JP3922056B2 - Porous member, method for producing the same, and polymer electrolyte fuel cell using the same - Google Patents

Porous member, method for producing the same, and polymer electrolyte fuel cell using the same Download PDF

Info

Publication number
JP3922056B2
JP3922056B2 JP2002076140A JP2002076140A JP3922056B2 JP 3922056 B2 JP3922056 B2 JP 3922056B2 JP 2002076140 A JP2002076140 A JP 2002076140A JP 2002076140 A JP2002076140 A JP 2002076140A JP 3922056 B2 JP3922056 B2 JP 3922056B2
Authority
JP
Japan
Prior art keywords
porous
porous body
metal
organic
metal porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002076140A
Other languages
Japanese (ja)
Other versions
JP2003272638A (en
Inventor
敬三 原田
修 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2002076140A priority Critical patent/JP3922056B2/en
Publication of JP2003272638A publication Critical patent/JP2003272638A/en
Application granted granted Critical
Publication of JP3922056B2 publication Critical patent/JP3922056B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Laminated Bodies (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、ガス拡散電極として利用する多孔質部材とその部材の製造方法及びそれを用いた固体高分子型燃料電池に関する。
【0002】
【従来の技術】
電気化学的な発電装置の一種である固体高分子型燃料電池のガス拡散電極として、一部を撥水処理した発泡金属を用いる技術が特許第3211378号公報に示され、また、金属繊維と有機繊維の混毛織布や混毛不織布を用いる技術が特許第3242736号公報に示されている。
【0003】
さらに、本出願人は、電極基板などに適用する金属多孔体とその製造方法を先に提案している(特開2001−226723号)。
【0004】
【発明が解決しようとする課題】
特許第3211378号の発泡金属は、初期性能には優れるが耐久性に問題が残る。即ち、発泡金属の表面にコーティングした撥水処理層が使用時間の経過と共に剥離等が起こって撥水性が低下するため、電極内への水の滞留が生じて反応ガスの拡散性が低下し、出力密度の経時劣化が起こる。
【0005】
また、特許第3242736号の混毛織布や混毛不織布は、気孔率が小さい(ガスの流れを遮断する面積が大きい)ため、反応ガスの圧力損失が大きく、ガスの透過性が悪くて触媒反応層全面に対する均一なガス供給が難しい。その結果、燃料電池の出力密度が不充分になり、或いはそれを補うためにセパレータ側に複雑でコスト高となるガス流路を形成する必要が生じる。
【0006】
さらに、本出願人が特開2001−226723号で提案している金属多孔体は、金属の表面が親水性であることから水の膜が形成され易く、これをそのまま燃料電池用の電極として使用すると、金属多孔体の空孔内で水の滞留が生じてガス拡散性や均一反応性に問題が生じる。
【0007】
そこで、この発明は、ガス透過性に優れ、かつ撥水性の低下が無く、燃料電池の耐久性を高めることができる多孔質部材と、その部材の製造方法及びそれを用いた固体高分子型燃料電池を提供することを課題としている。
【0008】
【課題を解決するための手段】
上記の課題を解決するため、この発明においては、平均孔径が50μm〜1mmの3次元網目構造を有する金属多孔体と、撥水性を有する有機多孔体膜とを積層して成り、有機多孔体膜の表面の一部に金属多孔体が露出している多孔質部材を提供する。
【0009】
この多孔質部材は、Fe−Crを主成分とした合金、又はそれに更に、Ni、Mo、Cu、B、Al、Si、Tiの中から選ばれた少なくとも1種の元素を10%未満の割合で添加した合金で形成される気孔率85%以上の金属多孔体を使用し、さらに、有機多孔体膜は、フッ素系樹脂で形成された平均孔径50μm以下、気孔率30%以上の前記金属多孔体よりも厚みの薄い膜を使用し、この有機多孔体膜の表面の一部にその有機多孔体膜を突き破って貫通した前記金属多孔体の骨格部が露出しているものとなす。
【0010】
また、この発明においては、金属多孔体と撥水性を有する有機多孔体膜とを重ね合わせた後、金属多孔体の元厚みtと、その金属多孔体の加圧後厚みtが、0.3<t/t/0.97の条件を満たすように、かつ有機多孔体膜の表面の一部に前記金属多孔体の骨格部が有機多孔体膜を突き破って貫通して露出するように加圧成形して前述の多孔質部材を製造する方法と、その多孔質部材を、高分子電解質膜の両面部にガス拡散電極として配置した固体高分子型燃料電池を併せて提供する。
【0011】
【作用】
3次元網目構造を有する金属多孔体は、気孔率を大きくして優れたガス透過性を確保することができる。この発明では、その金属多孔体上に撥水性を有する有機多孔体膜を重ねているため多孔体内での水の滞留がなくなり、部材内部での水膜形成によるガス透過性の低下を防止できる。また、この有機多孔体膜は、剥離して失われることがなく、膜の撥水機能が長期にわたって持続される。
【0012】
さらに、有機多孔体膜の表面の一部に金属多孔体を露出させたので、部材両面間での電気伝導を確保でき、以上の機能により、電極基板に要求される電気特性と耐久性を確保することができる。
【0013】
従って、この多孔質部材を、高分子電解質膜の両面部にガス拡散電極として配置すれば、性能安定性と耐久性に優れた電気化学装置を実現することができる。
【0014】
なお、金属多孔体の平均孔径を50μm〜1mmの範囲に設定したのは、以下の理由による。即ち、平均孔径が50μm未満では空気抵抗が大きく、ガスの均一拡散が望み難くなる。また、その平均孔径が1mmを越えると、高分子電解質膜との接触点が少なくなって電気抵抗が大きくなる。
【0015】
以下は、上記(1)〜(3)の構成を好ましいとした理由である。
【0016】
まず、金属多孔体を、Fe−Cr又はNi−Crを主体とした炭素を含む合金や、それに更にNi、Mo、Cu、B、Al、Si、Tiの中から選ばれた少なくとも一種の元素を添加した合金で形成したものは、硫酸等の腐食環境においても金属多孔体の溶出を抑えることができ、電池用電極としての適正が高まる。
【0017】
また、85%以上の気孔率を有する金属多孔体は、十分なガス透過性能を確保できる。その気孔率が小さくなるほどガスの透過性は悪くなり、燃料電池の出力密度が不充分になる。
【0018】
有機多孔体膜の気孔率もガスの透過性に影響を及ぼすので、この膜の気孔率は30%以上にするのがよい。また、この有機多孔体膜の平均孔径が50μmを越えると、部材内に水が浸透して滞留する虞れがあり、従って、その対応として有機多孔体膜の平均孔径は50μm以下にするのがよい。平均孔径の下限は、ガスの透過に支障を来たさないようにするために1μm程度にするのがよい。
【0019】
次に、製造方法の作用について述べる。
【0020】
金属多孔体と有機多孔体膜を重ね合わせて加圧成形すると、金属多孔体の骨格部が有機多孔体膜を突き破って表面の一部に露出し、電極としての電気性能が確保される。従って、有機多孔体膜を用いて撥水性低下の問題を無くすことが可能になる。
【0021】
なお、この方法で金属多孔体の加圧後厚みt2 と加圧前の元厚みt1 の比t2 /t1 が0.3未満になると、金属多孔体の気孔率が小さくなり過ぎ、好ましいとした気孔率を確保するのが難しくなる。
【0022】
【発明の実施の形態】
図1に、この発明の多孔質部材の断面を模式化して示す。図2は、その部材の一部を拡大して表している。図中2は、3次元網状構造を有する金属多孔体、3は撥水性を有する有機多孔体膜であり、この2者によって多孔質部材1が構成されている。
【0023】
この多孔質部材1は、平均孔径が50μm〜1mmの金属多孔体2と、無数の微細孔を有する有機多孔体膜3を重ね合わせ、これを加圧成形して作られており、成形時の圧力で金属多孔体2の骨格の自由端(途切れた端部)2aが有機多孔体膜3を突き破ってその膜3の表面の一部に露出している。その金属多孔体の露出部は、有機多孔体膜3の表面に無数に点在し、その露出部によって部材1の導電性が確保される。
【0024】
金属多孔体2は、本出願人が特願2000−140037号(特開2001−226723号)で提案しているものなどが強度、耐食性、耐熱性に優れていて好ましい。特開2001−226723号の金属多孔体は、主としてFe及びCrを含む合金から成り、組織中にCr炭化物及び/又はFeCr炭化物が均一分散した骨格を有する。また、カーボン含有量は0.1%以上、3.5%以下が好ましいとしており、必要に応じてNi、Cu、Mo、Al、P、B、Si、Tiの中から選ばれた少なくとも1種の元素を更に添加したものもある。
【0025】
カーボンを含むNi−Cr合金(これは上記公報には開示されていない)も強度及び耐食性に優れており、金属多孔体2の材料として使用できる。なお、金属多孔体2は、特開2001−226723号公報に示されるような方法で製造できる。
【0026】
有機多孔体膜3は、撥水性は勿論、耐化学薬品性にも優れるポリテトラフルオロエチレン(PTFE)などのフッソ系樹脂膜が好ましい。但し、これに限定されるものではない。
【0027】
以下に、より詳細な実施例を挙げる。
【0028】
−実施例1−
表1に示す金属多孔体と、厚み30μm、平均孔径2.1μm、気孔率70%の撥水性PTFE多孔体膜を重ねてロールプレスで加圧成形し、表2の多孔質部材を作製した。そして、その多孔質部材の電気抵抗(接触抵抗)を測定した。表1のNo.1〜No.7の金属多孔体は、いずれも適量のカーボンを含んでいる。
【0029】
【表1】

Figure 0003922056
【0030】
【表2】
Figure 0003922056
【0031】
ロールプレスによる加圧成形は、表1に示す金属多孔体の元厚みt1 が成形後に表2のt2 になるように行った。加圧により金属多孔体の一部がPTFE多孔体膜を突き破ってその膜の表面に露出するので、加圧後の金属多孔体厚みは多孔質部材の厚みと等しくなる。
【0032】
接触抵抗は、多孔質部材の両面にCu電極板を1MPaの圧力で押し付けて測定した。
【0033】
PTFE膜は絶縁体であり、金属多孔体とCu電極板との間がその膜で遮られると接触抵抗は著しく大きくなる。しかし、表2の測定結果はいずれも接触抵抗が小さくて部材表面層の導電性が確保されており、この結果から、加圧成形により、金属多孔体がPTFE膜を突き破ってその膜の表面の一部に露出していることが判る。
【0034】
−実施例2−
高分子電解質膜としてナフィオン(デュポン社製、膜厚150μm)を用い、その膜の両面に白金触媒を担持したカーボン多孔質体を接合したものを用意してそれを挟むように両側に表2の多孔質部材を配置し、さらに、多孔質部材の外側にカーボン電極を重ね合わせて固体高分子型燃料電池を作成した。また、比較例として、表1のNo.7の金属多孔体を有機多孔体膜を積層せずに用いて同様の燃料電池を作製した。
【0035】
これ等の試作品の性能評価として、電池内に燃料ガスを導入したときの初期セル電圧と100時間経過後のセル電圧を測定して経時劣化を調べた。結果を表3に示す。
【0036】
【表3】
Figure 0003922056
【0037】
表3から判るように、この発明の多孔質部材を用いると、良好なガス透過性が維持されて電池性能の経時劣化が小さく抑えられる。
【0038】
【発明の効果】
以上述べたように、この発明の多孔質部材は、平均孔径を特定した金属多孔体と撥水性を有する有機多孔体膜を積層し、有機多孔体膜の表面の一部に金属多孔体の一部を露出させて構成されるので、ガス透過性に優れ、また、撥水性能の低下が起こらず、かつ表面の導電性も確保され、燃料電池などの電極に要求される電気特性と耐久性を得ることができる。
【0039】
なお、金属多孔体の材質を特定したものは腐食環境においても金属多孔体の溶出を抑えて耐久性を高めることができる。
【0040】
また、金属多孔体の気孔率を85%以上となしたものはガスの透過性をより高めることができ、有機多孔体膜の平均孔径を50μm以下、その膜の気孔率を30%以上となしたものは、部材内での水の滞留を無くしてガス透過性能を高めることができる。
【0041】
さらに、この発明の方法によれば、上述した多孔質部材を、ロールプレス機などを用いて簡単に生産性良く製造することができる。
【0042】
このほか、この発明の多孔質部材をガス拡散電極として用いる固体高分子型燃料電池は、性能の安定化と耐久性向上を実現できる。
【図面の簡単な説明】
【図1】この発明の多孔質部材の断面の模式図
【図2】同上の多孔質部材の一部を拡大して示す斜視図
【符号の説明】
1 多孔質部材
2 金属多孔体
2a 表面に露出した金属多孔体の骨格の自由端
3 撥水性を有する有機多孔体膜[0001]
BACKGROUND OF THE INVENTION
This invention relates to a manufacturing method and a solid polymer electrolyte fuel cell using the same multi porosifying member and its member you use as a gas diffusion electrodes.
[0002]
[Prior art]
As a gas diffusion electrode of a polymer electrolyte fuel cell which is a kind of electrochemical power generation device, a technique using a foam metal partially treated with water repellency is disclosed in Japanese Patent No. 3211378. Japanese Patent No. 324236 discloses a technique using a mixed hair woven fabric or a mixed non-woven fabric.
[0003]
Furthermore, the present applicant has previously proposed a porous metal body to be applied to an electrode substrate and the like and a manufacturing method thereof (Japanese Patent Laid-Open No. 2001-226723).
[0004]
[Problems to be solved by the invention]
The metal foam of Japanese Patent No. 3211378 is excellent in initial performance, but has a problem in durability. That is, the water-repellent treatment layer coated on the surface of the foam metal is peeled off with the passage of time and the water repellency is lowered, so that water stays in the electrode and the diffusibility of the reaction gas is lowered. Degradation of power density with time occurs.
[0005]
Further, the blended woven fabric and the blended nonwoven fabric disclosed in Japanese Patent No. 3242636 have a low porosity (a large area for blocking the gas flow), so that the pressure loss of the reaction gas is large, the gas permeability is poor, and the catalytic reaction layer. Uniform gas supply to the entire surface is difficult. As a result, the output density of the fuel cell becomes insufficient, or a complicated and expensive gas flow path needs to be formed on the separator side to compensate for it.
[0006]
Further, in the metal porous body proposed by the present applicant in Japanese Patent Laid-Open No. 2001-226723, a water film is easily formed because the metal surface is hydrophilic, and this is used as an electrode for a fuel cell as it is. Then, stagnation of water occurs in the pores of the metal porous body, causing problems in gas diffusivity and uniform reactivity.
[0007]
Accordingly, the present invention is excellent in gas permeability, and no decrease in water-repellent property, a porous member capable of enhancing the durability of the fuel cells, the production method of the member and a polymer using the same It is an object to provide a type fuel cell .
[0008]
[Means for Solving the Problems]
In order to solve the above problems, in the present invention, an organic porous film is formed by laminating a metal porous body having a three-dimensional network structure having an average pore diameter of 50 μm to 1 mm and an organic porous film having water repellency. A porous member in which the metal porous body is exposed on a part of the surface of the substrate is provided.
[0009]
This porous member is an alloy containing Fe-Cr as a main component, or further, a ratio of at least one element selected from Ni, Mo, Cu, B, Al, Si, and Ti of less than 10%. A porous metal body having a porosity of 85% or more formed of an alloy added in (1) above is used, and the organic porous film is made of a fluororesin and having an average pore diameter of 50 μm or less and a porosity of 30% or more. A film having a thickness smaller than that of the body is used, and a part of the surface of the organic porous body film exposes the skeleton of the metal porous body penetrating through the organic porous body film.
[0010]
In the present invention, after the metal porous body and the water-repellent organic porous film are overlapped, the original thickness t 1 of the metal porous body and the post-pressurized thickness t 2 of the metal porous body are 0. .3 <t 2 / t 1 /0.97 , and the skeleton of the metal porous body penetrates through the organic porous film and is exposed through a part of the surface of the organic porous film. Thus, the method for producing the porous member by pressure molding as described above and a solid polymer fuel cell in which the porous member is disposed as a gas diffusion electrode on both sides of the polymer electrolyte membrane are provided.
[0011]
[Action]
The porous metal body having a three-dimensional network structure can ensure excellent gas permeability by increasing the porosity. In this invention, since the organic porous film having water repellency is stacked on the metal porous body, the water does not stay in the porous body, and the gas permeability can be prevented from being lowered due to the formation of the water film inside the member. Further, the organic porous film is not peeled off and lost, and the water repellent function of the film is maintained for a long time.
[0012]
In addition, since the porous metal body is exposed on a part of the surface of the organic porous membrane, it is possible to ensure electrical conduction between both sides of the member, and the above functions ensure the electrical characteristics and durability required for the electrode substrate. can do.
[0013]
Therefore, if this porous member is disposed as a gas diffusion electrode on both sides of the polymer electrolyte membrane, an electrochemical device excellent in performance stability and durability can be realized.
[0014]
The reason why the average pore diameter of the metal porous body is set in the range of 50 μm to 1 mm is as follows. That is, when the average pore diameter is less than 50 μm, the air resistance is large, and it is difficult to expect uniform gas diffusion. On the other hand, if the average pore diameter exceeds 1 mm, the number of contact points with the polymer electrolyte membrane is reduced and the electrical resistance is increased.
[0015]
The following is the reason why the above configurations (1) to (3) are preferable.
[0016]
First, a porous metal body is made of an alloy containing carbon mainly composed of Fe—Cr or Ni—Cr, and at least one element selected from Ni, Mo, Cu, B, Al, Si, and Ti. The alloy formed with the added alloy can suppress elution of the porous metal body even in a corrosive environment such as sulfuric acid, and the suitability as a battery electrode is increased.
[0017]
Moreover, the metal porous body which has a porosity of 85% or more can ensure sufficient gas permeation performance. The smaller the porosity, the worse the gas permeability and the insufficient power density of the fuel cell.
[0018]
Since the porosity of the organic porous membrane also affects the gas permeability, the porosity of this membrane is preferably 30% or more. If the average pore size of the organic porous membrane exceeds 50 μm, water may permeate and stay in the member. Therefore, as a countermeasure, the average pore size of the organic porous membrane should be 50 μm or less. Good. The lower limit of the average pore diameter is preferably about 1 μm so as not to hinder gas permeation.
[0019]
Next, the operation of the manufacturing method will be described.
[0020]
When the metal porous body and the organic porous body film are overlaid and pressure-molded, the skeleton portion of the metal porous body penetrates the organic porous body film and is exposed to a part of the surface, and electrical performance as an electrode is ensured. Therefore, it becomes possible to eliminate the problem of water repellency reduction by using the organic porous film.
[0021]
In this method, when the ratio t 2 / t 1 between the post-pressing thickness t 2 of the metal porous body and the original thickness t 1 before pressurization is less than 0.3, the porosity of the metal porous body becomes too small, It becomes difficult to ensure a preferable porosity.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 schematically shows a cross section of the porous member of the present invention. FIG. 2 shows an enlarged part of the member. In the figure, 2 is a porous metal body having a three-dimensional network structure, 3 is an organic porous film having water repellency, and the porous member 1 is constituted by these two members.
[0023]
This porous member 1 is made by stacking a metal porous body 2 having an average pore diameter of 50 μm to 1 mm and an organic porous film 3 having innumerable fine pores, and press-molding this, and at the time of molding, The free end (discontinuous end portion) 2 a of the skeleton of the metal porous body 2 penetrates the organic porous body film 3 by pressure and is exposed to a part of the surface of the film 3. The exposed portions of the metal porous body are scattered innumerably on the surface of the organic porous body film 3, and the conductivity of the member 1 is ensured by the exposed portions.
[0024]
As the metal porous body 2, the one proposed by the present applicant in Japanese Patent Application No. 2000-140037 (Japanese Patent Laid-Open No. 2001-226723) is preferable because of its excellent strength, corrosion resistance, and heat resistance. The metal porous body of JP 2001-226723 is mainly composed of an alloy containing Fe and Cr, and has a skeleton in which Cr carbide and / or FeCr carbide is uniformly dispersed in the structure. Further, the carbon content is preferably 0.1% or more and 3.5% or less, and at least one selected from Ni, Cu, Mo, Al, P, B, Si, Ti as necessary. Some of these elements are further added.
[0025]
A Ni—Cr alloy containing carbon (which is not disclosed in the above publication) is also excellent in strength and corrosion resistance, and can be used as a material for the porous metal body 2. In addition, the metal porous body 2 can be manufactured by a method as shown in JP 2001-226723 A.
[0026]
The organic porous film 3 is preferably a fluorine resin film such as polytetrafluoroethylene (PTFE) which is excellent in chemical resistance as well as water repellency. However, it is not limited to this.
[0027]
More detailed examples are given below.
[0028]
Example 1
The metal porous body shown in Table 1 and a water-repellent PTFE porous film having a thickness of 30 μm, an average pore diameter of 2.1 μm, and a porosity of 70% were stacked and pressure-molded by a roll press to produce a porous member of Table 2. And the electrical resistance (contact resistance) of the porous member was measured. The metal porous bodies No. 1 to No. 7 in Table 1 all contain an appropriate amount of carbon.
[0029]
[Table 1]
Figure 0003922056
[0030]
[Table 2]
Figure 0003922056
[0031]
The pressure forming by the roll press was performed so that the original thickness t 1 of the metal porous body shown in Table 1 became t 2 in Table 2 after forming. Since a part of the metal porous body breaks through the PTFE porous film by the pressurization and is exposed to the surface of the film, the thickness of the metal porous body after the pressurization becomes equal to the thickness of the porous member.
[0032]
The contact resistance was measured by pressing a Cu electrode plate on both surfaces of the porous member with a pressure of 1 MPa.
[0033]
The PTFE film is an insulator. When the metal porous body and the Cu electrode plate are blocked by the film, the contact resistance is remarkably increased. However, all of the measurement results in Table 2 have low contact resistance and ensure the conductivity of the member surface layer. From this result, the metal porous body penetrates the PTFE membrane by pressure molding, and the surface of the membrane It can be seen that it is partially exposed.
[0034]
-Example 2-
As the polymer electrolyte membrane, Nafion (manufactured by DuPont, 150 μm thick) was prepared, and a porous carbon body carrying a platinum catalyst on both sides of the membrane was prepared. A porous member was disposed, and a carbon electrode was superimposed on the outside of the porous member to produce a polymer electrolyte fuel cell. Further, as a comparative example, a similar fuel cell was manufactured using the No. 7 metal porous body of Table 1 without laminating the organic porous body film.
[0035]
As performance evaluation of these prototypes, the initial cell voltage when the fuel gas was introduced into the battery and the cell voltage after 100 hours were measured to examine the deterioration over time. The results are shown in Table 3.
[0036]
[Table 3]
Figure 0003922056
[0037]
As can be seen from Table 3, when the porous member of the present invention is used, good gas permeability is maintained and deterioration of the battery performance over time is suppressed to a small level.
[0038]
【The invention's effect】
As described above, the porous member of the present invention includes a metal porous body having an average pore diameter specified and an organic porous film having water repellency laminated, and a part of the surface of the organic porous film has a metal porous body. Because the structure is exposed, the gas permeability is excellent, the water repellency is not lowered, the surface conductivity is secured, and the electrical characteristics and durability required for electrodes such as fuel cells Can be obtained.
[0039]
In addition, what specified the material of the metal porous body can suppress elution of a metal porous body, and can improve durability also in a corrosive environment.
[0040]
In addition, when the porosity of the metal porous body is 85% or more, the gas permeability can be further increased, the average pore diameter of the organic porous film is 50 μm or less, and the porosity of the film is 30% or more. In this case, the gas permeation performance can be improved by eliminating the retention of water in the member.
[0041]
Furthermore, according to the method of the present invention, the above-described porous member can be easily produced with high productivity using a roll press or the like.
[0042]
In addition, the polymer electrolyte fuel cell using the porous member of the present invention as a gas diffusion electrode can realize performance stabilization and durability improvement.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a porous member according to the present invention. FIG. 2 is an enlarged perspective view showing a part of the porous member.
DESCRIPTION OF SYMBOLS 1 Porous member 2 Metal porous body 2a Free end of skeleton of metal porous body exposed on surface 3 Organic porous film having water repellency

Claims (3)

固体高分子型燃料電池のガス拡散電極として使用する多孔質部材であって、平均孔径が50μm〜1mmの3次元網目構造を有する金属多孔体と、撥水性を有する有機多孔体膜とを積層して成り、
前記金属多孔体は、Fe−Crを主成分とした合金、又はそれに更に、Ni、Mo、Cu、B、Al、Si、Tiの中から選ばれた少なくとも1種の元素を10%未満の割合で添加した合金で形成される気孔率85%以上の多孔体であり、
前記有機多孔体膜は、フッ素系樹脂で形成された平均孔径50μm以下、気孔率30%以上の前記金属多孔体よりも厚みの薄い膜であり、この有機多孔体膜の表面の一部にその有機多孔体膜を突き破って貫通した前記金属多孔体の骨格部が露出している多孔質部材。
A porous member used as a gas diffusion electrode of a polymer electrolyte fuel cell, wherein a metal porous body having a three-dimensional network structure having an average pore diameter of 50 μm to 1 mm and an organic porous film having water repellency are laminated. And
The metal porous body is an alloy containing Fe—Cr as a main component, or further, a ratio of at least one element selected from Ni, Mo, Cu, B, Al, Si, and Ti of less than 10%. Is a porous body having a porosity of 85% or more formed of an alloy added in
The organic porous membrane, a fluorine-based resin having an average pore diameter of 50μm is formed below a thin film of thickness than the metal porous body of the above porosity of 30% that a portion of the surface of the organic porous membrane A porous member in which a skeleton part of the metal porous body penetrating through an organic porous film is exposed.
Fe−Crを主成分とした合金、又はそれに更に、Ni、Mo、Cu、B、Al、Si、Tiの中から選ばれた少なくとも1種の元素を10%未満の割合で添加した合金で形成される気孔率85%以上の金属多孔体とその金属多孔体よりも厚みの薄いフッ素系樹脂で形成された平均孔径50μm以下、気孔率30%以上の撥水性を有する有機多孔体膜とを重ね合わせた後、金属多孔体の元厚みtと、その金属多孔体の加圧後厚みtが、0.3<t/t/0.97の条件を満たすように、かつ有機多孔体膜の表面の一部に前記金属多孔体の骨格部が有機多孔体膜を突き破って貫通して露出するように加圧成形することを特徴とする請求項1記載の多孔質部材の製造方法。 Formed with an alloy containing Fe-Cr as a main component or an alloy to which at least one element selected from Ni, Mo, Cu, B, Al, Si, and Ti is added in a proportion of less than 10%. the average pore diameter of 50μm or less, overlaid with an organic porous membrane having a porosity of 30% or more of water-repellent and the porosity of 85% or more of the metal porous body and than the metal porous body is formed of a thin fluororesin thick After being combined, the original thickness t 1 of the metal porous body and the post-pressing thickness t 2 of the metal porous body satisfy the condition of 0.3 <t 2 / t 1 /0.97 , and the organic porous 2. The method for producing a porous member according to claim 1 , wherein the skeleton of the metal porous body is pressed and formed on a part of the surface of the body membrane so as to penetrate through the organic porous membrane and be exposed. . 請求項1に記載の多孔質部材を、高分子電解質膜の両面部にガス拡散電極として配置した固体高分子型燃料電池。 A solid polymer fuel cell in which the porous member according to claim 1 is disposed as a gas diffusion electrode on both sides of a polymer electrolyte membrane .
JP2002076140A 2002-03-19 2002-03-19 Porous member, method for producing the same, and polymer electrolyte fuel cell using the same Expired - Fee Related JP3922056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002076140A JP3922056B2 (en) 2002-03-19 2002-03-19 Porous member, method for producing the same, and polymer electrolyte fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002076140A JP3922056B2 (en) 2002-03-19 2002-03-19 Porous member, method for producing the same, and polymer electrolyte fuel cell using the same

Publications (2)

Publication Number Publication Date
JP2003272638A JP2003272638A (en) 2003-09-26
JP3922056B2 true JP3922056B2 (en) 2007-05-30

Family

ID=29205011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002076140A Expired - Fee Related JP3922056B2 (en) 2002-03-19 2002-03-19 Porous member, method for producing the same, and polymer electrolyte fuel cell using the same

Country Status (1)

Country Link
JP (1) JP3922056B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4815916B2 (en) * 2005-07-21 2011-11-16 株式会社エクォス・リサーチ Fuel cell and fuel cell system
US20090087711A1 (en) * 2005-12-16 2009-04-02 Kabushiki Kaisha Equos Research Fuel cell electrode, fuel cell, and fuel cell stack
JP5439740B2 (en) * 2008-05-14 2014-03-12 トヨタ自動車株式会社 Fuel cell and fuel cell stack
JP5353054B2 (en) * 2008-05-16 2013-11-27 三菱マテリアル株式会社 Porous metal for water retention member and water retention member for fuel cell
US11316172B2 (en) 2017-10-25 2022-04-26 Sumitomo Electric Toyama Co., Ltd. Fuel cell and method of manufacturing metal porous body
WO2023100381A1 (en) 2021-12-02 2023-06-08 ディップソール株式会社 Method and system for electroplating article with metal
CN116406432A (en) 2021-12-02 2023-07-07 迪普索股份公司 Method and system for electroplating articles with metal

Also Published As

Publication number Publication date
JP2003272638A (en) 2003-09-26

Similar Documents

Publication Publication Date Title
KR102039536B1 (en) Fuel cell electrode materials and devices
JP5924530B2 (en) Gas diffusion layer for fuel cells
JP3922063B2 (en) Porous metal and solid polymer fuel cell using the same
US20130108947A1 (en) Porous current collector, method of producing the same and fuel cell including porous current collector
KR101832694B1 (en) Fuel cells
KR20100047890A (en) Reinforced solid polymer electrolyte composite membrane, membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell
EP2461401B1 (en) Use of a gas diffusion layer member in a solid polymer fuel cell
JP5061454B2 (en) Fuel cell
JPH07296818A (en) Polymer solid electrolyte fuel cell electrode and joint of same with polymer solid electrolyte
JP2017525105A (en) Membrane electrode assembly
EP1466376B1 (en) Metal stack for fuel cells or electrolysers
JP2013501336A (en) Fuel cell
JP2012248341A (en) Fuel cell
JP2004273359A (en) Porous member, manufacturing method of the same, and electrochemical device using the same
JP3922056B2 (en) Porous member, method for producing the same, and polymer electrolyte fuel cell using the same
JP4475866B2 (en) Fuel cell
JP6961432B2 (en) Electrodes, membrane electrode assemblies, electrochemical cells, stacks, fuel cells, vehicles and flying objects
JP2007265898A (en) Electrolyte membrane for polymer electrolyte fuel cell, and polymer electrolyte fuel cell equipped with it
JP4821111B2 (en) Fuel cell
JP2011204583A (en) Membrane electrode assembly for fuel cell, and fuel cell using the same
JP2010232062A (en) Fuel cell
JP2005197195A (en) Solid polymer fuel cell
JP5665631B2 (en) Fuel cell
EP1327492A1 (en) Porous metal stack for fuel cells or electrolysers
JP2006059661A (en) Solid polymer fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070212

R150 Certificate of patent or registration of utility model

Ref document number: 3922056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees