JP3925672B2 - Valve timing control device - Google Patents

Valve timing control device Download PDF

Info

Publication number
JP3925672B2
JP3925672B2 JP14815298A JP14815298A JP3925672B2 JP 3925672 B2 JP3925672 B2 JP 3925672B2 JP 14815298 A JP14815298 A JP 14815298A JP 14815298 A JP14815298 A JP 14815298A JP 3925672 B2 JP3925672 B2 JP 3925672B2
Authority
JP
Japan
Prior art keywords
valve
fluid passage
rotation
chamber
vane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14815298A
Other languages
Japanese (ja)
Other versions
JPH11343819A (en
Inventor
拓哉 新美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP14815298A priority Critical patent/JP3925672B2/en
Publication of JPH11343819A publication Critical patent/JPH11343819A/en
Application granted granted Critical
Publication of JP3925672B2 publication Critical patent/JP3925672B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves

Landscapes

  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の動弁装置において吸気弁又は排気弁の開閉時期を制御するために使用される弁開閉時期制御装置に関する。
【0002】
【従来の技術】
この種の弁開閉時期制御装置の1つとして、弁開閉用の回転軸に所定範囲で相対回転可能に外装されクランク軸のクランクスプロケット又はプーリからの回転動力が伝達される回転伝達部材と、前記回転軸に取り付けられた複数のベーンと、前記回転伝達部材に設けられた突部と前記回転軸との間に形成され前記ベーンによって進角用室と遅角用室とに夫々二分される複数の流体圧室と、前記進角用室に流体を給排する第1流体通路と、遅角用室に流体を給排する第2流体通路と、前記回転軸と前記回転伝達部材の相対位相が所定の位相である時に前記回転軸と前記回転伝達部材の相対位相を保持する位相保持機構とを備えたものがあり、例えば特開平1−92504号公報や特開平9−250310号公報に開示されている。
【0003】
上記した各公報に開示されている弁開閉時期制御装置においては、第1流体通路を介して進角用室へ作動流体を供給すると共に第2流体通路を介して遅角用室から作動油を排出することにより、回転軸が回転伝達部材に対してベーンが突部の進角側の周方向端面に当接する最進角位置までの任意な位置に進角方向へ回転して弁開閉時期が早められ、第2流体通路を介して遅角用室へ作動流体を供給すると共に第1流体通路を介して進角用室から作動油を排出することにより、回転軸が回転伝達部材に対してベーンが突部の遅角側の周方向端面に当接する最遅角位置までの任意な位置に遅角方向へ回転して弁開閉時期が遅らされる。
【0004】
また、上記した各公報に開示されている弁開閉時期制御装置においては、回転伝達部材から回転軸への回転伝達経路に流体圧室及びベーンが介在していることから、内燃機関の運転中、回転軸には常に遅角方向への力が作用しており、内燃機関の停止時に流体圧室への作動油の供給が停止されると、流体圧室の油圧によってベーンを保持できなくなり、回転軸は回転伝達部材に対して遅角方向へ回転し、回転軸と回転伝達部材の相対位相はベーンが突部の遅角側の周方向端面に当接する最遅角位置での位相となる。この状態にて内燃機関が始動されると、流体圧室の油圧が上昇し該油圧によりベーンを保持することができるようになるまでは不安定な状態となり、回転軸に生じる変動トルクによってベーンが振動し、突部の周方向端面と衝突して打音が生じたりするので、これを回避するために、位相保持機構により回転軸と回転伝達部材との相対位相が最遅角位置にて保持されるようになっている。
【0005】
【発明が解決しようとする課題】
ところで、内燃機関の高速回転域では、ピストンが上死点に向かい始めても、吸気が慣性により更にシリンダ内へ入り込もうとするため、吸気弁の閉時期を遅らせることにより体積効率が向上して内燃機関の出力向上を図ることができる。
【0006】
しかしながら、上記した各公報に開示される弁開閉時期制御装置を吸気弁の開閉時期を制御するために用いる場合には、最遅角位置での弁開閉時期は、上記したように内燃機関の始動時に吸気が可能な時期に設定される必要があるため、高速回転域において吸気弁の閉時期を遅らせて吸気の慣性による体積効率の向上を図ることができない。これは、最遅角位置での弁開閉時期を吸気の慣性による体積効率の向上が可能な時期に設定すると、最遅角位置での内燃機関の始動時に、ピストンが下死点を過ぎ上死点に向かい始めても吸気弁が開いていて、また吸気に慣性がないため、一度吸入した吸気が逆流して排出してしまい、圧縮比が上がらずに、燃焼ができない状態が発生し、内燃機関の始動が困難となるからである。尚、この問題は、最遅角位置での弁開閉時期を吸気の慣性による体積効率の向上が可能な時期に設定しなくても、上記した各公報に開示される弁開閉時期制御装置にように、最遅角位置での弁開閉時期を始動時に吸気が可能な時期に設定した場合であっても、吸気弁の閉時期がピストンの下死点後に設定されていると、気圧の低い高所等では発生しやすい。
【0007】
また、上記した各公報に開示される弁開閉時期制御装置を排気弁の開閉時期を制御するために用いる場合にも、排気弁の閉時期を同様に遅らせると、吸気弁と排気弁のオーバーラップ期間が長くなり、内部EGR量(排気ガス再循環量)が増大して内燃機関の始動性の低下を招く。
【0008】
それゆえ、本発明は、内燃機関の始動時におけるベーンによる打音の発生及び始動不良を確実に防止しつつ、その可変制御領域を拡大させることができる弁開閉時期制御装置を提供することを、その課題とする。
【0009】
【課題を解決するための手段】
上記課題を解決するために講じた本発明の技術的手段は、内燃機関のシリンダヘッドに回転自在に組付けられる弁開閉用の回転軸と、該回転軸に所定範囲で相対回転可能に外装されクランク軸からの回転動力が伝達される回転伝達部材と、該回転伝達部材に形成された複数個の凹部内に配設される前記回転軸に径方向に延在して設けられた複数個のベーンと、前記回転軸と前記回転伝達部材との間に形成され前記ベーンによって進角用室と遅角用室とに二分される流体圧室と、前記進角用室に流体を給排する第1流体通路と、前記遅角用室に流体を給排する第2流体通路と、前記回転軸と前記回転伝達部材の相対位相が所定の位相である時に前記回転軸と前記回転伝達部材の相対位相を保持する位相保持機構とを備えた弁開閉時期制御装置において、前記位相保持機構を、前記流体圧室の一つを前記回転軸の軸方向に区画する前記回転伝達部材の側壁部に形成され、前記回転軸の径方向外方に延びる規制部と該規制部の径方向外端から径方向に拡開して延在する扇形状の案内部とから成る係止溝と、該係止溝が形成される流体圧室内に配設されるベーンに前記回転軸の径方向に延在して形成される挿通空間内に前記第1流体通路及び前記第2流体通路の少なくとも一方の流体圧により移動可能に前記回転軸の径方向外方に移動可能に配設されると共に前記係止溝内に嵌入するように軸方向に延在し、前記規制部に嵌入されることで前記回転伝達部材と前記回転軸の相対位相を保持可能な係止部を有する係止部材と、該係止部材を前記回転軸の径方向内方に向けて付勢する付勢手段とから構成し、前記ベーンにより前記遅角用室の容積が最小とされる最大進角状態における前記回転軸と前記回転伝達部材の相対位相と前記ベーンにより前記進角用室の容積が最小とされる最大遅角状態における相対位相の間の中間的な相対位相であって、前記内燃機関が始動可能な弁開閉時期にある時の所定の中間的な相対位相時に前記係止部材の係止部が前記係止溝の規制部に嵌入されるようにしたことである。
【0010】
上記した手段によれば、内燃機関の停止時に流体圧室への作動流体の供給が停止されると、流体圧室の流体圧が低下して同流体圧によってベーンを保持できなくなり、回転軸は回転伝達部材に対して遅角方向へ回転するものの、第1流体通路及び第2流体通路の少なくとも一方の流体圧に抗して付勢手段により係止部材が径方向内方に付勢され、係止部材の係止部が係止溝の案内部に案内されて規制部に嵌入されることにより回転軸と回転伝達部材の相対位相が中間的な相対位相に保持される。これにより、内燃機関の始動時にベーンが流体圧室の周方向端面に衝突して打音が発生するのが的確に防止される。
【0011】
また、内燃機関の始動時の弁開閉時期が上記した中間的な相対位相時に得られるので、最遅角位置では中間的な相対位相時よりも更に弁の開閉時期を遅らせることができ、吸気の慣性を利用して体積効率の向上を図ることが可能となると共に、始動時の弁開閉時期を進角させることができ、圧縮比低下による内燃機関の始動不良を防止することが可能となる。
【0012】
上記した弁開閉時期制御装置は、前記第1流体通路を流体圧源に連通すると共に前記第2流体通路をドレンに連通する第1制御位置と前記第1流体通路をドレンに連通すると共に前記第2流体通路を流体圧源に連通する第2制御位置とに切換制御可能な制御弁、及び該制御弁と前記第流体通路との間に前記第流体通路を選択的にドレンに連通可能な切換弁を備え、前記内燃機関の始動時に前記制御弁が前記第制御位置に切換えられると共に、所定時間、前記切換弁が前記第流体通路をドレンに連通するように切換えられることが望ましい。
【0013】
【発明の実施の形態】
以下、本発明に従った弁開閉時期制御装置の実施形態を図面に基づき、説明する。
【0014】
図1乃至図2において、弁開閉時期制御装置は、内燃機関のシリンダヘッド70に回転自在に支持されたカムシャフト10とこれの先端部(図1の左端)に一体的に組付けた内部ロータ20とからなる弁開閉用の回転軸と、カムシャフト10及び内部ロータ20に所定範囲で相対回転可能に外装された外部ロータ30、フロントプレート40、リアプレート50及びリアプレート50の外周に一体的に設けたタイミングスプロケット51から成る回転伝達部材と、内部ロータ20に一体的に設けた4個のベーン24、25と、該ベーンの1つ25に組付けたロックピン60等からなるロック機構(位相保持機構)等によって構成されている。尚、タイミングスプロケット51には、周知のように、図示省略したクランクシャフトからクランクスプロケットとタイミングチェーンを介して図2の時計方向に回転動力が伝達されるように構成されている。
【0015】
カムシャフト10は、吸気弁を開閉する図示しない周知のカムを有していて、内部にはカムシャフト10の軸方向に延びる遅角通路11及び進角通路12が設けられている。進角通路12は、カムシャフト10に設けた取付ボルト16用の取付孔内に形成されていて、カムシャフト10に設けた径方向の通路13及び環状溝14とシリンダヘッド70に設けた接続通路72を通して制御弁100の接続ポート101bに接続されている。遅角通路11は、カムシャフト10に設けた環状溝15とシリンダヘッド70に設けた接続通路71及び切換弁110を介して制御弁100の接続ポート101aに接続されている。
【0016】
制御弁100は、ソレノイド102へ通電することによりハウジング内に軸方向に移動可能に嵌挿されたスプール101をスプリング103に抗して図1の左方向へ移動できるものであり、非通電時には当該内燃機関によって駆動されるオイルポンプPに接続された供給ポート101cが接続ポート101aに連通すると共に、接続ポート101bが排出ポート101dに連通するように、また通電時には供給ポート101cが接続ポート101bに連通すると共に、接続ポート101aが排出ポート101dに連通するように構成されている。このため、制御弁100のソレノイド102の非通電時には切換弁110を介して遅角通路11に作動油が供給され、ソレノイド102の通電時には進角通路12に作動油が供給され、ソレノイド102への通電が図示しない制御装置によりデューティ制御される。
【0017】
切換弁110は、ソレノイド112へ通電することによりハウジング内に軸方向に移動可能に嵌挿されたスプール111をスプリング113に抗して図1の右側へ移動できるものであり、非通電時には制御弁100の接続ポート101aを接続通路71を介して遅角通路11と連通し、通電時には制御弁100の接続ポート101aと遅角通路11との連通を遮断し、遅角通路11を接続通路71を介してドレンに連通するように構成されている。尚、ソレノイド112への通電は図示しない制御装置によりオン・オフ制御される。
【0018】
内部ロータ20は、単一の取付ボルト16によってカムシャフト10に一体的に固着されていて、その外周面に径方向外方に延在する4個のベーン24、25が一体的に設けられていると共に、後述するようにロックピン60が組付けられているベーン25とは異なる3つのベーン24によって区画された進角用室R1に進角通路12から作動油を給排するように進角通路12と各進角用室R1を連通する通路23と、カムシャフト10の先端面に対向する側の一端面に形成され遅角通路11に連通する環状溝21と、該環状溝21から軸方向に他端面側に延びる3つの通路22と、各ベーン24によって区画された遅角用室R2に遅角通路11から作動油を環状溝21及び通路22を通して給排するように各通路22と各遅角用室R2を連通する通路26を有している。また、1つのベーン25には径方向に延在し、後述するロックピン60が移動可能に収容される挿通孔28が形成され、該挿通孔28の底部は進角通路12と通路27を介して連通されている。また、ベーン25の径方向外側部には、一端がフロントプレート40側端面に開口し、他端が挿通孔28の径方向外側部に開口する軸孔29が形成されている。尚、軸孔29は、その横断面が内部ロータ20の径方向に延びる楕円形状を呈している。
【0019】
外部ロータ30は、内部ロータ20の外周に所定範囲で相対回転可能に組付けられていて、その両側にはフロントプレート40とリアプレート50が接合され、貫通孔を貫通する4本の連結ボルト43によって一体的に連結されている。また、外部ロータ30の内周には所定の周方向間隔で4個の突部31が径方向内方に向けて夫々突出形成されていて、これら突部31の内周面が内部ロータ20の外周面に摺接する構成で外部ロータ30が内部ロータ20に回転自在に支承されている。
【0020】
各ベーン24、25は、外部ロータ30の隣合う突部31間に形成される凹部32内に径方向外方に延在し、その外周面が凹部32の内周に摺接するように内部ロータ20の外周に一体的に設けられている。各ベーン24は、外部ロータ30と、外部ロータ30の各突部31と、内部ロータ20と、フロントプレート40と、リアプレート50との間に形成される流体圧室R0を進角用室R1と遅角用室R2とに二分しており、外部ロータ30に形成した一対の突部31の互いに対向する周方向端面に1つのベーン24が当接することにより、当該弁開閉時期制御装置により調整される相対位相(相対回転量)が制限されるようになっている。ロックピン60が組付けられるベーン25は、同様に外部ロータ30と、外部ロータ30の各突部31と、内部ロータ20と、フロントプレート40と、リアプレート50との間に形成される空間R01を2つの空間に二分するが、上述したようにこの空間R01には作動油は供給されず、またベーン25の外周面と凹部32の内周面の隙間は他のベーン24の外周面と凹部32の内周面の隙間よりも大きく設定されている。
【0021】
ロックピン60は、挿通孔28内に軸方向へ摺動可能に組み付けられていて、スプリング61によってその一端側を内部ロータ20に向けて付勢されている。スプリング61はロックピン60とリテーナ62間に介装されていて、リテーナ62は挿通孔28内にてスナップリング63により抜け止め固定されている。ロックピン60の他端側には、軸孔29を貫通するように内部ロータ20の軸方向にフロントプレート側に延びる係止部60aが一体的に設けられている。係止部60aは、ロックピン60が挿通孔28内を軸方向に摺動することにより、挿通孔28の軸方向に延びる長孔(楕円)形状の軸孔29に沿って移動するようになっており、また係止部60aの先端はフロントプレート40に形成される係止溝41内に常時嵌入している。
【0022】
空間R01を内部ロータ20の軸方向に区画するフロントプレート40の側面には、図2及び図3に示すように、内部ロータ20の径方向外方に延びる規制部42と該規制部42の径方向外端から径方向に拡開して延在する扇形状の案内部41を有する係止溝40aが形成されている。案内部41の径方向外端の周長は、挿通孔28の底部に通路27を介して設定圧以上の作動油が供給されてロックピン60が径方向外側に移動し係止部60aが図3の破線で示す位置にある時に、上記したように1つのベーン24が一対の突部31の互いに対向する周方向端面に当接することで制限される当該弁開閉時期制御装置により調整される相対位相(相対回転量)が確保されるように、係止部60aが案内部41の径方向外端の両端に当接しないように設定されている。
【0023】
本実施形態においては、カムシャフト10及び内部ロータ20と外部ロータ30及びフロントプレート40の相対位相が、各ベーン24が各流体圧室R0内にて中立位置にある時(1つのベーン24が各突部31の進角側の周方向端面及び遅角側の周方向端面にも当接しない位置にある中間位相の時)に係止部60aと規制部42が同期し、係止部60aが規制部42に嵌入可能であるようになっていて、この所定の相対位相にある時、図示しない吸気弁の開閉時期が内燃機関の始動が可能な時期(吸気弁の開閉時期がわずかに進められる(中間進角)時期(最大遅角位置から所定角度αだけ進角した時期))になるように設定されている。尚、図3及び図4に示すように係止部60aが規制部42に嵌入すると、カムシャフト10及び内部ロータ20と外部ロータ30及び両プレート40、50の相対位相が保持される。
【0024】
上記のように構成した本実施形態の弁開閉時期制御装置においては、内燃機関が始動され各進角用室R1及び各遅角用室R2に所定油圧が供給される図2に示す中間位相でのバランス状態(各進角用室R1内の進角油圧による押圧力が、各遅角用室R2内の遅角油圧による押圧力と、外部ロータ30から内部ロータ20への回転伝達経路に流体圧室R0及びベーン60が介在していることから内部ロータ20及びカムシャフト10に常に作用している遅角方向への力との和とバランスしている状態)において、内燃機関の運転状態に応じて、制御弁100のソレノイド102へ供給される電流のデューティ比を高くすることにより、進角通路12と通路23を通して各進角用室R1に作動油が供給されると共に、各遅角用室R2から各通路26、22と遅角通路11と制御弁100等を通して作動油が排出されると、内部ロータ20が外部ロータ30、両プレート40、50等に対して進角側(図2の時計方向)に相対回転し、この相対回転量(最大進角量)は、1つのベーン24が突部31の進角側の周方向端面に当接することにより制限される。また、制御弁100のソレノイド102へ供給される電流のデューティ比を低くすることにより、遅角通路11と各通路22、26を通して各遅角用室R2に作動油が供給されると共に、各進角用室R1から各通路23と進角通路12と制御弁100等を通して作動油が排出されると、内部ロータ20が外部ロータ30、両プレート40、50等に対して遅角側(図2の反時計方向)に相対回転し、この相対回転量(最大遅角量)は、1つのベーン24が突部31の遅角側の周方向端面に当接することにより制限される。尚、この位相変換制御中(最大遅角状態時を除く)は、挿通孔28に通路27を通して設定圧以上の油圧(上記した所定油圧よりも低い油圧)が供給されており、ロックピン60がスプリング61に抗して移動し、ロックピン60の係止部60aが規制部42から案内部41に退避して(図3に破線で示す位置に退避して)、ロックピン60の係止部60aによるロックが解除されている。また、上記した位相変換制御中、切換弁110は非通電状態にあり、制御弁100の接続ポート101aを接続通路71を介して遅角通路11と連通している。
【0025】
本実施形態においては、上記したように内部ロータ20と外部ロータ30の相対位相が、各ベーン24が各流体圧室R0内にて中立位置(図2に示す位置)にあり、図3に示すように係止部60aと規制部42が同期する所定位相にある時、図示しない吸気弁の開閉時期が内燃機関の始動が可能な時期になるように設定されている。そのため、この中立位置から1つのベーン24が突部31の遅角側の周方向端面に当接する最遅角位置までは内燃機関が始動可能な弁開閉時期よりも更に弁の開閉時期を遅らせることができ、内燃機関の高速回転時に、上記したように制御弁100を制御して中立位置より遅角側へ位相変換し、内燃機関の始動が困難な時期まで図示しない吸気弁の閉時期を遅らせることで、吸気の慣性により体積効率が向上し、内燃機関の出力向上を図ることができる。
【0026】
内燃機関の停止時には、オイルポンプPの駆動が停止されて流体圧室R0への作動油の供給が停止されると共に、制御弁100が非通電状態とされる。これにより、進角用室R1内の進角油圧による押圧力と遅角用室R2内の遅角油圧による押圧力がベーン24に作用しなくなり、内部ロータ20及びカムシャフト10には、上記した遅角方向への力(内燃機関のクランク軸が完全に停止するまでの間)のみが作用しており、停止直前の内部ロータ20と外部ロータ30の相対位相に応じて停止時の内部ロータ20と外部ロータ30の相対位相が決まることになる。この時、停止直前の内部ロータ20と外部ロータ30の相対位相が、係止部60aと規制部42が同期する所定位相にあれば、挿通孔28への供給油圧が設定圧以下となることからスプリング61によりロックピン60の係止部60aが規制部42内に嵌入し、内部ロータ20と外部ロータ30の相対位相が保持(ロック)される。また、停止直前の内部ロータ20と外部ロータ30の相対位相が、係止部60aと規制部42が同期する所定位相よりも進角側にある場合には、内部ロータ20及びカムシャフト10に作用する上記した遅角方向への力により内部ロータ20及びカムシャフト10が外部ロータ30に対して遅角側へ移動するが、係止部60aはスプリング61により案内部41に案内されながら遅角側へ移動し、規制部42と同期した時に規制部42に嵌入する。これにより、内部ロータ20と外部ロータ30の相対位相が保持(ロック)される。
【0027】
本実施形態においては、内燃機関の始動時に図示しないスタータスイッチがオンされると、スタータスイッチがオンされてから所定時間だけ切換弁110のソレノイド112へ通電されて、遅角通路11に連通される接続通路71がドレンに接続される。これにより、内燃機関の始動時には、制御弁100は非通電状態にあることから、進角用室R1及び遅角用室R2は共にドレンに連通される。このため、内燃機関の始動時にはカムシャフト10に作用するカム変動トルクによりカムシャフト10、内部ロータ20及びベーン24、25が外部ロータ30及び両プレート40、50に対して遅角側及び進角側へ大きくばたつき易くなる(振動し易くなる)が、上記したように内燃機関の停止直前の内部ロータ20と外部ロータ30の相対位相が、係止部60aと規制部42が同期する所定位相或いは係止部60aと規制部42が同期する所定位相よりも進角側にある場合には、係止部60aが規制部42内に嵌入しているため、カムシャフト10、内部ロータ20及びベーン24、25のばたつきが防止される。
【0028】
ところで、内燃機関の停止直前の内部ロータ20と外部ロータ30の相対位相が、係止部60aと規制部42が同期する所定位相よりも遅角側にある場合或いは最大遅角状態における相対位相にある場合には、係止部60aが規制部42に嵌入されない状態で内燃機関が停止されることがある。この状態にて内燃機関が始動されると、上記した遅角方向への力により内部ロータ20及びカムシャフト10が外部ロータ30に対して遅角側へ移動し、最大遅角状態となり、内燃機関の始動が困難となる。尚、この時、ロックピン60を付勢するスプリング61の付勢力は小さいものであるため、スプリング61により係止部60a及び案内部41を介してカムシャフト10及び内部ロータ20を外部ロータ30に対して最大遅角位置からαだけ進角側に回転させることはできない。本実施形態においては、上記したように内燃機関の始動時に進角用室R1及び遅角用室R2が共にドレンに連通されているため、カムシャフト10に作用するカム変動トルクによりカムシャフト10、内部ロータ20及びベーン24、25が外部ロータ30に対して遅角側及び進角側へ大きくばたつき(振動し)、進角側へばたついた後に遅角側へばたつく時に係止部60aがスプリング61により案内部41に案内されながら遅角側へ移動し、規制部42と同期した時に規制部42に嵌入する。これにより、内部ロータ20と外部ロータ30の相対位相が保持(ロック)される。
【0029】
よって、内燃機関の始動時には、大きな回転変動を伴うカムシャフト10、内部ロータ20及び各ベーン24、25等から成るの回転軸と、外部ロータ30、フロントプレート40及びリアプレート50等から成る回転伝達部材の不必要な相対回転がロックピン60により確実に規制され、回転軸と回転伝達部材の不必要な相対回転に伴うベーン24による打音の発生を確実に防止することができる。
【0030】
以上のように、本実施形態によれば、内燃機関の始動時におけるベーン24と突部31の周方向端面との衝突による打音の発生を防止しつつ、内燃機関の高速回転域において体積効率の向上を図ることができる。
【0031】
上記した実施形態においては、ロックピン60によるロックが進角用室R1に供給される油圧により解除される弁開閉時期制御装置に本発明を実施したが、本発明はロックピンを大径部及び小径部を有する段付状に形成して、該ロックピンの小径部に進角用室R1及び遅角用室R2に供給される油圧の一方を付与すると共にロックピンの段部と段付孔に形成される環状空間に進角用室R1及び遅角用室R2に供給される油圧の他方を付与し、何れかの油圧でロックピンによるロックが解除される弁開閉時期制御装置にも同様に実施し得るものである。また、上記実施形態においては、一つのベーン24が一つの突部31の進角側の周方向端面に当接することにより制限される弁開閉時期制御装置に本発明を実施したが、本発明は最大進角量が進角用室R1と遅角用室R2の油圧を制御することによりベーンが周方向端面に当接する前に制限されるようにされた弁開閉時期制御装置にも同様に実施し得るものである。また、更に上記実施形態においては、吸気用のカムシャフト10に組付けられる弁開閉時期制御装置に本発明を実施したが、本発明は排気用のカムシャフトに組付けられる弁開閉時期制御装置にも同様に実施し得るものである。
【0032】
【発明の効果】
以上の如く、本発明によれば、内燃機関の停止時に流体圧室への作動流体の供給が停止されると、流体圧室の流体圧が低下して同流体圧によってベーンを保持できなくなり、回転軸は回転伝達部材に対して遅角方向へ回転するものの、第1流体通路及び第2流体通路の少なくとも一方の流体圧に抗して付勢手段により係止部材が径方向内方に付勢され、係止部材の係止部が係止溝の案内部に案内されて規制部に嵌入されることにより回転軸と回転伝達部材の相対位相が中間的な相対位相に保持される。これにより、内燃機関の始動時にベーンが流体圧室の周方向端面に衝突して打音が発生するのが的確に防止される。
【0033】
また、内燃機関の始動時の弁開閉時期が上記した中間的な相対位相時に得られるので、最遅角位置では中間的な相対位相時よりも更に弁の開閉時期を遅らせることができ、吸気の慣性を利用して体積効率の向上を図り内燃機関の出力を向上させることが可能となると共に、始動時の弁開閉時期を進角させることができ、圧縮比低下による内燃機関の始動不良を防止することが可能となる。
【図面の簡単な説明】
【図1】本発明に従った弁開閉時期制御装置の一実施形態を示す縦断側面図である。
【図2】図1のA−A断面図である。
【図3】図1のB−B拡大断面図である。
【図4】図1のC−C断面図である。
【符号の説明】
10 カムシャフト(回転軸)
11 遅角通路(第2流体通路)
12 進角通路(第1流体通路)
20 内部ロータ(回転軸)
21 環状溝(第2流体通路)
22 通路(第2流体通路)
23 通路(第1流体通路)
24、25 ベーン
26 通路(第1流体通路)
28、29 挿通空間
30 外部ロータ(回転伝達部材)
31 突部
32 凹部
40 フロントプレート(回転伝達部材)
40a 係止溝
41 案内部
42 規制部
50 リアプレート(回転伝達部材)
51 タイミングスプロケット(回転伝達部材)
60 ロックピン(係止部材)
61 スプリング(付勢手段)
60a 係止部
70 シリンダヘッド
100 制御弁
110 切換弁
R0 流体圧室
R1 進角用室
R2 遅角用室
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a valve opening / closing timing control device used for controlling the opening / closing timing of an intake valve or an exhaust valve in a valve operating apparatus for an internal combustion engine.
[0002]
[Prior art]
As one of the valve opening / closing timing control devices of this type, a rotation transmission member that is mounted on a rotary shaft for valve opening / closing so as to be relatively rotatable within a predetermined range and that transmits rotational power from a crank sprocket or pulley of the crankshaft, A plurality of vanes attached to the rotation shaft, and a plurality of vanes formed between the protrusion provided on the rotation transmission member and the rotation shaft and divided into an advance chamber and a retard chamber by the vane, respectively. A fluid pressure chamber, a first fluid passage for supplying and discharging fluid to the advance chamber, a second fluid passage for supplying and discharging fluid to the retard chamber, a relative phase of the rotating shaft and the rotation transmitting member Is provided with a phase holding mechanism that holds the relative phase of the rotation shaft and the rotation transmitting member when the phase is a predetermined phase, for example, disclosed in JP-A-1-92504 and JP-A-9-250310. Has been.
[0003]
In the valve opening / closing timing control device disclosed in each of the above publications, the working fluid is supplied to the advance chamber through the first fluid passage, and the working oil is supplied from the retard chamber through the second fluid passage. By discharging, the rotation shaft rotates in the advance direction to any position up to the most advanced angle position where the vane abuts the circumferential end surface on the advance side of the protrusion with respect to the rotation transmission member, and the valve opening / closing timing is The working shaft is advanced and the working fluid is supplied to the retarding chamber through the second fluid passage and the working oil is discharged from the advance chamber through the first fluid passage. The vane rotates in the retarding direction to an arbitrary position up to the most retarded position where the vane contacts the circumferential end surface on the retarding side of the protrusion, thereby delaying the valve opening / closing timing.
[0004]
Further, in the valve opening / closing timing control device disclosed in each of the above-mentioned publications, since the fluid pressure chamber and the vane are interposed in the rotation transmission path from the rotation transmission member to the rotation shaft, during operation of the internal combustion engine, A force in the retarding direction always acts on the rotating shaft, and if the supply of hydraulic oil to the fluid pressure chamber is stopped when the internal combustion engine is stopped, the vane cannot be held by the hydraulic pressure in the fluid pressure chamber, and the rotation The shaft rotates in the retarding direction with respect to the rotation transmitting member, and the relative phase between the rotating shaft and the rotation transmitting member is the phase at the most retarded position where the vane contacts the circumferential end surface on the retarding side of the protrusion. When the internal combustion engine is started in this state, the oil pressure in the fluid pressure chamber rises and becomes unstable until the oil pressure can hold the vane. Since it vibrates and collides with the circumferential end surface of the protrusion, a hitting sound is generated. To avoid this, the relative phase between the rotating shaft and the rotation transmitting member is held at the most retarded position by the phase holding mechanism. It has come to be.
[0005]
[Problems to be solved by the invention]
By the way, in the high-speed rotation region of the internal combustion engine, even if the piston starts to approach the top dead center, the intake air tends to further enter the cylinder due to inertia, so that the volume efficiency is improved by delaying the closing timing of the intake valve. Output can be improved.
[0006]
However, when the valve opening / closing timing control device disclosed in each of the above publications is used to control the opening / closing timing of the intake valve, the valve opening / closing timing at the most retarded position is determined as described above. Since it is sometimes necessary to set the timing at which intake is possible, the volumetric efficiency cannot be improved due to the inertia of the intake by delaying the closing timing of the intake valve in the high-speed rotation range. This is because if the valve opening / closing timing at the most retarded position is set to a time when volumetric efficiency can be improved due to the inertia of the intake air, when the internal combustion engine is started at the most retarded position, the piston passes over the bottom dead center and top dead. The intake valve is open even if it starts to reach the point, and since there is no inertia in the intake air, the intake air once sucked back flows out and is discharged, the compression ratio does not increase, and the combustion cannot be performed, and the internal combustion engine This is because it becomes difficult to start. Note that the problem is that the valve opening / closing timing control device disclosed in each of the above publications does not require the valve opening / closing timing at the most retarded position to be set to a time at which volumetric efficiency can be improved by the inertia of intake air. Even when the valve opening and closing timing at the most retarded position is set to a timing when intake is possible at the start, if the closing timing of the intake valve is set after the bottom dead center of the piston, It is likely to occur in places.
[0007]
Further, when the valve opening / closing timing control device disclosed in each of the above publications is used to control the opening / closing timing of the exhaust valve, if the closing timing of the exhaust valve is similarly delayed, the overlap between the intake valve and the exhaust valve is also achieved. The period becomes longer, the internal EGR amount (exhaust gas recirculation amount) increases, and the startability of the internal combustion engine decreases.
[0008]
Therefore, the present invention provides a valve opening / closing timing control device capable of expanding the variable control region while reliably preventing the occurrence of a hammering sound caused by a vane at the time of starting the internal combustion engine and starting failure. Let that be the issue.
[0009]
[Means for Solving the Problems]
The technical means of the present invention taken in order to solve the above problems includes a rotary shaft for opening and closing a valve that is rotatably assembled to a cylinder head of an internal combustion engine, and a rotary shaft that is rotatably mounted on the rotary shaft within a predetermined range. A rotation transmission member for transmitting rotational power from the crankshaft, and a plurality of radially extending members provided in the plurality of recesses formed in the rotation transmission member. Fluid is supplied to and discharged from the vane, a fluid pressure chamber formed between the rotating shaft and the rotation transmission member and divided into an advance chamber and a retard chamber by the vane, and the advance chamber. A first fluid passage, a second fluid passage for supplying and discharging fluid to and from the retardation chamber, and a relative phase between the rotation shaft and the rotation transmission member is a predetermined phase. A valve timing control device having a phase holding mechanism for holding a relative phase. The phase holding mechanism is formed on a side wall portion of the rotation transmission member that divides one of the fluid pressure chambers in the axial direction of the rotation shaft, and a restriction portion that extends radially outward of the rotation shaft; A locking groove comprising a fan-shaped guide portion extending radially from the radially outer end of the restricting portion, and a vane disposed in the fluid pressure chamber in which the locking groove is formed In an insertion space formed to extend in the radial direction of the rotation shaft, it can be moved by the fluid pressure of at least one of the first fluid passage and the second fluid passage, and can be moved outward in the radial direction of the rotation shaft. A locking portion that is disposed and extends in the axial direction so as to be fitted into the locking groove, and is capable of holding a relative phase between the rotation transmitting member and the rotating shaft by being fitted into the restricting portion. And a biasing means for biasing the locking member toward the radially inner side of the rotating shaft. The volume of the advance chamber is minimized by the relative phase of the rotation shaft and the rotation transmitting member in the maximum advance state where the volume of the retard chamber is minimized by the vane and the vane. And a locking portion of the locking member at a predetermined intermediate relative phase when the internal combustion engine is in a valve opening / closing timing at which the internal combustion engine can be started. Is inserted into the restricting portion of the locking groove.
[0010]
According to the above-described means, when the supply of the working fluid to the fluid pressure chamber is stopped when the internal combustion engine is stopped, the fluid pressure in the fluid pressure chamber decreases and the vane cannot be held by the fluid pressure. Although rotating in the retarding direction with respect to the rotation transmitting member, the locking member is urged radially inward by the urging means against the fluid pressure of at least one of the first fluid passage and the second fluid passage, The engaging portion of the engaging member is guided by the engaging portion of the engaging groove and is fitted into the restricting portion, whereby the relative phase between the rotating shaft and the rotation transmitting member is maintained at an intermediate relative phase. As a result, it is possible to accurately prevent the vane from colliding with the circumferential end surface of the fluid pressure chamber and generating sound when starting the internal combustion engine.
[0011]
Further, since the valve opening / closing timing at the start of the internal combustion engine is obtained at the intermediate relative phase described above, the valve opening / closing timing can be further delayed at the most retarded position than at the intermediate relative phase, It is possible to improve the volumetric efficiency by utilizing inertia, advance the valve opening / closing timing at the time of starting, and prevent the starting failure of the internal combustion engine due to the reduction of the compression ratio.
[0012]
The above-mentioned valve timing control apparatus, the communicated with the first control position and before Symbol first fluid passage communicating the second fluid passage to a drain together with the first fluid passage communicating with the fluid pressure source to the drain second control position and to the switching controllable control valve for communicating the second fluid passage to a fluid pressure source, and communicating with the selectively drains the second fluid passage between said second fluid passage and said control valve with the possible switching valve, wherein with the internal combustion engine before Symbol control valve at the start of the is switched to the second control position, a predetermined time is switched so that the switching valve communicates the second fluid passage to drain It is desirable.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a valve timing control apparatus according to the present invention will be described with reference to the drawings.
[0014]
1 and 2, the valve timing control apparatus includes a camshaft 10 that is rotatably supported by a cylinder head 70 of an internal combustion engine and an internal rotor that is integrally assembled with a tip portion (left end in FIG. 1) of the camshaft 10. 20 and a rotary shaft for opening and closing a valve, and an outer rotor 30, a front plate 40, a rear plate 50, and a rear plate 50 that are externally mounted on the camshaft 10 and the inner rotor 20 so as to be relatively rotatable within a predetermined range. A lock transmission mechanism comprising a rotation transmission member comprising a timing sprocket 51 provided on the four sides, four vanes 24 and 25 provided integrally with the inner rotor 20, and a lock pin 60 attached to one of the vanes 25. Phase holding mechanism). As is well known, the timing sprocket 51 is configured to transmit rotational power in a clockwise direction in FIG. 2 from a crankshaft (not shown) via a crank sprocket and a timing chain.
[0015]
The camshaft 10 has a known cam (not shown) that opens and closes the intake valve, and a retard passage 11 and an advance passage 12 that extend in the axial direction of the camshaft 10 are provided therein. The advance passage 12 is formed in a mounting hole for the mounting bolt 16 provided in the camshaft 10, and is connected to the radial passage 13 and the annular groove 14 provided in the camshaft 10 and in the cylinder head 70. 72 is connected to the connection port 101 b of the control valve 100. The retard passage 11 is connected to the connection port 101a of the control valve 100 through the annular groove 15 provided in the camshaft 10, the connection passage 71 provided in the cylinder head 70, and the switching valve 110.
[0016]
The control valve 100 can move the spool 101 inserted in the housing so as to be movable in the axial direction by energizing the solenoid 102 to the left in FIG. 1 against the spring 103. The supply port 101c connected to the oil pump P driven by the internal combustion engine communicates with the connection port 101a, and the supply port 101c communicates with the connection port 101b so that the connection port 101b communicates with the discharge port 101d. In addition, the connection port 101a is configured to communicate with the discharge port 101d. For this reason, when the solenoid 102 of the control valve 100 is not energized, the hydraulic oil is supplied to the retard passage 11 through the switching valve 110, and when the solenoid 102 is energized, the hydraulic oil is supplied to the advance passage 12 to the solenoid 102. The energization is duty controlled by a control device (not shown).
[0017]
The switching valve 110 can move the spool 111 inserted in the housing so as to be movable in the axial direction by energizing the solenoid 112 to the right in FIG. 1 against the spring 113. 100 connection port 101a communicates with the retard passage 11 through the connection passage 71. When energized, the connection between the connection port 101a of the control valve 100 and the retard passage 11 is cut off, and the retard passage 11 is connected to the connection passage 71. It is comprised so that it may communicate with the drain via. The energization of the solenoid 112 is on / off controlled by a control device (not shown).
[0018]
The inner rotor 20 is integrally fixed to the camshaft 10 by a single mounting bolt 16, and four vanes 24 and 25 extending radially outward are integrally provided on the outer peripheral surface thereof. In addition, as will be described later, the advance angle is such that hydraulic oil is supplied and discharged from the advance passage 12 to the advance chamber R1 defined by three vanes 24 different from the vane 25 to which the lock pin 60 is assembled. A passage 23 that communicates with the passage 12 and each advance angle chamber R1, an annular groove 21 that is formed on one end surface of the camshaft 10 that faces the front end surface of the camshaft 10, and communicates with the retarded passage 11; Three passages 22 extending in the direction toward the other end surface, and each passage 22 so as to supply and discharge hydraulic oil from the retard passage 11 through the annular groove 21 and the passage 22 to the retard chamber R2 defined by each vane 24. Connect each retardation chamber R2 And a passage 26. Further, one vane 25 is formed with an insertion hole 28 extending in the radial direction and movably receiving a lock pin 60 described later, and the bottom of the insertion hole 28 is interposed through the advance passage 12 and the passage 27. Communicated. Further, a shaft hole 29 is formed in the radially outer portion of the vane 25 with one end opening in the front plate 40 side end surface and the other end opening in the radially outer portion of the insertion hole 28. The shaft hole 29 has an elliptical shape whose cross section extends in the radial direction of the inner rotor 20.
[0019]
The outer rotor 30 is assembled to the outer periphery of the inner rotor 20 so as to be relatively rotatable within a predetermined range, and a front plate 40 and a rear plate 50 are joined to both sides of the outer rotor 30, and four connecting bolts 43 passing through the through holes. Are integrally connected. In addition, four protrusions 31 are formed on the inner periphery of the outer rotor 30 at predetermined intervals in the radial direction, and the inner peripheral surface of these protrusions 31 is the inner rotor 20. The outer rotor 30 is rotatably supported by the inner rotor 20 so as to be in sliding contact with the outer peripheral surface.
[0020]
Each vane 24, 25 extends radially outward into a recess 32 formed between adjacent protrusions 31 of the outer rotor 30, and the inner rotor has an outer peripheral surface slidably contacting the inner periphery of the recess 32. 20 is integrally provided on the outer periphery. Each vane 24 includes a fluid pressure chamber R0 formed between the outer rotor 30, the protrusions 31 of the outer rotor 30, the inner rotor 20, the front plate 40, and the rear plate 50, and an advance chamber R1. And the retarding angle chamber R <b> 2, and is adjusted by the valve opening / closing timing control device when one vane 24 abuts against the mutually facing circumferential end surfaces of the pair of protrusions 31 formed on the external rotor 30. The relative phase (relative rotation amount) to be performed is limited. Similarly, the vane 25 to which the lock pin 60 is assembled is a space R01 formed between the outer rotor 30, the protrusions 31 of the outer rotor 30, the inner rotor 20, the front plate 40, and the rear plate 50. The hydraulic oil is not supplied to the space R01 as described above, and the gap between the outer peripheral surface of the vane 25 and the inner peripheral surface of the recess 32 is the same as the outer peripheral surface of the other vane 24 and the recess. It is set to be larger than the gap between the 32 inner peripheral surfaces.
[0021]
The lock pin 60 is assembled in the insertion hole 28 so as to be slidable in the axial direction, and is urged by a spring 61 toward one end of the lock pin 60 toward the internal rotor 20. The spring 61 is interposed between the lock pin 60 and the retainer 62, and the retainer 62 is fixed and secured to the insertion hole 28 by a snap ring 63. On the other end side of the lock pin 60, a locking portion 60 a that extends toward the front plate in the axial direction of the internal rotor 20 so as to penetrate the shaft hole 29 is integrally provided. The locking portion 60a moves along the long hole (elliptical) shaft hole 29 extending in the axial direction of the insertion hole 28 when the lock pin 60 slides in the insertion hole 28 in the axial direction. In addition, the tip of the locking portion 60a is always fitted in the locking groove 41 formed in the front plate 40.
[0022]
As shown in FIGS. 2 and 3, on the side surface of the front plate 40 that divides the space R01 in the axial direction of the inner rotor 20, a restricting portion 42 that extends radially outward of the inner rotor 20 and the diameter of the restricting portion 42. A locking groove 40a having a fan-shaped guide portion 41 extending in the radial direction from the outer end in the direction is formed. The circumferential length of the radially outer end of the guide portion 41 is such that hydraulic oil of a set pressure or higher is supplied to the bottom portion of the insertion hole 28 via the passage 27, the lock pin 60 moves outward in the radial direction, and the locking portion 60a is illustrated. 3, the relative position adjusted by the valve opening / closing timing control device that is restricted by abutting the circumferential ends of the pair of protrusions 31 facing each other when the vane 24 is in the position indicated by the broken line 3. The locking portion 60a is set so as not to contact both ends of the radially outer end of the guide portion 41 so that the phase (relative rotation amount) is ensured.
[0023]
In the present embodiment, the relative phases of the camshaft 10, the inner rotor 20, the outer rotor 30, and the front plate 40 are such that each vane 24 is in a neutral position in each fluid pressure chamber R0 (one vane 24 is The locking portion 60a and the regulating portion 42 are synchronized with each other when the locking portion 60a and the locking portion 60a are synchronized with each other at the intermediate phase at a position where they do not contact the circumferential end surface on the advance angle side and the circumferential end surface on the retard angle side. When it can be inserted into the restricting portion 42 and is in the predetermined relative phase, the opening / closing timing of an intake valve (not shown) is the timing when the internal combustion engine can be started (the opening / closing timing of the intake valve is slightly advanced). (Intermediate advance angle) time (time advanced by a predetermined angle α from the maximum retard position) is set. 3 and 4, when the locking portion 60a is fitted into the restricting portion 42, the relative phases of the camshaft 10, the inner rotor 20, the outer rotor 30, and both plates 40, 50 are maintained.
[0024]
In the valve timing control apparatus of the present embodiment configured as described above, the internal combustion engine is started and a predetermined hydraulic pressure is supplied to each advance angle chamber R1 and each retard angle chamber R2. Balance state (the pressing force by the advance hydraulic pressure in each advance angle chamber R1 is the fluid in the rotation transmission path from the external rotor 30 to the internal rotor 20 and the press force by the retard hydraulic pressure in each retard angle chamber R2. Since the pressure chamber R0 and the vane 60 are present, the internal combustion engine is in an operating state in a state balanced with the sum of the forces in the retarding direction always acting on the internal rotor 20 and the camshaft 10). Accordingly, by increasing the duty ratio of the current supplied to the solenoid 102 of the control valve 100, hydraulic oil is supplied to each advance chamber R1 through the advance passage 12 and the passage 23, and for each retard angle. Each passage 2 from room R2 22, the retarding passage 11, the control valve 100, etc., the hydraulic fluid is discharged, and the inner rotor 20 is relative to the outer rotor 30, both plates 40, 50, and the like on the advance side (clockwise in FIG. The relative rotation amount (maximum advance angle amount) is limited when one vane 24 abuts the circumferential end surface of the protrusion 31 on the advance angle side. In addition, by reducing the duty ratio of the current supplied to the solenoid 102 of the control valve 100, hydraulic oil is supplied to each retardation chamber R2 through the retardation passage 11 and the passages 22 and 26, and each advancement is performed. When hydraulic oil is discharged from the corner chamber R1 through the passages 23, the advance passage 12, the control valve 100, etc., the inner rotor 20 is retarded with respect to the outer rotor 30, both plates 40, 50, etc. (FIG. 2). The relative rotation amount (maximum retardation amount) is limited by the contact of one vane 24 with the circumferential end surface of the protrusion 31 on the retardation side. During this phase conversion control (except during the maximum retardation state), a hydraulic pressure higher than the set pressure (hydraulic pressure lower than the predetermined hydraulic pressure) is supplied to the insertion hole 28 through the passage 27, and the lock pin 60 is The locking portion 60a of the lock pin 60 moves against the spring 61, retracts from the restricting portion 42 to the guide portion 41 (retreats to a position indicated by a broken line in FIG. 3), and the locking portion of the lock pin 60 is moved. The lock by 60a is released. Further, during the phase conversion control described above, the switching valve 110 is in a non-energized state, and the connection port 101a of the control valve 100 is communicated with the retardation passage 11 via the connection passage 71.
[0025]
In the present embodiment, as described above, the relative phases of the inner rotor 20 and the outer rotor 30 are such that each vane 24 is in a neutral position (position shown in FIG. 2) in each fluid pressure chamber R0, and is shown in FIG. In this way, when the locking portion 60a and the regulating portion 42 are in a predetermined phase that synchronizes, the opening / closing timing of an intake valve (not shown) is set to a timing at which the internal combustion engine can be started. For this reason, the valve opening / closing timing is further delayed than the valve opening / closing timing at which the internal combustion engine can be started from this neutral position to the most retarded position where one vane 24 contacts the circumferential end surface of the protrusion 31 on the retarded side. When the internal combustion engine rotates at high speed, the control valve 100 is controlled as described above to perform phase conversion from the neutral position to the retarded angle side, and the closing timing of the intake valve (not shown) is delayed until it is difficult to start the internal combustion engine. Thus, the volumetric efficiency is improved by the inertia of the intake air, and the output of the internal combustion engine can be improved.
[0026]
When the internal combustion engine is stopped, the drive of the oil pump P is stopped, the supply of hydraulic oil to the fluid pressure chamber R0 is stopped, and the control valve 100 is turned off. As a result, the pressing force by the advance hydraulic pressure in the advance chamber R1 and the press force by the retard hydraulic pressure in the retard chamber R2 do not act on the vane 24, and the internal rotor 20 and the camshaft 10 have the above-described effects. Only the force in the retarding direction (until the crankshaft of the internal combustion engine completely stops) is acting, and the internal rotor 20 at the time of stop according to the relative phase of the internal rotor 20 and the external rotor 30 immediately before the stop. And the relative phase of the external rotor 30 is determined. At this time, if the relative phase between the inner rotor 20 and the outer rotor 30 immediately before the stop is in a predetermined phase in which the locking portion 60a and the regulating portion 42 are synchronized, the hydraulic pressure supplied to the insertion hole 28 becomes equal to or lower than the set pressure. The locking portion 60a of the lock pin 60 is fitted into the regulating portion 42 by the spring 61, and the relative phase between the internal rotor 20 and the external rotor 30 is maintained (locked). Further, when the relative phase between the inner rotor 20 and the outer rotor 30 immediately before the stop is on the advance side with respect to the predetermined phase in which the locking portion 60a and the regulating portion 42 are synchronized, the inner rotor 20 and the camshaft 10 are acted. The internal rotor 20 and the camshaft 10 move to the retard side with respect to the external rotor 30 by the force in the retard direction described above, but the locking portion 60a is retarded while being guided by the guide portion 41 by the spring 61. When it moves to and is synchronized with the restricting portion 42, it is inserted into the restricting portion 42. Thereby, the relative phase of the internal rotor 20 and the external rotor 30 is maintained (locked).
[0027]
In this embodiment, when a starter switch (not shown) is turned on at the time of starting the internal combustion engine, the solenoid 112 of the switching valve 110 is energized for a predetermined time after the starter switch is turned on, and is communicated with the retard passage 11. A connection passage 71 is connected to the drain. Thus, when the internal combustion engine is started, since the control valve 100 is in a non-energized state, both the advance angle chamber R1 and the retard angle chamber R2 are communicated with the drain. For this reason, the camshaft 10, the inner rotor 20 and the vanes 24 and 25 are retarded and advanced with respect to the outer rotor 30 and both plates 40 and 50 by cam fluctuation torque acting on the camshaft 10 when the internal combustion engine is started. However, as described above, the relative phase between the internal rotor 20 and the external rotor 30 immediately before the stop of the internal combustion engine is equal to a predetermined phase or a relationship in which the locking portion 60a and the regulating portion 42 are synchronized. When the stop portion 60a and the regulating portion 42 are on the more advanced side than the predetermined phase that synchronizes, the locking portion 60a is fitted in the regulating portion 42, so the camshaft 10, the internal rotor 20 and the vane 24, 25 fluttering is prevented.
[0028]
By the way, when the relative phase of the internal rotor 20 and the external rotor 30 immediately before the stop of the internal combustion engine is on the retard side with respect to the predetermined phase in which the locking portion 60a and the regulating portion 42 are synchronized, or the relative phase in the maximum retard state. In some cases, the internal combustion engine may be stopped in a state where the locking portion 60a is not fitted into the restricting portion 42. When the internal combustion engine is started in this state, the internal rotor 20 and the camshaft 10 are moved to the retard side with respect to the external rotor 30 by the above-described force in the retard direction, so that the maximum retard state is achieved. It becomes difficult to start. At this time, since the urging force of the spring 61 that urges the lock pin 60 is small, the cam shaft 10 and the inner rotor 20 are moved to the outer rotor 30 by the spring 61 via the locking portion 60a and the guide portion 41. On the other hand, it cannot be rotated forward by α from the maximum retard position. In the present embodiment, since the advance angle chamber R1 and the retard angle chamber R2 are both in communication with the drain when starting the internal combustion engine as described above, the camshaft 10 is driven by the cam fluctuation torque acting on the camshaft 10. When the internal rotor 20 and the vanes 24 and 25 greatly fluctuate (vibrate) to the retard side and the advance side with respect to the external rotor 30, and when the inner rotor 20 and the vanes 24 and 25 flutter to the retard side after flapping to the advance side, the locking portion 60a It moves to the retard side while being guided by the guide portion 41 by the spring 61, and is fitted into the restriction portion 42 when synchronized with the restriction portion 42. Thereby, the relative phase of the internal rotor 20 and the external rotor 30 is maintained (locked).
[0029]
Therefore, when the internal combustion engine is started, the rotation transmission composed of the camshaft 10, the internal rotor 20 and the vanes 24, 25, etc., accompanied by large rotational fluctuations, and the rotation transmission composed of the external rotor 30, the front plate 40, the rear plate 50, etc. Unnecessary relative rotation of the member is reliably regulated by the lock pin 60, and it is possible to reliably prevent occurrence of hitting sound by the vane 24 due to unnecessary relative rotation of the rotation shaft and the rotation transmitting member.
[0030]
As described above, according to the present embodiment, the volumetric efficiency in the high-speed rotation region of the internal combustion engine can be prevented while preventing the generation of a hitting sound caused by the collision between the vane 24 and the circumferential end surface of the protrusion 31 when the internal combustion engine is started. Can be improved.
[0031]
In the above-described embodiment, the present invention is applied to the valve opening / closing timing control device in which the lock by the lock pin 60 is released by the hydraulic pressure supplied to the advance angle chamber R1, but the present invention relates to the lock pin having the large diameter portion and the lock pin. It is formed in a stepped shape having a small diameter portion, and one of the hydraulic pressure supplied to the advance angle chamber R1 and the retard angle chamber R2 is applied to the small diameter portion of the lock pin and the step portion of the lock pin and the step hole The same applies to the valve opening / closing timing control device in which the other of the hydraulic pressure supplied to the advance angle chamber R1 and the retard angle chamber R2 is applied to the annular space formed in the cylinder and the lock by the lock pin is released by either hydraulic pressure. Can be implemented. Moreover, in the said embodiment, although this invention was implemented to the valve opening / closing timing control apparatus restrict | limited by the one vane 24 contact | abutting to the circumferential direction end surface of the one advancement side, this invention is implemented. Similarly, the valve opening / closing timing control device is configured so that the maximum advance amount is limited before the vane contacts the circumferential end surface by controlling the hydraulic pressure in the advance chamber R1 and the retard chamber R2. It is possible. Further, in the above embodiment, the present invention is applied to the valve opening / closing timing control device assembled to the intake camshaft 10, but the present invention is applied to the valve opening / closing timing control device assembled to the exhaust camshaft. Can be similarly implemented.
[0032]
【The invention's effect】
As described above, according to the present invention, when the supply of the working fluid to the fluid pressure chamber is stopped when the internal combustion engine is stopped, the fluid pressure in the fluid pressure chamber decreases and the vane cannot be held by the fluid pressure. Although the rotation shaft rotates in the retarding direction with respect to the rotation transmission member, the locking member is attached radially inward by the urging means against the fluid pressure of at least one of the first fluid passage and the second fluid passage. The engaging portion of the engaging member is guided by the guide portion of the engaging groove and is inserted into the restricting portion, so that the relative phase between the rotation shaft and the rotation transmitting member is maintained at an intermediate relative phase. As a result, it is possible to accurately prevent the vane from colliding with the circumferential end surface of the fluid pressure chamber and generating sound when starting the internal combustion engine.
[0033]
Further, since the valve opening / closing timing at the start of the internal combustion engine is obtained at the intermediate relative phase described above, the valve opening / closing timing can be further delayed at the most retarded position than at the intermediate relative phase, Inertia can be used to improve volumetric efficiency and increase the output of the internal combustion engine, while the valve opening and closing timing at the start can be advanced to prevent poor start of the internal combustion engine due to a decrease in the compression ratio. It becomes possible to do.
[Brief description of the drawings]
FIG. 1 is a longitudinal side view showing an embodiment of a valve timing control apparatus according to the present invention.
FIG. 2 is a cross-sectional view taken along the line AA of FIG.
FIG. 3 is an enlarged cross-sectional view taken along the line BB of FIG.
4 is a cross-sectional view taken along the line CC of FIG.
[Explanation of symbols]
10 Camshaft (Rotating shaft)
11 Delay passage (second fluid passage)
12 Advance passage (first fluid passage)
20 Internal rotor (rotating shaft)
21 annular groove (second fluid passage)
22 passage (second fluid passage)
23 passage (first fluid passage)
24, 25 Vane 26 passage (first fluid passage)
28, 29 Insertion space 30 External rotor (rotation transmission member)
31 Projection 32 Recess 40 Front Plate (Rotation Transmission Member)
40a Locking groove 41 Guide portion 42 Restricting portion 50 Rear plate (rotation transmission member)
51 Timing sprocket (Rotation transmission member)
60 Lock pin (locking member)
61 Spring (biasing means)
60a Locking portion 70 Cylinder head 100 Control valve 110 Switching valve R0 Fluid pressure chamber R1 Advance angle chamber R2 Delay angle chamber

Claims (2)

内燃機関のシリンダヘッドに回転自在に組付けられる弁開閉用の回転軸と、該回転軸に所定範囲で相対回転可能に外装されクランク軸からの回転動力が伝達される回転伝達部材と、該回転伝達部材に形成された複数個の凹部内に配設される前記回転軸に径方向に延在して設けられた複数個のベーンと、前記回転軸と前記回転伝達部材との間に形成され前記ベーンによって進角用室と遅角用室とに二分される流体圧室と、前記進角用室に流体を給排する第1流体通路と、前記遅角用室に流体を給排する第2流体通路と、前記回転軸と前記回転伝達部材の相対位相が所定の位相である時に前記回転軸と前記回転伝達部材の相対位相を保持する位相保持機構とを備えた弁開閉時期制御装置において、前記位相保持機構を、前記流体圧室の一つを前記回転軸の軸方向に区画する前記回転伝達部材の側壁部に形成され、前記回転軸の径方向外方に延びる規制部と該規制部の径方向外端から径方向に拡開して延在する扇形状の案内部を有する係止溝と、該係止溝が形成される流体圧室内に配設されるベーンに前記回転軸の径方向に延在して形成される挿通空間内に前記第1流体通路及び前記第2流体通路の少なくとも一方の流体圧により移動可能に前記回転軸の径方向外方に移動可能に配設されると共に前記係止溝内に嵌入するように軸方向に延在し、前記規制部に嵌入されることで前記回転伝達部材と前記回転軸の相対位相を保持可能な係止部を有する係止部材と、該係止部材を前記回転軸の径方向内方に向けて付勢する付勢手段とから構成し、前記ベーンにより前記遅角用室の容積が最小とされる最大進角状態における前記回転軸と前記回転伝達部材の相対位相と前記ベーンにより前記進角用室の容積が最小とされる最大遅角状態における相対位相の間の中間的な相対位相であって、前記内燃機関が始動可能な弁開閉時期にある時の所定の中間的な相対位相時に前記係止部が前記規制部に嵌入されるようにしたことを特徴とする弁開閉時期制御装置。A rotary shaft for opening and closing a valve that is rotatably assembled to a cylinder head of an internal combustion engine, a rotation transmission member that is externally mounted on the rotary shaft so as to be relatively rotatable within a predetermined range, and that transmits rotational power from a crankshaft, and the rotation A plurality of vanes provided in the plurality of recesses formed in the transmission member and extending in the radial direction on the rotation shaft; and formed between the rotation shaft and the rotation transmission member. A fluid pressure chamber divided into an advance angle chamber and a retard angle chamber by the vane, a first fluid passage for supplying and discharging fluid to the advance angle chamber, and supplying and discharging fluid to the retard angle chamber A valve opening / closing timing control device comprising: a second fluid passage; and a phase holding mechanism that holds a relative phase between the rotation shaft and the rotation transmission member when a relative phase between the rotation shaft and the rotation transmission member is a predetermined phase. The one of the fluid pressure chambers is connected to the phase holding mechanism. A restricting portion that is formed on a side wall portion of the rotation transmission member that is partitioned in the axial direction of the rolling shaft, extends radially outward of the rotating shaft, and extends in a radial direction from the radially outer end of the restricting portion. A locking groove having a fan-shaped guide portion and a vane disposed in a fluid pressure chamber in which the locking groove is formed and extending in a radial direction of the rotary shaft in the insertion space. An axial direction is provided so as to be movable radially outwardly of the rotating shaft and to be fitted in the locking groove so as to be movable by a fluid pressure of at least one of the first fluid passage and the second fluid passage. A locking member that has a locking portion that extends and is fitted into the regulating portion to maintain a relative phase between the rotation transmitting member and the rotating shaft; and the locking member is disposed in the radial direction of the rotating shaft. Urging means for urging toward the direction, and the volume of the retarding chamber is minimized by the vane. The intermediate relative phase between the relative phase of the rotation shaft and the rotation transmitting member in the maximum advanced angle state and the relative phase in the maximum retarded state where the volume of the advance chamber is minimized by the vane. The valve opening / closing timing control device is characterized in that the locking portion is inserted into the restricting portion at a predetermined intermediate relative phase when the internal combustion engine is at a valve opening / closing timing at which the internal combustion engine can be started. 前記弁開閉時期制御装置は、前記第1流体通路を流体圧源に連通すると共に前記第2流体通路をドレンに連通する第1制御位置と前記第1流体通路をドレンに連通すると共に前記第2流体通路を流体圧源に連通する第2制御位置とに切換制御可能な制御弁、及び該制御弁と前記第流体通路との間に前記第流体通路を選択的にドレンに連通可能な切換弁を備え、前記内燃機関の始動時に前記制御弁が前記第制御位置に切換えられると共に、所定時間、前記切換弁が前記第流体通路をドレンに連通するように切換えられることを特徴とする請求項1に記載の弁開閉時期制御装置。The valve timing control device, said communicated with the first control position and before Symbol first fluid passage communicating the second fluid passage to a drain together with the first fluid passage communicating with the fluid pressure source to drain the second control position and to the switching controllable control valve for communicating the second fluid passage to a fluid pressure source, and the second fluid passage can be selectively communicate the drain between the second fluid passage and said control valve comprising a a change-over valve, wherein with the internal combustion engine startup before Symbol control valve is switched to the second control position, a predetermined time, the switching valve may be switched so as to communicate the second fluid passage to drain The valve opening / closing timing control device according to claim 1.
JP14815298A 1998-05-28 1998-05-28 Valve timing control device Expired - Fee Related JP3925672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14815298A JP3925672B2 (en) 1998-05-28 1998-05-28 Valve timing control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14815298A JP3925672B2 (en) 1998-05-28 1998-05-28 Valve timing control device

Publications (2)

Publication Number Publication Date
JPH11343819A JPH11343819A (en) 1999-12-14
JP3925672B2 true JP3925672B2 (en) 2007-06-06

Family

ID=15446432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14815298A Expired - Fee Related JP3925672B2 (en) 1998-05-28 1998-05-28 Valve timing control device

Country Status (1)

Country Link
JP (1) JP3925672B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19961193B4 (en) * 1999-12-18 2009-06-10 Schaeffler Kg Rotary piston adjuster
JP4207141B2 (en) 2000-06-09 2009-01-14 株式会社デンソー Valve timing adjustment device
DE10033291A1 (en) * 2000-07-07 2002-01-17 Porsche Ag Camshaft for actuating valves of an internal combustion engine
DE10039913C1 (en) * 2000-08-16 2001-10-18 Porsche Ag Device to adjust relative rotation angle between camshaft and drive wheel of internal combustion engine; has inner part fixed to cam shaft and driven cellular wheel that can be locked together
DE102004049123A1 (en) * 2004-10-07 2006-04-13 Ina-Schaeffler Kg Device for changing the timing of gas exchange valves of an internal combustion engine
JP4448826B2 (en) 2006-01-26 2010-04-14 株式会社日立製作所 Phase variable device and camshaft phase variable device for internal combustion engine
JP5601542B2 (en) * 2012-01-20 2014-10-08 株式会社デンソー Valve timing adjustment device

Also Published As

Publication number Publication date
JPH11343819A (en) 1999-12-14

Similar Documents

Publication Publication Date Title
JP3918971B2 (en) Valve timing control device
JP4147435B2 (en) Valve timing control device
JPH11280427A (en) Control device for valve opening/closing timing
US6450137B2 (en) Variable valve timing system
JP3211713B2 (en) Variable valve timing mechanism for internal combustion engine
JPH11132014A (en) Valve open/close timing control device
JP4284871B2 (en) Valve timing adjusting device for internal combustion engine
JP4081893B2 (en) Valve timing control device
JPH11101107A (en) Valve opening/closing timing control device
JP3925672B2 (en) Valve timing control device
JP4389383B2 (en) Valve timing control device
JP3845986B2 (en) Valve timing control device
JP3812137B2 (en) Valve timing control device
JP3760567B2 (en) Valve timing control device
JP4000696B2 (en) Valve timing control device
JP6312568B2 (en) Valve timing control device for internal combustion engine
EP2778356B1 (en) Valve timing control apparatus
JP4390295B2 (en) Valve timing control device
JP2000045724A (en) Valve operation timing controller
JP2000186513A (en) Valve opening/closing timing controller
JPH11311109A (en) Valve on-off timing controller
JP4506059B2 (en) Valve timing control device
JP6797342B2 (en) Valve timing adjuster
JP6533322B2 (en) Valve timing control system for internal combustion engine
JP2000045723A (en) Valve system of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060824

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees