JP2022147445A - Gas combustor - Google Patents

Gas combustor Download PDF

Info

Publication number
JP2022147445A
JP2022147445A JP2021048685A JP2021048685A JP2022147445A JP 2022147445 A JP2022147445 A JP 2022147445A JP 2021048685 A JP2021048685 A JP 2021048685A JP 2021048685 A JP2021048685 A JP 2021048685A JP 2022147445 A JP2022147445 A JP 2022147445A
Authority
JP
Japan
Prior art keywords
pipe
gas
bypass pipe
exhaust gas
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021048685A
Other languages
Japanese (ja)
Inventor
陽太郎 村上
Yotaro Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Wave Inc
Original Assignee
Denso Wave Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Wave Inc filed Critical Denso Wave Inc
Priority to JP2021048685A priority Critical patent/JP2022147445A/en
Priority to US17/563,253 priority patent/US20220307725A1/en
Publication of JP2022147445A publication Critical patent/JP2022147445A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • F24H1/20Water-storage heaters with immersed heating elements, e.g. electric elements or furnace tubes
    • F24H1/205Water-storage heaters with immersed heating elements, e.g. electric elements or furnace tubes with furnace tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • F24H1/186Water-storage heaters using fluid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • F24H15/36Control of heat-generating means in heaters of burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/001Guiding means
    • F24H9/0026Guiding means in combustion gas channels
    • F24H9/0031Guiding means in combustion gas channels with means for changing or adapting the path of the flue gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/10Nitrogen; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/04Heating water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2900/00Special features of, or arrangements for controlling combustion
    • F23N2900/05003Measuring NOx content in flue gas

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chimneys And Flues (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

To provide a gas combustor which can be used without placing a high-sensitive gas sensor under a high temperature environment.SOLUTION: A gas water heater 1 is provided with a bypass pipe 15 which is branched from a main pipe 14 of a discharge pipe 13 and in which a flow rate of exhaust gas is set so as to be lower than that in the main pipe 14. A gas sensor 17 is disposed in the bypass pipe 15 and the bypass pipe 15 is cooled by a cooler 18.SELECTED DRAWING: Figure 1

Description

本発明は、ガス燃料を燃焼した際に排ガスを排出する排出管を備えるガス燃焼器に関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas combustor provided with an exhaust pipe for discharging exhaust gas when burning gas fuel.

例えば給湯器やボイラー等のガス燃焼器については、NOxやCO,CO等の排ガス規制が年々厳しくなっている。例えば、日本におけるボイラー製品には、排ガス中のNOx濃度を50ppm以下にすることが求められている。排ガス中に含まれるNOx等の濃度は、燃料の種類や供給量,空気の供給量や大気圧等といった種々のパラメータにより決まるため、様々な条件下において排ガス規制を満たすように燃焼を行うには、排ガス中に含まれているNOx等の濃度をセンシングして、センシングの結果に応じた燃焼制御を行うことが望ましい。ガスを検出するセンサとしては、例えばジルコニア式や定電位電解方式等のセンサがある。 For gas burners such as water heaters and boilers, for example, regulations on exhaust gases such as NOx, CO 2 , and CO are becoming stricter year by year. For example, boiler products in Japan are required to reduce the NOx concentration in the exhaust gas to 50 ppm or less. The concentration of NOx, etc. contained in the exhaust gas is determined by various parameters such as the type and amount of fuel supplied, the amount of air supplied, and atmospheric pressure. It is desirable to sense the concentration of NOx and the like contained in the exhaust gas and perform combustion control according to the sensing result. As a sensor for detecting gas, there are, for example, a zirconia sensor, a constant potential electrolysis sensor, and the like.

特開2007-263933号公報JP 2007-263933 A 特開2000-74878号公報JP-A-2000-74878

しかしながら、ジルコニア式センサは、測定態様以外のガス成分の影響を受けるため精度が悪く、比較的精度が良い定電位電解方式センサは、電解液を使用しているため高温環境下で使用できないといった問題がある。 However, the zirconia sensor has poor accuracy because it is affected by gas components other than the measurement mode, and the constant potential electrolysis sensor, which has relatively high accuracy, cannot be used in a high temperature environment because it uses an electrolytic solution. There is

本発明は、上記実情に鑑みてなされたものであり、その目的は、精度が良いガスセンサを高温環境下に置くことなく使用できるガス燃焼器を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a gas combustor in which a highly accurate gas sensor can be used without placing it in a high-temperature environment.

請求項1記載のガス燃焼器によれば、排出管の主管より分岐し、排ガスの流量が主管よりも少なくなるように設定されるバイパス管を設け、このバイパス管に排ガス中のガスを検出するガスセンサを配置し、冷却機構によってバイパス管を冷却する。このように構成すれば、冷却機構は、排ガスの流量が比較的少ないバイパス管を冷却すれば良いので、小型で低コストのものを用いることができる。これにより、高温環境下では使用できない高精度のガスセンサを使用することが可能になる。 According to the gas combustor of claim 1, a bypass pipe that branches from the main pipe of the exhaust pipe and is set so that the flow rate of the exhaust gas is lower than that of the main pipe is provided, and the gas in the exhaust gas is detected in this bypass pipe. A gas sensor is arranged and a cooling mechanism cools the bypass pipe. With this configuration, the cooling mechanism can cool the bypass pipe through which the flow rate of the exhaust gas is relatively low, so that a compact and low-cost cooling mechanism can be used. This makes it possible to use a highly accurate gas sensor that cannot be used in high temperature environments.

請求項2記載のガス燃焼器によれば、冷却機構を、バイパス管におけるガスセンサの少なくとも上流側に配置する。これにより、排ガスの温度を確実に低下させた状態で、ガスセンサによるセンシングを行わせることができる。 According to the gas combustor of claim 2, the cooling mechanism is arranged at least upstream of the gas sensor in the bypass pipe. As a result, sensing by the gas sensor can be performed while the temperature of the exhaust gas is reliably lowered.

請求項3記載のガス燃焼器によれば、ガス燃料を燃焼することで給水タンク内の水を加熱する構成において、冷却機構を、給水タンクに給水される水を用いて冷却を行う構成とする。すなわち、給水タンクに給水される水を冷媒として用いるので、冷却機構を低コストで構成できる。 According to the gas combustor of claim 3, in the configuration in which the water in the water supply tank is heated by burning the gas fuel, the cooling mechanism is configured to perform cooling using the water supplied to the water supply tank. . That is, since the water supplied to the water supply tank is used as the coolant, the cooling mechanism can be constructed at low cost.

請求項4記載のガス燃焼器によれば、主管内において、バイパス管の入口と出口との間に対応する部位に逆止弁を配置する。排ガスの圧力は、ガス燃料の燃焼状態に応じて変化するが、排ガスの圧力が低い場合は主管内の逆止弁は閉じているので、排ガスは全てバイパス管内に流れる。排ガスの圧力が上昇して逆止弁が開くと、排ガスは主管とバイパス管との双方に流れる。したがって、排ガスの圧力が低い場合でも、ガスセンサによるセンシングを確実に行わせることができる。 According to the gas combustor of claim 4, the check valve is arranged in the portion corresponding to the inlet and outlet of the bypass pipe in the main pipe. The pressure of the exhaust gas changes according to the combustion state of the gas fuel, but when the pressure of the exhaust gas is low, the check valve in the main pipe is closed, so all the exhaust gas flows into the bypass pipe. When the exhaust gas pressure rises and the check valve opens, the exhaust gas flows through both the main pipe and the bypass pipe. Therefore, even when the pressure of the exhaust gas is low, sensing by the gas sensor can be reliably performed.

請求項5記載のガス燃焼器によれば、逆止弁は、バイパス管を流れる排ガスの流量が一定値を超えると開放され、主管及びバイパス管を流れる排ガスの圧力を同一にするように調整されている。このように構成すれば、バイパス管への排ガスの流量を制限して冷却機構による冷却を容易に行うことができると共に、バイパス管の負担を低減できる。 According to the gas combustor of claim 5, the check valve is opened when the flow rate of the exhaust gas flowing through the bypass pipe exceeds a certain value, and is adjusted so that the pressures of the exhaust gas flowing through the main pipe and the bypass pipe are the same. ing. With this configuration, the flow rate of the exhaust gas to the bypass pipe can be restricted to facilitate cooling by the cooling mechanism, and the load on the bypass pipe can be reduced.

第1実施形態であり、ガス燃焼器の一例である本実施形態のガス給湯器の構成を示す図A diagram showing the configuration of a gas water heater of the present embodiment, which is a first embodiment and an example of a gas burner. 図1の排気管部分を拡大して示す図The figure which expands and shows the exhaust pipe part of FIG. ガス給湯器が低火力で運転されている場合の図2相当図Equivalent to Fig. 2 when the gas water heater is operated at low thermal power ガス給湯器が高火力で運転されている場合の図2相当図Equivalent to Fig. 2 when the gas water heater is operated at high thermal power ガス給湯器の運転が停止している状態から開始した場合の各部の変化を示すタイミングチャートTiming chart showing changes in each part when the operation of the gas water heater is started from a stopped state 逆止弁で生じる損失を調整する手法について説明する図Diagram explaining the method of adjusting the loss caused by the check valve 第2実施形態であり、ガス給湯器の構成を示す図2nd Embodiment, the figure which shows the structure of a gas water heater 図7の排気管部分を拡大して示す図The figure which expands and shows the exhaust pipe part of FIG.

(第1実施形態)
以下、第1実施形態について図1から図6を参照して説明する。図1は、ガス燃焼器の一例である本実施形態のガス給湯器1の構成を示す。給湯タンク2の内部には、給水管3を介して図示しない水道より水が給水される。給湯タンク2は、燃焼管4を内蔵しており、燃焼管4の内部でガスの燃焼が行われることで水が加熱されて湯になる。湯は、排出管5を介して外部に供給される。排出管5には、湯の温度を検出するための図示しない温度センサが配置されている。
(First embodiment)
A first embodiment will be described below with reference to FIGS. 1 to 6. FIG. FIG. 1 shows the configuration of a gas water heater 1 of this embodiment, which is an example of a gas burner. Water is supplied to the inside of the hot water supply tank 2 from a tap (not shown) through a water supply pipe 3 . The hot water supply tank 2 incorporates a combustion pipe 4, and gas is burned inside the combustion pipe 4 to heat water into hot water. Hot water is supplied to the outside through the discharge pipe 5 . A temperature sensor (not shown) for detecting the temperature of the hot water is arranged in the discharge pipe 5 .

給湯タンク2には、吸気管6が接続されており、吸気管6の内部にはブロア7が配置されている。ブロア7は、吸気管6の外部にあるコントローラ8により駆動制御され、外部より大気を吸気する。吸気管6の途中部位には、ガス供給管9が比例弁10を介して接続されている。比例弁10は、コントローラ8により駆動制御される。これにより、吸気管6内へのガス供給量が調整される。 An intake pipe 6 is connected to the hot water supply tank 2 , and a blower 7 is arranged inside the intake pipe 6 . The blower 7 is driven and controlled by a controller 8 outside the intake pipe 6 and sucks air from the outside. A gas supply pipe 9 is connected to an intermediate portion of the intake pipe 6 via a proportional valve 10 . The proportional valve 10 is driven and controlled by the controller 8 . As a result, the amount of gas supplied to the intake pipe 6 is adjusted.

吸気管6内部のガスと大気との混合気体は、噴射部12を介して燃焼管4に供給される。燃焼管4内の混合気体は、図示しないイグナイタにより点火されて燃焼される。燃焼管4は、給湯タンク2の図中上部において吸気管6に接続され、給湯タンク2の下方に延びる主部4aと、給湯タンク2の下方から上方に延びる折返し部4bと、そこから主部4aの周囲を螺旋状に囲んで再び下方に至る螺旋状部4cとを備えている。螺旋状部4cには排気管13が接続されており、燃焼後の気体が給湯タンク2の外部に排気される。 A mixture of the gas inside the intake pipe 6 and the atmosphere is supplied to the combustion pipe 4 via the injection part 12 . The mixed gas in the combustion tube 4 is ignited and burned by an igniter (not shown). The combustion pipe 4 is connected to the intake pipe 6 at the upper part of the hot water supply tank 2 in the figure, and has a main portion 4a extending downward from the hot water supply tank 2, a folded portion 4b extending upward from the lower part of the hot water supply tank 2, and a main portion extending therefrom. A spiral portion 4c spirally surrounds the circumference of 4a and extends downward again. An exhaust pipe 13 is connected to the helical portion 4c, and gas after combustion is exhausted to the outside of the hot water supply tank 2. As shown in FIG.

図2にも示すように、排気管13は、主管14及びバイパス管15からなる。バイパス管15は、主管14より分岐して排気ガスを流した後に、主管14に戻して排気させる。バイパス管15の径断面積は、主管14よりも小さく設定されている。図2に拡大して示すように、バイパス管15は、主管14の下方に接続されるコ字状の配管であり、主管14への接続箇所が入口15a,出口15bとなっている。そして、主管14内における入口15aと出口15bとの間には、逆止弁16が配置されている。 As also shown in FIG. 2 , the exhaust pipe 13 consists of a main pipe 14 and a bypass pipe 15 . The bypass pipe 15 branches from the main pipe 14 to flow the exhaust gas, and then returns to the main pipe 14 for exhaust. The diameter cross-sectional area of the bypass pipe 15 is set smaller than that of the main pipe 14 . As shown enlarged in FIG. 2, the bypass pipe 15 is a U-shaped pipe connected to the lower part of the main pipe 14, and has an inlet 15a and an outlet 15b connected to the main pipe 14. As shown in FIG. A check valve 16 is arranged between the inlet 15 a and the outlet 15 b in the main pipe 14 .

バイパス管15には、排ガス中における例えばNOx等のガス濃度を検出する、例えば定電位電解方式のガスセンサ17が配置されている。ガスセンサ17の上流側には、冷却機構としての冷却器18が配置されている。冷却器18は、具体的には図示しないが、例えば冷媒が流れる冷却パイプをバイパス管15の外周に巻き付けて冷却し、バイパス管15に流れる排ガスの熱で上昇した冷媒の温度を低下させて、冷却パイプに送出する、という循環を行う構成である。 The bypass pipe 15 is provided with, for example, a constant-potential electrolysis type gas sensor 17 for detecting the concentration of a gas such as NOx in the exhaust gas. A cooler 18 as a cooling mechanism is arranged upstream of the gas sensor 17 . Although not specifically illustrated, the cooler 18 cools the bypass pipe 15 by wrapping a cooling pipe through which the refrigerant flows, for example, around the outer periphery of the bypass pipe 15. It is a configuration that circulates by sending it to a cooling pipe.

コントローラ8は、例えばマイクロコンピュータで構成され、入力部21,演算部22及び出力部23等を備えている。入力部21は、ガスセンサ17や温度センサが出力するセンサ信号やを受けて演算部22に出力する。演算部22は、入力されるセンサ信号に応じてブロワ7及び比例弁10を制御する信号を出力部23を介して出力する。これにより、コントローラ8は、燃焼管4に供給する空気量及びガス燃料の量を制御して、ガス給湯器1の燃焼状態を制御し、湯の温度をユーザにより設定された温度にする。 The controller 8 is composed of, for example, a microcomputer, and includes an input section 21, a calculation section 22, an output section 23, and the like. The input unit 21 receives sensor signals output from the gas sensor 17 and the temperature sensor and outputs them to the calculation unit 22 . The calculation unit 22 outputs a signal for controlling the blower 7 and the proportional valve 10 via the output unit 23 according to the input sensor signal. Thereby, the controller 8 controls the amount of air and gas fuel supplied to the combustion pipe 4, controls the combustion state of the gas water heater 1, and sets the temperature of the hot water to the temperature set by the user.

次に、本実施形態の作用について図3から図5を参照して説明する。図3は、ガス給湯器1の運転状態が低火力であり、排気管13に流れる排ガスの圧力が比較的低い場合を示している。この時、主管14にある逆止弁16は閉じているため、排ガスはバイパス管15のみに流れる。 Next, the operation of this embodiment will be described with reference to FIGS. 3 to 5. FIG. FIG. 3 shows a case where the operating state of the gas water heater 1 is low thermal power and the pressure of the exhaust gas flowing through the exhaust pipe 13 is relatively low. At this time, since the check valve 16 in the main pipe 14 is closed, the exhaust gas flows only through the bypass pipe 15 .

一方、図4は、ガス給湯器1の運転状態が高火力であり、排気管13に流れる排ガスの圧力が比較的高い場合を示している。この時、逆止弁16は開くので、排ガスは主管14及びバイパス管15の双方に流れる。図5は、ガス給湯器1の運転状態が図3に示すものから図4に示すものに遷移する場合を示したタイムチャートである。火力が「低」から「高」に変化する間に、閉じていた逆止弁16が開き始める。すると、主管14における排ガスの流量は「0」から上昇を開始すると共に、バイパス管15における排ガスの流量も上昇する。そして、バイパス管15の流量は、逆止弁16が全開になる前に頭打ちとなるが、主管14の流量は逆止弁16が全開になった時点で一定となる。 On the other hand, FIG. 4 shows a case where the operating state of the gas water heater 1 is high heating power and the pressure of the exhaust gas flowing through the exhaust pipe 13 is relatively high. At this time, the check valve 16 is opened, so the exhaust gas flows through both the main pipe 14 and the bypass pipe 15 . FIG. 5 is a time chart showing a case where the operating state of gas water heater 1 changes from that shown in FIG. 3 to that shown in FIG. The closed check valve 16 begins to open while the heating power changes from "low" to "high". Then, the flow rate of the exhaust gas in the main pipe 14 starts to rise from "0", and the flow rate of the exhaust gas in the bypass pipe 15 also rises. The flow rate of the bypass pipe 15 peaks out before the check valve 16 is fully opened, but the flow rate of the main pipe 14 becomes constant when the check valve 16 is fully opened.

ここで、逆止弁16が開放された際に、主管14及びバイパス管15を流れる排ガスの圧力が同一となるように調整する手法について図6を参照して説明する。各パラメータを以下に示す。
A1:主管14の配管径
A2: バイパス管15の配管径
v1:逆止弁16を閉状態に維持できる最大流量
v2:バイパス管15に流すことができる最大流量
このとき、
v2=v1×A1/A2 …(0)
となる。
Here, a method for adjusting the pressure of the exhaust gas flowing through the main pipe 14 and the bypass pipe 15 to be the same when the check valve 16 is opened will be described with reference to FIG. Each parameter is shown below.
A1: Pipe diameter of the main pipe 14 A2: Pipe diameter of the bypass pipe 15 v1: Maximum flow rate that can keep the check valve 16 closed v2: Maximum flow rate that can flow through the bypass pipe 15 At this time,
v2=v1×A1/A2 (0)
becomes.

また、図中に示す配管損失(1)~(3)は、以下になる。
配管損失(1):主管14からバイパス管15への流路が直角に折れ曲がると共に
断面積が変化することによる損失
配管損失(2):バイパス管15内の流路が2か所で直角に折れ曲がる
ことによる損失
配管損失(3):バイパス管15から主管14への流路が直角に折れ曲がると共に
断面積が変化することによる損失
尚、バイパス管15の流路がストレートである部分でも損失は発生するが、僅かであるためここでは無視している。
Piping losses (1) to (3) shown in the figure are as follows.
Piping loss (1): When the flow path from the main pipe 14 to the bypass pipe 15 is bent at right angles,
Loss due to change in cross-sectional area Piping loss (2): The flow path in the bypass pipe 15 bends at two right angles
Loss due to this Piping loss (3): The flow path from the bypass pipe 15 to the main pipe 14 is bent at right angles and
Loss due to change in cross-sectional area Although loss also occurs in the portion where the flow path of the bypass pipe 15 is straight, it is negligible here.

配管損失(1)であるΔP1は、(1)式で表される。
ΔP1=0.946×ρv1/2+(1/C-1)×ρv2/2 …(1)
尚、「ρ」は水の密度であり、「C」は配管径比(A1/A2)で決まる定数である。
配管損失(2)であるΔP2は、(2)式で表される。
ΔP2=0.946×ρv2/2×2 …(2)
配管損失(3)であるΔP3は、(3)式で表される。
ΔP3=(1-A2/A1)×ρv2/2 …(3)
ΔP1, which is the pipe loss (1), is represented by the equation (1).
ΔP1=0.946×ρv1 2 /2+(1/C C −1)×ρv2 2 /2 (1)
"ρ" is the density of water, and "C C " is a constant determined by the pipe diameter ratio (A1/A2).
ΔP2, which is the pipe loss (2), is expressed by the equation (2).
ΔP2=0.946×ρv2 2 /2×2 (2)
ΔP3, which is the pipe loss (3), is expressed by the equation (3).
ΔP3=(1−A2/A1)×ρv2 2 /2 (3)

バイパス管15に流すことができる最大流量v2における圧力損失Pは、上記の損失(1)~(3)の合計となる。
=ΔP1+ΔP2+ΔP3 …(4)
従って、逆止弁16に、発生する損失が圧力損失Pに等しくなるものを選ぶことで、流量がv2を超えた際に逆止弁16の開放が開始されるようになる。これにより、主管14及びバイパス管15を流れる排ガスの圧力が同一となる。
The pressure loss P L at the maximum flow rate v2 that can flow through the bypass pipe 15 is the sum of the above losses (1) to (3).
P L =ΔP1+ΔP2+ΔP3 (4)
Therefore, by selecting the check valve 16 that generates a loss equal to the pressure loss PL , the check valve 16 starts to open when the flow rate exceeds v2. Thereby, the pressure of the exhaust gas flowing through the main pipe 14 and the bypass pipe 15 becomes the same.

以上のように本実施形態によれば、ガス給湯器1において、排出管13の主管14より分岐し、排ガスの流量が主管14よりも少なくなるように設定されるバイパス管15を設け、バイパス管15にガスセンサ17を配置し、冷却器18によってバイパス管15を冷却する。このように構成すれば、冷却器18は、排ガスの流量が比較的少ないバイパス管156を冷却すれば良いので、小型で低コストのものを用いることができる。これにより、高温環境下では使用できない高精度のガスセンサ17を使用することが可能になる。 As described above, according to the present embodiment, in the gas water heater 1, the bypass pipe 15 that branches from the main pipe 14 of the discharge pipe 13 and is set so that the flow rate of the exhaust gas is lower than that of the main pipe 14 is provided. A gas sensor 17 is arranged at 15 and the bypass pipe 15 is cooled by a cooler 18 . With this configuration, the cooler 18 can cool the bypass pipe 156 through which the flow rate of the exhaust gas is relatively low, so that a compact and low-cost cooler can be used. This makes it possible to use a highly accurate gas sensor 17 that cannot be used in high temperature environments.

この場合、冷却器18を、バイパス管15におけるガスセンサ18の上流側に配置することで、排ガスの温度を確実に低下させた状態で、ガスセンサ18によるセンシングを行わせることができる。 In this case, by arranging the cooler 18 on the upstream side of the gas sensor 18 in the bypass pipe 15, sensing by the gas sensor 18 can be performed while the temperature of the exhaust gas is reliably lowered.

また、主管14内において、バイパス管15の入口15aと出口15bとの間に対応する部位に逆止弁16を配置する。排ガスの圧力が低い場合は主管14内の逆止弁16は閉じているので、排ガスは全てバイパス管15に流れるので、ガスセンサ18によるセンシングを確実に行わせることができる。 In addition, a check valve 16 is arranged in the main pipe 14 at a portion corresponding to the inlet 15 a and the outlet 15 b of the bypass pipe 15 . Since the check valve 16 in the main pipe 14 is closed when the pressure of the exhaust gas is low, all the exhaust gas flows into the bypass pipe 15, so that sensing by the gas sensor 18 can be reliably performed.

更に、逆止弁16を、バイパス管15を流れる排ガスの流量が一定値を超えると開放され、主管14及びバイパス管15を流れる排ガスの圧力を同一にするように調整する。このように構成すれば、バイパス管への排ガスの流量を制限して冷却機構による冷却を容易に行うことができると共に、バイパス管の負担を低減できる。 Furthermore, the check valve 16 is opened when the flow rate of the exhaust gas flowing through the bypass pipe 15 exceeds a certain value, and the pressure of the exhaust gas flowing through the main pipe 14 and the bypass pipe 15 is adjusted to be the same. With this configuration, the flow rate of the exhaust gas to the bypass pipe can be restricted to facilitate cooling by the cooling mechanism, and the load on the bypass pipe can be reduced.

(第2実施形態)
以下、第1実施形態と同一部分には同一符号を付して説明を省略し、異なる部分について説明する。図7及び図8に示すように、第2実施形態のガス給湯器31は、給水管3に替わる給水管32を備えている。給水管32は、バイパス管15の下方側に、バイパス管15に沿うように配設されている。すなわち、第2実施形態では、給水管32を冷却機構として用いている。
(Second embodiment)
Hereinafter, the same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted, and different parts will be described. As shown in FIGS. 7 and 8, a gas water heater 31 of the second embodiment includes a water supply pipe 32 that replaces the water supply pipe 3. As shown in FIGS. The water supply pipe 32 is arranged below the bypass pipe 15 along the bypass pipe 15 . That is, in the second embodiment, the water supply pipe 32 is used as a cooling mechanism.

給水管32を流れる水を冷媒として、給水管32とバイパス管15との間で熱交換を行い、バイパス管15の熱を水により奪うことで冷却する。給水管32は、バイパス管15に接触するように配置しても良いし、バイパス管15と給水管32との間に放熱シートのようなものを介在させて熱交換を行っても良い。これにより、冷却機構を低コストで構成できる。 Using the water flowing through the water supply pipe 32 as a coolant, heat is exchanged between the water supply pipe 32 and the bypass pipe 15, and the heat of the bypass pipe 15 is removed by the water for cooling. The water supply pipe 32 may be arranged so as to be in contact with the bypass pipe 15 , or a heat radiation sheet or the like may be interposed between the bypass pipe 15 and the water supply pipe 32 for heat exchange. As a result, the cooling mechanism can be configured at low cost.

本発明は上記した、又は図面に記載した実施形態にのみ限定されるものではなく、以下のような変形又は拡張が可能である。
冷却器18を配置する位置は、適宜変更して良い。
ガス給湯器に限ることなく、ガスを燃焼させた際に発生する熱を利用するものであれば適用が可能である。
The present invention is not limited to the embodiments described above or illustrated in the drawings, but can be modified or expanded as follows.
The position where the cooler 18 is arranged may be changed as appropriate.
The present invention is not limited to gas water heaters, and can be applied to any device that utilizes heat generated when gas is burned.

図面中、1はガス給湯器、2は給湯タンク、13は排気管、14は主管、15はバイパス管、15aは入口,15bは出口、16は逆止弁、17はガスセンサ、18は冷却器、31はガス給湯器、32は給水管を示す。 In the drawing, 1 is a gas water heater, 2 is a hot water tank, 13 is an exhaust pipe, 14 is a main pipe, 15 is a bypass pipe, 15a is an inlet, 15b is an outlet, 16 is a check valve, 17 is a gas sensor, and 18 is a cooler. , 31 indicates a gas water heater, and 32 indicates a water supply pipe.

Claims (5)

ガス燃料を燃焼した際に排ガスを排出する排出管としての主管と、
この主管より分岐して形成され、排ガスの流量が当該排出管よりも少なくなるように設定されるバイパス管と、
このバイパス管に配置され、前記排ガス中のガスを検出するガスセンサと、
前記バイパス管を冷却する冷却機構とを備えるガス燃焼器。
a main pipe as an exhaust pipe for discharging exhaust gas when burning gas fuel;
a bypass pipe formed by branching from the main pipe and set so that the flow rate of the exhaust gas is lower than that of the discharge pipe;
a gas sensor arranged in the bypass pipe for detecting gas in the exhaust gas;
and a cooling mechanism for cooling the bypass pipe.
前記冷却機構を、前記バイパス管における前記ガスセンサの少なくとも上流側に配置する請求項1記載のガス燃焼器。 2. The gas combustor according to claim 1, wherein the cooling mechanism is arranged at least upstream of the gas sensor in the bypass pipe. 水が給水される給水タンクを備え、
前記ガス燃料を燃焼することで前記給水タンク内の水を加熱する構成において、
前記冷却機構は、前記給水タンクに給水される水を用いて冷却を行う請求項2記載のガス燃焼器。
Equipped with a water supply tank to which water is supplied,
In the configuration for heating the water in the water supply tank by burning the gas fuel,
3. The gas combustor according to claim 2, wherein said cooling mechanism performs cooling using water supplied to said water supply tank.
前記主管内において、前記バイパス管の入口と出口との間に対応する部位に配置される逆止弁を備える請求項1から3の何れか一項に記載のガス燃焼器。 4. The gas combustor according to any one of claims 1 to 3, further comprising a check valve arranged in a corresponding portion between an inlet and an outlet of the bypass pipe in the main pipe. 前記逆止弁は、前記バイパス管を流れる排ガスの流量が一定値を超えると開放され、前記主管及び前記バイパス管を流れる排ガスの圧力を同一にするように調整されている請求項4記載のガス燃焼器。 5. The gas according to claim 4, wherein the check valve is opened when the flow rate of the exhaust gas flowing through the bypass pipe exceeds a certain value, and is adjusted so that the pressures of the exhaust gas flowing through the main pipe and the bypass pipe are the same. combustor.
JP2021048685A 2021-03-23 2021-03-23 Gas combustor Pending JP2022147445A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021048685A JP2022147445A (en) 2021-03-23 2021-03-23 Gas combustor
US17/563,253 US20220307725A1 (en) 2021-03-23 2021-12-28 Gas combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021048685A JP2022147445A (en) 2021-03-23 2021-03-23 Gas combustor

Publications (1)

Publication Number Publication Date
JP2022147445A true JP2022147445A (en) 2022-10-06

Family

ID=83363208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021048685A Pending JP2022147445A (en) 2021-03-23 2021-03-23 Gas combustor

Country Status (2)

Country Link
US (1) US20220307725A1 (en)
JP (1) JP2022147445A (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2894103B2 (en) * 1992-09-09 1999-05-24 松下電器産業株式会社 Exhaust gas purification device
US5732688A (en) * 1996-12-11 1998-03-31 Cummins Engine Company, Inc. System for controlling recirculated exhaust gas temperature in an internal combustion engine
GB0018406D0 (en) * 2000-07-28 2000-09-13 Serck Heat Transfer Limited EGR bypass tube cooler
JP2004036488A (en) * 2002-07-03 2004-02-05 Honda Motor Co Ltd State determining device for hydrocarbon adsorbent
DE102008001418A1 (en) * 2008-04-28 2009-10-29 Robert Bosch Gmbh Method and device for adapting the efficiency of a cooler in the return circuit of exhaust gas in an internal combustion engine
US8707935B2 (en) * 2009-10-28 2014-04-29 Ford Global Technologies, Llc Exhaust gas recirculation system with a NOx sensor
DE102009046701A1 (en) * 2009-11-13 2011-05-19 Robert Bosch Gmbh Method and device for determining and regulating an exhaust gas recirculation rate of an internal combustion engine
DE102016200510A1 (en) * 2016-01-18 2017-07-20 Bayerische Motoren Werke Aktiengesellschaft Device and method for exhaust gas recirculation
US9845750B2 (en) * 2016-01-29 2017-12-19 Ford Global Technologies, Llc Method and system for exhaust gas heat recovery
US9909541B1 (en) * 2016-10-18 2018-03-06 Ford Global Technologies, Llc Method and system for exhaust heat exchanger diagnostics
US10119499B2 (en) * 2017-01-27 2018-11-06 Ford Global Technologies, Llc Exhaust gas recirculation system and method for operation thereof
DE102019100384A1 (en) * 2019-01-09 2020-07-09 Volkswagen Aktiengesellschaft Exhaust gas aftertreatment system and method for exhaust gas aftertreatment of an internal combustion engine
DE102021107434A1 (en) * 2021-03-24 2022-09-29 Volkswagen Aktiengesellschaft Cooling system for a reducing agent dosing system and internal combustion engine with such a cooling system

Also Published As

Publication number Publication date
US20220307725A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
CN113646584B (en) Method for operating a premix gas burner, premix gas burner and boiler
CN106662323B (en) Adjustable combustion device with Venturi tube damper
NZ550255A (en) Instantaneous fuel-fired water heater with low temperature plastic vent structure
US5666889A (en) Apparatus and method for furnace combustion control
CN110440455A (en) A kind of fuel wall hanging furnace heating combustion method, system and wall-hung boiler
US6840198B2 (en) Air-proportionality type boiler
US6877462B2 (en) Sensorless flammable vapor protection and method
KR100406472B1 (en) Air proportionality type boiler using air pressure sensor
JP2022147445A (en) Gas combustor
CN1321291C (en) Burning device
KR100642927B1 (en) Composite combustion apparatus
JP5127795B2 (en) Combustion equipment
KR100283260B1 (en) A proportion valve controlling method and an apparatus thereof
KR100243899B1 (en) Combustion control method of gas furnace
CN210921831U (en) Heating combustion system of gas wall-mounted boiler and wall-mounted boiler
CN220958944U (en) Temperature regulating control device for double-burner water jacket furnace
JPH05196213A (en) Combustion control of hot water supplier
JP3417383B2 (en) Safety control device for combustion equipment
JP2002221318A (en) Combustion control method for thermal apparatus
JP4111458B2 (en) Exhaust gas recirculation combustion system
JPH01273927A (en) Device for room heating with hot water
JP2005172317A (en) Hot water supply apparatus
JP3884873B2 (en) Incomplete combustion detector for combustion equipment
JP2847227B2 (en) Hot water heater combustion control method
JP2024506974A (en) How a gas heater works

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240227

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240313