JP3920843B2 - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
JP3920843B2
JP3920843B2 JP2003410523A JP2003410523A JP3920843B2 JP 3920843 B2 JP3920843 B2 JP 3920843B2 JP 2003410523 A JP2003410523 A JP 2003410523A JP 2003410523 A JP2003410523 A JP 2003410523A JP 3920843 B2 JP3920843 B2 JP 3920843B2
Authority
JP
Japan
Prior art keywords
hot water
heat exchanger
water
supply
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003410523A
Other languages
Japanese (ja)
Other versions
JP2005172317A (en
Inventor
謙二 木村
真二 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2003410523A priority Critical patent/JP3920843B2/en
Priority to CNB2004100980877A priority patent/CN100396996C/en
Publication of JP2005172317A publication Critical patent/JP2005172317A/en
Application granted granted Critical
Publication of JP3920843B2 publication Critical patent/JP3920843B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Description

本発明は、給排気管を備え、燃焼ファンにより給排気管を介して燃焼用空気の供給と燃焼排気の排出とを行うようにした給湯器に関する。   The present invention relates to a water heater provided with an air supply / exhaust pipe and configured to supply combustion air and exhaust combustion exhaust through a supply / exhaust pipe by a combustion fan.

本願出願人は、先に、この種の給湯器として、特願2003−113734号により、図3に示すようなものを提案している。この先願の給湯器は、ハウジング1と、ハウジング1内に配置した、バーナ2およびバーナ2により加熱される給湯用熱交換器3を収納した燃焼室4と、ハウジング1内に燃焼室4の上方に位置させて配置した、ハウジング1の内部空間に連通する給気室5と、燃焼室4に連通して排気路7を構成する内管6aと、給気室5に連通して内管6aとの間に給気路8を構成する外管6bとで構成される2重管構造の給排気管6と、外気を給気路8と給気室5とハウジング1の内部空間とを介して燃焼室4に燃焼用空気として供給すると共に、バーナ2の燃焼排気を燃焼室4から排気路7を介して外部に排出する燃焼ファン9とを備える。   The applicant of the present application has previously proposed a water heater of this type as shown in FIG. 3 according to Japanese Patent Application No. 2003-113734. This hot water heater of the prior application includes a housing 1, a combustion chamber 4 that is disposed in the housing 1, and stores a hot water supply heat exchanger 3 that is heated by the burner 2; An air supply chamber 5 communicating with the internal space of the housing 1, an inner pipe 6 a that communicates with the combustion chamber 4 and constitutes the exhaust passage 7, and an inner pipe 6 a that communicates with the air supply chamber 5. The air supply / exhaust pipe 6 having a double-pipe structure composed of the outer pipe 6b constituting the air supply path 8 therebetween, and the outside air through the air supply path 8, the air supply chamber 5, and the internal space of the housing 1 And a combustion fan 9 for supplying the combustion exhaust from the burner 2 to the outside through the exhaust passage 7 from the combustion chamber 4 while supplying the combustion chamber 4 with combustion air.

ところで、上記の如き2重管構造の給排気管6を使用すると、排気路7を流れる高温の燃焼排気によって給気路8を流れる空気が70〜100℃程度まで加熱されることがある。このままでは、ハウジング1内に高温空気が流入することになり、燃焼ファン9やハウジング1内に設ける制御ユニット10が昇温して、その作動不良や誤作動をきたすおそれがある。   By the way, when the supply / exhaust pipe 6 having the double pipe structure as described above is used, the air flowing through the supply path 8 may be heated to about 70 to 100 ° C. by high-temperature combustion exhaust gas flowing through the exhaust path 7. If this is the case, high-temperature air will flow into the housing 1, and the temperature of the combustion fan 9 or the control unit 10 provided in the housing 1 may rise, resulting in malfunction or malfunction.

そこで、先願のものでは、給気室5に、給湯用熱交換器3の上流側の給水路11から分岐して給湯用熱交換器3の下流側の出湯路12に合流するバイパス通路13に介設される冷却用熱交換器14を配置し、給気室5に流入した高温空気をバイパス通路13に流れる冷水と冷却用熱交換器14で熱交換させて冷却するようにしたものを提案している。   Therefore, in the prior application, a bypass passage 13 branched into the air supply chamber 5 from the upstream water supply passage 11 of the hot water supply heat exchanger 3 and joined to the hot water supply passage 12 downstream of the hot water supply heat exchanger 3. The cooling heat exchanger 14 interposed between the cooling water and the cooling air exchanger 14 is cooled by cooling the hot air flowing into the air supply chamber 5 with the cooling water flowing in the bypass passage 13 and the cooling heat exchanger 14. is suggesting.

ところで、冷却用熱交換器を具備しない給湯器であるが、従来、バイパス通路と出湯路の合流部を、バイパス通路と給水路の分岐部よりも鉛直方向上方に位置させて、冷水サンドイッチ現象の発生を防止するようにしたものが知られている(例えば、特許文献1参照)。冷水サンドイッチ現象は、出湯停止時に、バイパス通路と給水路の分岐部から給湯用熱交換器→バイパス通路と出湯路の合流部→バイパス通路の経路で分岐部に戻る閉ループ内の温水と冷水が両者の比重差により閉ループ内で回転するように流動し、バイパス通路内の冷水が合流部から給湯用熱交換器側に逆流して、給湯用熱交換器と合流部との間の出湯路の部分に冷水が滞留し、再出湯時にこの冷水が流出する現象である。   By the way, although it is a water heater without a heat exchanger for cooling, conventionally, the merging portion of the bypass passage and the hot water passage is positioned vertically above the branch portion of the bypass passage and the water supply passage, A device that prevents generation is known (for example, see Patent Document 1). The cold water sandwich phenomenon is that when hot water is stopped, hot water and cold water in the closed loop that returns to the branching section through the bypass passage and the heat exchanger for hot water supply → the junction of the bypass path and the hot water path from the branching section of the bypass passage and the water supply path are both Part of the hot water supply path between the hot water heat exchanger and the merging part, the cold water in the bypass passage flows back to the hot water heat exchanger side from the merging part. This is a phenomenon in which cold water stays in the water and flows out when the hot water is discharged again.

これを更に詳述するに、上記閉ループを、その鉛直方向最高位置と鉛直方向最低位置とを互いに逆向き結ぶ第1と第2の2つの流路に二分し、第1流路内と第2流路内の任意の高さyにおける滞留水の比重を夫々ρ1,ρ2とし、第1流路と第2流路の最低位置から最高位置までの滞留水の比重の鉛直方向の積分値を夫々∫ρ1dy,∫ρ2dyと定義する。各流路の滞留水の鉛直方向積分値∫ρ1dy,∫ρ2dyに重力加速度を乗じた値は、閉ループの最低位置における各流路の水圧に等しくなる。そのため、∫ρ1dy=∫ρ2dyになるように滞留水が流動する。   More specifically, the closed loop is divided into two first and second flow paths that connect the highest vertical position and the lowest vertical position in opposite directions, and the first and second flow paths are divided into two. The specific gravity of the stagnant water at an arbitrary height y in the flow path is defined as ρ1 and ρ2, respectively, and the vertical integrated values of the specific gravity of the stagnant water from the lowest position to the highest position of the first flow path and the second flow path are respectively shown. ∫ρ1dy and ∫ρ2dy are defined. The values obtained by multiplying the vertical integral values ∫ρ1dy and ∫ρ2dy of the accumulated water in each flow path by gravity acceleration are equal to the water pressure of each flow path at the lowest position of the closed loop. Therefore, the staying water flows so that ∫ρ1dy = ∫ρ2dy.

バイパス通路と出湯路の合流部は、一般的に、バイパス通路と給水路の分岐部と鉛直方向同一高さに位置している。この場合、第1流路が閉ループの鉛直方向最高位置たる給湯用熱交換器の出口部から合流部とバイパス通路とを介して閉ループの鉛直方向最低位置たる分岐部に至る流路、第2流路が給湯用熱交換器の出口部から給湯用熱交換器を介して分岐部に至る流路であるとすると、分岐部とその上方の給湯用熱交換器の入口部との間の給水路の部分(第2流路の一部分)に滞留する冷水の影響で∫ρ1dy<∫ρ2dyになる。そのため、第2流路内の滞留水が分岐部を介して第1流路側に流動し、バイパス通路内の冷水が合流部から給湯用熱交換器側に流れて、冷水サンドイッチ現象が発生する。   The junction of the bypass passage and the hot water outlet is generally located at the same height in the vertical direction as the branch portion of the bypass passage and the water supply passage. In this case, the first flow path is a flow path from the outlet portion of the hot water heat exchanger, which is the highest position in the vertical direction of the closed loop, to the branch portion, which is the lowest position in the vertical direction of the closed loop, via the merge portion and the bypass passage. If the channel is a flow path from the outlet of the hot water supply heat exchanger to the branch through the hot water heat exchanger, the water supply path between the branch and the inlet of the hot water heat exchanger above it ∫ρ1dy <∫ρ2dy due to the influence of the cold water staying in the portion (part of the second flow path). Therefore, the stagnant water in the second flow path flows to the first flow path side through the branching section, and the cold water in the bypass passage flows from the joining section to the hot water supply heat exchanger side, and a cold water sandwich phenomenon occurs.

これに対し、バイパス通路と出湯路の合流部を、バイパス通路と給水路の分岐部よりも鉛直方向上方に位置させれば、バイパス通路に滞留する冷水の影響で第1流路の滞留水の比重積分値∫ρ1dyが増加し、第2流路から第1流路への分岐部を介しての滞留水の流動が抑制されて、冷水サンドイッチ現象の発生も抑制される。   On the other hand, if the junction of the bypass passage and the hot water passage is positioned vertically above the branch portion of the bypass passage and the water supply passage, the accumulated water in the first flow path is affected by the cold water remaining in the bypass passage. The specific gravity integral value ∫ρ1dy increases, the flow of the staying water through the branch from the second flow path to the first flow path is suppressed, and the occurrence of the cold water sandwich phenomenon is also suppressed.

然し、上記先願の冷却用熱交換器14を具備する給湯器において、上記図3に示されているように、バイパス通路13と出湯路12の合流部13bを、バイパス通路13と給水路11の分岐部13aよりも鉛直方向上方に位置させると、出湯停止時に、給湯用熱交換器3で後沸きされた高温の湯が冷却用熱交換器14に移行し、再出湯時に出湯温度が高温化する不具合を生ずる。   However, in the water heater provided with the cooling heat exchanger 14 of the prior application, as shown in FIG. 3, the junction 13 b of the bypass passage 13 and the outlet 12 is connected to the bypass passage 13 and the water supply passage 11. If the hot water hot water boiled in the hot water supply heat exchanger 3 is transferred to the cooling heat exchanger 14 when the hot water is stopped, the hot water temperature is high when the hot water is discharged again. Cause problems.

図4は、図3のA〜Dの各点、即ち、出湯路12の合流部13b下流のA点、バイパス通路13の合流部13b近傍のB点、冷却用熱交換器14の中間のC点、バイパス通路13の分岐部13a近傍のD点で計測した水温を示している。t1は出湯を停止した時点、t2は出湯を再開した時点であり、出湯停止から再開までの時間は1分間である。尚、出湯時は、出湯路12の合流部13b下流の水温が40℃になるように制御し、また、出湯停止後に燃焼ファン9の継続作動で5秒間のアフターパージを行っている。図4に示されているように、出湯を停止した瞬間にB点の温度が急上昇する。これは、慣性により出湯路12の温水が合流部13bからバイパス通路13に流入したためと考えられる。尚、図3の分岐部13aと合流部13bとの高さの差の実際値は2cmである。   4 shows points A to D in FIG. 3, that is, point A downstream of the junction 13 b of the outlet 12, point B near the junction 13 b of the bypass passage 13, and C in the middle of the cooling heat exchanger 14. The water temperature measured at point D in the vicinity of the point, the branch portion 13a of the bypass passage 13 is shown. t1 is the time when hot water is stopped, t2 is the time when hot water is restarted, and the time from the hot water stop to restart is 1 minute. In addition, at the time of hot water discharge, control is performed so that the water temperature downstream of the junction 13b of the hot water passage 12 becomes 40 ° C., and after the hot water is stopped, the combustion fan 9 is continuously operated to perform after purge for 5 seconds. As shown in FIG. 4, the temperature at point B rapidly rises at the moment when the hot water is stopped. This is presumably because the hot water in the hot water outlet 12 flows into the bypass passage 13 from the junction 13b due to inertia. Note that the actual value of the difference in height between the branching portion 13a and the merging portion 13b in FIG. 3 is 2 cm.

ここで、出湯停止時には、分岐部13aから給湯用熱交換器3→合流部13b→冷却用熱交換器14の経路で分岐部13aに戻る閉ループ内で滞留水が流動可能になる。そして、閉ループの鉛直方向最高位置は冷却用熱交換器14の最高部、閉ループの鉛直方向最低位置は分岐部13aになり、また、閉ループの最高位置と最低位置とを互いに逆向きに結ぶ2つの流路は、冷却用熱交換器14の最高部から合流部13bと給湯用熱交換器3とを介して分岐部13aに至る第1流路と、冷却用熱交換器14の最高部から冷却用熱交換器14を介して分岐部13aに至る第2流路とになる。第1流路の滞留水の鉛直方向の比重積分値は、第1流路に給湯用熱交換器が存在し、且つ、合流部13bと最高位置との間のバイパス通路13の部分に上記の如く温水が流入するため小さくなり、一方、第2流路の滞留水の鉛直方向の比重積分値は、第2流路に滞留するのが殆ど冷水であるため、第1流路の比重積分値に比しかなり大きくなる。その結果、第2流路から分岐部13aを介して第1流路に向かう流れを生じ、給湯用熱交換器3内の温水が合流部13bを介して冷却用熱交換器14に勢い良く流入して、C点の水温が急上昇し、更に、D点の温度も上昇する。   Here, when the hot water is stopped, the accumulated water can flow in the closed loop returning from the branch portion 13a to the branch portion 13a through the path of the hot water supply heat exchanger 3 → the merging portion 13b → the cooling heat exchanger 14. The highest vertical position of the closed loop is the highest portion of the heat exchanger 14 for cooling, the lowest vertical position of the closed loop is the branching portion 13a, and the highest position and the lowest position of the closed loop are connected in opposite directions. The flow path is cooled from the highest part of the cooling heat exchanger 14 to the first flow path from the highest part of the cooling heat exchanger 14 to the branching part 13a via the merge part 13b and the hot water supply heat exchanger 3, and from the highest part of the cooling heat exchanger 14. It becomes the 2nd flow path which reaches the branching part 13a via the heat exchanger 14 for an operation. The vertical specific gravity integral value of the stagnant water in the first flow path is the above-described value in the portion of the bypass passage 13 between the junction 13b and the highest position, in which the hot water supply heat exchanger exists in the first flow path. On the other hand, the specific gravity integral value in the vertical direction of the accumulated water in the second flow path is almost constant in the second flow path because of the cold water. It is considerably larger than As a result, a flow from the second flow path toward the first flow path through the branching portion 13a is generated, and the hot water in the hot water supply heat exchanger 3 flows into the cooling heat exchanger 14 through the merging portion 13b. Thus, the water temperature at point C rises rapidly, and the temperature at point D also rises.

このように冷却用熱交換器14に温水が流入すると、第2流路の比重積分値が減少するが、給湯用熱交換器3内の水温は後沸きにより上昇するため、第1流路の比重積分値は第2流路の比重積分値よりも減少し、給湯用熱交換器3内の温水が合流部13bを介して冷却用熱交換器14に継続して流入する。その結果、冷却用熱交換器14内の水温がかなり上昇し、再出湯時に、冷却用熱交換器14内の温度上昇した温水が合流部13bを介して出湯路12に流れ、出湯温度が一時的にオーバーシュートする。そして、設定温度(40℃)に対するオーバーシュート量は13.5℃程度にもなる。
特許第2678330号公報(段落0010〜0014、図1、図2)
When hot water flows into the cooling heat exchanger 14 in this manner, the specific gravity integral value of the second flow path decreases, but the water temperature in the hot water supply heat exchanger 3 rises due to post-boiling, so the first flow path The specific gravity integrated value is smaller than the specific gravity integrated value of the second flow path, and the hot water in the hot water supply heat exchanger 3 continuously flows into the cooling heat exchanger 14 through the junction 13b. As a result, the water temperature in the cooling heat exchanger 14 rises considerably, and the hot water whose temperature in the cooling heat exchanger 14 has risen flows through the junction 13b to the hot water channel 12 at the time of re-heating, so that the hot water temperature temporarily rises. Overshoot. The overshoot amount with respect to the set temperature (40 ° C.) is about 13.5 ° C.
Japanese Patent No. 2678330 (paragraphs 0010 to 0014, FIGS. 1 and 2)

本発明は、以上の点に鑑み、再出湯時の出湯温度のオーバーシュートを抑制できるようにした冷却用熱交換器付きの給湯器を提供することをその課題としている。   This invention makes it the subject to provide the water heater with the heat exchanger for cooling which enabled it to suppress the overshoot of the hot water temperature at the time of re-hot water in view of the above point.

上記課題を解決するために、本発明は、ハウジングと、ハウジング内に配置した、バーナおよびバーナにより加熱される給湯用熱交換器を収納した燃焼室と、ハウジング内に燃焼室の上方に位置させて配置した、ハウジングの内部空間に連通する給気室と、燃焼室に連通して排気路を構成する内管と、給気室に連通して内管との間に給気路を構成する外管とで構成される2重管構造の給排気管と、外気を給気路と給気室とハウジングの内部空間とを介して燃焼室に燃焼用空気として供給すると共に、バーナの燃焼排気を燃焼室から排気路を介して外部に排出する燃焼ファンとを備える給湯器であって、給気室に、給湯用熱交換器の上流側の給水路から分岐して給湯用熱交換器の下流側の出湯路に合流するバイパス通路に介設される冷却用熱交換器を配置するものにおいて、バイパス通路と出湯路の合流部を、バイパス通路と給水路の分岐部よりも鉛直方向下方に位置させることを特徴とする。   In order to solve the above problems, the present invention provides a housing, a combustion chamber disposed in the housing and containing a burner and a heat exchanger for hot water supply heated by the burner, and positioned in the housing above the combustion chamber. An air supply path that communicates with the internal space of the housing, an inner pipe that communicates with the combustion chamber and forms an exhaust path, and an air supply path that communicates with the air supply chamber and forms the air supply path. A double-pipe air supply / exhaust pipe composed of an outer pipe, and external air is supplied as combustion air to the combustion chamber via the air supply path, the air supply chamber, and the internal space of the housing, and the combustion exhaust of the burner And a combustion fan that discharges the air from the combustion chamber to the outside through the exhaust passage, and the supply air chamber is branched from the water supply passage upstream of the hot water supply heat exchanger. Cooling heat exchange installed in a bypass passage that joins the downstream outlet In what place the vessel, the confluence of the bypass passage and hot water passage, characterized in that is positioned vertically below the bifurcation of the bypass passage and the water supply passage.

上記の構成によれば、バイパス通路と給水路の分岐部から給湯用熱交換器→バイパス通路と出湯路の合流部→冷却用熱交換器の経路で分岐部に戻る閉ループの鉛直方向最低位置は合流部になる。そして、閉ループの鉛直方向最高位置と鉛直方向最低位置とを結ぶ互いに逆向きの2つの流路は、最高位置たる冷却用熱交換器の最高部からバイパス通路の下流部分を介して合流部に至る第1流路と、冷却用熱交換器の最高部から冷却用熱交換器とバイパス通路の上流部分と分岐部と給湯用熱交換器と出湯路の上流部分とを介して合流部に至る第2流路とになる。出湯停止時、慣性により出湯路の温水が合流部から第1流路に流入し、第1流路の滞留水の鉛直方向の比重積分値が一時的に減少する。一方、第2流路の滞留水の鉛直方向の比重積分値は、給湯用熱交換器に温水が存在するものの、冷却用熱交換器及び冷却用熱交換器と分岐部との間のバイパス通路の上流部分に存在する冷水の影響で、第1流路の比重積分値よりも大きくなる。そのため、第2流路から合流部を介して第1流路に向かう流れを生じ、給湯用熱交換器内の温水が合流部を経由して冷却用熱交換器に流入する。然し、給湯用熱交換器内の水温が後沸きで上昇すると、第2流路の比重積分値が減少して、遂には第1流路の比重積分値と等しくなり、この時点で第2流路から合流部を介して第1流路に向かう流れが停止する。従って、給湯用熱交換器内の温水が合流部を介して冷却用熱交換器に流入するのは一時的であり、冷却用熱交換器内の水温の上昇が抑制される。その結果、再出湯時の出湯温度のオーバーシュートも抑制される。   According to the above configuration, the lowest position in the vertical direction of the closed loop that returns from the branch portion of the bypass passage and the water supply path to the branch portion in the route of the heat exchanger for hot water supply → the junction of the bypass passage and the hot water passage → the heat exchanger for cooling is Become a confluence. The two mutually opposite flow paths connecting the highest vertical position and the lowest vertical position of the closed loop reach the junction through the downstream portion of the bypass passage from the highest portion of the cooling heat exchanger that is the highest position. The first flow path and the first part from the highest part of the cooling heat exchanger to the junction through the cooling heat exchanger, the upstream part of the bypass passage, the branch part, the hot water supply heat exchanger, and the upstream part of the outlet channel There are two flow paths. When the hot water is stopped, the hot water of the hot water channel flows into the first flow path from the joining portion due to inertia, and the specific gravity integral value in the vertical direction of the accumulated water in the first flow path temporarily decreases. On the other hand, the vertical specific gravity integral value of the stagnant water in the second flow path is a bypass passage between the cooling heat exchanger and the cooling heat exchanger and the branch portion although hot water exists in the hot water supply heat exchanger. It becomes larger than the specific gravity integral value of the first flow path due to the influence of cold water existing in the upstream portion of the first flow path. Therefore, the flow which goes to a 1st flow path from a 2nd flow path via a confluence | merging part arises, and the warm water in the heat exchanger for hot water supply flows into a heat exchanger for cooling via a confluence | merging part. However, when the water temperature in the hot water supply heat exchanger rises after boiling, the specific gravity integral value of the second flow path decreases and finally becomes equal to the specific gravity integral value of the first flow path. The flow from the road toward the first flow path through the junction is stopped. Therefore, it is temporary that the hot water in the hot water supply heat exchanger flows into the cooling heat exchanger via the junction, and the rise in the water temperature in the cooling heat exchanger is suppressed. As a result, overshooting of the hot water temperature at the time of re-hot water is also suppressed.

以下、本発明の実施形態を図面を参照して説明する。図1は本発明の実施形態の給湯器を模式的に示した図、図2は図1の給湯器の各部の水温の変化を示すグラフである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram schematically showing a water heater according to an embodiment of the present invention, and FIG. 2 is a graph showing changes in the water temperature of each part of the water heater shown in FIG.

図1に示す実施形態の給湯器の基本的な構造は、図3に示した先願の給湯器と同様であり、先願の給湯器と同様な部材には上記と同一の符号を付している。先願の給湯器の説明と重複するが、本実施形態の給湯器の構造を概略的に説明する。   The basic structure of the water heater of the embodiment shown in FIG. 1 is the same as the water heater of the prior application shown in FIG. 3, and the same members as those of the prior application water heater are denoted by the same reference numerals. ing. Although it overlaps with description of the water heater of a prior application, the structure of the water heater of this embodiment is demonstrated roughly.

本実施形態の給湯器は、ハウジング1と、ハウジング1内に配置した略密閉構造の燃焼室4とを備える。燃焼室4には、バーナ2と、バーナ2により加熱される給湯用熱交換器3とが収納されている。ハウジング1内には、更に、燃焼室4の上方に位置させて、ハウジング1の内部空間に連通する給気室5が配置されている。また、家屋の外壁Wを通して屋外にのびる給排気管6が設けられている。給排気管6は、燃焼室4に連通して排気路7を構成する内管6aと、給気室5に連通して内管6aとの間に給気路8を構成する外管6bとから成る二重管構造のものである。そして、ハウジング1内に、燃焼室4の下部に連通する燃焼ファン9を設け、燃焼ファン9により外気を給気路8と給気室5とハウジング1の内部空間とを介して燃焼室4に燃焼用空気として供給すると共に、バーナ2の燃焼排気を燃焼室4から排気路7を介して外部に排出するようにしている。ハウジング1内には、バーナ2及び燃焼ファン9を制御する制御ユニット10も配置されている。   The water heater according to the present embodiment includes a housing 1 and a combustion chamber 4 having a substantially sealed structure disposed in the housing 1. The combustion chamber 4 houses a burner 2 and a hot water supply heat exchanger 3 heated by the burner 2. An air supply chamber 5 that is located above the combustion chamber 4 and communicates with the internal space of the housing 1 is further disposed in the housing 1. In addition, an air supply / exhaust pipe 6 extending outside through the outer wall W of the house is provided. The supply / exhaust pipe 6 includes an inner pipe 6a that communicates with the combustion chamber 4 and constitutes an exhaust path 7, and an outer pipe 6b that communicates with the supply chamber 5 and constitutes an intake pipe 8a. It has a double tube structure. A combustion fan 9 communicating with the lower part of the combustion chamber 4 is provided in the housing 1, and outside air is supplied to the combustion chamber 4 by the combustion fan 9 via the air supply path 8, the air supply chamber 5, and the internal space of the housing 1. While supplying as combustion air, the combustion exhaust of the burner 2 is discharged | emitted outside from the combustion chamber 4 via the exhaust path 7. FIG. A control unit 10 for controlling the burner 2 and the combustion fan 9 is also arranged in the housing 1.

給湯用熱交換器3には、上流側の給水路11と下流側の出湯路12とが接続されている。また、給水路11から分岐して出湯路12に合流するバイパス通路13が設けられている。そして、給気室5に、給気室5とハウジング1の内部空間との連通部となる給気室5の出口部に位置させて、バイパス通路13に介設される冷却用熱交換器14を配置している。   An upstream water supply passage 11 and a downstream hot water discharge passage 12 are connected to the hot water supply heat exchanger 3. Further, a bypass passage 13 that branches from the water supply passage 11 and joins the hot water supply passage 12 is provided. Then, the cooling heat exchanger 14 provided in the bypass passage 13 is positioned in the air supply chamber 5 at the outlet of the air supply chamber 5, which serves as a communication portion between the air supply chamber 5 and the internal space of the housing 1. Is arranged.

バーナ2には、火炎を検知するフレームロッド15と、点火電極16とが付設されており、また、バーナ2に接続されたガス供給路17には、上流側から順に、主電磁弁18と、電磁比例弁19とが介設されている。給水路11には、水量センサ20と電動式の水量調整弁21とが介設されている。出湯路12には、バイパス通路13との合流部13bの下流側に位置させて、出湯温度を検出する湯温サーミスタ22と、更にその下流側に位置させてリリーフ弁23とが設けられている。   The burner 2 is provided with a flame rod 15 for detecting a flame and an ignition electrode 16. A gas supply path 17 connected to the burner 2 is provided with a main electromagnetic valve 18, An electromagnetic proportional valve 19 is interposed. A water amount sensor 20 and an electric water amount adjustment valve 21 are interposed in the water supply channel 11. The hot water passage 12 is provided with a hot water temperature thermistor 22 for detecting the hot water temperature positioned downstream of the junction 13b with the bypass passage 13, and a relief valve 23 positioned further downstream thereof. .

出湯路12の下流端のカラン(図示せず)が開かれて出湯が開始されると、水量センサ20から通水量に応じて出力される信号を受けて、制御ユニット10はバーナ2の点火処理を開始する。この点火処理により、燃焼ファン9が駆動されて、給気路6からの外気が給気室5とハウジング1の内部空間とを介して燃焼室4に燃焼用空気として供給される。また、点火電極16での火花放電が行われると共に、主電磁弁18が開弁され、更に、電磁比例弁19が所定開度に開弁されて、バーナ2にガスが供給され、バーナ2に点火される。そして、バーナ2の点火がフレームロッド15からの信号で確認されると、制御ユニット10は、湯温サーミスタ22の検出温度が設定湯温になるように、電磁比例弁19によるバーナ2の燃焼量の調整と、水量調整弁21による通水量の調整とを行う。   When a curan (not shown) at the downstream end of the hot water passage 12 is opened and hot water is started, the control unit 10 receives a signal output from the water amount sensor 20 according to the amount of water flow, and the control unit 10 performs an ignition process of the burner 2. To start. By this ignition process, the combustion fan 9 is driven, and the outside air from the air supply path 6 is supplied as combustion air to the combustion chamber 4 through the air supply chamber 5 and the internal space of the housing 1. In addition, spark discharge at the ignition electrode 16 is performed, the main electromagnetic valve 18 is opened, the electromagnetic proportional valve 19 is opened to a predetermined opening, and gas is supplied to the burner 2. Ignited. When the ignition of the burner 2 is confirmed by a signal from the frame rod 15, the control unit 10 determines the amount of combustion of the burner 2 by the electromagnetic proportional valve 19 so that the detected temperature of the hot water thermistor 22 becomes the set hot water temperature. And adjustment of the water flow rate by the water amount adjustment valve 21 are performed.

ところで、バーナ2の燃焼排気は給湯用熱交換器3を流れる水を加熱した後、排気路7を介して外部に排出されるが、この際、排気路7と給気路8との間での熱交換により、給気路8を流れる外気が加熱されて70〜100℃程度まで昇温される可能性がある。然し、給気路8から給気室5に流入した高温空気は、給気室5に配置した冷却用熱交換器14を流れる冷水により冷却される。従って、空気が高温のままハウジング1の内部空間に流入することを防止でき、高温空気による制御ユニット10や燃焼ファン9の昇温、ひいてはこれらの誤作動等の弊害が防止される。   By the way, the combustion exhaust of the burner 2 heats the water flowing through the hot water supply heat exchanger 3 and is then discharged to the outside through the exhaust path 7. At this time, the exhaust gas between the exhaust path 7 and the air supply path 8 is discharged. As a result of this heat exchange, the outside air flowing through the air supply path 8 may be heated and heated to about 70 to 100 ° C. However, the high-temperature air that has flowed into the supply chamber 5 from the supply passage 8 is cooled by cold water flowing through the cooling heat exchanger 14 disposed in the supply chamber 5. Therefore, air can be prevented from flowing into the internal space of the housing 1 at a high temperature, and adverse effects such as a temperature rise of the control unit 10 and the combustion fan 9 due to the high temperature air and their malfunctions can be prevented.

以上は、上記先願のものと同様であるが、本実施形態では、バイパス通路13と出湯路12の合流部13bを、バイパス通路13と給水路11の分岐部13aよりも鉛直方向下方に位置させており、この点で先願のものと相違する。以下、この相違点による作用効果について詳述する。   Although the above is the same as that of the said prior application, in this embodiment, the confluence | merging part 13b of the bypass channel 13 and the tapping channel 12 is located in the perpendicular direction lower than the branch part 13a of the bypass channel 13 and the water supply channel 11 This is different from the previous application. Hereinafter, the effect by this difference is explained in full detail.

出湯停止時には、分岐部13aから給湯用熱交換器3→合流部13b→冷却用熱交換器14の経路で分岐部13aに戻る閉ループ内で滞留水が流動可能になる。ここで、本実施形態では、閉ループの鉛直方向最低位置は合流部13bになる。そして、閉ループの鉛直方向最高位置と鉛直方向最低位置とを結ぶ互いに逆向きの2つの流路は、最高位置たる冷却用熱交換器14の最高部からバイパス通路13の下流部分を介して合流部13bに至る第1流路と、冷却用熱交換器14の最高部から冷却用熱交換器14とバイパス通路13の上流部分と分岐部13aと給湯用熱交換器3と出湯路12の上流部分とを介して合流部13bに至る第2流路とになる。尚、本実施形態では、分岐部13aと合流部13bとの高さの差を10cmに設定している。   When the hot water is stopped, the staying water can flow in the closed loop returning from the branch portion 13a to the branch portion 13a through the path of the hot water supply heat exchanger 3 → the merging portion 13b → the cooling heat exchanger 14. Here, in the present embodiment, the lowest position in the vertical direction of the closed loop is the merging portion 13b. The two flow paths that are opposite to each other and connect the highest vertical position and the lowest vertical position of the closed loop are joined from the highest portion of the cooling heat exchanger 14 that is the highest position via the downstream portion of the bypass passage 13. The first flow path leading to 13b, the upstream portion of the cooling heat exchanger 14, the bypass passage 13 from the highest portion of the cooling heat exchanger 14, the branching portion 13a, the hot water supply heat exchanger 3, and the upstream portion of the outlet 12 The second flow path reaches the merging portion 13b via the. In the present embodiment, the height difference between the branching portion 13a and the merging portion 13b is set to 10 cm.

図2は、図1のA〜Dの各点、即ち、出湯路12の合流部13b下流のA点、バイパス通路13の合流部13b近傍のB点、冷却用熱交換器14の中間のC点、バイパス通路13の分岐部13a近傍のD点で計測した水温を示している。t1は出湯を停止した時点、t2は出湯を再開した時点であり、出湯停止から再出湯までの時間は1分間である。尚、出湯時は、出湯路12の合流部13b下流の水温が40℃になるように制御し、また、出湯停止後に燃焼ファン9の継続作動で5秒間のアフターパージを行っている。   2 shows points A to D in FIG. 1, that is, point A downstream of the junction 13 b of the outlet 12, point B near the junction 13 b of the bypass passage 13, and C in the middle of the cooling heat exchanger 14. The water temperature measured at point D in the vicinity of the point, the branch portion 13a of the bypass passage 13 is shown. t1 is the time when the hot water is stopped, t2 is the time when the hot water is restarted, and the time from the hot water stop to the re-hot water is 1 minute. In addition, at the time of hot water discharge, control is performed so that the water temperature downstream of the junction 13b of the hot water passage 12 becomes 40 ° C., and after the hot water is stopped, the combustion fan 9 is continuously operated to perform after purge for 5 seconds.

図2に示されているように、出湯を停止した瞬間にB点の温度が急上昇する。これは、慣性により出湯路12の温水が合流部13bからバイパス通路13に流入したためと考えられる。このようにして第1流路の水温が上昇すると、第1流路の滞留水の鉛直方向の比重積分値が一時的に減少する。一方、第2流路の滞留水の鉛直方向の比重積分値は、給湯用熱交換器3に温水が存在するものの、冷却用熱交換器14及びバイパス通路13の上流部分に存在する冷水の影響で、第1流路の比重積分値よりも大きくなる。そのため、第2流路から合流部13bを介して第1流路に向かう流れを生じ、給湯用熱交換器3内の温水が合流部13bを経由して冷却用熱交換器14に流入し、C点の水温が上昇し、更には、D点の水温が上昇する。但し、第2流路と第1流路の比重積分値の差は先願のものに比し小さい。そのため、第2流路から合流部13bを介して第1流路に向かう流れの勢いは弱く、C点、D点の水温は緩やかに上昇する。   As shown in FIG. 2, the temperature at point B rapidly rises at the moment when the hot water is stopped. This is presumably because the hot water in the hot water outlet 12 flows into the bypass passage 13 from the junction 13b due to inertia. When the water temperature of the first channel rises in this way, the specific gravity integral value in the vertical direction of the accumulated water in the first channel temporarily decreases. On the other hand, the specific gravity integral value in the vertical direction of the stagnant water in the second flow path is influenced by the cold water existing in the upstream portion of the cooling heat exchanger 14 and the bypass passage 13 although hot water is present in the hot water supply heat exchanger 3. Thus, it becomes larger than the specific gravity integral value of the first flow path. Therefore, a flow from the second flow path toward the first flow path via the merge section 13b is generated, and the hot water in the hot water heat exchanger 3 flows into the cooling heat exchanger 14 via the merge section 13b, The water temperature at point C rises, and further, the water temperature at point D rises. However, the difference in specific gravity integral value between the second channel and the first channel is smaller than that of the previous application. For this reason, the momentum of the flow from the second flow path to the first flow path via the merge portion 13b is weak, and the water temperatures at the points C and D gradually rise.

次に、給湯用熱交換器3内の水温が後沸きで上昇すると、第2流路の比重積分値が減少して、遂には第1流路の比重積分値と等しくなり、この時点(図2のt3の時点)で第2流路から合流部13bを介して第1流路に向かう流れが停止する。その後は、B点の水温が放熱で下降し、D点の水温は上昇しなくなる。尚、C点の水温は、流動停止後も燃焼室4からの熱伝導により緩やかに上昇しているが、図4に示した先願の給湯器のC点の水温に比べるとかなり低い。再出湯時には、出湯温度のオーバーシュートを生ずるが、設定湯温(40℃)に対するオーバーシュート量は10.5℃程度であり、オーバーシュート量が13.5℃にもなる先願の給湯器に比し、3℃も低くなる。   Next, when the water temperature in the hot water supply heat exchanger 3 rises after boiling, the specific gravity integral value of the second flow path decreases and finally becomes equal to the specific gravity integral value of the first flow path. 2 at time t3), the flow from the second flow path to the first flow path via the merge portion 13b stops. Thereafter, the water temperature at point B decreases due to heat dissipation, and the water temperature at point D does not increase. The water temperature at point C rises moderately due to heat conduction from the combustion chamber 4 even after the flow is stopped, but is considerably lower than the water temperature at point C of the prior-art water heater shown in FIG. At the time of re-bathing, an overshoot of the hot water temperature occurs, but the overshoot amount with respect to the set hot water temperature (40 ° C.) is about 10.5 ° C. Compared to 3 ° C.

尚、バイパス通路13に、給湯用熱交換器3の温水が冷却用熱交換器14に移行することを阻止する逆止弁を介設することも考えられるが、本実施形態では、合流部13bの位置を分岐部13aの位置よりも低くするだけで再出湯時の出湯温度のオーバーシュートを抑制でき、コスト的に非常に有利である。   In addition, although it can also be considered that a bypass valve is provided in the bypass passage 13 to prevent the hot water of the hot water supply heat exchanger 3 from being transferred to the cooling heat exchanger 14, in the present embodiment, the merging portion 13b. It is possible to suppress overshooting of the hot water temperature at the time of re-watering only by making the position of the lower than the position of the branch part 13a, which is very advantageous in terms of cost.

本発明の実施形態の給湯器を模式的に示した図。The figure which showed typically the water heater of embodiment of this invention. 図1の給湯器の各部の水温の変化を示すグラフ。The graph which shows the change of the water temperature of each part of the water heater of FIG. 先願の給湯器を模式的に示した図。The figure which showed typically the water heater of the prior application. 図3の給湯器の各部の水温の変化を示すグラフ。The graph which shows the change of the water temperature of each part of the water heater of FIG.

符号の説明Explanation of symbols

1…ハウジング、2…バーナ、3…給湯用熱交換器、4…燃焼室、5…給気室、6…給排気管、6a…内管、6b…外管、7…排気路、8…給気路、9…燃焼ファン、11…給水路、12…出湯路、13…バイパス通路、13a…分岐部、13b…合流部、14…冷却用熱交換器。   DESCRIPTION OF SYMBOLS 1 ... Housing, 2 ... Burner, 3 ... Heat exchanger for hot water supply, 4 ... Combustion chamber, 5 ... Air supply chamber, 6 ... Supply / exhaust pipe, 6a ... Inner pipe, 6b ... Outer pipe, 7 ... Exhaust path, 8 ... Air supply path, 9 ... combustion fan, 11 ... water supply path, 12 ... water supply path, 13 ... bypass path, 13a ... branch section, 13b ... merging section, 14 ... cooling heat exchanger.

Claims (1)

ハウジングと、ハウジング内に配置した、バーナおよびバーナにより加熱される給湯用熱交換器を収納した燃焼室と、ハウジング内に燃焼室の上方に位置させて配置した、ハウジングの内部空間に連通する給気室と、燃焼室に連通して排気路を構成する内管と、給気室に連通して内管との間に給気路を構成する外管とで構成される2重管構造の給排気管と、外気を給気路と給気室とハウジングの内部空間とを介して燃焼室に燃焼用空気として供給すると共に、バーナの燃焼排気を燃焼室から排気路を介して外部に排出する燃焼ファンとを備える給湯器であって、
給気室に、給湯用熱交換器の上流側の給水路から分岐して給湯用熱交換器の下流側の出湯路に合流するバイパス通路に介設される冷却用熱交換器を配置するものにおいて、
バイパス通路と出湯路の合流部を、バイパス通路と給水路の分岐部よりも鉛直方向下方に位置させることを特徴とする給湯器。
A housing, a combustion chamber disposed in the housing and containing a burner and a heat exchanger for hot water supply heated by the burner, and a water supply communicating with the interior space of the housing disposed in the housing and positioned above the combustion chamber A double pipe structure comprising an air chamber, an inner pipe communicating with the combustion chamber and constituting an exhaust path, and an outer pipe communicating with the air supply chamber and constituting the air supply path. Supply air as combustion air to the combustion chamber via the air supply / exhaust pipe, the air supply passage, the air supply chamber, and the internal space of the housing, and exhaust the burner combustion exhaust from the combustion chamber to the outside via the exhaust passage. A water heater comprising a combustion fan that
Arranged in the air supply chamber is a cooling heat exchanger that is provided in a bypass passage that branches from the water supply path upstream of the hot water heat exchanger and joins the hot water discharge path downstream of the hot water heat exchanger. In
A hot water heater characterized in that a confluence portion between a bypass passage and a hot water supply passage is positioned vertically below a branch portion between the bypass passage and the water supply passage.
JP2003410523A 2003-12-09 2003-12-09 Water heater Expired - Fee Related JP3920843B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003410523A JP3920843B2 (en) 2003-12-09 2003-12-09 Water heater
CNB2004100980877A CN100396996C (en) 2003-12-09 2004-12-08 Hot water supplyer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003410523A JP3920843B2 (en) 2003-12-09 2003-12-09 Water heater

Publications (2)

Publication Number Publication Date
JP2005172317A JP2005172317A (en) 2005-06-30
JP3920843B2 true JP3920843B2 (en) 2007-05-30

Family

ID=34731595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003410523A Expired - Fee Related JP3920843B2 (en) 2003-12-09 2003-12-09 Water heater

Country Status (2)

Country Link
JP (1) JP3920843B2 (en)
CN (1) CN100396996C (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5980302B2 (en) 2014-12-19 2016-08-31 リンナイ株式会社 Hot water system
JP6534333B2 (en) * 2015-10-19 2019-06-26 リンナイ株式会社 Water heater
US10612795B2 (en) * 2016-09-14 2020-04-07 Lochinvar, Llc Methods and system for demand-based control of a combination boiler
CN110579023B (en) * 2018-06-11 2024-01-16 芜湖美的厨卫电器制造有限公司 Control method, device and system for waterway circulation of wall-mounted furnace

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7737272U1 (en) * 1977-12-07 1983-02-03 Joh. Vaillant Gmbh U. Co, 5630 Remscheid FIREPLACE
JPS59124835U (en) * 1983-02-08 1984-08-22 株式会社ガスタ− Forced air instantaneous water heater
JP2678330B2 (en) * 1992-06-16 1997-11-17 リンナイ株式会社 Bypass mixing type water heater
CN2251692Y (en) * 1995-04-19 1997-04-09 重庆建筑大学 Condensing gas-fired fast water heater
JP3777255B2 (en) * 1998-08-31 2006-05-24 リンナイ株式会社 Heat exchanger
JP2001141302A (en) * 1999-11-12 2001-05-25 Rinnai Corp Latent heat recovery type hot water supply apparatus
JP3566615B2 (en) * 2000-02-21 2004-09-15 リンナイ株式会社 Combustion equipment
JP2004045020A (en) * 2002-05-17 2004-02-12 Rinnai Corp Combustion equipment

Also Published As

Publication number Publication date
CN1626985A (en) 2005-06-15
CN100396996C (en) 2008-06-25
JP2005172317A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
JP6756973B2 (en) Hot water storage and hot water supply device
JP3920843B2 (en) Water heater
KR100443502B1 (en) Complex Type Gas Warm Heater System
JP5575184B2 (en) Heating system
JP2012093064A (en) Space heating system
JP2007107842A (en) Hot water system
JP2007024495A (en) Combustion equipment
KR100642927B1 (en) Composite combustion apparatus
JP7099866B2 (en) Combined heat source machine
JP2004045020A (en) Combustion equipment
JP2004309039A (en) Integral liquefied gas vaporizer
JP2016125666A (en) Fitting structure of metal touch type pressure opening valve
JP6376389B2 (en) Hot water storage system
JP5919181B2 (en) Hot water heating system
JP7341028B2 (en) heat source device
JP3530576B2 (en) Water heater
JP3661648B2 (en) Hot water storage type combustion device
JP2021001712A (en) Water heater and hot water supply system
JP2022147445A (en) Gas combustor
JP4155404B2 (en) Heat exchanger unit
JP6548144B2 (en) Hot water heater
JP2023170210A (en) heat source device
JP4337278B2 (en) Liquefied gas vaporizer
JP2019066126A (en) Bath water heater
JPH1038379A (en) Method of stabilizing temperature of delivery hot water of hot water supplier, and the hot water supplier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070215

R150 Certificate of patent or registration of utility model

Ref document number: 3920843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees