JP3919878B2 - High purity inert gas production apparatus and start-up method thereof - Google Patents

High purity inert gas production apparatus and start-up method thereof Download PDF

Info

Publication number
JP3919878B2
JP3919878B2 JP12235197A JP12235197A JP3919878B2 JP 3919878 B2 JP3919878 B2 JP 3919878B2 JP 12235197 A JP12235197 A JP 12235197A JP 12235197 A JP12235197 A JP 12235197A JP 3919878 B2 JP3919878 B2 JP 3919878B2
Authority
JP
Japan
Prior art keywords
gas
generated
regeneration
inert gas
separation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12235197A
Other languages
Japanese (ja)
Other versions
JPH10316407A (en
Inventor
努 田中
一弘 菱沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP12235197A priority Critical patent/JP3919878B2/en
Publication of JPH10316407A publication Critical patent/JPH10316407A/en
Application granted granted Critical
Publication of JP3919878B2 publication Critical patent/JP3919878B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高純度不活性ガス製造装置及びその起動方法に関し、詳しくは、酸素を不純物として含む粗精製不活性ガスを発生させるガス分離装置と、該粗精製不活性ガス中の酸素を酸化還元反応剤を使用して除去するガス精製装置とを備えた高純度不活性ガス製造装置における初期起動及び通常運転時の起動を別途に準備した高純度不活性ガスを使用することなく行うことができる高純度不活性ガス製造装置及びその起動方法に関する。
【0002】
【従来の技術】
半導体産業や電子機器産業をはじめとして、各種の分野において、雰囲気中の酸素から製品を保護するために各種の高純度不活性ガスが用いられている。特に、最近のパーソナルコンピューターや情報通信機器のブームにより、前記産業分野における不活性ガスの需要は益々拡大するとともに、これまで低純度の不活性ガスで十分であった分野までが、より高品位の製品を生み出すために高純度の不活性ガスを使用するようになってきている。また、コスト競争が激化する中、製造工程の雰囲気ガスである不活性ガスのコストは、極力抑えることが望まれている。しかし、このような高純度の不活性ガスは、空気を深冷化で厳密な精留を行うことにより得ていたため、大変高価なものとなっていた。
【0003】
一方、近年、圧力変動吸着式ガス分離装置や膜式ガス分離装置等のように、エネルギー的に大変有利な空気の分離技術が開発され、これらの方法による空気分離が低コストであることから広く実用化されている。しかし、前記圧力変動吸着式ガス分離装置や膜式ガス分離装置から得られるガスは、比較的低純度であるため、使われる分野は限られていた。そこで、このような低コストの空気分離技術をガス精製技術と組合わせることにより、ガスを高純度化する試みが為されるようになった。
【0004】
例えば、ガス精製技術の一つとして、パラジウム等を担持した触媒を用い、不活性ガス中の酸素と水素とを反応させることにより酸素分を除去する、いわゆるデオキソ法が知られている。この方法は、酸素を含んだ不活性ガス中に水素を添加して酸素と反応させるものであるが、添加する水素は、酸素の化学量論量より若干過剰に添加しなければならず、酸素除去後のガス中に水素が残留して不純物として存在するという問題がある。また、酸素と水素との反応により生成した水分が含まれるため、酸素除去後のガスを乾燥剤を充填した吸着器に通して乾燥させる必要があった。
【0005】
一方、精製後のガス中の水素分も水分も共に低減させる方法として、金属の酸化還元反応を利用した不活性ガスの精製方法が知られている。この方法は、例えば、特開平3−12315号公報に記載されているように、銅あるいはニッケル系の酸化還元反応剤を使用したガス精製装置を用いて不活性ガスの高純度化を行うものである。
【0006】
図3は、前記公報に記載されたガス精製装置の系統図であって、酸化還元反応剤として、例えば銅を充填した2個の反応筒A,Bを備えている。圧力変動吸着式ガス分離装置や膜式ガス分離装置等のガス分離装置(図示せず)で発生した粗精製不活性ガス、例えば、酸素を僅かに含んだ粗窒素ガスは、管1を通って加熱器2で精製温度(反応温度)、例えば200〜300℃まで加熱された後、精製工程にある一方の反応筒、例えば反応筒Aに弁3aを介して導入される。反応筒A内では、粗窒素ガス中の酸素が銅と反応してガス中から除去され、酸素分を除去した精製窒素ガス(高純度窒素ガス)が、反応筒Aから弁4a,管5を通して得られる。このときの銅と酸素との反応は、2Cu+O2 →2CuOで示される酸化反応である。通常、この精製工程は、高反応率が得られるように高温で行われる。
【0007】
この間、他方の反応筒Bは、還元工程やパージ工程を含む酸化還元反応剤の再生処理が行われる。前記還元工程では、還元剤として水素を用いるが、このとき、水素による酸化銅(CuO)の還元を徐々にしかも完全に行うため、前記反応筒Aから導出した精製窒素ガスの一部を前記管5から管6に分岐し、管7から量を調節した水素を添加して加熱器8で加熱し、弁9bを介して反応筒Bに導入するようにしている。すなわち、水素を精製窒素ガスで適度な濃度に希釈して用いている。また、使用する水素量は、管1に設けられた流量計10及び酸素計11からの情報に基づいて、記憶・演算器12,調節計13,調節弁14を介して調節される。このときの還元温度は、やはり高反応率が得られるように高温で行う。また、反応は、CuO+H2 →Cu+H2 Oで示される。
【0008】
上記還元工程が終了すると、パージ工程に入る。このパージ工程は、酸化還元反応剤を酸化することなく、筒内に残留する水素と上記反応により生成した水分とを取除くことを目的としている。このため、精製工程を行っている反応筒Aで得られた精製窒素ガスの一部を、前記管6に分岐してパージガスとして用いている。このパージ工程が終了すると、反応筒Bが精製工程に切換えられ、反応筒Aが還元工程に切換えられる。この工程切換えを両筒A,Bで交互に繰り返すことにより、連続的に高純度の精製窒素ガスが得られる。
【0009】
【発明が解決しようとする課題】
上述のような従来のガス精製方法においては、不活性ガスを精製する方法については詳しく述べられているが、使用するガス精製装置の起動方法については、全く触れられていない。
【0010】
前記酸化還元反応剤は、還元された状態で空気に触れると酸化反応による発熱を起こすため、通常は、酸化された状態で反応筒に充填される。このため、装置製作後の最初の起動を行う場合は、全ての反応筒の酸化還元反応剤が精製能力を持っていないため、少なくとも1筒の酸化還元反応剤を再生する必要がある。
【0011】
同様に、通常運転の起動時にも再生処理を行う必要がある。これは、精製から再生までの1サイクルが数時間と長いため、停止時における各筒の精製状態や再生状態が様々で、次の起動時にそのまま運転を開始できるかどうかの判断は必ずしも容易ではないためである。通常は、次回の起動時に、停止前に再生工程にあった反応筒の再生工程を行う。また、何らかの原因により各筒の酸化還元反応剤が酸化された場合、次の起動時には、初期起動時と同様に少なくとも1筒を先に再生する必要がある。
【0012】
酸化還元反応剤の再生処理は、酸化還元反応剤から酸素を取除く還元工程と、これにより生成される水分及び残留する水素を反応筒内から取除くパージ工程とからなるが、この再生時に用いる不活性ガス(再生ガス)中の酸素濃度には、両工程それぞれに上限がある。前記還元工程時に水素を希釈するために用いるガス(再生ガス)中の酸素濃度は、水素濃度に比べて十分低いレベルであって、酸化還元反応剤の還元に影響しないレベルである必要がある。また、パージ工程で用いるガス(パージガス)中の酸素濃度は、還元された酸化還元反応剤を酸化してはならないので、できるだけ低濃度であることが望まれる。
【0013】
このように、酸化還元反応剤を使ったガス精製装置では、初期起動時及び通常運転の起動時に酸化還元反応剤を再生する必要があり、そのとき用いるパージガスは高純度不活性ガスでなければならない。これまで、ガス精製装置の起動時には、液化ガス等の高純度不活性ガスをバックアップとして別途に準備していた。これは、高純度不活性ガス自体の費用が加わるのはもちろん、特に、ガス精製装置を設置する場所に貯槽システムが無い場合には、新たにそれを準備しなければならず、大幅なコストアップになっていた。
【0014】
そこで本発明は、酸化還元反応剤を使用したガス精製装置の起動の際に、別途に準備した液化ガス等の高純度不活性ガスを用いることなく、ガス分離装置で分離したガスを用いて起動運転を行うことができる高純度不活性ガス製造装置及びその起動方法を提供することを目的としている。
【0015】
【課題を解決するための手段】
上記目的を達成するため、本発明の高純度不活性ガスの製造装置は、発生ガスの取出し量を減量することにより発生ガス中に含まれる酸素濃度が低下する粗精製不活性ガス発生用のガス分離装置と、該ガス分離装置で発生した粗精製不活性ガス中に含まれる酸素を酸化還元反応剤を酸化させることにより除去するとともに、酸化した前記酸化還元反応剤を水素を含む再生ガスで還元して再生するガス精製装置とを備えた高純度不活性ガス製造装置において、該高純度不活性ガス製造装置から製品ガスを導出する製品導出経路に塞気弁を設け、該塞気弁の上流側に、製品ガスの一部を前記ガス精製装置に再生ガスとして供給するための再生ガス導入経路を設けるとともに、該再生ガス導入経路に、再生ガスの流量を調節するための流量調節弁を設けたことを特徴としている。
【0016】
さらに、本発明の高純度不活性ガスの製造装置は、前記ガス分離装置で発生したガスを前記酸化還元反応剤の再生ガスとして前記ガス精製装置に導入する起動用再生ガス導入経路を設けるとともに、該起動用再生ガス導入経路に、前記ガス分離装置の発生ガス量を減量する流量調節弁を設けたことを特徴としている。
【0017】
また、本発明の高純度不活性ガス製造装置の起動方法は、発生ガスの取出し量を減量することにより発生ガス中に含まれる酸素濃度が低下する粗精製不活性ガス発生用のガス分離装置と、該ガス分離装置で発生した粗精製不活性ガス中に含まれる酸素を酸化還元反応剤を酸化させることにより除去するとともに、酸化した前記酸化還元反応剤を水素を含む再生ガスで還元して再生するガス精製装置とを備えた高純度不活性ガス製造装置を起動するにあたり、前記ガス分離装置からの発生ガスの取出し量を減量することによって該発生ガス中に含まれる酸素濃度を低下させ、好ましくは、前記ガス精製装置で精製した高純度不活性ガスの酸素濃度と同等レベルの低酸素濃度ガスを発生させ、該低酸素濃度ガスを用いて前記ガス精製装置の酸化還元反応剤の再生を行うことを特徴としている。
【0018】
さらに、本発明では、前記ガス分離装置が、圧力変動吸着式ガス分離装置又は膜式ガス分離装置であること、また、前記酸化還元反応剤が、Cr2 3 ,MnO2 ,CuO,Fe2 3 及びNiOのいずれか一種又は二種以上を組合わせたものであることを特徴としている。
【0019】
【発明の実施の形態】
図1は、本発明の高純度不活性ガス製造装置の第1形態例を示す系統図である。この高純度不活性ガス製造装置は、粗精製不活性ガスを発生させるガス分離装置21と、該ガス分離装置で発生した粗精製不活性ガス中に含まれる酸素を酸化還元反応剤によって除去するガス精製装置22とを組合わせたものであって、該高純度不活性ガス製造装置から製品ガスを導出する製品導出経路23に、製品ガスの導出を閉塞する塞気弁24を設け、該塞気弁24の上流側に、製品ガスの一部を前記ガス精製装置22に再生ガスとして供給するための再生ガス導入経路25を設けるとともに、該再生ガス導入経路25に、再生ガスの流量を調節するための流量調節弁26を設けたものである。
【0020】
前記ガス精製装置22は、基本的には前記従来装置と同様に形成することができ、酸化還元反応剤を充填した複数、例えば2個の反応筒A,Bと、該反応筒A,Bを精製工程と還元工程及びパージ工程を含む再生操作とに切換えるための弁27a,27b,28a,28b,29a,29b,30a,30bと、反応筒A,B内を所定の反応温度に加熱するための加熱器31a,31bと、前記再生ガス導入経路25を流れる再生ガスに水素を添加する水素添加経路32と、反応筒A,Bから再生ガスを導出する再生ガス導出経路33とが設けられ、前記水素添加経路32には、水素の添加量を調節するための流量調節弁34と、水素の添加を停止するための弁35とが設けられている。
【0021】
また、図2は、本発明の高純度不活性ガス製造装置の第2形態例を示す系統図であって、前記図1に示す系統に加えて、装置起動時に、前記ガス分離装置21で発生した粗精製不活性ガスをガス精製装置22に再生ガスとして供給するための起動用再生ガス導入経路41と、該起動用再生ガス導入経路41を流れる粗精製不活性ガス量を調節する流量調節弁42と、再生ガスとしての導入を停止するための弁43とを設けたものである。
【0022】
前記ガス分離装置21は、例えば、空気を原料として不活性ガスである窒素と酸素とを分離し、不純物としての酸素を含む窒素ガスを発生させるものであって、圧力変動吸着式ガス分離装置や膜式ガス分離装置のように、発生ガスの取出し量を減量することにより発生ガス中に含まれる酸素濃度が低下する特性を有する装置が用いられる。具体的には、吸着剤にMSC(Molecular Sieving Carbon:分子篩炭素)を用いた圧力変動吸着式ガス分離装置を用いることができる。なお、原料ガスは空気に限るものではなく、例えば、アルゴンに不純物として酸素を含むガスであってもよい。
【0023】
上述のガス分離装置は、圧力変動吸着式ガス分離装置においては、製品は難吸着性成分、膜式ガス分離装置においては製品は膜に対して難透過性成分の取出し状態から製品取出し量を減量すると、製品ガス中に含まれる不純物である酸素分が減少するという性質を持っている。
【0024】
例えば、圧力変動吸着式ガス分離装置の場合、通常の運転状態で製品ガスとしての窒素ガス中に含まれる酸素濃度が1000ppmである場合、製品取出し量を半分にすると、その中に含まれる酸素濃度は約100ppmとなり、1桁も低くなる。さらに製品量を絞り、取出し量を最初の8分の1にすると、酸素濃度が数ppmという高純度窒素ガスを得ることが可能である。また、膜式ガス分離装置においても、99%濃度の窒素ガス発生状態から製品ガス量を約3分の1に減量すれば、窒素濃度は99.9%に上昇する。このように、これらのガス分離装置においては、装置からの製品取出し量を減量することにより、より高純度の不活性ガスが得られる。
