JP3925507B2 - Secondary battery charging method and battery pack - Google Patents

Secondary battery charging method and battery pack Download PDF

Info

Publication number
JP3925507B2
JP3925507B2 JP2004128469A JP2004128469A JP3925507B2 JP 3925507 B2 JP3925507 B2 JP 3925507B2 JP 2004128469 A JP2004128469 A JP 2004128469A JP 2004128469 A JP2004128469 A JP 2004128469A JP 3925507 B2 JP3925507 B2 JP 3925507B2
Authority
JP
Japan
Prior art keywords
charging rate
voltage
secondary battery
charging
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004128469A
Other languages
Japanese (ja)
Other versions
JP2005312239A (en
Inventor
正樹 穂刈
太一 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004128469A priority Critical patent/JP3925507B2/en
Priority to US11/106,866 priority patent/US7382110B2/en
Priority to KR1020050031976A priority patent/KR101166099B1/en
Priority to CNB2005100762222A priority patent/CN100382408C/en
Publication of JP2005312239A publication Critical patent/JP2005312239A/en
Application granted granted Critical
Publication of JP3925507B2 publication Critical patent/JP3925507B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

この発明は、二次電池の充電方法および電池パックに関する。   The present invention relates to a method for charging a secondary battery and a battery pack.

現在、電池を用いて使用される機器の多くは充電可能な二次電池を装着して使用されており、自宅などで充電器を用いて充電する。これらの機器は、ランプの色や点滅、液晶表示などの方法により充電中であるのか充電完了状態にあるのかを表示している。   Currently, most devices that use batteries are used with a rechargeable secondary battery, and are charged using a charger at home or the like. These devices indicate whether charging is in progress or charging is complete by methods such as lamp color, blinking, and liquid crystal display.

二次電池の充電容量を検出する方法として、電流または電力量を積算することにより充電容量を求める積算方式と、電池電圧を計測することにより満充電かどうかの判別を行う電圧方式が用いられている。   As a method for detecting the charge capacity of the secondary battery, an integration method for obtaining the charge capacity by integrating current or electric energy and a voltage method for determining whether the battery is fully charged by measuring the battery voltage are used. Yes.

積算方式は、上述したように、電流または電力量を積算するため、電圧の変動を気にすることなく絶対的な充電容量を検出することができ、充電容量の検出が容易である。また、図1に示すように、特に充電初期においては直線的に充電率(充電容量)が上昇するため、正確に充電率を算出することができる。   As described above, since the integration method integrates the current or the electric energy, the absolute charge capacity can be detected without worrying about voltage fluctuation, and the charge capacity can be easily detected. Further, as shown in FIG. 1, the charging rate (charging capacity) increases linearly particularly in the initial stage of charging, so that the charging rate can be calculated accurately.

一方、電圧方式では、例えばリチウムイオン電池の場合は電池開放電圧が4.2V/セルになった時を満充電と定義している。セルを多数用いた充電池であれば、その中の一つが4.2Vに達した時点を満充電とする。そのため、開放電圧を計測することにより、確実に満充電検出をすることが可能である。   On the other hand, in the voltage system, for example, in the case of a lithium ion battery, the time when the battery open voltage becomes 4.2 V / cell is defined as full charge. In the case of a rechargeable battery using a large number of cells, the time when one of them reaches 4.2 V is considered to be fully charged. Therefore, it is possible to reliably detect full charge by measuring the open circuit voltage.

電圧を計測する際により正確に値を検出するためには、電流を止め、無負荷状態で電圧を測ることが望ましい。しかし、実際に電流を止めることは制御が複雑になるため、実現できないことが多い。また、充電電流を止めることができたとしても電池内部の分極電圧はすぐには安定せず、正確な開放電圧を想定することができない。そこで、充電電流と電池電流Imp(インピーダンス)を計測することで、充電電流を止めることなく充電率を検出する方法が用いられる。   In order to detect the value more accurately when measuring the voltage, it is desirable to stop the current and measure the voltage in a no-load state. However, it is often impossible to actually stop the current because of complicated control. Even if the charging current can be stopped, the polarization voltage inside the battery is not stabilized immediately, and an accurate open-circuit voltage cannot be assumed. Therefore, a method is used in which the charging rate is detected without stopping the charging current by measuring the charging current and the battery current Imp (impedance).

この方法では、電池の内部抵抗と充電電流によって生じる電圧上昇分をセル測定電圧から減算することで開放電圧を想定し、充電率を算出することができる。これにより、安定した満充電検出をすることができる。   In this method, the charging rate can be calculated assuming an open circuit voltage by subtracting the voltage increase caused by the internal resistance of the battery and the charging current from the cell measurement voltage. Thereby, stable full charge detection can be performed.

しかしながら、上述した積算方式による充電方法では、パック全体の充電容量を正確に把握していることが条件であり、その充電容量が劣化によって減少したり、環境温度によって変動したりしてしまうと、満充電容量の想定誤差が起こりやすく正確に満充電を検出することができない。   However, in the charging method based on the integration method described above, it is a condition that the charge capacity of the entire pack is accurately grasped, and when the charge capacity decreases due to deterioration or fluctuates due to environmental temperature, An assumed error in full charge capacity is likely to occur, and full charge cannot be accurately detected.

また、充電途中での測定誤差があった場合、図1に示すように充電率が100%とならず、満充電検出ができなくなる。   If there is a measurement error during charging, the charging rate does not reach 100% as shown in FIG.

さらに、電圧法を用いた場合、充電電流が小さい値の時は開放電圧を正しく想定することができる。しかし、図2に示すように、充電電流が大きい値になると電池直流Impの誤差や、充電電流によるセル自己発熱で電池電流Imp分が変動し、正しい開放電圧を得ることができず、正確な充電率を検出することができない。   Furthermore, when the voltage method is used, the open circuit voltage can be correctly assumed when the charging current is a small value. However, as shown in FIG. 2, when the charging current becomes a large value, the battery direct current Imp error fluctuates due to the error of the battery direct current Imp or the self-heating of the cell due to the charging current, and a correct open-circuit voltage cannot be obtained. The charge rate cannot be detected.

そこで、積算法と電圧法を併用して充電容量を検出する方法が用いられる。充電開始時から満充電に近くなるまでは積算方式を用い、満充電付近で電圧法に切り替えて充電容量を検出することにより、それぞれの方法が最も効果を発する領域で計測を行うことができる。   Therefore, a method of detecting the charge capacity using both the integration method and the voltage method is used. By using the integration method from the start of charging until it is close to full charge, and switching to the voltage method near full charge and detecting the charge capacity, measurement can be performed in the area where each method is most effective.

以下の特許文献1に、電流積算法と電圧法を併用して電池容量の検出を行う方法が記載されている。特許文献1の発明は、電池容量が空に近いとき電流量はある一定の値を示し、満充電に近くなるにしたがって電流量が小さくなる特性に着目し、あらかじめ設定された電流値より小さいときは電圧法を、大きいときは電流積算法を用いるものである。各方法を切り替えて電池容量を計測することにより、電池容量の算出精度を高めることが可能となる。
国際公開第98/056059号パンフレット
Patent Document 1 below describes a method for detecting battery capacity by using a current integration method and a voltage method in combination. The invention of Patent Document 1 pays attention to the characteristic that the current amount shows a certain value when the battery capacity is close to empty, and the current amount becomes smaller as it becomes close to full charge, and when the current amount is smaller than a preset current value Uses the voltage method, and when large, the current integration method is used. By measuring the battery capacity by switching each method, it is possible to improve the calculation accuracy of the battery capacity.
International Publication No. 98/056059 Pamphlet

しかしながら、積算法と電圧法を併用する方法において、積算法から電圧法に切り替える際に、積算法で計測した充電容量(または充電率)と電圧法で計測した充電容量(または充電率)は必ずしも一致せず、測定値の切り替わりに違和感が生じる場合があった。また、徐々に積算法から電圧法に切り替えていく場合でも、一致しないそれぞれの値をつなげるため、測定値を強制的に補正していくような方法もとられることから、充電容量または充電率の測定精度が悪化し、充電に支障をきたすおそれもあった。   However, in the method using both the integration method and the voltage method, when switching from the integration method to the voltage method, the charge capacity (or charge rate) measured by the integration method and the charge capacity (or charge rate) measured by the voltage method are not necessarily There was a case where the measurement values did not match and there was a sense of discomfort. In addition, even when gradually switching from the integration method to the voltage method, it is possible to forcibly correct the measured values in order to connect the values that do not match. The measurement accuracy deteriorated, and there was a risk of hindering charging.

したがって、この発明の目的は、充電池の劣化や環境の変化によっても正確に満充電可能であり、また、より高い精度で充電容量または充電率を検出することができる二次電池の充電方法および電池パックを提供することにある。   Therefore, an object of the present invention is to charge a secondary battery that can be accurately fully charged even by deterioration of the rechargeable battery or a change in environment, and that can detect the charge capacity or the charge rate with higher accuracy. It is to provide a battery pack.

上記課題を解決するために、この発明の第1の態様は、二次電池を充電する充電方法において、二次電池の電流値または電力値を一定時間毎に積算することにより電池容量を算出する積算法を用いた二次電池の充電率検出と、二次電池の電圧値を測定し、電圧値と充電率の相関性に基づいて充電率を算出する電圧法を用いた二次電池の充電率検出とを行い、二次電池の電圧法による充電率に応じて、積算法で検出した充電率と電圧法で検出した充電率とを重み付け加算し、最終的な充電率検出を行うことを特徴とする二次電池の充電方法である。 In order to solve the above problems, according to a first aspect of the present invention, in a charging method for charging a secondary battery, the battery capacity is calculated by integrating the current value or power value of the secondary battery at regular intervals. Charging the secondary battery using the voltage method that detects the charging rate of the secondary battery using the integration method, measures the voltage value of the secondary battery, and calculates the charging rate based on the correlation between the voltage value and the charging rate The rate detection is performed, and the charge rate detected by the integration method and the charge rate detected by the voltage method are weighted and added according to the charge rate by the voltage method of the secondary battery, and the final charge rate detection is performed. It is the charging method of the secondary battery characterized.

また、この発明の第2の態様は、二次電池の電池パックにおいて、電池パックは二次電池の電圧および電流を測定する測定部と、電池容量演算部とを有し、電池容量演算部は二次電池の電流値または電力値を一定時間毎に積算することにより電池容量を算出する積算法を用いて、二次電池の充電率を検出する検出手段と、二次電池の電圧値を測定し、電圧値と充電率の相関性に基づいて充電率を算出する電圧法を用いて、二次電池の充電率を検出する検出手段と、二次電池の電圧法による充電率に応じて、積算法で検出した充電率と電圧法で検出した充電率とを重み付け加算し、最終的な充電率検出を行う手段とを有することを特徴とする電池パックである。 According to a second aspect of the present invention, in the battery pack of the secondary battery, the battery pack includes a measurement unit that measures the voltage and current of the secondary battery, and a battery capacity calculation unit. Using the integration method to calculate the battery capacity by integrating the current value or power value of the secondary battery at regular intervals, the detection means for detecting the charging rate of the secondary battery and the voltage value of the secondary battery are measured Then, using the voltage method for calculating the charging rate based on the correlation between the voltage value and the charging rate, according to the detection means for detecting the charging rate of the secondary battery, and the charging rate by the voltage method of the secondary battery, A battery pack characterized by having a means for performing a final charge rate detection by weighting and adding a charge rate detected by an integration method and a charge rate detected by a voltage method.

この発明によれば、電池の充電率を充電初期から高精度で算出することができると共に、正確に満充電を検出することが可能となる。   According to the present invention, the charging rate of the battery can be calculated with high accuracy from the beginning of charging, and full charge can be accurately detected.

以下、この発明の一実施形態について図面を参照しながら説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図3は、この発明を適用することが可能なバッテリパックの構成の一例を模式的に示すものである。   FIG. 3 schematically shows an example of the configuration of a battery pack to which the present invention can be applied.

このバッテリパックは、充電時には充電器に装着され、+端子1と−端子2がそれぞれ充電器の+端子、−端子に接続され、充電が行われる。また、電気機器使用時には充電時と同様に、+端子1と−端子2が機器の+端子、−端子に接続され、放電が行われる。   This battery pack is attached to the charger during charging, and the + terminal 1 and the − terminal 2 are connected to the + terminal and the − terminal of the charger, respectively, and charging is performed. Further, when using an electric device, as in charging, the + terminal 1 and the −terminal 2 are connected to the + terminal and −terminal of the device, and discharging is performed.

バッテリパックは主に、電池セル7、マイクロコンピュータ10、測定回路11、保護回路12、スイッチ回路4、通信端子3a,3bで構成されている。   The battery pack mainly includes a battery cell 7, a microcomputer 10, a measurement circuit 11, a protection circuit 12, a switch circuit 4, and communication terminals 3a and 3b.

電池セル7は、リチウムイオン電池等の二次電池で、4個の二次電池を直列に接続したものである。   The battery cell 7 is a secondary battery such as a lithium ion battery, in which four secondary batteries are connected in series.

マイクロコンピュータ10は、測定回路11から入力された電圧値、電流値を使用して電圧値の測定や電流値の積算を行うようになされている。また、参照符号8で示される温度検出素子(例えばサーミスタ)で電池温度を監視する。さらに、測定値等が参照符号13で示される不揮発性メモリEEPROM(Electrically Erasable and Programmable Read Only Memory)に保存される。さらに、マイクロコンピュータ10は電圧法信頼度の検出も随時行っている。   The microcomputer 10 uses the voltage value and current value input from the measurement circuit 11 to measure the voltage value and integrate the current value. Further, the battery temperature is monitored by a temperature detection element (for example, a thermistor) indicated by reference numeral 8. Further, the measured values and the like are stored in a nonvolatile memory EEPROM (Electrically Erasable and Programmable Read Only Memory) indicated by reference numeral 13. Further, the microcomputer 10 also performs voltage method reliability detection as needed.

測定回路11は、バッテリパック内の電池セル7の各セルの電圧を測定し、マイクロコンピュータ10に測定値を供給する。また、電流検出抵抗を使用して電流の大きさおよび向きを測定し、マイクロコンピュータ10に測定値を送るものである。さらに、測定回路11は、電池セル7の電圧を安定化して電源電圧を発生するレギュレータとしての機能も有する。 The measurement circuit 11 measures the voltage of each cell of the battery cell 7 in the battery pack and supplies the measured value to the microcomputer 10. Further, the current detection resistor 9 is used to measure the magnitude and direction of the current, and the measured value is sent to the microcomputer 10. Furthermore, the measurement circuit 11 also has a function as a regulator that stabilizes the voltage of the battery cell 7 and generates a power supply voltage.

保護回路12は、電池セル7のいずれかのセルの電圧が過充電検出電圧になったときや、電池セル7の電圧が過放電検出電圧以下になったとき、スイッチ回路4に制御信号を送ることにより、過充電、過放電を防止する。ここで、リチウムイオン電池の場合、過充電検出電圧が例えば4.2V±0.5Vと定められ、過放電検出電圧が2.4V±0.1Vと定められる。   The protection circuit 12 sends a control signal to the switch circuit 4 when the voltage of any of the battery cells 7 becomes an overcharge detection voltage or when the voltage of the battery cell 7 becomes equal to or lower than the overdischarge detection voltage. This prevents overcharge and overdischarge. Here, in the case of a lithium ion battery, the overcharge detection voltage is determined to be 4.2 V ± 0.5 V, for example, and the overdischarge detection voltage is determined to be 2.4 V ± 0.1 V.

スイッチ回路4は、参照符号5で示される充電制御FET(Field Effect Transistor)と、参照符号6で示される放電制御FETとから構成されている。電池電圧が過充電検出電圧となったときは、充電制御FET5をOFFとし、充電電流が流れないように制御される。なお、充電制御FET5のOFF後は参照符号5aで示される寄生ダイオードを介することによって放電のみが可能となる。   The switch circuit 4 includes a charge control FET (Field Effect Transistor) indicated by reference numeral 5 and a discharge control FET indicated by reference numeral 6. When the battery voltage becomes the overcharge detection voltage, the charging control FET 5 is turned off and the charging current is controlled not to flow. Note that after the charge control FET 5 is turned off, only discharge is possible through a parasitic diode indicated by reference numeral 5a.

また、電池電圧が過放電検出電圧となったときは、放電制御FET6をOFFとし、放電電流が流れないように制御される。なお、放電制御FET6のOFF後は参照符号6aで示される寄生ダイオードを介することによって充電のみが可能となる。   Further, when the battery voltage becomes the overdischarge detection voltage, the discharge control FET 6 is turned off, and the discharge current is controlled not to flow. Note that after the discharge control FET 6 is turned off, only charging is possible through a parasitic diode indicated by reference numeral 6a.

通信端子3a,3bは、電気機器、例えばカムコーダ(Camcorder: Camera and recorderの略)に装着された際、電池容量の情報を機器に送信するためのものである。この情報を受け取った機器側では、液晶等の表示部に充電容量や、充電率を表示する。   The communication terminals 3a and 3b are used to transmit battery capacity information to an apparatus when the terminal is attached to an electric apparatus such as a camcorder (camcorder: camera and recorder). The device that receives this information displays the charge capacity and the charge rate on a display unit such as a liquid crystal display.

この発明では、充電容量の検出は積算法(電流積算または電圧積算)と電圧法を併用して行うが、ある閾値で積算法と電圧法を完全に切り替えるのではなく、常に積算法、電圧法の両方で充電率の計測を行う。また、充電率の値により、充電法で求めた値がどれだけ信頼できるかを定義した電圧法信頼度を算出し、その値に応じて電圧法で求められた充電容量と積算法で求められた充電容量とを重み付け加算して最終的な充電容量を求める。このような電圧法充電率を使用した重み付け加算により、積算法から電圧法に徐々に移行する。   In this invention, the charge capacity is detected using both the integration method (current integration or voltage integration) and the voltage method. However, the integration method and the voltage method are not always switched at a certain threshold value, but always the integration method and voltage method. Measure the charging rate with both. In addition, the voltage method reliability that defines how reliable the value obtained by the charging method is calculated from the value of the charging rate, and the charging capacity obtained by the voltage method and the integration method are calculated according to the value. The final charge capacity is obtained by weighting and adding the obtained charge capacity. By such weighted addition using the voltage method charging rate, the integration method gradually shifts to the voltage method.

また、積算法で充電容量を算出する際、除算処理が加わるとデータ中の小数点以下の値が切り捨て等によって丸められ、桁落ちした値(電流値)を積算していくために、誤差が積算結果に累積される。その結果、積算電流値の精度が悪くなり、充電率の検出の精度も悪くなる。   Also, when calculating the charge capacity by the integration method, if division processing is added, the value after the decimal point in the data is rounded off by rounding off, etc., and the value that has been dropped (current value) is integrated. Accumulated in results. As a result, the accuracy of the integrated current value is deteriorated, and the accuracy of detection of the charging rate is also deteriorated.

誤差の累積を防止するために、有効桁数を増やすことにより桁落ちによる誤差に対応する方法では、逆にマイクロコンピュータのメモリ使用量が増え、処理を圧迫することになる。また、マイクロコンピュータのメモリが足りない場合は有効桁数を増やすことができず、桁落ちしたデータを積算していくことになり、精度の悪化につながる。   In order to prevent the accumulation of errors, the method for dealing with errors caused by dropping digits by increasing the number of effective digits, conversely, increases the memory usage of the microcomputer and puts pressure on the processing. In addition, when the memory of the microcomputer is insufficient, the number of effective digits cannot be increased, and the data with the digits dropped is accumulated, leading to deterioration in accuracy.

そこで、桁落ちの影響を極力少なくするために、一実施形態では以下のような積算方法を用いる。   Therefore, in order to reduce the influence of the digit loss as much as possible, the following integration method is used in one embodiment.

図4に示すように、電流値の測定時に入力端子21とスイッチ22を介して、ゲインが24倍のアンプ23とゲインが125倍のアンプ24とを接続し、各アンプの出力電圧をマイクロコンピュータ10のA/Dコンバータ25に供給してデジタルデータへと変換する。各アンプは電流値によって使い分け、電流が2Aより大きいときは24倍のアンプを、2A以下のときは125倍のアンプを使用する。この構成により、電流値が小さい場合と大きい場合での有効桁数の差を少なくすることが可能である。   As shown in FIG. 4, when measuring the current value, an amplifier 23 having a gain of 24 and an amplifier 24 having a gain of 125 are connected via an input terminal 21 and a switch 22, and the output voltage of each amplifier is connected to a microcomputer. 10 A / D converters 25 for conversion to digital data. Each amplifier is selectively used according to the current value. When the current is larger than 2A, a 24 × amplifier is used. When the current is 2A or less, a 125 × amplifier is used. With this configuration, it is possible to reduce the difference in the effective digits between when the current value is small and when the current value is large.

ただし、24倍アンプ23を通った測定値と125倍アンプ24を通った測定値は桁の重みが違うため、単純に足し合わせることができない。そこで、以下の方法により、桁落ちの影響が少なくなるようにする。   However, the measured value passing through the 24 × amplifier 23 and the measured value passing through the 125 × amplifier 24 have different digit weights, and cannot be simply added together. Therefore, the following method is used to reduce the influence of digit loss.

例えば、電流測定のハードウェア条件を以下のようにする。
A/D基準電圧(AVREF): 3000mV
A/D分解能: 1024(10Bit)
電流検出抵抗(図3の抵抗9): 5mΩ
For example, the hardware conditions for current measurement are as follows.
A / D reference voltage (AVREF): 3000 mV
A / D resolution: 1024 (10 bits)
Current detection resistor (resistor 9 in FIG. 3): 5 mΩ

このとき、電池セル7を流れる電流1AあたりのA/Dコンバータ25に入力される電圧値は、
24倍アンプ23の場合:5mΩ×1A×24=120(mV/A) ・・・(1)
125倍アンプ24の場合:5mΩ×1A×125=625(mV/A)・・・(2)
At this time, the voltage value input to the A / D converter 25 per 1 A of current flowing through the battery cell 7 is
In the case of the 24 × amplifier 23: 5 mΩ × 1 A × 24 = 120 (mV / A) (1)
In the case of 125 times amplifier 24: 5mΩ × 1A × 125 = 625 (mV / A) (2)

また、A/Dコンバータ25の1分解能あたりの電圧感度は、3000mV/1024=2.930(mV)となる。これを24倍アンプ23の使用時における電流感度に換算すると、2.930(mV)/120(mV/A)×1000≒24.41(mA)となる。   Further, the voltage sensitivity per resolution of the A / D converter 25 is 3000 mV / 1024 = 2.930 (mV). When this is converted into current sensitivity when using the 24 × amplifier 23, it becomes 2.930 (mV) / 120 (mV / A) × 1000≈24.41 (mA).

上述した値を元に、積算処理の流れを図5のフローチャートを参照して説明する。   Based on the above-described values, the flow of integration processing will be described with reference to the flowchart of FIG.

まず、ステップS1で積算処理が開始されると、図3中の電流検出抵抗9でA/Dコンバータに入力する電流値を測定し、測定された電流値をマイクロコンピュータ10にA/D入力値として供給する(ステップS2)。次に、ステップS3ではステップS2で計算された入力値を24倍アンプ23と125倍アンプ24のどちらを用いて計測するかを決定する。電流検出抵抗9での電流値が2Aより大きい場合は24倍アンプ23を、2A以下の場合は125倍アンプ24を使用する。   First, when integration processing is started in step S1, the current value input to the A / D converter is measured by the current detection resistor 9 in FIG. 3, and the measured current value is input to the microcomputer 10 as the A / D input value. (Step S2). Next, in step S3, it is determined which of the 24 × amplifier 23 and the 125 × amplifier 24 is used to measure the input value calculated in step S2. When the current value at the current detection resistor 9 is larger than 2A, the 24 × amplifier 23 is used. When the current value is 2A or less, the 125 × amplifier 24 is used.

24倍アンプ23を用いる場合、A/D入力電圧を上述の式(1)から算出する。例えば、放電電流が2.5Aの場合、
A/D入力電圧は、120(mV/A)×2.5A=300(mV)
となる。また、A/D入力電圧をデジタルデータに変換すると、
A/D変換後の入力値(積算値)は、300(mV)/2.930(mV)≒102
となる。24倍アンプ23を使用した場合は、求めた積算値をそのまま積算エリアに加算する。
When the 24-times amplifier 23 is used, the A / D input voltage is calculated from the above equation (1). For example, when the discharge current is 2.5 A,
A / D input voltage is 120 (mV / A) × 2.5A = 300 (mV)
It becomes. When the A / D input voltage is converted into digital data,
The input value (integrated value) after A / D conversion is 300 (mV) /2.930 (mV) ≈102.
It becomes. When the 24-times amplifier 23 is used, the obtained integrated value is added to the integration area as it is.

125倍アンプ24を用いる場合、A/D入力電圧を上述の式(2)から算出する。例えば、放電電流が0.8Aの場合、
A/D入力電圧は、625(mV/A)×0.8A=500(mV)
となる。また、
A/D変換後の入力値(BATT_CURRENT_BIT)は、300(mV)/2.930(mV)≒170
となる。
When the 125 × amplifier 24 is used, the A / D input voltage is calculated from the above equation (2). For example, when the discharge current is 0.8A,
A / D input voltage is 625 (mV / A) × 0.8 A = 500 (mV)
It becomes. Also,
The input value (BATT_CURRENT_BIT) after A / D conversion is 300 (mV) /2.930 (mV) ≈170.
It becomes.

125倍アンプ24を用いた場合は、ステップS5で桁の重みが24倍アンプ23の使用時と同様になるように換算してから積算する(1回目の積算は前回剰余0とする)。A/D変換後の入力値170を24倍アンプ23の使用時に換算すると、170/5.208=32 余り3.344となる。ステップS6で余りの小数点以下を切り捨てすることにより、積算値32、剰余3と求められ、積算エリアには32が加算される。   When the 125-times amplifier 24 is used, the integration is performed after converting the digit weight so as to be the same as that when the 24-times amplifier 23 is used in step S5 (the first accumulation is the previous remainder 0). When the input value 170 after A / D conversion is converted when the 24-times amplifier 23 is used, 170 / 5.208 = 32 is obtained as the remainder 3.344. By rounding off the remainder after the decimal point in step S6, the integrated value 32 and the remainder 3 are obtained, and 32 is added to the integration area.

ここで、放電電流が0.8Aのまま10回積算した場合について説明する。剰余を無視し、剰余加算を行わない場合は 積算値32×10(回)=320であるが、理論的には換算前の入力値170を用いて計算すると、{170×10(回)}/5.208≒326となり、積算値に6のずれが生じる。   Here, the case where the discharge current is accumulated 10 times with 0.8 A will be described. When the remainder is ignored and the remainder addition is not performed, the integrated value is 32 × 10 (times) = 320. However, theoretically, when the calculation is performed using the input value 170 before conversion, {170 × 10 (times)} /5.208≈326, resulting in a deviation of 6 in the integrated value.

そこで、前回除算した時に求めた剰余を次の計算時に加算して積算処理を行う。つまり、2回目に求めた換算前の入力値170に1回目の剰余3を加算し、合計値を換算することで2回目の積算値を決定する。3回目以降は、2回目と同様に換算前の入力値に前回の剰余を加算してから全体を換算する。   Therefore, the remainder obtained by the previous division is added during the next calculation to perform the integration process. That is, the second integrated value is determined by adding the first remainder 3 to the input value 170 before conversion obtained the second time and converting the total value. From the third time on, the whole is converted after adding the previous remainder to the input value before conversion as in the second time.

10回目までの積算処理の状況を図6に示す。剰余を加算する方法で積算処理が行われた結果、この例では積算エリアの値が326となり、誤差が発生しない。したがって、前回計算時の剰余をA/D入力値に加算してから除算することで、桁落ちの影響を極力なくすことが出来る。   The status of the integration process up to the tenth time is shown in FIG. As a result of the integration process performed by the method of adding the remainder, in this example, the value of the integration area is 326, and no error occurs. Therefore, by adding the remainder at the time of the previous calculation to the A / D input value and then dividing, it is possible to minimize the influence of the digit loss.

また、有効桁数を増やす必要がないので、マイクロコンピュータ10にて使用するメモリを最小限にとどめることができる。   Further, since it is not necessary to increase the number of significant digits, the memory used in the microcomputer 10 can be minimized.

以下、図7のフローチャートを参照して、上述したようなバッテリパックを充電する際の流れを説明する。   Hereinafter, with reference to the flowchart of FIG. 7, the flow at the time of charging a battery pack as described above will be described.

充電初期から中期においては、通常の積算方式にて充電率を算出する。ステップS10〜ステップS11での電流値の処理は、図5のステップS1からステップS6と同様の処理となる。次に、ステップS12で充電率(%)を求める。積算法における充電率(%)は、以下の式で求めることができる。   From the beginning to the middle of charging, the charging rate is calculated by a normal integration method. The processing of the current value in steps S10 to S11 is the same processing as that in steps S1 to S6 in FIG. Next, a charging rate (%) is obtained in step S12. The charging rate (%) in the integration method can be obtained by the following equation.

積算法充電率(%)=積算容量/パック全容量   Accumulation method charge rate (%) = accumulated capacity / pack total capacity

また、ステップS14のように積算法と並行して電圧法での充電率を求めるため、ステップS10では電流値の他、電圧値もマイクロコンピュータ10に入力される。電池セル7には電流が流れているため、無負荷状態での電圧を測定することは難しい。そこで、ステップS13では開放電圧を以下のように想定する。   Further, in order to obtain the charging rate by the voltage method in parallel with the integration method as in step S14, in addition to the current value, the voltage value is also input to the microcomputer 10 in step S10. Since current flows through the battery cell 7, it is difficult to measure the voltage in the no-load state. Therefore, in step S13, the open circuit voltage is assumed as follows.

開放電圧(想定値)={電池電圧−(電池電流Imp×充電電流)}   Open-circuit voltage (assumed value) = {battery voltage− (battery current Imp × charge current)}

さらに、得られた開放電圧を元に、ステップS14で電圧と充電率を相関的に関連付けた充電率テーブル(例えば、電池電圧4.2Vで充電率100%)を参照することにより、電圧法充電率(%)を得る。この電圧法充電率を元に、ステップS15で満充電付近(例えば、電圧法充電率=90%)であるかを判定する。満充電付近でないと判断された場合には、ステップS11に戻り、さらに充電を続けながら開放電圧、電圧法充電率の算出を行う。   Further, based on the obtained open-circuit voltage, voltage method charging is performed by referring to a charge rate table (for example, a battery rate of 100% at a battery voltage of 4.2 V) in which the voltage and the charge rate are correlated in step S14. Get rate (%). Based on this voltage method charging rate, it is determined in step S15 whether it is near full charge (for example, voltage method charging rate = 90%). If it is determined that it is not near full charge, the process returns to step S11, and the open circuit voltage and the voltage method charging rate are calculated while further charging is continued.

なお、積算法による充電容量(充電率)検出と、電圧法による充電容量(充電率)検出は、処理の前後を変えたり、両者を並列的に行うようにしてもよい。   The charge capacity (charge rate) detection by the integration method and the charge capacity (charge rate) detection by the voltage method may be changed before and after the processing, or both may be performed in parallel.

充電末期となり、満充電付近であると判定されると、電圧法充電率を用いて電圧法信頼度(0〜100%)を算出する(ステップS17)。電圧法信頼度(%)は、例えば電圧法充電率90%で満充電付近であると検出する場合、以下の式で求めることができる。   When it is determined that the end of charging is near full charge, voltage method reliability (0 to 100%) is calculated using the voltage method charging rate (step S17). The voltage method reliability (%) can be obtained by the following equation, for example, when it is detected that the voltage method charging rate is 90% and near full charge.

電圧法信頼度(%)={電圧法充電率(%)−90(%)}×10
(電圧法充電率≧90)
Voltage method reliability (%) = {Voltage method charging rate (%) − 90 (%)} × 10
(Voltage charging rate ≧ 90)

ここで、上述した電圧法信頼度は、電圧法による満充電付近の充電率算出精度を活かして決定される。電圧法での充電率が満充電付近になるまでは電圧法信頼度を0とし、そこから電圧法での充電率が上昇することにより電圧法信頼度も上昇、満充電時には信頼度が100%となるようになされている。また、上述した電圧法信頼度(%)を用いて(1−電圧法信頼度(%))を計算し、積算法信頼度(%)を求める。さらに、電圧法充電率(%)に電圧法信頼度をかけた値と、積算法充電率(%)に積算法信頼度をかけた値を加算することにより、最終的な充電率を電圧法信頼度を用いた重み付け加算によって算出する(ステップS18)。   Here, the voltage method reliability described above is determined by making use of the charging rate calculation accuracy near full charge by the voltage method. The voltage method reliability is set to 0 until the voltage method charging rate is close to full charge, and the voltage method reliability increases as the voltage method charging rate increases from there. The reliability is 100% when fully charged. It is made to become. Further, (1-voltage method reliability (%)) is calculated using the voltage method reliability (%) described above, and the integration method reliability (%) is obtained. Furthermore, by adding the value obtained by multiplying the voltage method charging rate (%) by the voltage method reliability and the value obtained by multiplying the integration method charging rate (%) by the integration method reliability, the final charging rate is obtained by the voltage method. Calculation is performed by weighted addition using reliability (step S18).

充電率(%)=電圧法充電率×電圧法信頼度+積算法充電率×(1−電圧法信頼度)   Charging rate (%) = Voltage method charging rate × Voltage method reliability + Integration method charging rate × (1-Voltage method reliability)

次に、ステップS18で算出された充電率が100%であるかを判断し、100%未満であればさらに充電を継続し、100%であれば充電を終了する(ステップS19)。   Next, it is determined whether the charging rate calculated in step S18 is 100%. If the charging rate is less than 100%, the charging is further continued, and if it is 100%, the charging is terminated (step S19).

この方法を用いることにより、電圧法と積算法のそれぞれで算出された充電率の値に差があった場合でも、電圧法信頼度によってかけられた割合に応じて違和感なく積算法算出値から電圧法算出値に移行させることができ、図8に示す充電率のグラフのような曲線を描く充電が可能であり、満充電を正しく、容易に検出することが可能となる。   By using this method, even if there is a difference in the value of the charging rate calculated by the voltage method and the integration method, the voltage from the integration method calculated value can be obtained without a sense of incongruity according to the ratio applied by the voltage method reliability. It is possible to shift to a legally calculated value, and charging that draws a curve like the graph of the charging rate shown in FIG. 8 is possible, and full charge can be detected correctly and easily.

また、積算精度にむやみにこだわることが不必要になり、安価で簡易的な素子でシステムを構成することが可能となる。   In addition, it is unnecessary to pay attention to integration accuracy, and it is possible to configure a system with inexpensive and simple elements.

さらに、リチウムイオン電池を用いた場合は、CCCV(定電流定電圧)方式のため、満充電付近に時間がかかる。そのため、満充電付近での充電率算出精度が悪い場合には充電残り時間の検出精度も悪くなる。上述の方法を用いることで充電容量を正しく検出することが可能であるため、充電残り時間の算出精度も向上する。   Furthermore, when a lithium ion battery is used, it takes time near full charge because of the CCCV (constant current constant voltage) method. Therefore, when the charging rate calculation accuracy near full charge is poor, the detection accuracy of the remaining charge time is also poor. Since the charge capacity can be correctly detected by using the above-described method, the calculation accuracy of the remaining charge time is also improved.

以上、この発明の一実施形態について具体的に説明したが、この発明は、上述の一実施形態に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。   The embodiment of the present invention has been specifically described above, but the present invention is not limited to the above-described embodiment, and various modifications based on the technical idea of the present invention are possible.

例えば、上述の一実施形態において挙げた数値はあくまでも例に過ぎず、必要に応じてこれと異なる数値を用いてもよい。   For example, the numerical values given in the above-described embodiment are merely examples, and different numerical values may be used as necessary.

また、この発明はリチウムイオン電池の他、Ni−Cd(ニッカド)電池、Ni−MH(ニッケル水素)電池など、種々の電池に適用可能である。   The present invention can be applied to various batteries such as a Ni-Cd (nickel) battery and a Ni-MH (nickel metal hydride) battery in addition to a lithium ion battery.

また、電池パックを構成するマイクロコンピュータが、保護回路の機能を持つようにしてもよい。   Further, the microcomputer constituting the battery pack may have a function of a protection circuit.

従来用いられている積算法の充電時間と、電池の充電量、電圧、電流を示すグラフである。It is a graph which shows the charge time of the integration method used conventionally, the charge amount of a battery, a voltage, and an electric current. 従来用いられている電圧法の充電時間と、電池の充電量、電圧、電流を示すグラフである。It is a graph which shows the charge time of the voltage method used conventionally, the charge amount of a battery, a voltage, and an electric current. この発明を適用することができるバッテリパックの構造の一例を示す略線図である。It is a basic diagram which shows an example of the structure of the battery pack which can apply this invention. より精密に電流積算または電力積算を行うために用いる構成の略線図である。It is a basic diagram of the structure used in order to perform current integration or electric power integration more precisely. より精密に電流積算または電力積算を行うための処理の流れを表すフローチャートである。It is a flowchart showing the flow of processing for performing current integration or power integration more precisely. 剰余加算を行う積算法を用いた場合のデータ積算の一例を示す図である。It is a figure which shows an example of the data integration at the time of using the integration method which performs remainder addition. この発明を適用した充電方法の流れを表すフローチャートである。It is a flowchart showing the flow of the charging method to which this invention is applied. この発明を適用して二次電池を充電したときの電流、電圧、充電率の一例を示すグラフである。It is a graph which shows an example of an electric current, a voltage, and a charging rate when this invention is applied and a secondary battery is charged.

符号の説明Explanation of symbols

4・・・スイッチ回路
5・・・充電制御FET
6・・・放電制御FET
5a,6a・・・寄生ダイオード
7・・・電池セル
8・・・温度検出素子
9・・・電流検出抵抗
4 ... Switch circuit 5 ... Charge control FET
6 ... Discharge control FET
5a, 6a ... Parasitic diode 7 ... Battery cell 8 ... Temperature detection element 9 ... Current detection resistor

Claims (6)

二次電池を充電する充電方法において
上記二次電池の電流値または電力値を一定時間毎に積算することにより電池容量を算出する積算法を用いた上記二次電池の充電率検出と、
上記二次電池の電圧値を測定し、前記電圧値と充電率の相関性に基づいて充電率を算出する電圧法を用いた上記二次電池の充電率検出とを行い、
上記二次電池の上記電圧法による充電率に応じて、積算法で検出した充電率と電圧法で検出した充電率とを重み付け加算し、最終的な充電率検出を行うことを特徴とする二次電池の充電方法。
In the charging method for charging the secondary battery, the charging rate detection of the secondary battery using an integration method for calculating the battery capacity by integrating the current value or power value of the secondary battery every predetermined time; and
Measuring the voltage value of the secondary battery, and detecting the charging rate of the secondary battery using a voltage method for calculating the charging rate based on the correlation between the voltage value and the charging rate,
The charging rate detected by the integration method and the charging rate detected by the voltage method are weighted and added according to the charging rate by the voltage method of the secondary battery, and the final charging rate detection is performed. How to charge the next battery.
請求項1に記載の二次電池の充電方法において、
あらかじめ充電中に満充電付近であることを検出するための電圧法による基準充電率を設定し、上記二次電池の充電率が基準充電率よりも小さいときは、積算法による充電率検出を行い、上記二次電池の充電率が基準充電率よりも大きいときは、その充電率に応じて積算法による充電率と電圧法による充電率とを重み付け加算することにより、最終的な充電率検出を行うことを特徴とする二次電池の充電方法。
In the charging method of the secondary battery according to claim 1,
Set the reference charging rate by voltage method to detect that it is near full charge during charging in advance, and if the charging rate of the secondary battery is smaller than the reference charging rate, perform charging rate detection by integration method When the charging rate of the secondary battery is larger than the reference charging rate, the final charging rate detection is performed by weighting and adding the charging rate based on the integration method and the charging rate based on the voltage method according to the charging rate. A method for charging a secondary battery, comprising:
請求項1に記載の二次電池の充電方法において、
上記重み付け加算に使用する重みは、上記電圧法による基準充電率を元に計算された電圧法信頼度から得られることを特徴とする二次電池の充電方法。
In the charging method of the secondary battery according to claim 1,
The weight used for said weighting addition is obtained from the voltage method reliability calculated based on the reference | standard charge rate by the said voltage method, The charging method of the secondary battery characterized by the above-mentioned.
二次電池の電池パックにおいて、
上記電池パックは二次電池の電圧および電流を測定する測定部と、電池容量演算部とを有し、
上記電池容量演算部は、
上記二次電池の電流値または電力値を一定時間毎に積算することにより電池容量を算出する積算法を用いて、上記二次電池の充電率を検出する検出手段と、
上記二次電池の電圧値を測定し、前記電圧値と充電率の相関性に基づいて充電率を算出する電圧法を用いて、上記二次電池の充電率を検出する検出手段と、
上記二次電池の上記電圧法による充電率に応じて、積算法で検出した充電率と電圧法で検出した充電率とを重み付け加算し、最終的な充電率検出を行う手段とを有することを特徴とする電池パック。
In secondary battery packs,
The battery pack includes a measurement unit that measures the voltage and current of the secondary battery, and a battery capacity calculation unit.
The battery capacity calculator is
Detecting means for detecting a charging rate of the secondary battery, using an integration method for calculating a battery capacity by integrating the current value or power value of the secondary battery at regular intervals;
A detecting means for measuring the voltage value of the secondary battery and detecting the charging rate of the secondary battery using a voltage method for calculating the charging rate based on the correlation between the voltage value and the charging rate;
A means for weighting and adding the charging rate detected by the integration method and the charging rate detected by the voltage method according to the charging rate by the voltage method of the secondary battery, and performing a final charging rate detection. Battery pack featuring.
請求項4に記載の電池パックにおいて、
上記電池容量演算部は、あらかじめ充電中に満充電付近であることを検出するための電圧法による基準充電率を設定し、上記二次電池の充電率が基準充電率よりも小さいときは、積算法による充電率検出を行い、上記二次電池の充電率が基準充電率よりも大きいときは、積算法による充電率と電圧法による充電率とを重み付け加算することにより、最終的な充電率検出を行う手段を有することを特徴とする電池パック。
The battery pack according to claim 4,
The battery capacity calculation unit sets in advance a reference charging rate based on a voltage method for detecting that the battery is near full charge during charging, and when the charging rate of the secondary battery is smaller than the reference charging rate, integration is performed. When the charging rate of the secondary battery is greater than the reference charging rate, the final charging rate is detected by weighting and adding the charging rate based on the integration method and the charging rate based on the voltage method. A battery pack characterized by having means for performing.
請求項4に記載の電池パックにおいて、
上記電池容量演算部は、上記重み付け加算に使用する重みを、上記電圧法による基準充電率を元に計算された電圧法信頼度から得る手段を有することを特徴とする電池パック。
The battery pack according to claim 4,
The battery capacity calculating unit includes means for obtaining a weight used for the weighted addition from a voltage method reliability calculated based on a reference charging rate according to the voltage method.
JP2004128469A 2004-04-23 2004-04-23 Secondary battery charging method and battery pack Expired - Lifetime JP3925507B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004128469A JP3925507B2 (en) 2004-04-23 2004-04-23 Secondary battery charging method and battery pack
US11/106,866 US7382110B2 (en) 2004-04-23 2005-04-15 Method of charging secondary battery, method of calculating remaining capacity rate of secondary battery, and battery pack
KR1020050031976A KR101166099B1 (en) 2004-04-23 2005-04-18 Method of charging secondary battery, method of calculating remaining capacity rate of secondary battery, and battery pack
CNB2005100762222A CN100382408C (en) 2004-04-23 2005-04-22 Method of charging secondary battery, method of calculating remaining capacity rate of secondary battery, and battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004128469A JP3925507B2 (en) 2004-04-23 2004-04-23 Secondary battery charging method and battery pack

Publications (2)

Publication Number Publication Date
JP2005312239A JP2005312239A (en) 2005-11-04
JP3925507B2 true JP3925507B2 (en) 2007-06-06

Family

ID=35346671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004128469A Expired - Lifetime JP3925507B2 (en) 2004-04-23 2004-04-23 Secondary battery charging method and battery pack

Country Status (2)

Country Link
JP (1) JP3925507B2 (en)
CN (1) CN100382408C (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101373893B (en) * 2007-08-24 2012-09-05 鹏智科技(深圳)有限公司 Over temperature protection circuit for battery
EP2197085A1 (en) * 2007-10-05 2010-06-16 Panasonic Corporation Non-aqueous electrolyte secondary cell pulse charge method and pulse charge control device
CN101738583B (en) * 2008-11-18 2013-01-30 比亚迪股份有限公司 Method and device for calculating battery pack capacity
JP4983818B2 (en) * 2009-02-12 2012-07-25 ソニー株式会社 Battery pack and battery capacity calculation method
US20120109556A1 (en) * 2010-10-29 2012-05-03 GM Global Technology Operations LLC Band select state of charge weighted scaling method
US9307495B2 (en) * 2011-09-12 2016-04-05 Apple Inc. Monitoring a battery in a portable electronic device
JP5867195B2 (en) * 2012-03-13 2016-02-24 日産自動車株式会社 Secondary battery charging device and secondary battery charging method
JP5880232B2 (en) * 2012-04-09 2016-03-08 三菱自動車工業株式会社 Remaining amount detection unit
CN104584317B (en) * 2012-08-20 2016-04-20 日产自动车株式会社 The charging device of secondary cell and the charging method of secondary cell
TWI473389B (en) * 2012-11-21 2015-02-11 Richtek Technology Corp Charger circuit and charging control method
JP2015171275A (en) * 2014-03-10 2015-09-28 株式会社豊田自動織機 Charger and charging method of secondary battery
CN103884996A (en) * 2014-03-18 2014-06-25 中国电力科学研究院 Residual electricity quantity calculation method of lithium iron phosphate battery
KR102248599B1 (en) * 2014-05-20 2021-05-06 삼성에스디아이 주식회사 Mehtod for charging a battert and battery management system thereof
WO2017130673A1 (en) * 2016-01-29 2017-08-03 日立オートモティブシステムズ株式会社 Cell state estimation device, cell control device, cell system, and cell state estimation method
CN106655460B (en) * 2016-12-23 2019-11-08 飞依诺科技(苏州)有限公司 Using the method for supplying power to and system of the ultrasonic device of more battery packs power supply
JP2020160887A (en) * 2019-03-27 2020-10-01 ソニー株式会社 Computing device and product-sum computing system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3879278B2 (en) * 1998-11-10 2007-02-07 日産自動車株式会社 Charge amount calculation method and charge amount calculation device for hybrid vehicle
DE10056971A1 (en) * 2000-11-17 2002-05-23 Bosch Gmbh Robert Determining battery charge state involves forming weighted mean of unloaded battery charge state and integral of battery current over time to determine mean state of battery charge
US6359419B1 (en) * 2000-12-27 2002-03-19 General Motors Corporation Quasi-adaptive method for determining a battery's state of charge
US6646419B1 (en) * 2002-05-15 2003-11-11 General Motors Corporation State of charge algorithm for lead-acid battery in a hybrid electric vehicle

Also Published As

Publication number Publication date
CN1691461A (en) 2005-11-02
JP2005312239A (en) 2005-11-04
CN100382408C (en) 2008-04-16

Similar Documents

Publication Publication Date Title
US7382110B2 (en) Method of charging secondary battery, method of calculating remaining capacity rate of secondary battery, and battery pack
JP4123184B2 (en) Secondary battery remaining capacity calculation method and battery pack
CN100382408C (en) Method of charging secondary battery, method of calculating remaining capacity rate of secondary battery, and battery pack
TWI398069B (en) Battery pack, method of charging secondary battery and battery charger
JP4668957B2 (en) Charge control method and electronic device
US8319479B2 (en) Method of estimating battery recharge time and related device
US8643331B1 (en) Enhanced voltage-based fuel gauges and methods
EP1577677A1 (en) Battery apparatus and discharge controlling method of battery apparatus
US20120121952A1 (en) Battery status detecting device and battery pack where the battery status detecting device is provided
EP1049231A1 (en) Parameter measuring method, charge/discharge control method and apparatus and life predicting method for secondary batteries and power storage apparatus using the same
JP4210794B2 (en) Battery capacity detection method, battery pack and electronic device system
JP4086008B2 (en) Secondary battery remaining capacity ratio calculation method and battery pack
JP2009097954A (en) Battery pack and residual capacity correction method of secondary battery
JP2009133676A (en) Battery pack and charge/discharge method
WO2003107470A1 (en) Battery pack and battery remaining power calculating method
JP4846755B2 (en) Portable electronic devices
JP2007322398A (en) Battery pack and method for detecting fully-charge capacity
KR20140025652A (en) Battery pack and controlling method of the same
CN108072793B (en) Method and apparatus for calculating line resistance of battery system
JP2008275524A (en) Battery pack and residual capacity computing method
JP2001095159A (en) Secondary battery unit, and method of measuring electric capacity thereof
JP4660367B2 (en) Rechargeable battery remaining capacity detection method
JP4000240B2 (en) Secondary battery unit and secondary battery remaining amount measuring method
JPH07335273A (en) Method and device for monitoring charging discharging of storage battery
JP2004364419A (en) Charging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070219

R151 Written notification of patent or utility model registration

Ref document number: 3925507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250