JP3921763B2 - Method for forming bismuth titanate film - Google Patents

Method for forming bismuth titanate film Download PDF

Info

Publication number
JP3921763B2
JP3921763B2 JP32293797A JP32293797A JP3921763B2 JP 3921763 B2 JP3921763 B2 JP 3921763B2 JP 32293797 A JP32293797 A JP 32293797A JP 32293797 A JP32293797 A JP 32293797A JP 3921763 B2 JP3921763 B2 JP 3921763B2
Authority
JP
Japan
Prior art keywords
bismuth
film
bismuth titanate
titanium oxide
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32293797A
Other languages
Japanese (ja)
Other versions
JPH11158692A (en
Inventor
敏和 竹田
美文 小木曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP32293797A priority Critical patent/JP3921763B2/en
Publication of JPH11158692A publication Critical patent/JPH11158692A/en
Application granted granted Critical
Publication of JP3921763B2 publication Critical patent/JP3921763B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、コンデンサ、圧電素子、焦電センサ、強誘電性メモリ等に利用しうるチタン酸ビスマス被膜の製造方法に関するものである。
【0002】
【従来の技術】
従来より、チタン酸ビスマス被膜は産業上有用な物質であり、コンデンサ、圧電素子、焦電センサ、強誘電性メモリ等への応用が検討されている。
【0003】
このようなチタン酸ビスマス被膜の形成方法は、スパッタリング法、真空蒸着法、CVD法などの乾式成膜法や、スプレイパイロリシス法、ゾル−ゲル法、液相成長法などの湿式成膜法により基体上に成膜することが試みられている。
【0004】
【発明が解決しようとする課題】
しかしながら、従来のスパッタリング法、真空蒸着法、CVD法などの乾式成膜法では、成膜装置が大掛かりで高価であり、また成膜可能な基体面積が制限される、組成や膜厚制御が難しい、複雑な形状には成膜が難しい等の欠点がある。
【0005】
またスプレイパイロリシス法、ゾル−ゲル法、液相成長法などの湿式成膜法においても、数百度の高温加熱が必要となるため、耐熱性の弱い基板は使用できず、基板加熱用の機器が必要になり使用環境も限られてくるという問題があった。
【0006】
【課題を解決するための手段】
本発明者らは、上述の技術的問題点に鑑みて鋭意研究を重ねた結果、基体上にチタン酸化物被膜を形成した後に、該チタン酸化物被膜をビスマス塩および過酸化物を含む水溶液中で陽極酸化することにより、大掛かりな装置を必要とせず、大面積かつ複雑形状の基体上にも、膜厚および組成の均一なチタン酸ビスマス被膜を容易に得られる方法を見出し、本発明を完成するに至った。
【0007】
すなわち本発明は、基体上にチタン酸化物被膜を形成する工程と、前記チタン酸化物被膜をビスマス塩および過酸化物を含む水溶液中で陽極酸化する工程とを含むことを特徴とする。
【0008】
本発明の製造方法における基体上のチタン酸化物被膜の形成方法には、特に限定はない。例えば、スパッタリング法、真空蒸着法、CVD法などの乾式成膜法、ゾル−ゲル法、電解析出法などの湿式成膜法で形成したものを用いることができる。このうち、電解析出法によるものが、成膜プロセスの低温下、容易さ、使用装置の低価格化等の観点から望ましい。
【0009】
また、使用するビスマス塩としても特に限定はない。例えば、臭化ビスマス、塩化ビスマス、くえん酸ビスマス、よう化ビスマス、硝酸ビスマス、りん酸ビスマス、オキシ塩化ビスマス等が使用できる。さらに、ビスマス金属、酸化ビスマス、水酸化ビスマス等を酸性溶液中で溶解させたものも使用できる。
【0010】
使用する過酸化物も、特に限定はない。例えば、過酸化水素、ペルオキソ硝酸、ペルオキソ一硫酸、ペルオキソ二硫酸、ペルオキソ一硫酸ナトリウム、ペルオキソ二硫酸ナトリウム、ペルオキソ一硫酸カリウム、ペルオキソ二硫酸カリウム、ペルオキソ一炭酸ナトリウム、ペルオキソ一炭酸カリウム、ペルオキソ二炭酸ナトリウム、ペルオキソ二炭酸カリウム、ペルオキソ一りん酸、ペルオキソ二りん酸、ペルオキソ一りん酸ナトリウム、ペルオキソ二りん酸ナトリウム、ペルオキソ一りん酸カリウム、ペルオキソ二りん酸カリウム、ペルオキソほう酸、ペルオキソほう酸ナトリウム等が使用できる。このうち、チタン酸ビスマス被膜への不純物の混入を少なくできる点や入手しやすい点などから、過酸化水素水を使用することが好都合である。
【0011】
本発明において、ビスマス塩、過酸化物は、それぞれ一種類のものを用いてもよいし、複数のものを混合して用いても良い。なお、ビスマス塩は含むが過酸化物を含まない溶液を用いた場合には、チタン酸化物の溶解が起こりチタン酸ビスマス被膜は得られないことが後述の比較実験から判明している。
【0012】
ビスマス塩および過酸化物の濃度は広い範囲で使用可能であるが、低濃度すぎるとチタン酸化物の溶解のみが生じるためチタン酸ビスマス被膜は得られず、また高濃度すぎるとビスマス酸化物のみの生成となる傾向がある。このため通常、ビスマスイオンおよび過酸化物イオンのそれぞれの濃度が、0.001mol/L〜1.0mol/L程度の範囲にあることが適当であり、特にそれぞれの濃度が0.1mol/L程度であることが好ましい。
【0013】
また、ビスマス塩および過酸化物を含む水溶液の水温も、広い範囲で設定可能であるが、通常は20℃〜100℃程度が適当であり、50℃〜80℃程度が好ましい。さらに、水溶液のpH範囲も広い範囲で設定可能であるが、pH8〜14の範囲であればよく、特にpH10〜13程度とすることが好ましい。この際、pH3以上の水溶液では、ほとんどのビスマス塩が加水分解し溶液が白濁してしまうため、場合によってはビスマス錯体形成が必要である。この場合に使用する錯化剤としては特に限定はなく、例えばエチレンジアミン四酢酸塩、ニトリロ酢酸塩等が挙げられる。これらの錯化剤は、一種類で用いても良いし、複数のものを混合して用いても良い。
【0014】
さらに、チタン酸化物被膜を形成する基体に特に限定はない。例えば、銅、ニッケル、白金、金、ステンレス鋼、チタンなどの金属材料、あるいは導電性セラミックス材料、導電性ガラス材料等が挙げられる。また、各種の絶縁体基体上に前述の導体を形成したものを用いても良い。基体は、陽極酸化を行う前に表面改質、エッチング等の前処理を行っても良い。
【0015】
加えて、結晶性の向上、膜欠陥の補正、結晶変態等の観点から、本発明によってチタン酸ビスマス被膜を作製したのちに、熱処理を施すことも可能である。
【0016】
本発明において、チタン酸化物被膜の形成された基体を陽極酸化する方法としては、通常の陽極酸化法がいずれも採用できる。例えば、三極式の電解セルを形成装置として用いた場合、作用電極電位は溶液中のビスマス塩および過酸化物濃度に応じて設定可能であるが、通常Ag/AgCl電極基準で+0.5〜+6.0V程度が適当であり、+1.0〜+5.0V程度が好ましい。
【0017】
【発明の実施の形態】
以下、本発明に従って実施した実験について説明する。なお、薬品はすべて試薬特級(ナカライテスク(株)製)を使用した。チタン酸ビスマス被膜作成用基体(すなわち作用電極)としてはsus304(ニラコ(株)製)を用い、常法に従い脱脂処理を行った。また、電解セルは通常用いられている三極式のもの(対電極:Pt箔20×30×0.1mm、高純度化学(株)製、参照電極:飽和KCl入りAg/AgCl、堀場製作所(株)製、セル容量:300mL)を使用した。
【0018】
【実験例1】
まず、先に準備したsus304上に、高周波スパッタリング法により膜厚0.5μmのチタン酸化物被膜を形成した。この際、ターゲットとして二酸化チタン(純度99.5%、高純度化学(株)製)を、形成時の雰囲気ガスとしてアルゴンガス(純度99.999%、住友精化(株)製)を用い、チャンバー内真空度3.0×10-3Torr、投入電力量300Wの条件とした。
【0019】
次に、電解セルに下記の組成のチタン酸ビスマス被膜作成用水溶液を入れたあと、恒温槽中にセットしたのち、以下の条件下で陽極酸化を行った。
【0020】
塩化ビスマス 0.1 mol/L
クエン酸三ナトリウム塩 0.4 mol/L
過酸化水素水(30重量%過酸化水素含有) 0.1 mol/L
(20重量%水酸化ナトリウム水溶液でpH11まで調整)
上記水溶液中で、液温を60℃に保持し、+2.0V、90分で陽極酸化を行ったところ、陽極酸化前には無色透明であったチタン酸化物被膜が薄暗い黄色に着色された。この膜をX線回折法により測定したところ、チャートには結晶性チタン酸ビスマスおよびチタン金属箔に起因するピークが認められた。
【0021】
【実験例2】
先に準備したsus304上に、電解析出法により膜厚0.4μmのチタン酸化物被膜を形成した。この際、チタン酸化物被膜作成用の電解液には、三塩化チタン、クエン酸、硝酸カリウム、過酸化水素をいずれも0.01mol/L含むpH6.0の水溶液を用いた。
【0022】
次に、電解セルに下記の組成のチタン酸ビスマス被膜作成用水溶液を入れたあと、恒温槽中にセットしたのち、以下の条件下で陽極酸化を行った。
【0023】
硝酸ビスマス 0.1 mol/L
ニトリロ酢酸塩 0.4 mol/L
ペルオキソほう酸ナトリウム 0.1 mol/L
(20重量%水酸化ナトリウム水溶液でpH12まで調整)
上記水溶液中で、液温を70℃に保持し、+3.0V、60分で陽極酸化を行ったところ、陽極酸化前には無色透明であったチタン酸化物被膜が薄暗い黄色に着色された。この膜を、実験例1と同様に、X線回折法により同定したところチタン酸ビスマスであった。
【0024】
【実験例3】
チタン酸化物被膜は、実験例2と同様の条件で、電解析出法によりsus304上に形成した。
【0025】
次に、電解セルに下記の組成のチタン酸ビスマス被膜作成用水溶液を入れたあと、恒温槽中にセットしたのち、以下の条件下で陽極酸化を行った。
【0026】
クエン酸ビスマス 0.05 mol/L
エチレンジアミン四酢酸二ナトリウム塩 0.2 mol/L
ペルオキソ二硫酸ナトリウム 0.05 mol/L
(20重量%水酸化ナトリウム水溶液でpH10まで調整)
上記水溶液中で、液温を50℃に保持し、+4.0V、60分で陽極酸化を行ったところ、陽極酸化前には無色透明であったチタン酸化物被膜が薄暗い黄色に着色された。この膜を、実験例1と同様に、X線回折法により同定したところチタン酸ビスマスであった。
【0027】
【比較例】
チタン酸化物被膜は、実験例1と同条件で、高周波スパッタリング法によりsus304上に形成した。
【0028】
次に、電解セルに過酸化物を除いた下記の組成のチタン酸ビスマス被膜作成用水溶液を入れたあと、恒温槽中にセットしたのち、以下の条件下で陽極酸化を行った。
【0029】
塩化ビスマス 0.05 mol/L
エチレンジアミン四酢酸二ナトリウム塩 0.2 mol/L
(20重量%水酸化ナトリウム水溶液でpH10まで調整)
上記水溶液中で、液温を50℃に保持し、+3.0V、60分で陽極酸化を行った。この陽極酸化の間に、sus304上に形成されていたチタン酸化物被膜の一部が剥離する現象が観察された。陽極酸化後、sus304上の膜を、実施例1と同様に、X線回折法により同定したところ、チタン酸ビスマスに起因するピークは見られず、チタン金属箔に起因するピークのみが認められた。
【0030】
【発明の効果】
このように本発明によれば、基体上にチタン酸化物被膜を形成したのちに、該被膜をビスマス塩および過酸化物を含む水溶液中で陽極酸化することにより、大掛かりな装置を必要とせず、大面積および複雑形状の基体上にも、膜厚および組成が均一なチタン酸ビスマス被膜を容易に得ることが可能である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a bismuth titanate film that can be used for capacitors, piezoelectric elements, pyroelectric sensors, ferroelectric memories, and the like.
[0002]
[Prior art]
Conventionally, bismuth titanate coating is an industrially useful substance, and its application to capacitors, piezoelectric elements, pyroelectric sensors, ferroelectric memories and the like has been studied.
[0003]
Such a bismuth titanate film can be formed by a dry film formation method such as a sputtering method, a vacuum evaporation method, or a CVD method, or a wet film formation method such as a spray pyrolysis method, a sol-gel method, or a liquid phase growth method. Attempts have been made to form a film on a substrate.
[0004]
[Problems to be solved by the invention]
However, in conventional dry deposition methods such as sputtering, vacuum deposition, and CVD, the deposition apparatus is large and expensive, and the substrate area on which the film can be formed is limited, and it is difficult to control the composition and film thickness. The complicated shape has drawbacks such as difficulty in film formation.
[0005]
Also, wet deposition methods such as the spray pyrolysis method, sol-gel method, and liquid phase growth method require heating at a high temperature of several hundred degrees, so that a substrate with low heat resistance cannot be used. There is a problem that the use environment is limited.
[0006]
[Means for Solving the Problems]
As a result of intensive studies in view of the above technical problems, the present inventors have formed a titanium oxide film on a substrate, and then formed the titanium oxide film in an aqueous solution containing a bismuth salt and a peroxide. A method for easily obtaining a bismuth titanate film with a uniform film thickness and composition on a large-area, complex-shaped substrate was found without the need for a large-scale apparatus, and the present invention was completed. It came to do.
[0007]
That is, the present invention includes a step of forming a titanium oxide film on a substrate and a step of anodizing the titanium oxide film in an aqueous solution containing a bismuth salt and a peroxide.
[0008]
There is no limitation in particular in the formation method of the titanium oxide film on a base | substrate in the manufacturing method of this invention. For example, a film formed by a dry film formation method such as a sputtering method, a vacuum evaporation method, or a CVD method, or a wet film formation method such as a sol-gel method or an electrolytic deposition method can be used. Among these, the electrolytic deposition method is desirable from the viewpoints of the low temperature and ease of the film forming process, the cost reduction of the equipment used, and the like.
[0009]
Further, the bismuth salt used is not particularly limited. For example, bismuth bromide, bismuth chloride, bismuth citrate, bismuth iodide, bismuth nitrate, bismuth phosphate, bismuth oxychloride and the like can be used. Furthermore, what melt | dissolved bismuth metal, bismuth oxide, bismuth hydroxide, etc. in the acidic solution can also be used.
[0010]
The peroxide to be used is not particularly limited. For example, hydrogen peroxide, peroxonitric acid, peroxomonosulfuric acid, peroxodisulfuric acid, sodium peroxodisulfate, sodium peroxodisulfate, potassium peroxomonosulfate, potassium peroxodisulfate, sodium peroxomonocarbonate, potassium peroxomonocarbonate, peroxodicarbonate Sodium, potassium peroxodicarbonate, peroxomonophosphate, peroxodiphosphate, sodium peroxomonophosphate, sodium peroxodiphosphate, potassium peroxomonophosphate, potassium peroxodiphosphate, peroxoborate, sodium peroxoborate, etc. it can. Among these, it is advantageous to use a hydrogen peroxide solution because it can reduce the amount of impurities mixed into the bismuth titanate film and is easily available.
[0011]
In the present invention, as the bismuth salt and the peroxide, one kind each may be used, or a plurality of kinds may be mixed and used. It has been found from a comparative experiment described later that when a solution containing a bismuth salt but not containing a peroxide is used, the titanium oxide is dissolved and a bismuth titanate film cannot be obtained.
[0012]
The concentration of bismuth salt and peroxide can be used in a wide range. However, if the concentration is too low, only the dissolution of titanium oxide occurs, so that a bismuth titanate film cannot be obtained. Tend to generate. For this reason, it is usually appropriate that the respective concentrations of bismuth ions and peroxide ions are in the range of about 0.001 mol / L to 1.0 mol / L, and in particular each concentration is about 0.1 mol / L. It is preferable that
[0013]
The water temperature of the aqueous solution containing the bismuth salt and peroxide can also be set in a wide range, but is usually about 20 ° C to 100 ° C, and preferably about 50 ° C to 80 ° C. Furthermore, the pH range of the aqueous solution can be set in a wide range, but it may be in the range of pH 8 to 14, and is preferably about pH 10 to 13. At this time, in an aqueous solution having a pH of 3 or more, most of the bismuth salt is hydrolyzed and the solution becomes cloudy. Therefore, in some cases, it is necessary to form a bismuth complex. The complexing agent used in this case is not particularly limited, and examples thereof include ethylenediamine tetraacetate and nitriloacetate. These complexing agents may be used alone or as a mixture of a plurality of them.
[0014]
Furthermore, there is no particular limitation on the substrate on which the titanium oxide film is formed. For example, metal materials such as copper, nickel, platinum, gold, stainless steel, and titanium, conductive ceramic materials, conductive glass materials, and the like can be given. Moreover, you may use what formed the above-mentioned conductor on various insulator base materials. The substrate may be subjected to pretreatment such as surface modification and etching before anodizing.
[0015]
In addition, from the viewpoint of improvement in crystallinity, correction of film defects, crystal transformation, and the like, it is also possible to perform heat treatment after producing a bismuth titanate film according to the present invention.
[0016]
In the present invention, as a method for anodizing a substrate on which a titanium oxide film is formed, any ordinary anodizing method can be employed. For example, when a triode type electrolysis cell is used as a forming device, the working electrode potential can be set according to the bismuth salt and peroxide concentration in the solution, but is usually +0.5 to the Ag / AgCl electrode standard. About +6.0 V is appropriate, and about +1.0 to +5.0 V is preferable.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, experiments conducted according to the present invention will be described. All chemicals used were reagent grade (Nacalai Tesque). As a substrate for forming a bismuth titanate film (that is, a working electrode), sus304 (manufactured by Niraco Co., Ltd.) was used, and degreasing treatment was performed according to a conventional method. In addition, the electrolysis cell is a commonly used tripolar type (counter electrode: Pt foil 20 × 30 × 0.1 mm, manufactured by High Purity Chemical Co., Ltd., reference electrode: Ag / AgCl with saturated KCl, Horiba ( Co., Ltd., cell capacity: 300 mL) was used.
[0018]
[Experiment 1]
First, a 0.5 μm-thick titanium oxide film was formed on the previously prepared sus 304 by high-frequency sputtering. At this time, titanium dioxide (purity 99.5%, manufactured by High Purity Chemical Co., Ltd.) was used as a target, and argon gas (purity 99.999%, manufactured by Sumitomo Seika Co., Ltd.) was used as an atmospheric gas during formation. The conditions were such that the degree of vacuum in the chamber was 3.0 × 10 −3 Torr and the input power was 300 W.
[0019]
Next, an aqueous solution for forming a bismuth titanate film having the following composition was placed in the electrolytic cell, and after setting in a thermostatic bath, anodic oxidation was performed under the following conditions.
[0020]
Bismuth chloride 0.1 mol / L
Trisodium citrate salt 0.4 mol / L
Hydrogen peroxide solution (containing 30 wt% hydrogen peroxide) 0.1 mol / L
(Adjusted to pH 11 with 20% by weight aqueous sodium hydroxide)
In the above aqueous solution, the liquid temperature was kept at 60 ° C. and anodization was performed at +2.0 V for 90 minutes. As a result, the colorless and transparent titanium oxide film before the anodization was colored dim yellow. When this film was measured by an X-ray diffraction method, peaks attributable to crystalline bismuth titanate and titanium metal foil were observed on the chart.
[0021]
[Experimental example 2]
A titanium oxide film having a thickness of 0.4 μm was formed on the previously prepared sus 304 by electrolytic deposition. At this time, an aqueous solution having a pH of 6.0 containing 0.01 mol / L of titanium trichloride, citric acid, potassium nitrate, and hydrogen peroxide was used as the electrolytic solution for forming the titanium oxide film.
[0022]
Next, an aqueous solution for forming a bismuth titanate film having the following composition was placed in the electrolytic cell, and after setting in a thermostatic bath, anodic oxidation was performed under the following conditions.
[0023]
Bismuth nitrate 0.1 mol / L
Nitriloacetate 0.4 mol / L
Sodium peroxoborate 0.1 mol / L
(Adjusted to pH 12 with 20 wt% sodium hydroxide aqueous solution)
In the above aqueous solution, the temperature of the solution was kept at 70 ° C., and anodization was performed at +3.0 V for 60 minutes. As a result, the colorless and transparent titanium oxide film before the anodization was colored dim yellow. When this film was identified by the X-ray diffraction method as in Experimental Example 1, it was bismuth titanate.
[0024]
[Experiment 3]
The titanium oxide film was formed on sus304 by electrolytic deposition under the same conditions as in Experimental Example 2.
[0025]
Next, an aqueous solution for forming a bismuth titanate film having the following composition was placed in the electrolytic cell, and after setting in a thermostatic bath, anodic oxidation was performed under the following conditions.
[0026]
Bismuth citrate 0.05 mol / L
Ethylenediaminetetraacetic acid disodium salt 0.2 mol / L
Sodium peroxodisulfate 0.05 mol / L
(Adjusted to pH 10 with 20 wt% sodium hydroxide aqueous solution)
In the above aqueous solution, the liquid temperature was kept at 50 ° C. and anodization was performed at +4.0 V for 60 minutes. As a result, the titanium oxide film, which was colorless and transparent before the anodization, was colored dim yellow. When this film was identified by the X-ray diffraction method as in Experimental Example 1, it was bismuth titanate.
[0027]
[Comparative example]
The titanium oxide film was formed on sus304 by the high frequency sputtering method under the same conditions as in Experimental Example 1.
[0028]
Next, after putting an aqueous solution for forming a bismuth titanate film having the following composition in the electrolytic cell excluding the peroxide, it was set in a thermostatic bath and then anodized under the following conditions.
[0029]
Bismuth chloride 0.05 mol / L
Ethylenediaminetetraacetic acid disodium salt 0.2 mol / L
(Adjusted to pH 10 with 20 wt% sodium hydroxide aqueous solution)
In the aqueous solution, the liquid temperature was maintained at 50 ° C., and anodization was performed at +3.0 V for 60 minutes. During this anodic oxidation, a phenomenon was observed in which a part of the titanium oxide film formed on the sus 304 was peeled off. After anodization, the film on sus304 was identified by X-ray diffraction as in Example 1. As a result, no peak due to bismuth titanate was observed, and only a peak due to titanium metal foil was observed. .
[0030]
【The invention's effect】
Thus, according to the present invention, after forming the titanium oxide film on the substrate, the film is anodized in an aqueous solution containing a bismuth salt and a peroxide, so that a large-scale apparatus is not required. It is possible to easily obtain a bismuth titanate film having a uniform film thickness and composition even on a substrate having a large area and a complicated shape.

Claims (3)

基体上にチタン酸化物被膜を形成する工程と、
前記チタン酸化物被膜を、ビスマス塩および過酸化物を含む水溶液中で陽極酸化する工程と、
を含むことを特徴とするチタン酸ビスマス被膜の形成方法。
Forming a titanium oxide film on the substrate;
Anodizing the titanium oxide film in an aqueous solution containing a bismuth salt and a peroxide;
A method for forming a bismuth titanate film, comprising:
前記チタン酸化物被膜を、電解析出法によって形成することを特徴とする請求項1記載のチタン酸ビスマス被膜の形成方法。2. The method of forming a bismuth titanate film according to claim 1, wherein the titanium oxide film is formed by electrolytic deposition. 前記陽極酸化工程によってチタン酸ビスマス被膜が形成されたのちに、チタン酸ビスマス被膜に熱処理を施す工程を有することを特徴とする請求項1または請求項2のいずれかに記載のチタン酸ビスマス被膜の形成方法。The bismuth titanate film according to claim 1, further comprising a step of performing a heat treatment on the bismuth titanate film after the bismuth titanate film is formed by the anodizing step. Forming method.
JP32293797A 1997-11-25 1997-11-25 Method for forming bismuth titanate film Expired - Lifetime JP3921763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32293797A JP3921763B2 (en) 1997-11-25 1997-11-25 Method for forming bismuth titanate film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32293797A JP3921763B2 (en) 1997-11-25 1997-11-25 Method for forming bismuth titanate film

Publications (2)

Publication Number Publication Date
JPH11158692A JPH11158692A (en) 1999-06-15
JP3921763B2 true JP3921763B2 (en) 2007-05-30

Family

ID=18149305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32293797A Expired - Lifetime JP3921763B2 (en) 1997-11-25 1997-11-25 Method for forming bismuth titanate film

Country Status (1)

Country Link
JP (1) JP3921763B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4803550B2 (en) * 2006-03-07 2011-10-26 地方独立行政法人 大阪市立工業研究所 Composition for electrolytic formation of silver oxide film
WO2009108286A1 (en) * 2008-02-28 2009-09-03 Corning Incorporated Electrochemical methods of making nanostructures
CN104131308A (en) * 2014-07-24 2014-11-05 青岛农业大学 Preparation method for bismuth tungstate
RU2614916C1 (en) * 2016-04-05 2017-03-30 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Method for bismuth titanate thin layers production
CN114216949B (en) * 2021-11-18 2023-08-08 佛山科学技术学院 Screen printing electrode, manufacturing method and detection method thereof
CN114457358B (en) * 2022-01-18 2023-04-25 安徽大学 Bi/TiO 2 Series electrocatalytic material and its preparation method and application

Also Published As

Publication number Publication date
JPH11158692A (en) 1999-06-15

Similar Documents

Publication Publication Date Title
Boen et al. The electrodeposition of silicon in fluoride melts
GB1327760A (en) Electrodes
JP3921763B2 (en) Method for forming bismuth titanate film
Krasicka-Cydzik Gel-like layer development during formation of thin anodic films on titanium in phosphoric acid solutions
JP3867374B2 (en) Aqueous solution for preparing titanium oxide film and method for producing titanium oxide film
JPH11172489A (en) Production of barium titanate coating film
JPH02247393A (en) Electrolytic electrode with durability and its production
US4008144A (en) Method for manufacturing of electrode having porous ceramic substrate coated with electrodeposited lead dioxide and the electrode manufactured by said method
Thanos et al. The influences of the electrolyte and the physical conditions on ozone production by the electrolysis of water
US4067783A (en) Gold electroplating process
GB2204325A (en) A method of electrolytically treating metals and an electrode for use in the method
JP3887899B2 (en) Method for producing bismuth oxide coating
JPS6027754B2 (en) Manufacturing method of metal anode for electrolytically producing manganese dioxide
HU199574B (en) Process for production of electrode suitable to electrolize of alkalchlorid watery solutions
RU2550436C1 (en) Method of treating metal surface
JPH0472098A (en) Production of aluminum substrate for printing plate
US2332487A (en) Surface treatment for articles of magnesium and alloys thereof
CN102274093A (en) Medical magnesium alloy bracket and processing method
JP2638038B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
EA024356B1 (en) Electrode for electrolytic cell
JP3616840B2 (en) Conductivity meter
JP2763136B2 (en) Method for forming etching nuclei on aluminum foil for electrolytic capacitor electrode
JP2696882B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP2629241B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
SU976838A3 (en) Electrrode production method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6