【0025】
上述の特性を利用すれば、前記ガス精製装置22の初期起動時や通常運転の起動において必要な高純度の不活性ガスを、該ガス精製装置22の前段に設置した、原料である粗精製ガスを得るためのガス分離装置21自身から得ることができる。すなわち、ガス精製装置22の起動時には、再生用ガスとして十分な濃度になるまで前段のガス分離装置21からのガス取出し量を減量し、所望の純度のガスが得られたら、ガス精製装置22の酸化還元反応剤の再生用(還元及びパージ用)のガスとして用いるようにする。
【0026】
次に、図1及び図2に示す装置構成において、空気から高純度の窒素ガスを製造する場合を例に挙げて説明する。まず、ガス精製装置22にとって原料ガスとなる粗精製窒素ガス(若干量の酸素分を不純物として含む窒素ガス)を発生するガス分離装置21としては、例えば、前記MSCを用いた圧力変動吸着式ガス分離装置を用いる。
【0027】
ガス精製装置22での酸化還元反応によるガスの精製では、金属と酸素との反応で酸素の除去が行われるため、窒素ガス中に不純物として含まれる酸素分の上限は、反応熱による酸化還元反応剤の温度上昇の程度によって決まる。酸素濃度が高すぎると酸化還元反応剤の温度が上昇して焼結等の現象が起こり、還元しても再使用が困難となる。このため、おおむね、不純物として含まれる酸素分としては、1%以下、特に、1000ppm以下が望ましい。
【0028】
このような通常の精製条件に対し、起動時にガス精製装置22の再生ガスとして用いるための、酸素分を十分に減らした窒素ガスをガス分離装置21で発生させるためには、前述のように、製品ガスである窒素ガス取出し量を約8分の1にすることで酸素分を数ppmに低下させることができる。
【0029】
ガス分離装置21からの窒素ガス取出し量を減量するには、図1に示す装置においては、製品導出経路23に設けた塞気弁24を閉じた状態で、再生ガス導入経路25に設けた流量調節弁26により、ガス分離装置21からの窒素ガス量が通常の発生ガス量の約8分の1になるように調整すればよい。また、図2に示す装置においては、反応筒A,Bの入口に設置されている弁27a,27bを閉じるとともに、起動用再生ガス導入経路41の弁43を開いた状態で、起動用再生ガス導入経路41に設けた流量調節弁42により、ガス分離装置21からの窒素ガス量が通常の発生ガス量の約8分の1になるように調整すればよい。
【0030】
このように流量調節されて酸素分が十分に少なくなった窒素ガスに水素添加経路32から流量調節弁34で流量調節した水素を添加した後、酸化還元反応剤の再生を行う反応筒、例えば反応筒Aに導入する。これにより、反応筒A内の酸化した酸化還元反応剤の還元再生を行うことができる。この還元反応は、吸熱反応であるため、加熱器31aにより50〜250℃の範囲に加熱することが反応促進のために好適である。
【0031】
また、酸化還元反応剤の還元は、理論的には精製工程で反応筒に入った酸素分と反応して水とするのに十分な水素が供給されればよいが、反応効率を考えると、若干過剰に添加することが好ましい。ガス精製装置22の起動時においては、充填されている酸化還元反応剤の全てが酸化されているものとして添加する水素量が決められる。実用的には、反応効率を考慮して理論量より若干多めの水素が供給された時点で酸化還元反応剤の還元が完了したものとする。
【0032】
次にパージ工程に進む。このパージ工程は、水素添加経路32の弁35を閉じて水素の添加を止める以外は前記還元工程と同様であり、ガス分離装置21で発生した酸素分が十分に少ない窒素ガスを、再生ガス導入経路25を介して、あるいは、起動用再生ガス導入経路41を介して反応筒に導入することにより行われる。このパージ工程では、過剰に添加した水素及び還元反応によって生成した水分のパージを十分に行うことを目的とする。
【0033】
このように、ガス精製装置22の原料ガスである粗精製窒素ガスを発生するガス分離装置21自身で、酸素分がガス精製装置22で精製した高純度窒素ガスのレベルに近い窒素ガスを発生し、これをガス精製装置22の起動時に酸化還元反応剤の還元再生及びパージに使用することにより、高純度窒素ガスを、他の供給源、例えば液化窒素や容器に充填された高圧ガス等として用意する必要がなくなり、装置の操作性の改善やコストの低減が図れる。
【0034】
なお、ガス精製装置22の前段に組合わせるガス分離装置21としては、前述の圧力変動吸着式ガス分離装置や膜式ガス分離装置以外にも、製品ガスの取出し量を絞ることによって酸素濃度が減少する特性を持った装置ならば、各種装置を使用することができる。
【0035】
また、本発明で使用する酸化還元反応剤としては、Cr2 3 ,MnO2 ,CuO,Fe2 3 ,NiO等を単独あるいは複数種を組合わせて用いることができるが、いずれの金属を用いた場合であっても、酸素除去能力及び各工程における反応条件(還元に必要な水素量及び好適な反応温度等の条件)が異なるだけで、初期起動時及び通常運転の起動時における再生操作は、上記手順で行うことができる。
【0036】
さらに、精製工程中及び還元工程中に生成した水分や過剰に添加した水素、前段のガス分離装置21で取除けなかった一酸化炭素,炭酸ガス及び/又は各種炭化水素等、酸素以外に含まれる不純物を除去することを目的に、酸化還元反応剤の上流,中間,下流のいずれかにゼオライト,アルミナ,MSC等の吸着剤や各種金属触媒を単独あるいは複数種組合わせて反応筒に充填することも可能である。
【0037】
【実施例】
実施例1
ガス精製装置の2個の反応筒はステンレス製円管とし、反応筒にはヒーターをそれぞれ巻いた。筒内に充填する酸化還元反応剤としてはニッケルを用いた。また、ガス分離装置には、MSCを吸着剤として使用した圧力変動吸着式ガス分離装置を用い、空気圧縮機から供給される原料空気を分離して若干の酸素分を不純物として含む窒素ガスを発生させ、この粗精製窒素ガスをガス精製装置の原料ガスとした。この圧力変動吸着式ガス分離装置の通常運転時に発生する窒素ガス量は100Nm3 /hであり、このときの酸素濃度は980ppmである。一方、ガス精製装置では、酸素分を1ppm以下まで除去するように設定した。
【0038】
一つの反応筒の精製工程の時間(半サイクル)は9時間とし、この間に他方の反応筒で、減圧,還元再生,パージ,再加圧の各工程からなる再生操作を行うことにした。まず、通常の運転条件でガス精製装置を運転し、工程切換え直前で装置を停止させた。十分な時間停止した後、運転開始時の操作(起動運転)を試みた。
【0039】
ここで、通常の精製運転における反応筒への持ち込み酸素量は、
100Nm3 /h×980ppm×9h=0.882Nm3
であり、添加すべき水素量は、
0.882Nm3 ×2×K=1.764×KNm3
(式中、Kは1以上の定数である。)
となる。
【0040】
ガス精製装置の起動のために圧力変動吸着式ガス分離装置からの窒素ガス取出し量を、通常時の20%(20Nm3 /h)にしたとき、そのガス中の酸素濃度は2ppmとなった。また、還元時間を3時間とし、再生用窒素ガス中の水素濃度は、下記の値になるように流量調節弁を調節した。
1.764×KNm3 ÷3÷20Nm3 /h=2.94×K%
【0041】
上述のように調整した再生用ガスを200℃に加熱した反応筒Aに導入して酸化還元反応剤の還元を行った(NiO+H2 →Ni+H2 O)。反応筒出口の水素濃度を連続的に測定した結果、3.2時間後に水素濃度が一定になったため、還元が終了したものとして水素の添加を止め、酸素濃度2ppmの前記窒素ガスで反応筒Aのパージを行った。5時間後に、反応筒出口の水素濃度が1ppmとなり、また、出口ガスの露点が−50℃以下になったため、パージが完了したものと判断した。
【0042】
圧力変動吸着式ガス分離装置からのガス供給量を通常の流量に戻し、全量を反応筒Aに導入して通常の窒素ガス精製運転を開始した。すなわち、再生が終了した反応筒Aに酸素濃度980ppmの窒素ガスを100Nm3 /hで導入して精製窒素ガスを得た。この精製窒素ガス中の酸素濃度及び水素濃度を測定したところ、共に検出限界である1ppm以下であった。また、露点も−70℃以下であった。
【0043】
さらに、上記反応筒Aで得た精製窒素の一部を再生ガスとして使用し、反応筒Bの再生操作を行った。反応筒Bの再生終了後、両反応筒A,Bを交互に精製工程に切換えて運転した結果、上述の通り、酸素濃度及び水素濃度が共に1ppm以下で、露点も−70℃以下の高純度窒素ガスを連続的に得ることができた。
【0044】
実施例2
反応筒に、酸化還元反応剤としてクロム,マンガン,銅,鉄をそれぞれ単独に充填し、実施例1と同様の操作を行った。その結果、いずれの酸化還元反応剤を用いた場合でも、起動運転開始から3時間後には、酸素濃度及び水素濃度が共に1ppm以下、露点−50℃以下の高純度窒素ガスを連続的に得ることができた。
【0045】
【発明の効果】
以上説明したように、本発明によれば、高純度不活性ガスを製造するためのガス精製装置の起動時に用いる高純度不活性ガスを、該ガス精製装置の原料ガスを発生するガス分離装置から得ることができるので、液化ガス等の高純度不活性ガスを別途に準備する必要がなくなり、製品ガスの大幅なコストダウンを図れる。
【図面の簡単な説明】
【図1】 本発明の高純度不活性ガス製造装置の第1形態例を示す系統図である。
【図2】 本発明の高純度不活性ガス製造装置の第2形態例を示す系統図である。
【図3】 酸化還元反応剤を使用したガス精製装置の一例を示す系統図である。
【符号の説明】
21…ガス分離装置、22…ガス精製装置、23…製品導出経路、24…塞気弁、25…再生ガス導入経路、26…流量調節弁、32…水素添加経路、41…起動用再生ガス導入経路、42…流量調節弁、A,B…反応筒
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-purity inert gas production apparatus and a method for starting the same, and more particularly, a gas separation apparatus that generates a crude purified inert gas containing oxygen as an impurity, and oxygen reduction / reduction of oxygen in the crude purified inert gas. In the high-purity inert gas production apparatus equipped with a gas purification device that removes using a reactant, the initial start-up and the start-up during normal operation can be performed without using a separately prepared high-purity inert gas. The present invention relates to a high-purity inert gas production apparatus and a starting method thereof.
[0002]
[Prior art]
Various high-purity inert gases are used in various fields including the semiconductor industry and the electronic equipment industry to protect products from atmospheric oxygen. In particular, with the recent boom in personal computers and information and communication equipment, the demand for inert gas in the industrial field has increased more and more, and even in fields where low-purity inert gas has been sufficient so far, higher quality has been achieved. High purity inert gases are being used to produce products. In addition, as cost competition intensifies, it is desired to suppress the cost of the inert gas that is the atmospheric gas in the manufacturing process as much as possible. However, such high-purity inert gas has been obtained by performing strict rectification by deep cooling of air, and thus has been very expensive.
[0003]
On the other hand, in recent years, air separation technologies that are very advantageous in terms of energy, such as pressure fluctuation adsorption gas separation devices and membrane gas separation devices, have been developed, and air separation by these methods is widely used because of its low cost. It has been put into practical use. However, since the gas obtained from the pressure fluctuation adsorption gas separation device or the membrane gas separation device has a relatively low purity, the field of use has been limited. Therefore, attempts have been made to increase the purity of gas by combining such low-cost air separation technology with gas purification technology.
[0004]
For example, as one of gas purification techniques, a so-called deoxo method is known in which a catalyst carrying palladium or the like is used and oxygen is removed by reacting oxygen and hydrogen in an inert gas. In this method, hydrogen is added to an inert gas containing oxygen to react with oxygen. However, the hydrogen to be added must be added in an amount slightly more than the stoichiometric amount of oxygen. There is a problem that hydrogen remains in the gas after removal and exists as an impurity. In addition, since moisture generated by the reaction between oxygen and hydrogen is contained, it is necessary to dry the gas after oxygen removal through an adsorber filled with a desiccant.
[0005]
On the other hand, as a method for reducing both hydrogen content and moisture in the gas after purification, a purification method of an inert gas using a metal oxidation-reduction reaction is known. In this method, for example, as described in Japanese Patent Laid-Open No. 3-12315, the purity of an inert gas is increased using a gas purification apparatus using a copper or nickel-based redox reactant. is there.
[0006]
FIG. 3 is a system diagram of the gas purification apparatus described in the above publication, and includes two reaction cylinders A and B filled with, for example, copper as redox reactants. A crudely purified inert gas generated by a gas separation device (not shown) such as a pressure fluctuation adsorption gas separation device or a membrane gas separation device, for example, a crude nitrogen gas slightly containing oxygen passes through a pipe 1. After being heated to the purification temperature (reaction temperature), for example, 200 to 300 ° C. by the heater 2, it is introduced into one reaction cylinder in the purification process, for example, the reaction cylinder A through the valve 3a. In the reaction tube A, oxygen in the crude nitrogen gas reacts with copper to be removed from the gas, and purified nitrogen gas (high-purity nitrogen gas) from which oxygen content has been removed passes from the reaction tube A through the valve 4a and the pipe 5. can get. The reaction between copper and oxygen at this time is an oxidation reaction represented by 2Cu + O 2 → 2CuO. Usually, this purification step is carried out at a high temperature so as to obtain a high reaction rate.
[0007]
During this time, the other reaction cylinder B is subjected to a regeneration process of the oxidation-reduction reactant including a reduction process and a purge process. In the reduction step, hydrogen is used as a reducing agent. At this time, in order to gradually and completely reduce copper oxide (CuO) with hydrogen, a part of the purified nitrogen gas derived from the reaction tube A is used in the tube. Branched from 5 to the pipe 6, hydrogen whose amount is adjusted from the pipe 7 is added, heated by the heater 8, and introduced into the reaction cylinder B through the valve 9 b. That is, hydrogen is diluted with purified nitrogen gas to an appropriate concentration and used. The amount of hydrogen to be used is adjusted via a memory / calculator 12, a controller 13, and a control valve 14 based on information from a flow meter 10 and an oximeter 11 provided in the pipe 1. The reduction temperature at this time is high so that a high reaction rate can be obtained. The reaction is represented by CuO + H 2 → Cu + H 2 O.
[0008]
When the reduction step is completed, the purge step is started. This purging process is intended to remove hydrogen remaining in the cylinder and moisture generated by the above reaction without oxidizing the redox reactant. For this reason, a part of the purified nitrogen gas obtained in the reaction cylinder A performing the purification process is branched into the pipe 6 and used as a purge gas. When this purge process is completed, the reaction cylinder B is switched to the purification process, and the reaction cylinder A is switched to the reduction process. By repeating this process switching alternately for both cylinders A and B, purified nitrogen gas of high purity can be obtained continuously.
[0009]
[Problems to be solved by the invention]
In the conventional gas purification method as described above, the method of purifying the inert gas is described in detail, but the starting method of the gas purification device to be used is not mentioned at all.
[0010]
Since the oxidation-reduction reactant generates heat due to an oxidation reaction when it is exposed to air in a reduced state, the reaction tube is usually filled in an oxidized state. For this reason, when the first start-up after the manufacture of the apparatus is performed, since the redox reactants in all the reaction tubes do not have the purification capability, it is necessary to regenerate at least one of the redox reactants.
[0011]
Similarly, it is necessary to perform a regeneration process when starting normal operation. This is because one cycle from refining to regeneration is as long as several hours, so the refining state and the regenerating state of each cylinder at the time of stopping vary, and it is not always easy to determine whether or not the operation can be started as it is at the next start-up. Because. Usually, at the next start-up, the reaction cylinder regeneration process that was in the regeneration process before stopping is performed. Further, when the oxidation-reduction reactant in each cylinder is oxidized for some reason, at the next startup, it is necessary to regenerate at least one cylinder first as in the initial startup.
[0012]
The regeneration treatment of the oxidation-reduction reactant includes a reduction step for removing oxygen from the oxidation-reduction reactant and a purge step for removing moisture and residual hydrogen generated thereby from the inside of the reaction cylinder. The oxygen concentration in the inert gas (regeneration gas) has an upper limit in each of the two steps. The oxygen concentration in the gas (regeneration gas) used for diluting hydrogen during the reduction step needs to be a level that is sufficiently lower than the hydrogen concentration and does not affect the reduction of the redox reactant. In addition, the oxygen concentration in the gas used in the purge process (purge gas) should not be oxidized as much as possible because the reduced redox reactant should not be oxidized.
[0013]
Thus, in a gas purification apparatus using a redox reactant, it is necessary to regenerate the redox reactant at the initial start-up and at the start of normal operation, and the purge gas used at that time must be a high-purity inert gas. . Until now, when the gas purification apparatus was started, a high-purity inert gas such as a liquefied gas was separately prepared as a backup. This adds to the cost of the high-purity inert gas itself, especially if there is no storage system in the place where the gas purifier is installed, it must be prepared anew, which greatly increases the cost. It was.
[0014]
Therefore, the present invention starts up using a gas separated by a gas separator without using a high-purity inert gas such as a separately prepared liquefied gas when starting a gas purifier using a redox reactant. It is an object of the present invention to provide a high-purity inert gas production apparatus that can be operated and a starting method thereof.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, the high purity inert gas production apparatus of the present invention provides a gas for generating a crude purified inert gas in which the concentration of oxygen contained in the generated gas is reduced by reducing the amount of generated gas taken out. A separation device and oxygen contained in the roughly purified inert gas generated in the gas separation device are removed by oxidizing the redox reactant, and the oxidized redox reactant is reduced with a regeneration gas containing hydrogen. A high-purity inert gas production apparatus equipped with a gas purification device to be regenerated and providing an air-sealing valve in a product lead-out path for deriving product gas from the high-purity inert gas production device, and upstream of the air-sealing valve On the side, a regeneration gas introduction path for supplying a part of the product gas as regeneration gas to the gas purification device is provided, and a flow rate control valve for adjusting the flow rate of the regeneration gas is provided in the regeneration gas introduction path. It is characterized in that digit.
[0016]
Furthermore, the high purity inert gas production apparatus of the present invention is provided with a start-up regeneration gas introduction path for introducing the gas generated in the gas separation device into the gas purification device as the regeneration gas of the oxidation-reduction reactant, The starting regeneration gas introduction path is provided with a flow rate control valve for reducing the amount of gas generated by the gas separation device.
[0017]
Further, the start-up method of the high purity inert gas production apparatus of the present invention includes a gas separation device for generating a crude purified inert gas in which the concentration of oxygen contained in the generated gas is reduced by reducing the amount of the generated gas taken out. The oxygen contained in the roughly purified inert gas generated in the gas separation device is removed by oxidizing the redox reactant, and the oxidized redox reactant is reduced and regenerated with a regeneration gas containing hydrogen. In starting a high-purity inert gas production apparatus equipped with a gas purifying device, the oxygen concentration contained in the generated gas is preferably reduced by reducing the amount of generated gas extracted from the gas separation device, Generates a low oxygen concentration gas having a level equivalent to the oxygen concentration of the high purity inert gas purified by the gas purification device, and uses the low oxygen concentration gas to oxidize the gas purification device. It is characterized by reproducing the reactants.
[0018]
Furthermore, in the present invention, the gas separation device is a pressure fluctuation adsorption gas separation device or a membrane gas separation device, and the oxidation-reduction reactant is Cr 2 O 3 , MnO 2 , CuO, Fe 2. It is characterized in that it is one of O 3 and NiO or a combination of two or more.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a system diagram showing a first embodiment of the high purity inert gas production apparatus of the present invention. This high-purity inert gas production apparatus includes a gas separation device 21 that generates a roughly purified inert gas, and a gas that removes oxygen contained in the roughly purified inert gas generated by the gas separation device using a redox reactant. In combination with the purifying device 22, an air closing valve 24 that closes out the product gas is provided in the product outlet path 23 for extracting the product gas from the high-purity inert gas production device. A regeneration gas introduction path 25 for supplying a part of the product gas as a regeneration gas to the gas purification device 22 is provided upstream of the valve 24, and the flow rate of the regeneration gas is adjusted in the regeneration gas introduction path 25. For this purpose, a flow control valve 26 is provided.
[0020]
The gas purification device 22 can be basically formed in the same manner as the conventional device, and includes a plurality of, for example, two reaction tubes A and B filled with a redox reaction agent, and the reaction tubes A and B. Valves 27a, 27b, 28a, 28b, 29a, 29b, 30a, 30b for switching between the purification process and the regeneration operation including the reduction process and the purge process, and the reaction cylinders A, B are heated to a predetermined reaction temperature. Heaters 31a and 31b, a hydrogen addition path 32 for adding hydrogen to the regeneration gas flowing through the regeneration gas introduction path 25, and a regeneration gas outlet path 33 for leading the regeneration gas from the reaction tubes A and B are provided. The hydrogen addition path 32 is provided with a flow rate adjustment valve 34 for adjusting the amount of hydrogen addition and a valve 35 for stopping the addition of hydrogen.
[0021]
FIG. 2 is a system diagram showing a second embodiment of the high-purity inert gas production apparatus of the present invention. In addition to the system shown in FIG. And a flow control valve for adjusting the amount of the roughly purified inert gas flowing through the start-up regeneration gas introduction path 41 for supplying the roughly purified inert gas to the gas purifier 22 as the regeneration gas. 42 and a valve 43 for stopping the introduction of the regeneration gas.
[0022]
The gas separation device 21 separates nitrogen and oxygen, which are inert gases, using air as a raw material, and generates nitrogen gas containing oxygen as an impurity. An apparatus having a characteristic that the concentration of oxygen contained in the generated gas is reduced by reducing the amount of the generated gas taken out, such as a membrane gas separator. Specifically, a pressure fluctuation adsorption gas separation apparatus using MSC (Molecular Sieve Carbon) as an adsorbent can be used. The source gas is not limited to air, and may be, for example, a gas containing oxygen as an impurity in argon.
[0023]
In the gas separation device described above, in the pressure fluctuation adsorption type gas separation device, the product is reduced in the amount of the product that is hardly adsorbed, and in the membrane type gas separation device, the product is reduced from the state in which the product is hardly permeable to the membrane. Then, it has the property that the oxygen content which is an impurity contained in product gas reduces.
[0024]
For example, in the case of a pressure fluctuation adsorption gas separation device, when the oxygen concentration contained in the nitrogen gas as the product gas is 1000 ppm in a normal operation state, the oxygen concentration contained in the product when the product removal amount is halved Becomes about 100 ppm, which is one digit lower. Further, when the product amount is reduced and the removal amount is reduced to 1/8 of the first amount, it is possible to obtain high purity nitrogen gas having an oxygen concentration of several ppm. Also in the membrane gas separator, the nitrogen concentration increases to 99.9% if the product gas amount is reduced to about one third from the 99% concentration nitrogen gas generation state. Thus, in these gas separation apparatuses, an inert gas with higher purity can be obtained by reducing the amount of product taken out from the apparatus.
[0025]
If the above-described characteristics are used, a crude purified gas, which is a raw material, is provided with a high-purity inert gas necessary for the initial start-up of the gas purifier 22 or in the start-up of normal operation. Can be obtained from the gas separation device 21 itself. That is, when the gas purification device 22 is started, the amount of gas taken out from the preceding gas separation device 21 is reduced until the concentration becomes sufficient as a regeneration gas. It is used as a gas for regenerating (reduce and purge) redox reactants.
[0026]
Next, the case where high purity nitrogen gas is produced from air in the apparatus configuration shown in FIGS. 1 and 2 will be described as an example. First, as the gas separation device 21 that generates a crude purified nitrogen gas (a nitrogen gas containing a slight amount of oxygen as an impurity) as a raw material gas for the gas purification device 22, for example, a pressure fluctuation adsorption gas using the MSC is used. A separation device is used.
[0027]
In gas purification by redox reaction in the gas purifier 22, oxygen is removed by the reaction between metal and oxygen, so the upper limit of the oxygen content contained as impurities in the nitrogen gas is the redox reaction by reaction heat. It depends on the temperature rise of the agent. If the oxygen concentration is too high, the temperature of the oxidation-reduction reactant rises, causing a phenomenon such as sintering, and even if it is reduced, it becomes difficult to reuse. For this reason, the oxygen content contained as impurities is generally preferably 1% or less, particularly preferably 1000 ppm or less.
[0028]
In order to generate nitrogen gas with a sufficiently reduced oxygen content in the gas separation device 21 to be used as a regeneration gas for the gas purification device 22 at the start-up for such normal purification conditions, as described above, The oxygen content can be reduced to several ppm by reducing the amount of nitrogen gas extracted from the product gas to about one-eighth.
[0029]
In order to reduce the amount of nitrogen gas taken out from the gas separation device 21, in the apparatus shown in FIG. 1, the flow rate provided in the regenerative gas introduction path 25 with the air-sealed valve 24 provided in the product outlet path 23 closed. The control valve 26 may be adjusted so that the amount of nitrogen gas from the gas separation device 21 is about one-eighth of the normal amount of generated gas. In the apparatus shown in FIG. 2, the regeneration gas for starting is closed while the valves 27a and 27b installed at the inlets of the reaction tubes A and B are closed and the valve 43 of the regeneration gas introduction passage 41 for opening is opened. The flow rate adjusting valve 42 provided in the introduction path 41 may be adjusted so that the amount of nitrogen gas from the gas separation device 21 is about 1/8 of the normal amount of generated gas.
[0030]
After adding hydrogen whose flow rate is adjusted by the flow rate control valve 34 from the hydrogen addition path 32 to the nitrogen gas whose oxygen content has been sufficiently reduced as described above, a reaction cylinder that performs regeneration of the redox reactant, for example, reaction Introduce into tube A. Thereby, the reduction | restoration reproduction | regeneration of the oxidized oxidation-reduction reactant in the reaction cylinder A can be performed. Since this reduction reaction is an endothermic reaction, heating to a temperature range of 50 to 250 ° C. by the heater 31a is suitable for promoting the reaction.
[0031]
In addition, the reduction of the oxidation-reduction reagent theoretically requires sufficient hydrogen to react with the oxygen content that entered the reaction cylinder in the purification step to form water, but considering the reaction efficiency, It is preferable to add a slight excess. When the gas purification device 22 is started, the amount of hydrogen to be added is determined on the assumption that all of the charged redox reactants are oxidized. Practically, it is assumed that the reduction of the redox reagent is completed when a little more hydrogen than the theoretical amount is supplied in consideration of the reaction efficiency.
[0032]
Next, the process proceeds to the purge process. This purge process is the same as the reduction process except that the addition of hydrogen is stopped by closing the valve 35 of the hydrogen addition path 32, and nitrogen gas generated by the gas separation device 21 with a sufficiently small amount of oxygen is introduced into the regeneration gas. It is carried out by introducing the reaction tube via the path 25 or via the starting regeneration gas introduction path 41. The purpose of this purging step is to sufficiently purge hydrogen added excessively and moisture generated by the reduction reaction.
[0033]
Thus, the gas separation device 21 that generates the crude purified nitrogen gas that is the raw material gas of the gas purification device 22 itself generates nitrogen gas whose oxygen content is close to the level of the high purity nitrogen gas purified by the gas purification device 22. By using this for the reduction regeneration and purging of the oxidation-reduction reactant at the start of the gas purification device 22, high purity nitrogen gas is prepared as another supply source, for example, liquefied nitrogen or high pressure gas filled in a container Therefore, the operability of the apparatus can be improved and the cost can be reduced.
[0034]
In addition to the pressure fluctuation adsorption gas separation device and the membrane gas separation device described above, the gas separation device 21 combined with the preceding stage of the gas purification device 22 reduces the oxygen concentration by reducing the amount of product gas taken out. Various devices can be used as long as the device has the characteristics described above.
[0035]
In addition, as the redox reactant used in the present invention, Cr 2 O 3 , MnO 2 , CuO, Fe 2 O 3 , NiO and the like can be used singly or in combination. Even if it is used, the regeneration operation at the initial start-up and at the start of normal operation is different only in the oxygen removal capacity and the reaction conditions in each step (conditions such as the amount of hydrogen necessary for reduction and suitable reaction temperature). Can be performed by the above procedure.
[0036]
Furthermore, it is contained in addition to oxygen, such as water generated during the purification process and reduction process, excessively added hydrogen, carbon monoxide, carbon dioxide gas and / or various hydrocarbons that could not be removed by the gas separation device 21 in the previous stage. To remove impurities, the reaction tube is filled with adsorbents such as zeolite, alumina, and MSC, or various metal catalysts, either alone or in combination, either upstream, in the middle, or downstream of the redox reactant. Is also possible.
[0037]
【Example】
Example 1
The two reaction cylinders of the gas purification apparatus were stainless steel circular tubes, and a heater was wound around each of the reaction cylinders. Nickel was used as the oxidation-reduction reagent filled in the cylinder. The gas separation device uses a pressure fluctuation adsorption gas separation device using MSC as an adsorbent, and separates the raw air supplied from the air compressor to generate nitrogen gas containing some oxygen as impurities The crudely purified nitrogen gas was used as a raw material gas for the gas purification apparatus. The amount of nitrogen gas generated during normal operation of this pressure fluctuation adsorption gas separation device is 100 Nm 3 / h, and the oxygen concentration at this time is 980 ppm. On the other hand, the gas purifier was set to remove oxygen to 1 ppm or less.
[0038]
The time (half cycle) for the purification step of one reaction cylinder was 9 hours, and during this time, the regeneration operation consisting of the steps of depressurization, reduction regeneration, purge, and repressurization was performed in the other reaction cylinder. First, the gas purification apparatus was operated under normal operating conditions, and the apparatus was stopped immediately before process switching. After stopping for a sufficient period of time, an operation at the start of operation (start-up operation) was attempted.
[0039]
Here, the amount of oxygen brought into the reaction cylinder in the normal refining operation is
100Nm 3 /h×980ppm×9h=0.882Nm 3
The amount of hydrogen to be added is
0.882Nm 3 × 2 × K = 1.664 × KNm 3
(In the formula, K is a constant of 1 or more.)
It becomes.
[0040]
When the amount of nitrogen gas extracted from the pressure fluctuation adsorption type gas separation device was set to 20% (20 Nm 3 / h) as normal for starting the gas purification device, the oxygen concentration in the gas was 2 ppm. Further, the reduction time was set to 3 hours, and the flow rate control valve was adjusted so that the hydrogen concentration in the regeneration nitrogen gas was the following value.
1.764 × KNm 3 ÷ 3 ÷ 20 Nm 3 /h=2.94×K%
[0041]
The regeneration gas adjusted as described above was introduced into the reaction tube A heated to 200 ° C. to reduce the redox reactant (NiO + H 2 → Ni + H 2 O). As a result of continuously measuring the hydrogen concentration at the outlet of the reaction tube, the hydrogen concentration became constant after 3.2 hours. Therefore, the addition of hydrogen was stopped because the reduction was completed, and the reaction tube A was charged with the nitrogen gas having an oxygen concentration of 2 ppm. Was purged. After 5 hours, the hydrogen concentration at the outlet of the reaction tube was 1 ppm, and the dew point of the outlet gas was −50 ° C. or lower, so it was judged that the purge was completed.
[0042]
The gas supply amount from the pressure fluctuation adsorption type gas separation device was returned to the normal flow rate, and the entire amount was introduced into the reaction tube A to start a normal nitrogen gas purification operation. That is, purified nitrogen gas was obtained by introducing nitrogen gas with an oxygen concentration of 980 ppm into the reaction tube A at which regeneration was completed at 100 Nm 3 / h. The oxygen concentration and hydrogen concentration in the purified nitrogen gas were measured and found to be 1 ppm or less, which is the detection limit. The dew point was also −70 ° C. or lower.
[0043]
Further, a part of the purified nitrogen obtained in the reaction cylinder A was used as a regeneration gas, and the regeneration operation of the reaction cylinder B was performed. After the regeneration of reaction tube B, both reaction tubes A and B were operated by alternately switching to the purification process. Nitrogen gas could be obtained continuously.
[0044]
Example 2
The reaction tube was filled with chromium, manganese, copper, and iron as oxidation-reduction reactants, respectively, and the same operation as in Example 1 was performed. As a result, regardless of which oxidation-reduction reactant is used, high-purity nitrogen gas having an oxygen concentration and a hydrogen concentration of both 1 ppm or less and a dew point of -50 ° C. or less is continuously obtained after 3 hours from the start of the start-up operation. I was able to.
[0045]
【The invention's effect】
As described above, according to the present invention, the high-purity inert gas used at the start-up of the gas purification device for producing the high-purity inert gas is separated from the gas separation device that generates the raw material gas of the gas purification device. Therefore, it is not necessary to separately prepare a high purity inert gas such as a liquefied gas, and the cost of the product gas can be greatly reduced.
[Brief description of the drawings]
FIG. 1 is a system diagram showing a first embodiment of the high purity inert gas production apparatus of the present invention.
FIG. 2 is a system diagram showing a second embodiment of the high purity inert gas production apparatus of the present invention.
FIG. 3 is a system diagram showing an example of a gas purification apparatus using a redox reactant.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 21 ... Gas separation apparatus, 22 ... Gas refinement | purification apparatus, 23 ... Product extraction path | route, 24 ... Closure valve, 25 ... Regeneration gas introduction path, 26 ... Flow control valve, 32 ... Hydrogen addition path, 41 ... Regeneration gas introduction for starting Path, 42 ... Flow control valve, A, B ... Reaction cylinder

Claims (5)

発生ガスの取出し量を減量することにより発生ガス中に含まれる酸素濃度が低下する粗精製不活性ガス発生用のガス分離装置と、該ガス分離装置で発生した粗精製不活性ガス中に含まれる酸素を酸化還元反応剤を酸化させることにより除去するとともに、酸化した前記酸化還元反応剤を水素を含む再生ガスで還元して再生するガス精製装置とを備えた高純度不活性ガス製造装置において、該高純度不活性ガス製造装置から製品ガスを導出する製品導出経路に塞気弁を設け、該塞気弁の上流側に、製品ガスの一部を前記ガス精製装置に再生ガスとして供給するための再生ガス導入経路を設けるとともに、該再生ガス導入経路に、再生ガスの流量を調節するための流量調節弁を設けたことを特徴とする高純度不活性ガス製造装置。Included in the crude purified inert gas generated by the gas separation device for generating the crude purified inert gas in which the concentration of oxygen contained in the generated gas is reduced by reducing the amount of the generated gas removed, and in the crude purified inert gas generated by the gas separator In a high-purity inert gas production apparatus comprising a gas purification device that removes oxygen by oxidizing a redox reactant and reduces and regenerates the oxidized redox reactant with a regeneration gas containing hydrogen. In order to provide an air-sealing valve in a product lead-out path through which the product gas is led out from the high-purity inert gas production apparatus, and to supply a part of the product gas to the gas purification apparatus as a regeneration gas upstream of the air-sealing valve A high-purity inert gas production apparatus characterized in that a regeneration gas introduction path is provided and a flow rate regulating valve for regulating the flow rate of the regeneration gas is provided in the regeneration gas introduction path. 発生ガスの取出し量を減量することにより発生ガス中に含まれる酸素濃度が低下する粗精製不活性ガス発生用のガス分離装置と、該ガス分離装置で発生した粗精製不活性ガス中に含まれる酸素を酸化還元反応剤を酸化させることにより除去するとともに、酸化した前記酸化還元反応剤を水素を含む再生ガスで還元して再生するガス精製装置とを備えた高純度不活性ガス製造装置において、前記ガス分離装置で発生したガスを前記ガス精製装置に再生ガスとして導入する起動用再生ガス導入経路を設けるとともに、該起動用再生ガス導入経路に、前記ガス分離装置の発生ガス量を減量するための流量調節弁を設けたことを特徴とする高純度不活性ガス製造装置。A gas separation device for generating a crude purified inert gas in which the concentration of oxygen contained in the generated gas is reduced by reducing the amount of the generated gas taken out, and a crude purified inert gas generated by the gas separator. In a high-purity inert gas production apparatus comprising a gas purification device that removes oxygen by oxidizing a redox reactant and reduces and regenerates the oxidized redox reactant with a regeneration gas containing hydrogen. In order to reduce the amount of gas generated in the gas separation device in the start-up regeneration gas introduction path while providing a start-up regeneration gas introduction route for introducing the gas generated in the gas separation device into the gas purification device as regeneration gas A high-purity inert gas production apparatus characterized by comprising a flow control valve. 発生ガスの取出し量を減量することにより発生ガス中に含まれる酸素濃度が低下する粗精製不活性ガス発生用のガス分離装置と、該ガス分離装置で発生した粗精製不活性ガス中に含まれる酸素を酸化還元反応剤を酸化させることにより除去するとともに、酸化した前記酸化還元反応剤を水素を含む再生ガスで還元して再生するガス精製装置とを備えた高純度不活性ガス製造装置を起動するにあたり、前記ガス分離装置からの発生ガスの取出し量を減量することによって該発生ガス中に含まれる酸素濃度を低下させ、該低酸素濃度ガスを用いて前記ガス精製装置の酸化還元反応剤の再生を行うことを特徴とする高純度不活性ガス製造装置の起動方法。Included in the crude purified inert gas generated by the gas separation device for generating the crude purified inert gas in which the concentration of oxygen contained in the generated gas is reduced by reducing the amount of the generated gas removed, and in the crude purified inert gas generated by the gas separator Oxygen is removed by oxidizing the redox reactant, and a high-purity inert gas production system is started that includes a gas purification device that reduces and regenerates the oxidized redox reactant with a regeneration gas containing hydrogen. In doing so, the oxygen concentration contained in the generated gas is reduced by reducing the amount of gas generated from the gas separation device, and the low-oxygen concentration gas is used to reduce the oxidation-reduction reactant of the gas purification device. A starting method for a high-purity inert gas production apparatus, characterized by performing regeneration. 前記ガス分離装置は、圧力変動吸着式ガス分離装置又は膜式ガス分離装置であることを特徴とする請求項3記載の高純度不活性ガス製造装置の起動方法。The method for starting a high purity inert gas production apparatus according to claim 3, wherein the gas separation device is a pressure fluctuation adsorption gas separation device or a membrane gas separation device. 前記酸化還元反応剤は、Cr2 3 ,MnO2 ,CuO,Fe2 3 及びNiOのいずれか一種又は二種以上を組合わせたものであることを特徴とする請求項3記載の高純度不活性ガスの製造装置の起動方法。The redox reaction agent, Cr 2 O 3, MnO 2 , CuO, high purity according to claim 3, characterized in that in combination with Fe 2 O 3 and any one or more one or two of NiO A method for starting an inert gas production apparatus.
JP12235197A 1997-05-13 1997-05-13 High purity inert gas production apparatus and start-up method thereof Expired - Fee Related JP3919878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12235197A JP3919878B2 (en) 1997-05-13 1997-05-13 High purity inert gas production apparatus and start-up method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12235197A JP3919878B2 (en) 1997-05-13 1997-05-13 High purity inert gas production apparatus and start-up method thereof

Publications (2)

Publication Number Publication Date
JPH10316407A JPH10316407A (en) 1998-12-02
JP3919878B2 true JP3919878B2 (en) 2007-05-30

Family

ID=14833785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12235197A Expired - Fee Related JP3919878B2 (en) 1997-05-13 1997-05-13 High purity inert gas production apparatus and start-up method thereof

Country Status (1)

Country Link
JP (1) JP3919878B2 (en)

Also Published As

Publication number Publication date
JPH10316407A (en) 1998-12-02

Similar Documents

Publication Publication Date Title
EP0995715B1 (en) Hydrocarbon partial oxidation process
US7892328B2 (en) PSA apparatus for producing high-purity hydrogen gas
US5980857A (en) Production of carbon monoxide from syngas
JPWO2008056579A1 (en) Method and apparatus for separating hydrogen gas
US20020058169A1 (en) Carbon monoxide/water removal from fuel cell feed gas
JP5498661B2 (en) Blast furnace gas separation method
TWI569864B (en) Purifying method and purifying apparatus for argon gas
TWI549740B (en) Purifying method and purifying apparatus for argon gas
JP2017087108A (en) Hydrogen gas purification system and hydrogen gas purifying method
JP2004256328A (en) Apparatus and method for refining hydrogen gas
EP1894611B1 (en) Method for gas purification
JP3919878B2 (en) High purity inert gas production apparatus and start-up method thereof
CA2290970A1 (en) Carbon monoxide removal method based on a regenerable co scavenger
JP2005256899A (en) Hydrogen storage and/or derivation device
JP3569420B2 (en) Hydrogen production method by pressure swing adsorption method
JP4845334B2 (en) Purification method of raw material air in air liquefaction separation device
JP5237870B2 (en) High purity hydrogen production method
JP2686349B2 (en) Pressure swing hydrogen purification method
KR101800031B1 (en) Purifying method and purifying apparatus for argon gas
JP4850432B2 (en) Operation method of hydrogen production apparatus and hydrogen production apparatus
EP4344765A1 (en) Method and apparatus for providing a helium product
JP2012082080A (en) Argon refining method and argon refining apparatus
JP2010280535A (en) Apparatus, method and program for producing hydrogen
JP3581988B2 (en) Apparatus for removing oxygen from inert gas and method for regenerating and operating the same
JP3213851B2 (en) Removal method of carbon monoxide in inert gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees