equipped with holding means Eh, this In order to maintain a closed state until a specific negative pressure state is maintained, the negative pressure must be maintained before the water injection on / off valve. The release valve can be opened to start the intake operation.
[0017]
or, Closed bias that elastically biases the diaphragm valve toward the closed side Spring By pressing the diaphragm valve more strongly against the closing side using the above, it becomes possible to ensure that the intake operation of the negative pressure release valve occurs first.
[0018]
As such a closing urging spring, the plunger spring described in the prior art section may have a stronger spring characteristic that satisfies the valve opening operation characteristic described above, but more actively, the diaphragm valve is used as a valve. Arranged to be elastically biased directly so as to press against the seat (claims) 2 ) Or may be configured by an elastic resistance function of the diaphragm valve itself that supports the diaphragm valve so as to be elastically displaceable in the opening and closing direction and keeps the valve closed. 3 ).
[0021]
Claims 1 to above 3 Any of the negative pressure breaking devices is suitably applied to the following. That is, the purified water supply path is a hot water supply circuit that receives purified water and is heated by a heating source to supply hot water to the hot water tap side or a water supply circuit that receives purified water and supplies water to the water tap side. A storage tank that is open to the atmosphere is connected to the circuit through a branch passage so that pouring or pouring is possible. 4 ). In addition, in this case, in addition to the hot water poured when the heating source of the hot water supply circuit is operated to be heated from the hot water supply circuit to the storage tank, there is water injection when water is poured while the heating source is not heated.
[0022]
【The invention's effect】
As explained above, the claims 1's According to the negative pressure breaking device of the present invention, even if the water supply primary side falls into a negative pressure state when the water supply on / off valve is closed, the negative pressure release valve must be opened before the water injection on / off valve. Since the air is sucked in, the negative pressure state can be eliminated by the air suction, while the water injection on-off valve can be maintained in the closed state as a result of the elimination of the negative pressure state. As a result, it is possible to reliably avoid the occurrence of reverse inflow due to the water injection on-off valve opening before the negative pressure destruction valve.
[0023]
in addition The valve closing holding means for maintaining the valve closing state without opening even if the negative pressure breaking valve receives negative pressure from the hot water supply circuit side that is at least equivalent to the intake operating pressure at which air starts to be sucked in. By providing the valve, the on-off valve for water injection can be actively maintained in the closed state until a specific negative pressure state is reached, and the negative pressure release valve is reliably opened first, and its intake operation The negative pressure state can be eliminated and the occurrence of reverse inflow can be reliably prevented.
[0024]
Claim According to 2 or claim 3 It is possible to provide a closing biasing spring that can be suitably applied when the water injection on-off valve is constituted by a diaphragm valve. And then A specific configuration that can be adopted as the closing biasing spring can be specified and provided.
[0027]
And claims 4 According to the present invention, it is possible to specify the configuration of a specific object to which the negative pressure breaking device of the present invention can be suitably applied, and the occurrence of reverse inflow from a storage tank side such as a bathtub or a washing tub to a hot water supply circuit or a water supply circuit. It can be surely prevented.

[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0029]
<First Embodiment>
FIG. 1: has shown the whole outline | summary of the bathtub with a hot water heater as the hot water supply apparatus 1 to which the negative pressure destruction apparatus which concerns on 1st Embodiment of this invention is applied. That is, this 1st Embodiment applies this invention, when pouring and water injection are possible to the bathtub 3 as a storage tank through the hot water supply path (branch path) 50 branched from the hot water supply circuit 2 as a purified water supply path. is there.
[0030]
The hot water supply device 1 includes a hot water supply circuit 2 that realizes a hot water supply function, a forced circulation reheating circuit 4 that realizes a reheating function of hot water in the bathtub 3, the hot water supply circuit 2, and a recirculation circuit 4. And a pouring circuit 5 that realizes a hot water filling function for the bathtub 3.
[0031]
The hot water supply circuit 2 heats water introduced from a water supply path 21 connected to a water pipe by heat exchange heating with the combustion heat of a combustion burner 23 in a hot water supply side heat exchanger 22, and discharges the heated hot water from a hot water supply path. 24 and the hot-water supply path 25 are used to supply hot water to the hot-water taps 26a and 26b at the downstream end. Here, the heat exchanger 22 and the combustion burner 23 arranged in the combustion can not shown constitute a heating source. A bypass passage 27 is provided between the water supply passage 21 and the hot water supply passage 24, and temperature adjustment to the set temperature is performed by water mixing adjustment control by the adjustment valve 27a. The hot-water tap 26a is a currant disposed in a kitchen or the like, and the hot-water tap 26b is a shower currant installed in a bathroom or a washstand.
[0032]
The water supply passage 21 is provided with an incoming water flow rate sensor 28 and an incoming water temperature sensor 29. In addition, a hot water supply temperature sensor 30 for detecting the temperature of hot water supplied to the hot water taps 26a, 26b or the pouring circuit 5 and a flow rate adjusting valve 31 are arranged in this order from the upstream side. . A hot water supply control for controlling the combustion of the combustion burner 23 so that the hot water supply temperature and the pouring temperature become a predetermined set temperature is performed by a controller (not shown). In this controller, mainly the incoming water flow rate sensor 28, the incoming water temperature sensor 29, and the like. The hot water supply control is performed based on each detected value from the hot water temperature sensor 30.
[0033]
The recirculation circuit 4 includes a circulation path 43 including a return path 41 and an outward path 42 respectively connected to the bathtub 3, and is returned to the bath-side heat exchanger 45 from the return path 41 by the operation of the circulation pump 44. The hot water in the bathtub 3 is heat-exchanged and heated by the combustion heat of the combustion burner 46, and the heated hot water is supplied again through the forward path 42 into the bathtub 3 to be repelled.
[0034]
In the return path 41, in order from the upstream side in the circulating direction of the circulating hot water, a water level sensor 47 for detecting the water level of the bathtub 3 by water pressure detection, the circulation pump 44, and a flap is opened by the passage of the circulating flow to determine circulation. A water flow switch 48 that outputs an ON command and a return temperature sensor 49 that detects the temperature of the circulating hot water returned from the bathtub 3 to the bath-side heat exchanger 45 are provided. Based on the detection value from the water level sensor 47, the hot water pouring control up to a predetermined water level is performed by the controller, and based on the detection value from the return temperature sensor 49, the hot water temperature in the bathtub 3 at the time of reheating is grasped. Thus, the reheating control up to a predetermined temperature is performed by the controller, and the controller determines whether or not the circulation operation is normal in the reheating control by the output signal from the water flow switch 48.
[0035]
The pouring circuit 5 has an upstream end branched from the downstream side of the flow rate adjusting valve 31 and a downstream end positioned at any position of the circulation path 43 (in FIG. 1, a position downstream of the circulation pump 44 of the return path 41). The hot water supply path 50 is provided as a branching path that communicates with the hot water from the hot water supply circuit 2 through the hot water supply path 50 and flows into the circulation circuit 4 to be poured into the bathtub 3. It has become. In the pouring path 50 of the pouring circuit 5, a vacuum breaker (vacuum breaker) that opens and receives a predetermined negative pressure in order from the upstream side and eliminates (breaks) the negative pressure by sucking air from the outside. ) 51, a pouring electromagnetic valve 52 as a pouring on / off valve that is controlled by the controller to switch between pouring (pouring) and shutting off, a pouring flow rate sensor 53 that detects the pouring flow rate, and Two-stage check valves 54 and 55 having a structure that allows only flow to the bathtub 3 side are provided. Based on the detection value from the pouring flow rate sensor 53, the amount of hot water filling the bathtub 3 is grasped by the controller.
[0036]
Prior to the detailed description of the negative pressure release valve 51 and the pouring electromagnetic valve 52, the pouring control by the controller will be described below. For example, when the hot water filling switch of the remote control is turned ON, the hot water solenoid valve 52 is opened to start the combustion of the combustion burner 23, and thereafter the combustion burner 23 is set to a predetermined temperature set in the remote control or the like. The combustion operation and the opening adjustment of the flow rate adjustment valve 31 are performed. As a result, the hot water having the predetermined temperature is dropped from the hot water supply circuit 2 into the bathtub 3 through the pouring circuit 5 and the recirculation circuit 4, and the water level detected by the water level sensor 47 reaches the predetermined water level or the pouring flow rate sensor. When the accumulated hot water amount by 53 reaches a predetermined hot water amount, the hot water solenoid valve 52 is closed and the combustion operation of the combustion burner 23 is stopped.
[0037]
As shown in detail in FIG. 2, the negative pressure release valve 51 includes an air suction port 511 that is open to the atmosphere, a branch communication path 512 that connects the air suction port 511 and the pouring channel 50, and this communication A valve body 514 interposed in the passage 512 and movable in the opening / closing direction with respect to the valve seat 513, and an initial spring load is applied so that the valve body 514 is pressed against the valve seat 513 and maintained in the closed state. And a spring 515. The valve body 514 is integrally provided with a rubber layer seated on the valve seat 513 and a guide portion for guiding the movement only in the opening / closing direction, and the spring 515 is a compression coil spring. It is comprised and is spanned between the receiving member 516 and the said valve body 514. FIG. The spring load of the spring 515 is set to be relatively weak (described later) so that the valve element 514 opens when the pressure in the pouring channel 50 falls to a negative pressure.
[0038]
Further, as shown in detail in FIG. 3, the pouring solenoid valve 52 opens the negative pressure breaking valve 51 when a negative pressure is applied by adding a closing biasing spring 529, which will be described later, as a valve closing holding means. The start timing is necessarily set before the timing when the pouring solenoid valve 52 is opened. That is, the pouring solenoid valve 52 includes an inner cylinder portion 522 that has a valve seat 521 formed around the tip and communicates with the downstream side (tub 3 side), and a donut annular space on the outer peripheral side of the inner cylinder portion 522. A flow port 523 configured to communicate with the upstream side (the hot water supply circuit 2 side), and a diaphragm valve 524 that is disposed so as to cover the valve seat 521 and the flow port 523 and that opens and closes to the valve seat 521 by elastic deformation. And a diaphragm chamber 525 formed on the opposite side of the valve seat 521 with the diaphragm valve 524 interposed therebetween, and a plunger 528 that is advanced and retracted in the opening and closing direction by the plunger guide 526 and is advanced and retracted by the electromagnet 527.
[0039]
The diaphragm valve 524 is composed of a disk plate 524a and a rubber diaphragm 524b whose outer peripheral edge is pressed and fixed, a bleed hole 524c that makes the flow port 523 and the diaphragm chamber 525 communicate with each other at the same pressure, and the inner cylinder. A center hole 524d communicating with the portion 522. When the plunger 528 is not energized, the plunger spring 528a returns to the valve closing position to close the center hole 524d in a closed state (normally closed; see FIG. 3), while when energized, the electromagnet 527 causes the plunger spring 528a to close. Therefore, the center hole 524d is communicated with the diaphragm chamber 525 to convert the diaphragm valve 524 into an open state. In this valve open state, the flow port 523 and the inner cylinder portion 522 communicate with each other to allow pouring, and in the valve closed state, the center hole 524d is closed by the rubber seal portion at the tip of the plunger 528.
[0040]
In such a pouring electromagnetic valve 52, when the diaphragm valve 524 is closed, the water supply pressure from the hot water supply primary side (the hot water supply circuit 2 side) is circulated through the flow port 523 and the diaphragm chamber 525 bleed in through the bleed hole 524c. On the other hand, from the secondary side (tub 3 side), the atmospheric pressure from the water surface of the bathtub 3 acts on the inner cross-sectional area portion of the inner cylinder portion 522. Normally, the valve is kept closed mainly based on the differential pressure between the primary side and the secondary side. That is, if the feed water pressure becomes high, the internal pressure in the diaphragm chamber 525 also becomes high, and the differential pressure becomes higher and the diaphragm valve 524 is pressed more strongly against the valve seat 521 so that the sealing performance from low pressure to high pressure is reached. Has come to demonstrate.
[0041]
In the pouring electromagnetic valve 52 having such a structure, a closing biasing spring 529 for elastically biasing the diaphragm valve 524 toward the valve closing side is further provided. The closing biasing spring 529 is constituted by, for example, a compression coil spring that spans between a plunger guide 526 that partitions one side of the diaphragm chamber 525 and the disk plate 524a, and the diaphragm valve 524 is directly connected to the valve seat 521 side. It is arrange | positioned so that it may press on.
[0042]
In this embodiment, in order to prioritize the negative pressure destruction performance, the open pressure (intake start pressure: absolute value) at which the negative pressure destruction valve 51 starts to open under negative pressure is relatively reduced (for example, the water level). 35mmH which is 1/2 of the rising standard 2 O), a characteristic that the opening operating pressure (absolute value) at which the pouring electromagnetic valve 52 receives a negative pressure and starts to open is made larger than that of the negative pressure release valve 51 is provided.
| Opening pressure of negative pressure release valve | <| Opening pressure due to back pressure of pouring solenoid valve |
[0043]
Specifically, the spring load value of the spring 515 (see FIG. 2) of the negative pressure release valve 51 and the spring load value of the closing biasing spring 529 of the pouring electromagnetic valve 52 (more precisely, the relatively high value of the plunger spring 528a). The spring load value with a small spring load value) is set so as to have the above characteristics. That is, in terms of characteristics, the spring load that maintains the negative pressure release valve 51 in the closed state is made weaker than the spring load that maintains the pouring electromagnetic valve 52 in the closed state, and the negative pressure breaks down when negative pressure is applied. The valve 51 is opened before the pouring solenoid valve 52 is opened.
[0044]
According to 1st Embodiment which has the above structure, even if the hot water supply primary side (water supply primary side) should be in a negative pressure state, the negative pressure destruction valve 51 must open before the pouring electromagnetic valve 52 without fail. Air is sucked in, the negative pressure state is eliminated by this air suction, and the negative pressure state is eliminated. As a result, the hot water solenoid valve 52 is maintained in the closed state by the closing biasing spring 529 and the like. Therefore, in the negative pressure breaking device in the hot water supply device 10 having the conventional structure, the hot water electromagnetic valve 502 (see FIG. 6) opens before the negative pressure breaking valve 501 when negative pressure is generated on the hot water supply circuit 2 side. The reverse inflow from the bathtub 3 side which accompanies can be avoided.
[0045]
Second Embodiment
FIG. 4 shows a water pouring electromagnetic valve (water pouring open / close valve) 52a employed in a water heater 1a (see FIG. 1) to which the negative pressure breaking device of the second embodiment of the present invention is applied. This pouring solenoid valve 52a enhances the elastic resistance function of the rubber diaphragm 524b constituting the diaphragm valve 524 toward the side away from the valve seat 521 to a specific characteristic, thereby opening the negative pressure breaking valve 51 during negative pressure action. It is configured such that the timing at which the valve starts is always ahead of the timing at which the pouring electromagnetic valve 52a is opened. That is, the above-mentioned elastic resistance function of the diaphragm valve 524 itself constitutes a closing bias spring and thereby constitutes a valve closing holding means. In addition, since the other component of this 2nd Embodiment is the structure similar to the thing of 1st Embodiment, the same code | symbol is attached | subjected to the same component and the detailed description is abbreviate | omitted.
[0046]
The means for enhancing the elastic resistance function of the diaphragm valve 524 can be realized by changing the material or thickness of the rubber diaphragm 524b itself. In the second embodiment, the outer peripheral edge of the rubber diaphragm 524b is used. This is realized by changing the fastening and fixing position of 524b ′ from that of the conventional structure (see FIG. 6).
[0047]
That is, the fixing position of the outer peripheral edge 524b ′ of the rubber diaphragm 524b is changed to a position at least in the lower position in FIG. 4 from the position of the valve seat 521, for example. Accordingly, it is possible to increase the elastic tension of the rubber diaphragm 524b that resists an external pressure to keep the diaphragm valve 524 closed and open the valve. The degree of increase in the elastic tension may be set to the extent that the spring load setting of the closing biasing spring 529 described in the first embodiment is exhibited, and as a result, the closing biasing spring 529 as in the first embodiment. The same operation and effect as in the first embodiment can be obtained without newly adding.
[0048]
<Third Embodiment>
As shown in FIG. 6, a hot water solenoid valve (water pouring valve) 52b employed in a hot water supply device 1b (see FIG. 1) to which the negative pressure breaking device of the third embodiment is applied is a plunger as a plunger spring 528b. By using the spring load set to a specific characteristic rather than the spring load setting of the spring 528a, the timing at which the negative pressure breaking valve 51 starts to open at the time of negative pressure action is the opening timing of the pouring electromagnetic valve 52b. It is configured so that it always comes before the timing at which it occurs. In other words, the plunger spring 528b having a larger spring load constitutes a closing biasing spring, thereby constituting the valve closing holding means. In addition, since the content of the other component of this 3rd Embodiment is also the same structure as the thing of 1st Embodiment, the same code | symbol is attached | subjected to the same component and the detailed description is abbreviate | omitted.
[0049]
The plunger spring 528b is obtained by setting, as a spring load, a value obtained by adding the set spring load of the closing biasing spring 529 in the first embodiment to the relatively weak set spring load of the conventional plunger spring 528a.
[0050]
In the case of the third embodiment, the plunger spring 528b has a spring load that is increased by a predetermined amount compared to the prior art, so that the resistance when the plunger 528 is retracted during energization during pouring increases and the operating load increases. Although necessary, the same operation and effect as in the first embodiment can be obtained without newly adding the closing biasing spring 529 as in the first embodiment.
[0051]
<Fourth embodiment>
FIG. 5 shows a hot water solenoid valve (water pouring valve) 52c employed in a hot water supply device 1c (see FIG. 1) to which the negative pressure breaking device of the fourth embodiment of the present invention is applied. The hot water solenoid valve 52c is added to the hot water supply circuit 2 side by adding a check ball 530 for blocking the negative pressure from being propagated to the diaphragm chamber 525 when a negative pressure is applied from the hot water supply circuit 2 side. The diaphragm valve 524 is configured not to open even if a negative pressure is generated. The check ball 530 constitutes a check element for blocking the bleed hole 524c and includes this to constitute a blocking means. In addition, since the other component of this 4th Embodiment is a structure similar to the thing of 1st Embodiment, the same code | symbol is attached | subjected to the same component and the detailed description is abbreviate | omitted.
[0052]
In the present embodiment, the bleed hole 524c is expanded in diameter on the diaphragm chamber 525 side, and the check ball 530 is inserted from the diaphragm chamber 525 side into the bleed hole 524c of the expanded diameter portion. Then, after the insertion, the pin 530a is penetrated as a drop-off preventing member at a position near the opening on the diaphragm chamber 525 side than the check ball 530, thereby preventing the check ball 530 from jumping out to the diaphragm chamber 525 side. Yes.
[0053]
In the case of such a pouring solenoid valve 52c, in normal times (when no negative pressure is generated on the hot water supply circuit 2 side), a positive water pressure is received from the hot water supply circuit 2 side through the bleed hole 524c and checked. The ball 530 is pushed up inside the diameter-enlarged hole toward the pin 530a, whereby the flow port 523 and the diaphragm chamber 525 are in communication with each other. Thereby, the said water supply pressure is propagated in the diaphragm chamber 525, and the diaphragm valve 524 can be maintained in a closed state based on this water supply pressure. On the other hand, when negative pressure is received from the hot water supply circuit 2 side, the check ball 530 is attracted to the small diameter hole side of the bleed hole 524c to block the bleed hole 524c (see the state shown in FIG. 5). Thus, the negative pressure is not propagated to the diaphragm chamber 525, and the diaphragm chamber 525 can be maintained at the internal pressure up to that time. Both the internal pressure and the negative pressure acting on the flow port 523 are closed on the diaphragm valve 524 side. Therefore, the diaphragm valve 524 can be kept closed.
[0054]
Therefore, even if a negative pressure is generated on the hot water supply circuit 2 side, the negative pressure can be eliminated by the intake operation of the negative pressure breaking valve 51 while the hot water electromagnetic portion 52c is reliably maintained in the closed state. Thereby, in the hot water supply apparatus 10 of the conventional structure, the bathtub 3 is generated when the hot water solenoid valve 502 (see FIG. 6) opens before the negative pressure destruction valve 501 when negative pressure is generated on the hot water supply circuit 2 side. Reverse inflow from the side can be avoided.
[0055]
<Other embodiments>
In addition, this invention is not limited to the said 1st-4th embodiment, Various other embodiments are included. That is, in the first to fourth embodiments, the closing biasing spring 529 (see FIG. 3), the rubber diaphragm 524b (see FIG. 4), the plunger spring 528b (see FIG. 6), or Although the check ball 530 (see FIG. 5) is used individually, the present invention is not limited to this, and the above-described closing biasing spring 529, rubber diaphragm 524b, and plunger spring 528b are used as the valve closing holding means (closing biasing spring). You may comprise combining 2 or more types selected from. Further, the check ball 530 as the blocking means is further combined with one or more combinations selected from the closing biasing spring 529, the rubber diaphragm 524b, and the plunger spring 528b as the valve closing holding means. It may be.
[0056]
Moreover, in the said 1st-4th embodiment, the case where the negative pressure destruction device is applied is shown for the example of the hot water supply apparatus which performs pouring from the hot water supply circuit 2 to the bathtub 3 through the circulation circuit 4 in between. However, the present invention is not limited to this, and the negative pressure of the present invention is applied to a hot water supply apparatus in which the recirculation circuit 4 is omitted, that is, the bath portion is omitted and the hot water supply circuit 2 directly pours water into the bathtub 3. A destruction device may be applied. In this case, the “pouring” is hot water of a predetermined temperature.
[0057]
Although the said 1st-4th embodiment demonstrated the case where the negative pressure destruction device was applied exemplifying the hot-water supply apparatus in case the pouring destination from the hot-water supply circuit 2 is the bathtub 3, not only this but hot water supply The negative pressure breaking device of the present invention may be applied to a hot water supply device in which the pouring destination from the circuit 2 is a washing tub, and in this case, the same operation and effect can be obtained. In this case, the downstream end of the pouring passage 50 which is a branch passage from the hot water supply circuit 2 is connected to the bottom of the washing tub, and the pouring electromagnetic valves 52 and 52a to 52c are switched by opening and closing. What is necessary is just to be able to automatically pour hot water for washing into the washing tub. The washing tub is a storage tub open to the atmosphere, and the hot water used here becomes miscellaneous water, and it is necessary to prevent backflow as in the case of a bathtub.
[0058]
Furthermore, the negative pressure breaking device of the present invention can be applied to devices other than the hot water supply device described in the first to fourth embodiments. For example, it branches from a water supply pipe (purified water supply path) or from a pipe (for example, a purified water supply path such as a water supply circuit that supplies purified water to a water tap) that is supplied with purified water from a water receiving tank by pumping water pressure. When the branch pipe is connected to the bottom of a storage tank open to the atmosphere (for example, the above-described bathtub or washing tub) and water can be poured by opening / closing switching of the water on / off valve, the first to fourth embodiments are added to the branch pipe. Any of the negative pressure breaking devices may be interposed. Also in this case, the backflow from the storage tank to the purified water supply path can be reliably prevented as in the above embodiments.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a hot water supply apparatus to which an embodiment of the present invention is applied.
FIG. 2 is a detailed cross-sectional explanatory view of a negative pressure breaking valve of the present embodiment.
FIG. 3 is a detailed cross-sectional explanatory view of a pouring electromagnetic valve according to the first embodiment.
4 is a view corresponding to FIG. 3 of a pouring electromagnetic valve according to a second embodiment.
FIG. 5 is a partially enlarged cross-sectional explanatory view of a pouring electromagnetic valve according to a fourth embodiment.
6 is a view corresponding to FIG. 3 of a third embodiment and a conventional pouring solenoid valve.
[Explanation of symbols]
1,1a-1c Hot water supply device (Applicable to negative pressure breaker)
2 Hot water supply circuit (purified water supply path)
3 Bathtub (storage tank)
22 Heat exchanger (heating source)
23 Combustion burner (heating source)
26a Karan (hot water tap)
26b Shower currant (hot water tap)
50 Pouring path (branch path)
51 Negative pressure release valve
52, 52a-52c Pouring solenoid valve (On / off valve for pouring water)
524 Diaphragm valve
524b Rubber diaphragm (in FIG. 4, closing biasing spring, valve closing holding means)
524c Bleed hole
525 Diaphragm room
528b Plunger spring (closing biasing spring, valve closing holding means)
529 closing biasing spring (valve closing holding means)
530 Check ball (check element, blocking means)

Claims (4)

浄水が所定の給水圧を受けて供給される浄水供給路に対しこの浄水供給路から分岐する分岐路を通して大気開放の貯槽が注水可能に接続され、上記分岐路に対し負圧破壊弁を上流側に、注水用開閉弁を下流側にそれぞれ介装してなる負圧破壊装置において、
上記負圧破壊弁は、弁体を弁座に押し付けてエア吸い込み口を閉弁状態に維持するバネを備え所定の負圧を受けて上記バネに抗して開弁し外気を内部に吸い込むように構成されている一方、
上記注水用開閉弁は、パイロット式ダイヤフラム弁により構成され、浄水供給路からの給水圧をダイヤフラム室に導いて弁体である上記ダイヤフラム弁に対し閉弁維持圧として作用させるように構成されて、その閉弁状態において注水方向とは逆向きの所定の圧力を受けたときには開弁が許容される構造を有していると共に、上記負圧破壊弁が外気を吸い込み始めることになる吸気作動圧と少なくとも同等の負圧を浄水供給路側から受けても開弁せずに閉弁状態に維持する閉弁保持手段として上記ダイヤフラム弁を閉止側に弾性付勢する閉付勢バネを備え
上記負圧破壊弁が負圧を受けて開弁作動する開弁特性と、上記注水用開閉弁が逆向き圧力を受けて開弁作動する開弁特性とが、上記負圧破壊弁を閉弁状態に維持するバネ荷重を上記注水用開閉弁を閉弁状態に維持するバネ荷重よりも弱く設定することにより、上記浄水供給路側から負圧を受けたとき負圧破壊弁の吸気開始タイミングの方が上記注水用開閉弁の開弁開始タイミングよりも先になるように関係付けられている
ことを特徴とする負圧破壊装置。
A storage tank that is open to the atmosphere is connected to a purified water supply path that is supplied with purified water under a predetermined water supply pressure through a branch path that branches from the purified water supply path, and a negative pressure destruction valve is upstream of the branch path. In addition, in the negative pressure breaking device that is provided with a water injection on-off valve on the downstream side,
The negative pressure release valve, sucks inside the outside air to open valve against the spring receiving negative pressure with plants up a spring to maintain the closed state of the air suction opening against the valve body on the valve seat While configured to
The on-off valve for water injection is constituted by a pilot type diaphragm valve, and is configured to guide the water supply pressure from the purified water supply path to the diaphragm chamber so as to act as a valve closing maintaining pressure on the diaphragm valve which is a valve body. with a when subjected to a predetermined pressure in the reverse direction water injection direction in the closed state of its has a structure opening is permitted, the intake operation pressure the vacuum break valve will begin to suck outside air And a closing biasing spring that elastically biases the diaphragm valve toward the closing side as a valve closing holding means for maintaining the valve closing state without opening even if the negative pressure is received from the purified water supply path side ,
The valve opening characteristic in which the negative pressure release valve is opened by receiving negative pressure and the valve opening characteristic in which the water injection on / off valve is opened by receiving reverse pressure close the negative pressure release valve. by the spring load to maintain the state set weaker than the spring load to maintain the water injection on-off valve in the closed state, the intake start timing of the vacuum break valve when subjected to negative pressure from above Symbol purified water supply path side A negative pressure breaking device characterized in that the direction is earlier than the valve opening start timing of the water injection on-off valve.
請求項に記載の負圧破壊装置であって、
上記閉付勢バネは、上記ダイヤフラム弁を弁座に対し押し付けるように直接に弾性付勢するように配設されている、負圧破壊装置。
The negative pressure breaking device according to claim 1 ,
The negative pressure breaking device, wherein the closing biasing spring is arranged to elastically bias the diaphragm valve directly against the valve seat.
請求項に記載の負圧破壊装置であって、
上記閉付勢バネは、上記ダイヤフラム弁を開閉方向に弾性変位可能に支持しつつ閉弁状態に維持するダイヤフラム弁自体の弾性抵抗機能により構成されている、負圧破壊装置。
The negative pressure breaking device according to claim 1 ,
The negative pressure breaking device, wherein the closing urging spring is configured by an elastic resistance function of the diaphragm valve itself that supports the diaphragm valve so as to be elastically displaceable in the opening and closing direction and maintains the valve closed state.
請求項1〜請求項のいずれかに記載の負圧破壊装置であって、
上記浄水供給路は、浄水の給水を受け加熱源により加熱して給湯栓側に給湯する給湯回路又は浄水の給水を受けて給水栓側に給水する給水回路であり、この給湯回路又は給水回路に対し大気開放の貯槽が分岐路を通して注湯又は注水可能に接続されている、負圧破壊装置。
The negative pressure breaking device according to any one of claims 1 to 3 ,
The purified water supply path is a hot water supply circuit that receives purified water and is heated by a heating source to supply hot water to the hot water tap side or a water supply circuit that receives purified water and supplies water to the water tap side, and the hot water supply circuit or water supply circuit On the other hand, a negative pressure breaker in which a storage tank open to the atmosphere is connected to allow for pouring or pouring water through a branch passage.
JP2001390952A 2001-12-25 2001-12-25 Negative pressure breaker Expired - Fee Related JP3835281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001390952A JP3835281B2 (en) 2001-12-25 2001-12-25 Negative pressure breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001390952A JP3835281B2 (en) 2001-12-25 2001-12-25 Negative pressure breaker

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006161702A Division JP4168288B2 (en) 2006-06-09 2006-06-09 Negative pressure breaker

Publications (2)

Publication Number Publication Date
JP2003185247A JP2003185247A (en) 2003-07-03
JP3835281B2 true JP3835281B2 (en) 2006-10-18

Family

ID=27598685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001390952A Expired - Fee Related JP3835281B2 (en) 2001-12-25 2001-12-25 Negative pressure breaker

Country Status (1)

Country Link
JP (1) JP3835281B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015007453A (en) * 2013-06-25 2015-01-15 株式会社ノーリツ Pilot type on-off valve and backflow preventing device with the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6213891B2 (en) * 2013-06-25 2017-10-18 株式会社ノーリツ Pilot type on-off valve and backflow prevention device having the same
JP6051176B2 (en) * 2014-03-04 2016-12-27 リンナイ株式会社 Yubari control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015007453A (en) * 2013-06-25 2015-01-15 株式会社ノーリツ Pilot type on-off valve and backflow preventing device with the same

Also Published As

Publication number Publication date
JP2003185247A (en) 2003-07-03

Similar Documents

Publication Publication Date Title
JP4168288B2 (en) Negative pressure breaker
JP3835281B2 (en) Negative pressure breaker
JP5720018B2 (en) Pouring solenoid valve
JPH0237226A (en) Reverse flow preventing device for bath burner with hot water feeder
JPH08247557A (en) Solar heat utilizing hot water-take out device provided with freezing-preventive mechanism
JP3835277B2 (en) Bath kettle with water heater
JP4353916B2 (en) Waste water discharge device for heat source device
JP3835299B2 (en) Negative pressure breaker
JP3562344B2 (en) How to control the faucet
JP2982425B2 (en) Water heater
JP3928858B2 (en) Mounting method of electromagnetic water supply valve
JP6268225B2 (en) Heat source system
JP2023031836A (en) Bath hot water supply system
JP2020012614A (en) Hot water filling control device
JP3786500B2 (en) Water heater
JP2003194398A (en) Negative pressure break device
JP2003172549A (en) Draining hopper and electric water heater
JP4092619B2 (en) Negative pressure breaker
JP2019132554A (en) Hot water supply controller
JP2003194249A (en) Negative pressure breakdown device
JP2002243269A (en) Water heater
JP2919802B2 (en) Bath backflow prevention device
JP2545806Y2 (en) Bath water heater
JP2753881B2 (en) Apparatus for preventing freezing of piping in hot water supply system
JP5977425B1 (en) Overpressure relief structure in backflow prevention device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060717

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees