JP3581988B2 - Apparatus for removing oxygen from inert gas and method for regenerating and operating the same - Google Patents

Apparatus for removing oxygen from inert gas and method for regenerating and operating the same Download PDF

Info

Publication number
JP3581988B2
JP3581988B2 JP02518194A JP2518194A JP3581988B2 JP 3581988 B2 JP3581988 B2 JP 3581988B2 JP 02518194 A JP02518194 A JP 02518194A JP 2518194 A JP2518194 A JP 2518194A JP 3581988 B2 JP3581988 B2 JP 3581988B2
Authority
JP
Japan
Prior art keywords
oxygen
inert gas
regeneration
metal
filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02518194A
Other languages
Japanese (ja)
Other versions
JPH07237908A (en
Inventor
義光 村田
雅人 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP02518194A priority Critical patent/JP3581988B2/en
Publication of JPH07237908A publication Critical patent/JPH07237908A/en
Application granted granted Critical
Publication of JP3581988B2 publication Critical patent/JP3581988B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Gas Separation By Absorption (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、不活性ガス中の酸素除去装置並びにその再生方法及び運転方法に関し、詳しくは、窒素,アルゴン等の不活性ガス中に含まれる酸素分を金属の酸化反応によって除去するとともに、該酸化反応により酸化した金属を還元性物質で還元して再生する酸素除去装置に関する。
【0002】
【従来の技術】
少量の酸素を含む不活性ガス、例えば、窒素ガスに含まれる酸素分を除去して高純度窒素を得ることが従来から行われている。この酸素除去方法としては、酸素含有不活性ガスに所定量の水素を添加し、パラジウム等の触媒の存在下に酸素と水素とを燃焼反応させて酸素を除去する方法が知られている。
【0003】
上記方法においては、不活性ガス中の酸素分を完全に除去するために、反応当量に対して数%から数十%程度過剰に水素を添加する必要がある。このため、酸素を除去した後の不活性ガス中に過剰に添加した水素が含まれるために、酸素除去後の不活性ガスは、本質的には高純度とはいえない。また、酸素と水素との反応により水が生成するため、水分除去のための吸着器等が必要となる。
【0004】
このような水素を幾分含むガスでも問題なく使えるような用途、例えば金属の熱処理用のガス等では、この方法を採用できるが、半導体用等に使用するガスにおいては、水素の混入が嫌われるため、水素分を含まない不活性ガスが要求される。
【0005】
その改善策として、銅やニッケル等、加熱下で容易に酸化する金属を用いて酸化還元反応により不活性ガス中の酸素分を除去する方法がある。この方法では、銅やニッケル等の金属そのもの、あるいは活性アルミナ,シリカゲル,ゼオライト等の多孔性物質に金属を担持したものを複数(多くの場合は2筒)の充填筒に充填し、充填筒に酸素分を含む不活性ガスを流して不活性ガス中の微量の酸素分と金属とを反応させて酸素除去を行う酸素除去工程と、充填筒に適当量の水素を含む不活性ガスを流して前記酸素除去工程で酸化した金属と水素とを反応させて金属を還元する再生工程とを、各充填筒について順次繰り返して行うようにしている。この酸素除去方法によれば、精製後(酸素除去後)の不活性ガス中に水素も水分も存在せず、純粋な不活性ガスを連続的に得ることができる。
【0006】
【発明が解決しようとする課題】
しかしながら、上述の従来法では、いずれの方法を用いても水素の使用が避けられなかった。一般に、水素ガスは、シリンダーで供給するか、あるいは大量の場合はトレーラーで供給しているが、近年は輸送コストがかさみ、水素ガス自体が高価なものになっている。また、水素ガスは可燃性のガスの中でも、広い爆発範囲を持つため、危険なガスという印象があり、できれば水素ガスの使用を避けたいという要望があった。
【0007】
このようなことから、水素に代えてアルコール等の可燃性物質を用い、酸素分を含む不活性ガス中に直接アルコール等を注入して白金等の触媒により酸素とアルコール等とを反応させて酸素を除去する方法が提案されている。しかし、この方法においても、酸素を完全に除去するためには、不活性ガス中の酸素の存在量に対して幾分過剰にアルコール等を添加する必要がある。このため、過剰に添加されたアルコール等が触媒により分解して水素,一酸化炭素.その他炭化水素等の有機化合物となることが知られており、これらは、酸素除去後の不活性ガス中に含まれてしまうという不都合があった。
【0008】
そこで本発明は、不活性ガス中の酸素分を除去するにあたり、水素を用いることなく、また、酸素除去後の不活性ガス中に他の成分が混入することも防止できる不活性ガス中の酸素除去装置並びにその再生方法及び運転方法を提供することを目的としている。
【0009】
【課題を解決するための手段】
上記した目的を達成するため、本発明の不活性ガス中の酸素除去装置は、第1の構成として、不活性ガス中の酸素分を酸化反応により除去する金属を充填した複数の充填筒と、各充填筒に酸素分を含む不活性ガスを導入する系統と、各充填筒から酸素分が除去された不活性ガスを導出する系統と、各充填筒に還元性物質を含む再生ガスを導入する系統と、各充填筒から再生排ガスを導出する系統と、前記不活性ガスの導入導出系統及び再生ガスの導入導出系統にそれぞれ設けた切換弁と、該切換弁を所定の順序で開閉して前記複数の充填筒を順次不活性ガス中の酸素分を前記金属との酸化反応により除去する酸素除去工程と再生ガス中の還元性物質により前記酸素除去工程で酸化した金属を還元する再生工程とに切換える弁制御手段とを備えるとともに、前記再生ガスに液状可燃性物質を添加する手段と、該添加された液状可燃性物質を触媒反応により還元性物質に分解する触媒層とを備えたことを特徴としている。
【0010】
第2の構成は、上記第1の構成に加えて、前記不活性ガス導入系統の不活性ガスの流量を測定する手段及び該不活性ガス中の酸素濃度を測定する手段と、測定された不活性ガスの流量及び酸素濃度から前記充填筒に導入される酸素量を算出する手段と、該酸素量と各充填筒内に充填した金属の量とから前記弁制御手段における切換弁の切換え開閉時間を算出する手段とを備えたことを特徴としている。
【0011】
第3の構成は、上記第1の構成に加えて、各充填筒の出口付近に設けられた酸素濃度測定手段と、酸素除去工程にある充填筒の酸素濃度測定手段で求めた酸素濃度に応じて前記弁制御手段における切換弁の切換え開閉時間を算出する手段とを備えたことを特徴としている。
【0012】
本発明の不活性ガス中の酸素除去装置の再生方法は、不活性ガス中の酸素分を金属、特に銅又はニッケルの酸化反応により除去する酸素除去装置の再生方法において、前記酸化反応により酸化した金属の還元剤として、液状可燃性物質、特にアルコール,アセトン,エーテル,石油燃料の内のいずれか一種を用いることを特徴とし、さらに、液状可燃性物質を触媒反応で還元性物質に分解した後に供給することを特徴としている。
【0013】
本発明の不活性ガス中の酸素除去装置の運転方法は、不活性ガス中の酸素分を酸化反応により除去する金属を充填した2基の充填筒を備え、一方の充填筒不活性ガスを導入して該不活性ガス中の酸素分を前記金属との酸化反応により除去する酸素除去工程にあるときに、他方の充填筒液状可燃性物質を含む還元性ガスを導入して前記酸化反応により酸化した金属を還元する再生工程にあり、一方の充填筒が再生工程に切換えられると、他方の充填筒は酸素除去工程に切換えられて、2基の充填筒で酸素除去工程と再生工程とを交互に切換えて不活性ガス中の酸素分を連続的に除去するにあたり、酸素除去工程にある充填筒に導入される酸素量あるいは酸素除去工程にある充填筒出口部の酸素濃度に応じて酸素除去工程時間を変更するとともに、再生工程にある充填筒に導入する液状可燃性物質の量を、前記酸素除去工程時間の変更に対して反比例するように増減させることを特徴としている。
【0014】
【作 用】
上記構成によれば、酸素除去工程で酸化した金属を、液状可燃性物質あるいは該液状可燃性物質を触媒層で分解した水素,一酸化炭素等の還元性物質で還元して再生するので、水素を用いることなく再生工程を行うことができる。また、酸素除去工程では液状可燃性物質を使用しないので、精製後の不活性ガス中に他の成分が混入することもない。
【0015】
また、2基の充填筒で酸素除去工程と再生工程とを交互に切換えて不活性ガス中の酸素分を連続的に除去するにあたり、酸素除去工程にある充填筒に導入される酸素除去を行う不活性ガス中の酸素量あるいは充填筒の出口付近の酸素濃度で酸素除去工程時間を制御することにより、酸素除去を確実に行うことができ、さらに、酸素除去工程時間に応じて再生工程にある充填筒に導入する液状可燃性物質の添加量を増減させることにより、酸化した金属の還元も確実に行うことができる。
【0016】
【実施例】
以下、本発明を、図面に基づいてさらに詳細に説明する。
本実施例に示す酸素除去装置は、銅あるいはニッケル等の加熱下で容易に酸化する金属を充填した2基の充填筒1a,1bと、酸素分を含む不活性ガスを供給する不活性ガス供給系統2及び各充填筒1a,1bに酸素分を含む不活性ガスを切換え導入する不活性ガス導入系統2a,2bと、各充填筒1a,1bから酸素分が除去された不活性ガスを切換え導出する不活性ガス導出系統3a,3b及び精製不活性ガスを使用先等に供給する精製不活性ガス供給系統3と、各充填筒1a,1bに再生ガスを供給する再生ガス供給系統4及び各充填筒1a,1bに再生ガスを切換え導入する再生ガス導入系統4a,4bと、各充填筒1a,1bから再生排ガスを切換え導出する再生排ガス導出系統5a,5b及び排気管5と、前記各導入導出系統に設けた切換弁6a,6b,7a,7b,8a,8b,9a,9bと、前記再生ガス供給系統4に酸素除去工程で酸化した金属を還元するための液状可燃性物質(以下、燃料という)を導入する燃料導入系統10と、該燃料導入系統10から導入する燃料の流量を制御する燃料導入弁10a及び流量制御器10bと、該燃料導入系統10から導入される燃料を適当な濃度に希釈するとともに該燃料を搬送するための不活性ガスを前記精製不活性ガス供給系統3から分岐して導入する再生用不活性ガス導入系統11及び再生用不活性ガス導入弁11aと、燃料導入系統10と再生用不活性ガス導入系統11との合流点に設けた混合器12と、前記燃料を触媒反応により分解して還元性物質を生成するための触媒層13と、前記不活性ガス導入系統2の不活性ガスの流量を測定する流量計14と、該不活性ガス中の酸素濃度を測定する分析計15と、測定された不活性ガスの流量及び酸素濃度から酸素除去工程にある充填筒に導入される酸素量を算出するとともに、該酸素量と充填筒内に充填した金属の量とから前記各切換弁の切換え開閉時間を算出する演算手段16と、該演算手段16で算出した切換弁切換え時間に応じて各切換弁を切換え開閉する弁制御手段17とにより構成されている。
【0017】
なお、上記充填筒1a,1bでの金属の酸化反応及び還元反応や、触媒層13での触媒反応は、それぞれ不活性ガスの酸素含有量及び金属の種類や、燃料及び触媒の種類に応じて、各反応に適した温度で行われるもので、例えば、酸素除去工程の酸化反応と再生工程の還元反応は、通常、100〜350℃で、触媒層13の触媒反応は、通常、約400℃で行われる。温度調節は、充填筒1a,1bや触媒層13に設けた加熱又は冷却ジャケットや電気ヒーター等の加熱又は冷却手段、あるいは、不活性ガス供給系統2や再生ガス供給系統4等のガス導入系統に設けた加熱器又は冷却器等により必要に応じて行うことができる。
【0018】
上記酸素除去装置は、例えば、充填筒1aが酸素除去工程にあるときには、充填筒1bは再生工程にあり、充填筒1aが再生工程に切換えられると、充填筒1bは酸素除去工程に切換えられ、交互に酸素除去工程と再生工程とを行って連続的に不活性ガスの精製(酸素除去)を行う。
【0019】
すなわち、充填筒1aが酸素除去工程にあるときには、不活性ガス供給系統2から供給される酸素含有不活性ガスは、切換弁6a,不活性ガス導入系統2aを経て充填筒1a内に導入され、充填筒1a内に充填されている金属と不活性ガス中の酸素とが反応する。この金属の酸化反応により酸素が除去された不活性ガスは、精製ガスとして不活性ガス導出系統3aに導出され、切換弁7aを経て精製不活性ガス供給系統3から使用先等に供給される。
【0020】
充填筒に充填する金属は、不活性ガス中の微量の酸素と容易に反応し、かつ、後述の再生工程で容易に還元するものならば任意の金属を用いることができるが、特に、銅やニッケルを用いることが好ましい。また、筒内への充填は、金属粉等の状態で金属そのものを充填してもよいが、金属を活性アルミナ,シリカゲル,ゼオライト等の多孔性物質に担持させたものを充填するようにしてもよい。
【0021】
一方、再生工程にある充填筒1bでは、前回の酸素除去工程で酸化した金属を液状可燃性物質で還元する還元段階と、該還元段階で生成した水,二酸化炭素等をパージするパージ段階とが行われる。まず、最初の還元段階では、燃料導入系統10からポンプあるいはガス圧等により導入される所定量の燃料と、再生用不活性ガス導入系統11から導入される所定量の不活性ガスとを混合器12で混合して再生ガスとし、次いで、再生ガス供給系統4に設けられた触媒層13に導入して燃料を触媒反応により分解し、水素や一酸化炭素等の還元性を有する物質とする。
【0022】
上記還元性物質を含む再生ガスは、切換弁8bから再生ガス導入系統4bを経て充填筒1bに導入され、筒内の酸化金属と再生ガス中の還元性物質とが反応して金属が還元される。この還元反応により生じた水や二酸化炭素及び未反応の還元性物質、さらに、燃料の分解によって生じた水素,一酸化炭素,メタン,その他微量の炭化水素は、再生ガスの大部分を占める不活性ガスに同伴されて充填筒1bから再生排ガス導出系統5bに導出され、切換弁9bを経て排気管5から排出される。
【0023】
上記還元段階において使用する燃料としては、液状の可燃性物質、例えば、各種アルコール,アセトン,エーテル,その他の炭化水素系液体燃料を用いることができ、入手の容易性や安全性等を考慮して適宜に選定することができる。また、触媒層13には、白金,パラジウム等の貴金属触媒を単独あるいは適宜混合して用いることができる。
【0024】
導入する燃料の量は、還元段階の時間内で充填筒内の酸化金属を完全に還元するため、該酸化金属に含まれる酸素分に対して反応当量で5〜10%過剰に添加することが好ましい。また、液状の燃料を再生用不活性ガスと効率よく混合するため、混合器12に燃料を気化させる加熱器(蒸発器)を設けたり、燃料導入系統10や再生用不活性ガス導入系統11に加熱器を設けたりすることができる。
【0025】
上記還元段階を終えたら、燃料導入弁10aを閉じて燃料導入系統10からの燃料の導入を止め、再生用不活性ガス導入系統11からの再生用不活性ガスのみを再生ガス供給系統4,触媒層13,切換弁8b,再生ガス導入系統4bを介して充填筒1bに導入し、充填筒1b内の前記水や二酸化炭素、その他の不純物成分を排出するパージ段階を行う。
【0026】
このようにして再生工程を終えた充填筒1bと前記酸素除去工程を終えた充填筒1aとは、前記弁制御手段17からの指令により各切換弁が切換え開閉されることにより工程が入れ替えられ、充填筒1bが酸素除去工程に、充填筒1aが再生工程に入る。以下、両充填筒1a,1bは、上記工程を交互に行い連続的に不活性ガス中の酸素を除去して精製された高純度の不活性ガスを使用先等に供給する。
【0027】
また、上記両充填筒1a,1bの酸素除去工程と再生工程との切換えを行うにあたり、酸素含有不活性ガスを供給する不活性ガス発生源における不活性ガス中の酸素濃度に変動がある場合は、酸素処理量に応じて酸素除去工程時間を変更することができる。
【0028】
すなわち、前記流量計14と分析計15とから得られる不活性ガスの流量及び酸素濃度を演算手段16にて演算し、酸素除去工程にある充填筒に導入される酸素量を算出するとともに、該酸素量と充填筒内に充填した金属の量(酸素処理能力)とから、酸素除去工程の終了時間を算出し、酸素除去工程時間に応じて弁制御手段17を作動させることにより、不活性ガス中の酸素分が多いときでも、確実に酸素分の除去を行うことができる。
【0029】
一方、上記酸素除去工程時間の変更に伴い再生工程時間も変更されるため、再生工程時間の長さに応じて燃料や再生ガスとして用いる精製不活性ガスの流量を調節することにより、効率よく、無駄のない再生を行うことができる。例えば、酸素除去工程時間が短くなった場合は、再生工程を行っている充填筒では、短くなった酸素除去工程時間内で確実に金属を再生する必要があるため、演算手段16あるいは弁制御手段17からの指示により流量制御器10bで燃料導入弁10aの開度を制御し、切換え時間に対して反比例するように燃料の流量を増量し、また、必要に応じて再生用不活性ガスの流量も増量する。これにより、短時間で再生工程を終了することができる
【0030】
逆に、酸素除去工程時間が長くなった場合には、再生工程を行っている充填筒では、燃料の流量を減らし、再生用不活性ガスの流量も減らすことにより、再生工程全体で使用する燃料や再生用不活性ガスの量を、酸化した金属を還元再生するのに必要十分な量にすることができる。
【0031】
また、上記酸素除去工程時間の変更は、上記流量計14と分析計15とに代えて、図1に想像線で示すように、各充填筒1a,1bの出口付近(充填層終端付近)に設けた酸素濃度計18で得た酸素濃度、あるいは該出口付近から抜き出したガスを分析計で分析して得た酸素濃度により行うこともできる。
【0032】
なお、本実施例では、充填筒の再生時に燃料を搬送するガスとして精製不活性ガスの一部を用いたが、不活性ガス供給系統2から供給される酸素含有不活性ガスの一部を用いることも可能である。
【0033】
また、図2に示すように、燃料を還元性物質に分解する触媒層を省略して、燃料をそのまま充填筒に導入するようにしてもよく、原料となる酸素含有不活性ガス中の酸素濃度の変動がほとんどない場合には、流量計や分析計を省略して各切換弁を一定時間毎に切換え開閉するようにしてもよい。なお、前記図1に示す実施例装置と同一要素のものには同一符号を付して、その詳細な説明は省略する。
【0034】
両実施例において、充填筒には、不活性ガス中に含まれる酸素分の濃度と不活性ガスの流量を基準とし、適当な反応時間を設定して、その時間内で酸素の除去反応を行うのに十分な量の金属を充填する必要があり、例えば、酸素含有量が100ppm程度の不活性ガスを処理する場合は、通常、48時間毎の切換えが選択され、酸素濃度が1000ppmのオーダーの場合は、充填する金属の量を増やすか、切換え時間を短くするかのいずれかを選択する。
【0035】
このとき、金属充填量を同一として、単純に酸素濃度の増大に反比例させて切換え時間を短縮した場合は、再生工程における単位時間あたりの燃料の導入量が増大するため、還元段階での反応で温度が上がり過ぎるという問題が生じるとともに、パージ段階の時間が十分に取れないという問題を生じることがある。したがって、充填筒の容積も勘案すると、一般的には、切換え時間は、8〜48時間が適当である。
【0036】
また、反応温度の過度の上昇を防止する手段として、複数の充填筒を直列に連結し、各充填筒に燃料を少量ずつ分割して導入するようにしたり、各充填筒間に冷却器を設けて反応熱を除去したりすることが、反応温度を一定に保つ上で有効である。
【0037】
実験例1
図2に示す構成の装置において、充填筒内に粉末銅を圧縮して径を4mm、長さを5mmの円柱状に成形した反応剤を500g充填し、原料不活性ガスとして酸素を100ppm含んだ窒素ガスを、約150℃に保持した充填筒に通したところ、精製後の窒素ガス中の酸素濃度は1ppm以下になった。
【0038】
一方、上記処理により酸化した充填筒内の銅(酸化銅)を還元するため、再生側の充填筒には、液状可燃性物質であるエチルアルコールを原料不活性ガスに添加した再生ガスを導入して再生工程を行った。エチルアルコールの添加量は、酸化銅に含まれる酸素を除去するために要する化学量論量より10%過剰とし、また、再生中の充填筒に導入する再生ガスの量は、原料不活性ガスの総量に対して10%に設定した。
【0039】
上記再生ガスは、混合器に設けた加熱器で約350℃に予熱して充填筒に導入し、還元反応を行わせた。このときの充填筒内の温度は約350℃に保たれていた。還元段階を終えた充填筒は、精製後の窒素ガスの一部を導入してパージを行った。
【0040】
上記酸素除去工程と再生工程とを8時間毎に交互に繰返して実施したが、精製窒素ガス中には、酸素及びその他の不純物は検出されなかった。
【0041】
実験例2
図1に示す構成の装置において、充填筒内に粉末銅を圧縮して径を4mm、長さを5mmの円柱状に成形した反応剤を500g充填し、原料不活性ガスとして酸素を100ppm含んだ窒素ガスを、約150℃に保持した充填筒に通したところ、精製後の窒素ガス中の酸素濃度は1ppm以下になった。
【0042】
一方、再生ガスとしては、窒素ガス中にエチルアルコールを添加したガスを、アルミナに担持された白金触媒に400℃で接触させてエチルアルコールを分解し、水素,一酸化炭素を主成分とする還元性ガスとしたものを用いた。
【0043】
上記酸素除去工程と再生工程とを8時間毎に交互に繰返して実施したが、精製窒素ガス中には、酸素及びその他の不純物は検出されなかった。
【0044】
また、原料窒素ガス中の酸素濃度を2倍とし、充填筒の切換え時間を1/2にするとともに、エチルアルコールの添加量を2倍として操作を行ったが、同様に、精製窒素ガス中には、酸素及びその他の不純物は検出されなかった。
【0045】
【発明の効果】
以上説明したように、本発明によれば、加熱下で容易に酸化する銅やニッケル等の金属の酸化反応で不活性ガス中の酸素分を除去して高純度の不活性ガスを得られるとともに、該酸化反応で酸化した酸化金属をアルコール,アセトン,エーテル,石油燃料等の入手が容易な液状可燃性物質を用いて還元するようにしたので、酸化金属の還元に水素を用いる場合に比べて経済的であり、さらに、安全性の向上や、設置スペースの縮小も図ることができる。
【0046】
特に、液状可燃性物質を触媒反応により還元性物質に分解してから酸化金属の還元に使用することにより、還元効率を向上させることができる。さらに、酸素除去を行う不活性ガス中の酸素量あるいは充填筒の出口付近の酸素濃度に応じて複数の充填筒の酸素除去工程と再生工程とを切換え制御することにより、酸素除去を確実に行うことができ、さらに、酸素除去工程時間に応じて液状可燃性物質の添加量を増減させることにより、酸化した金属の還元も確実に行うことができる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す酸素除去装置の系統図である。
【図2】本発明の他の実施例を示す酸素除去装置の系統図である。
【符号の説明】
1a,1b…充填筒、2…不活性ガス供給系統、2a,2b…不活性ガス導入系統、3…精製不活性ガス供給系統、3a,3b…不活性ガス導出系統、4…再生ガス供給系統、4a,4b…再生ガス導入系統、5…排気管、5a,5b…再生排ガス導出系統、10…燃料導入系統、11…再生用不活性ガス導入系統、12…混合器、13…触媒層、14…流量計、15…分析計、16…演算手段、17…弁制御手段、18…酸素濃度計
[0001]
[Industrial applications]
The present invention relates to an apparatus for removing oxygen from an inert gas, a method for regenerating the same, and a method for operating the same. More particularly, the present invention relates to a method for removing oxygen contained in an inert gas such as nitrogen and argon by an oxidation reaction of a metal. The present invention relates to an oxygen removing apparatus that regenerates a metal oxidized by a reaction by reducing the metal with a reducing substance.
[0002]
[Prior art]
Conventionally, high-purity nitrogen is obtained by removing an oxygen content contained in an inert gas containing a small amount of oxygen, for example, nitrogen gas. As this oxygen removing method, a method is known in which a predetermined amount of hydrogen is added to an oxygen-containing inert gas, and oxygen and hydrogen are burned and reacted in the presence of a catalyst such as palladium to remove oxygen.
[0003]
In the above-mentioned method, in order to completely remove the oxygen content in the inert gas, it is necessary to add hydrogen in excess of several% to several tens% with respect to the reaction equivalent. For this reason, since the excessively added hydrogen is contained in the inert gas from which oxygen has been removed, the inert gas from which oxygen has been removed cannot be said to be essentially high in purity. Further, since water is generated by the reaction between oxygen and hydrogen, an adsorber or the like for removing water is required.
[0004]
This method can be used for applications in which a gas containing some hydrogen can be used without any problem, for example, a gas for heat treatment of a metal. However, in a gas used for a semiconductor or the like, mixing of hydrogen is disliked. Therefore, an inert gas containing no hydrogen is required.
[0005]
As a remedy, there is a method of removing an oxygen content in an inert gas by a redox reaction using a metal that easily oxidizes under heating, such as copper or nickel. In this method, a metal itself such as copper or nickel, or a porous material such as activated alumina, silica gel, or zeolite carrying a metal is filled in a plurality of (in many cases, two) filling cylinders, and the filling cylinder is filled with the metal. Flowing an inert gas containing oxygen and reacting a trace amount of oxygen in the inert gas with a metal to remove oxygen, and flowing an inert gas containing an appropriate amount of hydrogen into the filling cylinder; The regenerating step of reducing the metal by reacting the metal oxidized in the oxygen removing step with hydrogen is sequentially and repeatedly performed for each of the filled cylinders. According to this oxygen removing method, pure inert gas can be continuously obtained without hydrogen or moisture in the inert gas after purification (after oxygen removal).
[0006]
[Problems to be solved by the invention]
However, in the above-mentioned conventional methods, the use of hydrogen was unavoidable in any case. Generally, hydrogen gas is supplied by a cylinder or, in the case of a large amount, by a trailer. However, in recent years, transportation costs have been increased, and the hydrogen gas itself has become expensive. In addition, hydrogen gas has a wide explosion range among flammable gases, so there is an impression that the gas is dangerous, and there has been a demand to avoid the use of hydrogen gas if possible.
[0007]
For this reason, a combustible substance such as alcohol is used instead of hydrogen, and alcohol or the like is directly injected into an inert gas containing oxygen, and oxygen and the alcohol are reacted by a catalyst such as platinum. There has been proposed a method for removing the above. However, even in this method, in order to completely remove oxygen, it is necessary to add alcohol or the like in a somewhat excessive amount relative to the amount of oxygen in the inert gas. Therefore, excessively added alcohol or the like is decomposed by the catalyst to produce hydrogen, carbon monoxide. Other known organic compounds such as hydrocarbons have been disadvantageous in that they are contained in the inert gas after oxygen removal.
[0008]
Accordingly, the present invention provides a method for removing oxygen components in an inert gas without using hydrogen and preventing oxygen from being removed from the inert gas. It is an object of the present invention to provide a removing device, a method for regenerating the same, and a method for operating the same.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the apparatus for removing oxygen in an inert gas of the present invention has, as a first configuration, a plurality of filling cylinders filled with a metal that removes an oxygen component in an inert gas by an oxidation reaction, A system that introduces an inert gas containing an oxygen component into each filling cylinder, a system that derives an inert gas from which an oxygen component is removed from each filling cylinder, and a regeneration gas that contains a reducing substance is introduced into each filling cylinder. System, a system for deriving the regeneration exhaust gas from each filling cylinder, a switching valve provided in each of the inert gas introduction and derivation system and the regeneration gas introduction and derivation system, and the switching valve is opened and closed in a predetermined order, An oxygen removing step of sequentially removing the oxygen content in the inert gas from the plurality of filled cylinders by an oxidation reaction with the metal, and a regeneration step of reducing the metal oxidized in the oxygen removing step by a reducing substance in the regeneration gas. Switching valve control means Together, means for adding a liquid combustible material in the regeneration gas, and the liquid combustible material, which is the added characterized in that a reducing agent to decompose the catalyst layer by a catalytic reaction.
[0010]
In the second configuration, in addition to the first configuration, a unit for measuring a flow rate of the inert gas in the inert gas introduction system and a unit for measuring the oxygen concentration in the inert gas, Means for calculating the amount of oxygen introduced into the filling cylinder from the flow rate and the oxygen concentration of the active gas; and the switching opening / closing time of the switching valve in the valve control means based on the amount of oxygen and the amount of metal filled in each filling cylinder. And means for calculating
[0011]
In the third configuration, in addition to the first configuration, the oxygen concentration measuring means provided near the outlet of each filling cylinder and the oxygen concentration determined by the oxygen concentration measuring means of the filling cylinder in the oxygen removing step are used. Means for calculating the switching open / close time of the switching valve in the valve control means.
[0012]
The method for regenerating an apparatus for removing oxygen in an inert gas according to the present invention is a method for regenerating an oxygen removing apparatus for removing an oxygen component in an inert gas by an oxidation reaction of a metal, particularly, copper or nickel. As a metal reducing agent, a liquid combustible substance, in particular, any one of alcohol, acetone, ether and petroleum fuel is used. Further, after the liquid combustible substance is decomposed into a reducing substance by a catalytic reaction, It is characterized by supplying.
[0013]
Method of operating an oxygen removal apparatus in the inert gas of the present invention is provided with a filling tube of 2 groups filled with metal to be removed by an oxidation reaction of oxygen content in the inert gas, one of the filling tube is an inert gas the oxidation reaction when in the oxygen content in the inert gas is introduced into the oxygen removing step of removing by oxidation reaction between the metal and the other of the filling tube by introducing a reducing gas containing liquid combustible substances In the regeneration step of reducing the metal oxidized by the above, when one of the filling cylinders is switched to the regeneration step, the other filling cylinder is switched to the oxygen removal step, and the two filling cylinders perform the oxygen removal step and the regeneration step. Upon the continuous removal of oxygen content in the switched alternately inert gas, oxygen in accordance with the oxygen concentration of the filling tube outlet portion in the amount of oxygen or oxygen removal step is introduced into the filling tube in the oxygen removing step to and theft changing the removal process time To, is characterized in that the amount of the liquid combustible material to be introduced into the filling tube in the regeneration step, is increased or decreased in inverse proportion to changes in the oxygen removal process time.
[0014]
[Operation]
According to the above configuration, the metal oxidized in the oxygen removing step is regenerated by reducing with a liquid combustible substance or a reducing substance such as hydrogen or carbon monoxide decomposed by the catalyst layer of the liquid combustible substance. The regeneration step can be performed without using any. Further, since no liquid combustible substance is used in the oxygen removing step, no other component is mixed in the purified inert gas.
[0015]
In order to continuously remove the oxygen content in the inert gas by alternately switching the oxygen removing step and the regeneration step in the two filling cylinders, the oxygen introduced into the filling cylinder in the oxygen removing step is removed. By controlling the oxygen removal step time with the amount of oxygen in the inert gas or the oxygen concentration near the outlet of the filling cylinder, the oxygen removal can be reliably performed, and furthermore, in the regeneration step according to the oxygen removal step time. By increasing or decreasing the amount of the liquid combustible substance to be introduced into the filling cylinder , the oxidized metal can be reliably reduced.
[0016]
【Example】
Hereinafter, the present invention will be described in more detail with reference to the drawings.
The oxygen removing apparatus shown in this embodiment includes two filling cylinders 1a and 1b filled with a metal such as copper or nickel which is easily oxidized under heating, and an inert gas supply for supplying an inert gas containing oxygen. An inert gas introduction system 2a, 2b for selectively introducing an inert gas containing oxygen into the system 2 and each of the filling cylinders 1a, 1b, and an inert gas from which oxygen is removed from each of the filling cylinders 1a, 1b. Inert gas deriving systems 3a and 3b and a purified inert gas supply system 3 for supplying purified inert gas to a user, etc., a regeneration gas supply system 4 for supplying regeneration gas to each of the filling cylinders 1a and 1b, and each filling. Regeneration gas introduction systems 4a and 4b for switching and introducing regeneration gas to the cylinders 1a and 1b, regeneration exhaust gas derivation systems 5a and 5b for switching and introducing regeneration exhaust gas from each of the charging cylinders 1a and 1b, and an exhaust pipe 5; To the system The switching valves 6a, 6b, 7a, 7b, 8a, 8b, 9a, 9b and the liquid combustible substance (hereinafter referred to as fuel) for reducing the metal oxidized in the oxygen removing step are supplied to the regeneration gas supply system 4. A fuel introduction system 10 to be introduced, a fuel introduction valve 10a and a flow controller 10b for controlling a flow rate of the fuel introduced from the fuel introduction system 10, and a fuel introduced from the fuel introduction system 10 is diluted to an appropriate concentration. A regeneration inert gas introduction system 11 and a regeneration inert gas introduction valve 11a for branching and introducing an inert gas for transporting the fuel from the purified inert gas supply system 3; A mixer 12 provided at a junction with an inert gas introduction system 11 for regeneration, a catalyst layer 13 for decomposing the fuel by a catalytic reaction to generate a reducing substance, and an inert gas introduction system A flow meter 14 for measuring the flow rate of the inert gas, an analyzer 15 for measuring the oxygen concentration in the inert gas, and a filling cylinder in the oxygen removal step from the measured flow rate and the oxygen concentration of the inert gas. Calculating means 16 for calculating the amount of oxygen to be introduced, calculating the switching open / close time of each of the switching valves from the amount of oxygen and the amount of metal charged in the filling cylinder; and the switching valve calculated by the calculating means 16 The valve control means 17 switches and opens and closes each switching valve according to the switching time.
[0017]
The oxidation reaction and reduction reaction of the metal in the filling cylinders 1a and 1b and the catalyst reaction in the catalyst layer 13 are performed in accordance with the oxygen content of the inert gas and the type of the metal, and the type of the fuel and the catalyst. The reaction is performed at a temperature suitable for each reaction. For example, the oxidation reaction in the oxygen removal step and the reduction reaction in the regeneration step are usually 100 to 350 ° C., and the catalytic reaction of the catalyst layer 13 is usually about 400 ° C. Done in The temperature is adjusted by heating or cooling means such as a heating or cooling jacket or an electric heater provided on the filling cylinders 1a and 1b or the catalyst layer 13, or a gas introduction system such as the inert gas supply system 2 or the regeneration gas supply system 4. It can be performed as needed by a heater or a cooler provided.
[0018]
In the oxygen removing device, for example, when the filling cylinder 1a is in the oxygen removing step, the filling cylinder 1b is in the regeneration step, and when the filling cylinder 1a is switched to the regeneration step, the filling cylinder 1b is switched to the oxygen removing step. The oxygen removal process and the regeneration process are alternately performed to continuously purify the inert gas (oxygen removal).
[0019]
That is, when the filling cylinder 1a is in the oxygen removing step, the oxygen-containing inert gas supplied from the inert gas supply system 2 is introduced into the filling cylinder 1a via the switching valve 6a and the inert gas introduction system 2a, The metal filled in the filling cylinder 1a reacts with oxygen in the inert gas. The inert gas from which oxygen has been removed by the oxidation reaction of the metal is led to the inert gas deriving system 3a as a purified gas, and is supplied from the purified inert gas supply system 3 to the use destination through the switching valve 7a.
[0020]
The metal to be filled in the filling cylinder can easily react with a trace amount of oxygen in the inert gas, and any metal can be used as long as it can be easily reduced in the regeneration step described below. It is preferable to use nickel. In addition, the cylinder may be filled with the metal itself in the form of metal powder or the like, or may be filled with a metal supported on a porous substance such as activated alumina, silica gel, or zeolite. Good.
[0021]
On the other hand, in the filling cylinder 1b in the regeneration step, a reduction step of reducing the metal oxidized in the previous oxygen removal step with the liquid combustible substance, and a purge step of purging water, carbon dioxide, and the like generated in the reduction step are performed. Done. First, in the first reduction stage, a predetermined amount of fuel introduced from the fuel introduction system 10 by a pump or gas pressure or the like and a predetermined amount of inert gas introduced from the regeneration inert gas introduction system 11 are mixed. The mixture is mixed at 12 to form a regenerating gas, and then introduced into a catalyst layer 13 provided in the regenerating gas supply system 4 to decompose the fuel by a catalytic reaction to obtain a reducing substance such as hydrogen or carbon monoxide.
[0022]
The regeneration gas containing the reducing substance is introduced from the switching valve 8b into the filling cylinder 1b through the regeneration gas introduction system 4b, and the metal in the cylinder reacts with the reducing substance in the regeneration gas to reduce the metal. You. Water, carbon dioxide and unreacted reducing substances produced by this reduction reaction, as well as hydrogen, carbon monoxide, methane and other trace hydrocarbons produced by the decomposition of fuel are inert, which accounts for the majority of the regeneration gas. The gas is led out of the filling cylinder 1b to the regeneration exhaust gas derivation system 5b together with the gas, and is discharged from the exhaust pipe 5 via the switching valve 9b.
[0023]
As the fuel used in the reduction step, a liquid combustible substance, for example, various alcohols, acetone, ethers, and other hydrocarbon-based liquid fuels can be used. It can be selected appropriately. For the catalyst layer 13, a noble metal catalyst such as platinum or palladium can be used alone or in an appropriate mixture.
[0024]
In order to completely reduce the metal oxide in the filling cylinder within the time of the reduction step, the amount of fuel to be introduced may be added in an excess of 5 to 10% in a reaction equivalent to the oxygen content contained in the metal oxide. preferable. In order to efficiently mix the liquid fuel with the regeneration inert gas, the mixer 12 is provided with a heater (evaporator) for vaporizing the fuel, or the fuel introduction system 10 and the regeneration inert gas introduction system 11 are provided. Or a heater can be provided.
[0025]
After completion of the reduction step, the fuel introduction valve 10a is closed to stop the introduction of fuel from the fuel introduction system 10, and only the regeneration inert gas from the regeneration inert gas introduction system 11 is supplied to the regeneration gas supply system 4, the catalyst. A purge step of introducing the water, carbon dioxide, and other impurity components into the filling cylinder 1b through the bed 13, the switching valve 8b, and the regeneration gas introduction system 4b, and performing the purging step is performed.
[0026]
The filling cylinder 1b that has completed the regeneration step and the filling cylinder 1a that has completed the oxygen removal step are interchanged with each other by switching and opening and closing each switching valve in accordance with a command from the valve control means 17, The filling cylinder 1b enters the oxygen removal step, and the filling cylinder 1a enters the regeneration step. In the following, the two filling cylinders 1a and 1b alternately perform the above-described steps to continuously remove oxygen in the inert gas and supply purified high-purity inert gas to a use destination or the like.
[0027]
When switching between the oxygen removal step and the regeneration step of the above-mentioned two filling cylinders 1a and 1b, when there is a variation in the oxygen concentration in the inert gas in the inert gas generating source that supplies the oxygen-containing inert gas, The time of the oxygen removing step can be changed according to the amount of oxygen treatment.
[0028]
That is, the flow rate and the oxygen concentration of the inert gas obtained from the flow meter 14 and the analyzer 15 are calculated by the calculating means 16 to calculate the amount of oxygen introduced into the filling cylinder in the oxygen removing step. The end time of the oxygen removing step is calculated from the amount of oxygen and the amount of the metal filled in the filling cylinder (oxygen processing capacity), and the valve control means 17 is operated in accordance with the oxygen removing step time, whereby the inert gas is removed. Even when the oxygen content is large, the oxygen content can be reliably removed.
[0029]
On the other hand, since the regeneration step time is also changed with the change of the oxygen removal step time, by adjusting the flow rate of the purified inert gas used as the fuel or the regeneration gas in accordance with the length of the regeneration step time, efficiently, Lean reproduction can be performed. For example, in the case where the oxygen removal step time is shortened, it is necessary to reliably regenerate the metal within the shortened oxygen removal step time in the filling cylinder performing the regeneration step. 17, the opening degree of the fuel introduction valve 10a is controlled by the flow controller 10b, and the flow rate of the fuel is increased in inverse proportion to the switching time. Also increase. Thereby, the regeneration step can be completed in a short time .
[0030]
Conversely, if the oxygen removal step time is prolonged , the fuel used in the entire regeneration step is reduced by reducing the flow rate of the fuel and the flow rate of the regeneration inert gas in the filling cylinder performing the regeneration step. And the amount of the inert gas for regeneration can be set to a necessary and sufficient amount for the reduction and regeneration of the oxidized metal.
[0031]
In addition, the change of the oxygen removal step time is performed in the vicinity of the outlets (near the end of the packed bed) of the filling cylinders 1a and 1b as shown by imaginary lines in FIG. 1 instead of the flow meter 14 and the analyzer 15. It can also be performed based on the oxygen concentration obtained by the provided oxygen concentration meter 18 or the oxygen concentration obtained by analyzing the gas extracted from the vicinity of the outlet with the analyzer.
[0032]
In the present embodiment, a part of the purified inert gas is used as the gas for transporting the fuel during the regeneration of the filling cylinder, but a part of the oxygen-containing inert gas supplied from the inert gas supply system 2 is used. It is also possible.
[0033]
Further, as shown in FIG. 2, the catalyst layer for decomposing the fuel into reducing substances may be omitted, and the fuel may be directly introduced into the filling cylinder, and the oxygen concentration in the oxygen-containing inert gas as the raw material may be reduced. When there is almost no fluctuation, the flow meter or the analyzer may be omitted, and each switching valve may be switched at regular time intervals to open and close. The same elements as those of the embodiment device shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
[0034]
In both embodiments, the filling cylinder sets an appropriate reaction time based on the concentration of the oxygen content contained in the inert gas and the flow rate of the inert gas, and performs the oxygen removal reaction within that time. For example, when processing an inert gas having an oxygen content of about 100 ppm, switching every 48 hours is usually selected, and the oxygen concentration is in the order of 1000 ppm. In this case, either the amount of metal to be filled is increased or the switching time is shortened.
[0035]
At this time, if the switching time is shortened simply in inverse proportion to the increase in the oxygen concentration with the same metal filling amount, the amount of fuel introduced per unit time in the regeneration step increases, so the reaction in the reduction step In addition to the problem that the temperature is too high, the problem that the time for the purge step cannot be sufficiently taken may occur. Therefore, in consideration of the capacity of the filling cylinder, a switching time of 8 to 48 hours is generally appropriate.
[0036]
Further, as means for preventing the reaction temperature from excessively rising, a plurality of filling cylinders are connected in series, and a small amount of fuel is divided into each filling cylinder and introduced, or a cooler is provided between each filling cylinder. It is effective to remove the heat of reaction by keeping the reaction temperature constant.
[0037]
Experimental example 1
In the apparatus having the configuration shown in FIG. 2, 500 g of a reactant formed by compressing powdered copper into a cylindrical shape with a diameter of 4 mm and a length of 5 mm was filled in a filling cylinder, and contained 100 ppm of oxygen as a raw material inert gas. When the nitrogen gas was passed through a packed cylinder maintained at about 150 ° C., the oxygen concentration in the purified nitrogen gas became 1 ppm or less.
[0038]
On the other hand, in order to reduce the copper (copper oxide) in the filling cylinder oxidized by the above treatment, a regeneration gas obtained by adding ethyl alcohol as a liquid combustible substance to the raw material inert gas is introduced into the regeneration-side filling cylinder. To perform a regeneration step. The amount of ethyl alcohol added should be 10% excess of the stoichiometric amount required to remove oxygen contained in copper oxide, and the amount of regeneration gas introduced into the filling cylinder during regeneration should be the same as that of the raw material inert gas. It was set to 10% of the total amount.
[0039]
The regenerated gas was preheated to about 350 ° C. by a heater provided in the mixer, introduced into a filling cylinder, and allowed to undergo a reduction reaction. At this time, the temperature in the filling cylinder was maintained at about 350 ° C. After the reduction step, the packed cylinder was purged by introducing a part of the purified nitrogen gas.
[0040]
The oxygen removal step and the regeneration step were alternately repeated every eight hours, but no oxygen or other impurities were detected in the purified nitrogen gas.
[0041]
Experimental example 2
In the apparatus having the configuration shown in FIG. 1, 500 g of a reactant formed by compressing powdered copper into a cylindrical shape having a diameter of 4 mm and a length of 5 mm was filled in a filling cylinder, and contained 100 ppm of oxygen as a raw material inert gas. When the nitrogen gas was passed through a packed cylinder maintained at about 150 ° C., the oxygen concentration in the purified nitrogen gas became 1 ppm or less.
[0042]
On the other hand, as a regenerating gas, a gas obtained by adding ethyl alcohol to nitrogen gas is brought into contact with a platinum catalyst supported on alumina at 400 ° C. to decompose ethyl alcohol, and to reduce hydrogen and carbon monoxide as main components. What was used as the neutral gas was used.
[0043]
The oxygen removal step and the regeneration step were alternately repeated every eight hours, but no oxygen or other impurities were detected in the purified nitrogen gas.
[0044]
In addition, the operation was performed by doubling the oxygen concentration in the raw material nitrogen gas, halving the switching time of the filling cylinder, and doubling the amount of ethyl alcohol to be added. No oxygen and other impurities were detected.
[0045]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a high-purity inert gas by removing oxygen content in the inert gas by an oxidation reaction of a metal such as copper or nickel that is easily oxidized under heating. Since the metal oxide oxidized by the oxidation reaction is reduced by using a liquid combustible material, such as alcohol, acetone, ether, and petroleum fuel, which is easily available, compared to the case where hydrogen is used to reduce the metal oxide, It is economical and can also improve safety and reduce installation space.
[0046]
In particular, the reduction efficiency can be improved by decomposing the liquid combustible substance into a reducing substance by a catalytic reaction and then using it for reducing the metal oxide. Further, by performing switching control between the oxygen removal step and the regeneration step for a plurality of filling cylinders according to the amount of oxygen in the inert gas for performing oxygen removal or the oxygen concentration near the outlet of the filling cylinder, oxygen removal is reliably performed. Further, by increasing or decreasing the amount of the liquid combustible in accordance with the oxygen removal step time, the oxidized metal can be reliably reduced.
[Brief description of the drawings]
FIG. 1 is a system diagram of an oxygen removing apparatus showing one embodiment of the present invention.
FIG. 2 is a system diagram of an oxygen removing apparatus showing another embodiment of the present invention.
[Explanation of symbols]
1a, 1b: filling cylinder, 2 ... inert gas supply system, 2a, 2b ... inert gas introduction system, 3 ... purified inert gas supply system, 3a, 3b ... inert gas derivation system, 4 ... regeneration gas supply system , 4a, 4b ... regeneration gas introduction system, 5 ... exhaust pipe, 5a, 5b ... regeneration exhaust gas derivation system, 10 ... fuel introduction system, 11 ... regeneration inert gas introduction system, 12 ... mixer, 13 ... catalyst layer, 14: flow meter, 15: analyzer, 16: calculating means, 17: valve control means, 18: oxygen concentration meter

Claims (7)

不活性ガス中の酸素分を酸化反応により除去する金属を充填した複数の充填筒と、各充填筒に酸素分を含む不活性ガスを導入する系統と、各充填筒から酸素分が除去された不活性ガスを導出する系統と、各充填筒に還元性物質を含む再生ガスを導入する系統と、各充填筒から再生排ガスを導出する系統と、前記不活性ガスの導入導出系統及び再生ガスの導入導出系統にそれぞれ設けた切換弁と、該切換弁を所定の順序で開閉して前記複数の充填筒を順次不活性ガス中の酸素分を前記金属との酸化反応により除去する酸素除去工程と再生ガス中の還元性物質により前記酸素除去工程で酸化した金属を還元する再生工程とに切換える弁制御手段とを備えるとともに、前記再生ガスに液状可燃性物質を添加する手段と、該添加された液状可燃性物質を触媒反応により還元性物質に分解する触媒層とを備えたことを特徴とする不活性ガス中の酸素除去装置。A plurality of filling cylinders filled with a metal for removing an oxygen content in an inert gas by an oxidation reaction, a system for introducing an inert gas containing an oxygen content into each filling cylinder, and an oxygen content being removed from each filling cylinder A system for deriving an inert gas, a system for introducing a regeneration gas containing a reducing substance into each filling cylinder, a system for deriving a regeneration exhaust gas from each filling cylinder, and a system for introducing and deriving the inert gas and a regeneration gas A switching valve provided in each of the introduction and derivation systems, and an oxygen removing step of opening and closing the switching valve in a predetermined order to sequentially remove the oxygen components in the inert gas by an oxidation reaction with the metal in the plurality of filling cylinders. Valve control means for switching to a regeneration step for reducing the metal oxidized in the oxygen removal step by a reducing substance in the regeneration gas, and a means for adding a liquid combustible substance to the regeneration gas; Liquid combustible substances Oxygen reducing apparatus in the inert gas, characterized in that a catalyst layer for decomposing the reducing substance by a catalytic reaction. 請求項1記載の不活性ガス中の酸素除去装置において、前記不活性ガス導入系統の不活性ガスの流量を測定する手段及び該不活性ガス中の酸素濃度を測定する手段と、測定された不活性ガスの流量及び酸素濃度から前記充填筒に導入される酸素量を算出する手段と、該酸素量と各充填筒内に充填した金属の量とから前記弁制御手段における切換弁の切換え開閉時間を算出する手段とを備えたことを特徴とする不活性ガス中の酸素除去装置。2. An apparatus for removing oxygen from an inert gas according to claim 1, further comprising means for measuring a flow rate of the inert gas in the inert gas introduction system, means for measuring the oxygen concentration in the inert gas, and Means for calculating the amount of oxygen introduced into the filling cylinder from the flow rate and the oxygen concentration of the active gas; and the switching opening / closing time of the switching valve in the valve control means based on the amount of oxygen and the amount of metal filled in each filling cylinder. And a means for calculating oxygen. 請求項1記載の不活性ガス中の酸素除去装置において、各充填筒の出口付近に設けられた酸素濃度測定手段と、酸素除去工程にある充填筒の酸素濃度測定手段で求めた酸素濃度に応じて前記弁制御手段における切換弁の切換え開閉時間を算出する手段とを備えたことを特徴とする不活性ガス中の酸素除去装置。2. The apparatus for removing oxygen in an inert gas according to claim 1, wherein the oxygen concentration measurement means is provided near the outlet of each filling cylinder, and the oxygen concentration is determined by the oxygen concentration measuring means of the filling cylinder in the oxygen removal step. Means for calculating the switching open / close time of the switching valve in the valve control means. 不活性ガス中の酸素分を金属の酸化反応により除去する酸素除去装置の再生方法において、前記酸化反応により酸化した金属の還元剤として、液状可燃性物質を用いることを特徴とする不活性ガス中の酸素除去装置の再生方法。A method for regenerating an oxygen removing apparatus for removing an oxygen component in an inert gas by a metal oxidation reaction, wherein a liquid combustible substance is used as a reducing agent for the metal oxidized by the oxidation reaction. Method for regenerating an oxygen removing device. 前記液状可燃性物質は、アルコール,アセトン,エーテル,石油燃料の内のいずれか一種であり、前記金属は、銅又はニッケルであることを特徴とする請求項4記載の酸素除去装置の再生方法。The method according to claim 4, wherein the liquid combustible material is any one of alcohol, acetone, ether, and petroleum fuel, and the metal is copper or nickel. 前記液状可燃性物質は、触媒反応で還元性物質に分解した後に供給することを特徴とする請求項4記載の酸素除去装置の再生方法。The method according to claim 4, wherein the liquid combustible substance is supplied after being decomposed into a reducing substance by a catalytic reaction. 不活性ガス中の酸素分を酸化反応により除去する金属を充填した2基の充填筒を備え、一方の充填筒不活性ガスを導入して該不活性ガス中の酸素分を前記金属との酸化反応により除去する酸素除去工程にあるときに、他方の充填筒液状可燃性物質を含む還元性ガスを導入して前記酸化反応により酸化した金属を還元する再生工程にあり、一方の充填筒が再生工程に切換えられると、他方の充填筒は酸素除去工程に切換えられて、2基の充填筒で酸素除去工程と再生工程とを交互に切換えて不活性ガス中の酸素分を連続的に除去するにあたり、酸素除去工程にある充填筒に導入される酸素量あるいは酸素除去工程にある充填筒出口部の酸素濃度に応じて酸素除去工程時間を変更するとともに、再生工程にある充填筒に導入する液状可燃性物質の量を、前記酸素除去工程時間の変更に対して反比例するように増減させることを特徴とする不活性ガス中の酸素除去装置の運転方法。Comprising a filling tube of 2 groups filled with metal to be removed by an oxidation reaction of oxygen content in the inert gas, and the metal oxygen content in the inert gas one filling tube is by introducing an inert gas When in the oxygen removing step of removing by the oxidation reaction , the other filling cylinder is in the regeneration step of introducing a reducing gas containing a liquid combustible substance to reduce the metal oxidized by the oxidation reaction , Is switched to the regeneration step, the other filling cylinder is switched to the oxygen removal step, and the oxygen removal step and the regeneration step are alternately switched between the two filling cylinders to continuously reduce the oxygen content in the inert gas. Upon removal, as well as changing the oxygen removal process time in accordance with the oxygen concentration of the filling tube outlet portion in the amount of oxygen or oxygen removal step is introduced into the filling tube in the oxygen removal step, introducing the filling tube in the regeneration step Liquid combustibles The amount of process operation of the oxygen reducing apparatus in the inert gas, characterized in that increased or decreased in inverse proportion to changes in the oxygen removal step time.
JP02518194A 1994-02-23 1994-02-23 Apparatus for removing oxygen from inert gas and method for regenerating and operating the same Expired - Fee Related JP3581988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02518194A JP3581988B2 (en) 1994-02-23 1994-02-23 Apparatus for removing oxygen from inert gas and method for regenerating and operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02518194A JP3581988B2 (en) 1994-02-23 1994-02-23 Apparatus for removing oxygen from inert gas and method for regenerating and operating the same

Publications (2)

Publication Number Publication Date
JPH07237908A JPH07237908A (en) 1995-09-12
JP3581988B2 true JP3581988B2 (en) 2004-10-27

Family

ID=12158833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02518194A Expired - Fee Related JP3581988B2 (en) 1994-02-23 1994-02-23 Apparatus for removing oxygen from inert gas and method for regenerating and operating the same

Country Status (1)

Country Link
JP (1) JP3581988B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019209295A (en) * 2018-06-07 2019-12-12 ナブテスコ株式会社 Oxygen adsorption system
CN114620694A (en) * 2020-12-10 2022-06-14 中国科学院大连化学物理研究所 Device and method for removing reducing gas

Also Published As

Publication number Publication date
JPH07237908A (en) 1995-09-12

Similar Documents

Publication Publication Date Title
US6010675A (en) Method of and apparatus for removing carbon monoxide from gaseous media
AU771160B2 (en) Hydrocarbon partial oxidation process
EP0197717A1 (en) Methods and apparatus for purifying inert gas streams
US20050204629A1 (en) Combined water gas shift reactor/carbon dioxide adsorber for use in a fuel cell system
JP3593358B2 (en) Reformed gas oxidation catalyst and method for oxidizing carbon monoxide in reformed gas using the catalyst
WO2000048261A1 (en) Carbon monoxide converting apparatus for fuel cell and generating system of fuel cell
KR20090041342A (en) Purification of noble gases using online regeneration of getter beds
US6309768B1 (en) Process for regenerating a carbon monoxide oxidation reactor
US6589493B2 (en) Gas purification-treating agents and gas purifying apparatuses
EP0873967B1 (en) Method of and apparatus for removing carbon monoxide from gaseous media
JP2003267725A (en) Method of manufacturing ammonia, its apparatus and flue gas denitrification using the manufactured ammonia
KR20020096932A (en) A process for preparing a low-sulfur reformate gas for use in a fuel cell system
JP3581988B2 (en) Apparatus for removing oxygen from inert gas and method for regenerating and operating the same
JP3815445B2 (en) Hydrogen gas purification apparatus and purification method
JP2006241319A (en) Method and installation for removing co2 in mixture gas such as biogas
CA2261771C (en) Method for providing oxygen in gas process
CA2290970A1 (en) Carbon monoxide removal method based on a regenerable co scavenger
JPH11130406A (en) Device for selectively removing carbon monoxide and formation of catalytic body
JP3503032B2 (en) Method and apparatus for removing oxygen from inert gas
KR101464064B1 (en) Apparatus and process for carbon monoxide shift conversion, and hydrogen production equipment
JPH08188783A (en) Method for removing carbon monoxide in reformed gas
JP3646885B2 (en) Removal of hydrogen sulfide from gas streams
JPH0592123A (en) Removal of trace oxygen
JP3919878B2 (en) High purity inert gas production apparatus and start-up method thereof
RU2211081C1 (en) Method of treating hydrogen-containing gas mixture to remove carbon monoxide

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040715

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070806

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees