JP3912575B2 - 磁気記録媒体用ガラス基板の製造方法、及び磁気記録媒体の製造方法 - Google Patents

磁気記録媒体用ガラス基板の製造方法、及び磁気記録媒体の製造方法 Download PDF

Info

Publication number
JP3912575B2
JP3912575B2 JP2000387183A JP2000387183A JP3912575B2 JP 3912575 B2 JP3912575 B2 JP 3912575B2 JP 2000387183 A JP2000387183 A JP 2000387183A JP 2000387183 A JP2000387183 A JP 2000387183A JP 3912575 B2 JP3912575 B2 JP 3912575B2
Authority
JP
Japan
Prior art keywords
recording medium
magnetic recording
glass substrate
rmax
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000387183A
Other languages
English (en)
Other versions
JP2001243617A (ja
Inventor
知崇 横山
弘 冨安
正智 渋井
伸行 江藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2000387183A priority Critical patent/JP3912575B2/ja
Publication of JP2001243617A publication Critical patent/JP2001243617A/ja
Application granted granted Critical
Publication of JP3912575B2 publication Critical patent/JP3912575B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Surface Treatment Of Glass (AREA)
  • Magnetic Record Carriers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、表面粗さに基づく摩擦係数の管理手法、並びに情報記録媒体用基板、情報記録媒体及びその製造方法等に関する。
【0002】
【従来の技術】
情報記録媒体としてHDD(ハードディスクドライブ)に搭載される磁気記録媒体がある。近年におけるめざましいHDDの記録容量の飛躍的な増大は、一つに記録再生時のヘッド−媒体間の隙間(ヘッドの浮上高さ)の低下(低グライド化)により実現されている。ヘッド−媒体間の隙間の低下は、媒体表面の平滑化努力により実現されているが、媒体表面の平滑化は一方で、ヘッドと媒体との間で吸着問題を引き起こすことになる。従って、媒体表面の設計は常に低グライド化と、ヘッドの吸着回避とのトレードオフに悩まされている。
低グライド化のために求められる媒体表面の平滑化と、平滑化に伴う吸着傾向(=摩擦係数の増大傾向)の回避という合矛盾する問題に解を与えるためには、精密な表面設計が必要である。
【0003】
従来、媒体表面の形状管理には、プロセスフィードバックが容易であるという観点から、AFM(原子間力顕微鏡)によるRmax、Raといった表面粗さパラメータや、規格化粗さRa/Rmaxなどが用いられてきた。
【0004】
【発明が解決しようとする課題】
しかし、AFMによって測定したRmax、RaやRa/Rmaxと摩擦係数との関係を調べたところ、より精密な表面設計が求められる低グライド領域(10nm程度以下)では、このような表面管理手法ではあまりにも感度が悪すぎるということが判明した。図1及び図2は、AFMによって測定した基板表面粗さ(Rmax(図1)、Ra(図2))と摩擦係数との関係を示すものであるが、同じRmaxの場合(例えば、Rmaxが約7.5nmであっても摩擦係数が約0.7〜2.2と幅があるように、RmaxやRaなどのパラメータでは摩擦係数を管理することはできない。
【0005】
一方、ベアリングエリア(ベアリングレシオ)と摩擦係数との相関をとり、摩擦係数を管理する手法が提案されている。具体的には、媒体表面にテクスチャを形成してなる磁気記録媒体において、表面最高部から20nm深さにおけるベアリングエリアが20%以下となるようにテクスチャ(凹凸)を形成し、摩擦係数を小さく規定する技術が提案されている(特開平5−189756号公報)。なお、ベアリングエリアとは、測定面積内における凹凸を任意の等高面(水平面)で切断したときに現れる面積が、測定面積に占める割合をいい、AFM(原子間力顕微鏡)等を用いて測定できる。
しかしながら、かかる技術は、表面にNiP膜を形成したアルミニウム合金基板の表面を遊離砥粒で研磨してテクスチャ加工を行った磁気記録媒体を主眼としており、また、表面最高部から20nm深さにおけるベアリングエリアをパラメータとしている(すなわち表面粗さの粗い(20nm以上)の磁気記録媒体を対象としている)ので、Rmax15nm以下の表面粗さを有する磁気記録媒体に関しては、摩擦係数の管理手法としては全く役に立たないという問題がある。
なお、かかる技術は、実験から導き出されたものであり、後述する真実接触面積等の理論に基づき導き出されたものでない。
さらに、例えば、テクスチャの形成方法が異なると、突起総数や、突起の形態(突起の曲率半径や水平断面形状、突起の高さ)等が異なり、同じRmax、Raであっても媒体表面による摩擦係数は異なるので、この場合、上記技術は媒体表面の摩擦係数の管理手法としては全く役に立たないといえる。
【0006】
本発明は上述の背景のもとでなされたものであり、10nm程度以下の低グライド領域においても精密な表面設計が得られるという新規の表面管理手法を提供するとともに、この表面管理手法によって設計された情報記録媒体用基板(磁気記録媒体用基板)、情報記録媒体(磁気記録媒体)及びその製造方法等を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者は磁気ヘッドに働く摩擦力について鋭意研究した結果、以下のことを見出した。
磁気ヘッドに働く摩擦力は、接触面には通常、潤滑剤や空気中の水分が存在するので、下記(1)式で表すことができる。
F=μN十F1+F2+F3+… (1)
上記(1)式において、Fは摩擦力、μは静止摩擦係数、Nは垂直抗力、F1は潤滑剤によるメニスカス力、F2は水分のメニスカス力、F3はその他の物質(有機系コンタミなど)による凝着力などである。ヘッド(又は磁気ディスクとの接触面積の低減を目的としたパッド(バッド)付きスライダーのパッド(バッド))表面と、ある表面粗さをもった媒体表面との接触面においては、媒体表面に凹凸があるため、見かけの接触面積に比べ、真実の接触面積はごく小さい。ヘッドの荷重を加えると、凸部の頂部に集中する圧力により、凸部の頂部が押しつぶされ、真実接触面積は増大し、摩擦力が増大する。しかし見かけの接触面積には変化はない。真実接触面においては、互いに接する面どうしの凝着が起こるので、真実接触面積が増大するにつれ、凝着面を引き離す(剪断する)には大きな力(摩擦力等を断ち切る力)が必要となる。以上のことから、μN∝真実接触面積であるといえる。
従って、表面設計の観点からは、磁気ヘッド−媒体間の真実接触面積を代表する形状パラメータを抽出すれば、理論上、摩擦に対して感度のよい指標となることが推測される。
【0008】
ガラス基板表面を精密研磨して得られる表面粗さがRmax15nm以下の場合、磁気ヘッド−媒体間の真実接触面積は、ヘッドが接触しうる突起の総数に比例する(図9)。5μm角AFM像内の最大突起高さから4nmまでの所定深さにある突起の総数と、摩擦係数の関係を調べたところ、摩擦係数は所定深さにおける突起総数(突起密度)に依存(比例)することがわかった。ただし、AFMデータから突起密度を計算するにはある程度の時間を必要とするため、プロセスフィードバックが容易であるとは言い難く、工程モニタ向きのパラメータではない。そこで、所定深さにおける突起密度を何らかのAFM測定値で直接代表させることができないかどうか検討した。具体的には例えば5μm角(5μm×5μm)AFM像内の最大突起高さ(Rmax)から4nmまでの深さ位置のベアリングエリアと、同じ深さ位置における突起総数との関係を調べたところ、所定深さ位置のベアリングエリアは所定深さにおける突起密度と比例関係にあることがわかった。さらに、5μm角AFM像内の最大突起高さ(Rmax)から4nmまでの深さ位置のベアリングエリアと、摩擦係数との関係を調べたところ、図10の関係が得られ、所定深さ位置のベアリングエリアと摩擦係数とは相関関係にあることがわかった。この所定深さ位置のベアリングエリアは、AFM測定結果として容易に得られるものであり、プロセスフィードバックが容易で、工程モニタ向きのパラメータである。
以上のように、真実接触面積を代表する形状パラメータとして、例えば、最大突起高さ(Rmax)から4nm深さ付近におけるベアリングエリアをパラメータとして用いることによって、Rmax15nm以下の表面粗さを有する磁気記録媒体等に関して、摩擦係数を管理しうることを見出した。
【0009】
しかし、ベアリングエリアをAFMによって測定した場合、AFM自体に測定バラツキがある。また、グライド高さに影響を与えることがなく、かつ、摩擦係数に影響を与えることがない異常突起(イレギュラー点)、例えばゴミなど、の存在によって、AFMの測定バラツキが生じることがある。これらのバラツキのため、AFM測定によるRmaxは真のピーク高さを表していない。これらのバラツキは通常1〜2nm程度であり、Rmax15nm以下の表面粗さ(テクスチャ)を有する磁気記録媒体に対する影響は大きい。特に、Rmax10nm以下の表面粗さ(テクスチャ)を有する磁気記録媒体に対しては、1〜2nmのバラツキの影響は極めて大きい。例えば、最大突起高さが1〜2nm狂うと、スライスレベルも1〜2nm狂ってしまい、このスライスレベルに対応するベアリングエリアでは摩擦係数を管理できない場合がある。管理が可能な場合であっても、このベアリングエリアで管理された磁気記録媒体の摩擦係数は、スライスレベルが狂っている(最適でない)ため、バラツキが大きく、摩擦係数の管理手法として不十分であることがわかった。
【0010】
そして、さらに研究を進めた結果、AFMによってベアリングカーブの繰り返し測定を行った場合に、最大突起高さ(BA=0%)付近において、ベアリング高さの測定値が急速にバラツキ始めるベアリングエリアの値を求め、BA=0%からベアリング高さの測定値が急速にバラツキ始めるベアリングエリアの値までのデータを除外した各種AFM測定値を利用することによって、AFMの測定バラツキの問題を解決できることを見出した。
例えば、Rmax15nm程度以下の表面粗さを有する表面についてAFM(原子間力顕微鏡)によってベアリングカーブの繰り返し測定を行った場合に、最大突起高さ(BA=0%)付近において、ベアリング高さの測定値が急速にバラツキ始めるベアリングエリア値を求め(図7では0.5%)、これに対応するベアリング高さ(真のピーク高さ)をベアリングカーブから求める(図8)。この真のピークから所定深さ(図8では3nm)におけるベアリングエリア換言するとスライスレベルをオフセットさせた(差し引いた)ときのベアリングエリア(オフセットベアリングエリア:OBA%)と、媒体表面の摩擦係数との相関関係を、前記所定深さを変化させて調べ、この相関関係から、摩擦係数の変化量に対し、これに対応するベアリングエリアの変化量が大きくなる所定深さ(所定スライスレベル)を求める。この所定スライスレベルにおけるベアリングエリア値(オフセットベアリングエリア値)と摩擦係数との相関関係(例えば図5)に基づいて、摩擦係数の管理を行うことによって、表面粗さに基づく摩擦係数を精度良く管理できることを見出した。
このように、摩擦に対して感度のよい指標としてOBA%を採用し、このOBA%を工程モニタ指標として採用することで、表面粗さに基づく摩擦係数を精度良く管理できる。
また、媒体の表面設計においては、ある媒体の表面状態(突起総数や曲率等)を形成するための形成条件とOBA%との相関関係を予め求めておくことで、OBA%と摩擦係数との相関関係を介して、表面粗さに基づく摩擦係数を精度良く設計でき、前記形成条件を選択することで所望の摩擦係数を有する磁気記録媒体が得られる。
【0011】
本発明は以下の構成を有する。
【0012】
(構成1) Rmax15nm以下の表面粗さを有する情報記録媒体用基板であって、
前記基板の表面が、ベアリングエリア値0.2%〜1.0%に対応するベアリング高さ(真のピーク高さ)から0.5〜5nm深さ(所定スライスレベル)におけるベアリングエリア値(オフセットベアリングエリア値)が90%以下であることを特徴とする情報記録媒体用基板。
【0013】
(構成2) Rmax15nm以下の表面粗さを有する情報記録媒体用基板であって、
前記基板の表面が、ベアリングエリア値0.2%〜1.0%に対応するベアリング高さ(真のピーク高さ)からRmaxの20〜45%に相当する深さをスライスレベルとしたとき、ベアリングエリア値(オフセットベアリングエリア値)が90%以下であることを特徴とする情報記録媒体用基板。
【0014】
(構成3) 前記情報記録媒体用基板が、表面を精密研磨及び/又はエッチング処理されたガラス基板であることを特徴とする構成1又は2に記載の情報記録媒体用基板。
【0015】
(構成4) 媒体表面にRmax15nm以下の表面粗さを有する情報記録媒体であって、
前記情報記録媒体の媒体表面が、ベアリングエリア値0.2%〜1.0%に対応するベアリング高さ(真のピーク高さ)から0.5〜5nm深さ(所定スライスレベル)におけるベアリングエリア値(オフセットベアリングエリア値)が90%以下であることを特徴とする情報記録媒体。
【0016】
(構成5) 媒体表面にRmax15nm以下の表面粗さを有する情報記録媒体であって、
前記情報記録媒体の媒体表面が、ベアリングエリア値0.2%〜1.0%に対応するベアリング高さ(真のピーク高さ)からRmaxの20〜45%に相当する深さをスライスレベルとしたとき、ベアリングエリア値(オフセットベアリングエリア値)が90%以下であることを特徴とする情報記録媒体。
【0017】
(構成6) 媒体表面の表面粗さに基づく摩擦係数が3以下であることを特徴とする構成4又は5に記載の情報記録媒体。
【0018】
(構成7) 各種潤滑剤をそれぞれ形成した情報記録媒体における摩擦係数とオフセットベアリングエリアとの相関を調べ、潤滑剤による摩擦力が小さくなる潤滑剤を採用したことを特徴とする構成4乃至6に記載の情報記録媒体。
【0019】
(構成8) 前記潤滑剤が、PFPE(perfluoro alkyl polyether)に分類され、主鎖にエーテル結合を含み、−(OCF22)m(OCF2)n−直鎖構造を有し、かつ、末端基として水酸基を有する潤滑剤であることを特徴とする構成7に記載の情報記録媒体。
【0020】
(構成9) 加熱した化学強化処理液にガラス基板を浸漬し、ガラス基板表層のイオンを化学強化処理液中のイオンでイオン交換してガラス基板を化学強化する工程と、
化学強化処理液から引き上げたガラス基板の表面をケイフッ酸を含む処理液で処理する工程と、を有することを特徴とする情報記録媒体用ガラス基板の製造方法。
【0021】
(構成10) ガラス基板の表面を研磨する工程と、加熱した化学強化処理液にガラス基板を浸漬し、ガラス基板表層のイオンを化学強化処理液中のイオンでイオン交換してガラス基板を化学強化する工程と、を有する情報記録媒体用ガラス基板の製造方法において、
化学強化する工程前にガラス基板表面を化学的処理により所望の表面粗さに制御する工程を有し、
前記化学強化処理液から引き上げたガラス基板の表面をケイフッ酸を含む処理液で処理する工程と、を有することを特徴とする情報記録媒体用ガラス基板の製造方法。
【0022】
(構成11) 前記化学的処理は、硫酸、燐酸、硝酸、フッ酸、ケイフッ酸の中から選択される少なくとも1種の酸、又はアルカリを含む処理液で処理することを特徴とする構成10に記載の情報記録媒体用ガラス基板の製造方法。
【0023】
(構成12) 前記ケイフッ酸の濃度が、0.01〜10重量%であることを特徴とする構成9乃至11の何れか一に記載の情報記録媒体用ガラス基板の製造方法。
【0024】
(構成13) 構成9乃至12によって得られた情報記録媒体用ガラス基板の表面上に、少なくとも記録層を形成することを特徴とする情報記録媒体の製造方法。
【0025】
(構成14) Rmax15nm以下の表面粗さを有する情報記録媒体表面における表面粗さに基づく摩擦係数の管理手法であって、
AFM(原子間力顕微鏡)によってベアリングカーブの繰り返し測定を行った場合に、最大突起高さ(BA=0%)付近において、ベアリング高さの測定値が急速にバラツキ始めるベアリングエリア値を求め、このベアリングエリア値に対応するベアリング高さ(真のピーク高さ)をベアリングカーブから求め、
前記真のピーク高さから所定深さにおけるベアリングエリアと、表面粗さに基づく摩擦係数との相関関係を、前記所定深さを変化させて調べ、
前記相関関係から、摩擦係数の変化量に対し、これに対応するベアリングエリアの変化量が大きくなる所定深さ(所定スライスレベル)を求め、
前記所定スライスレベルにおけるベアリングエリア値(オフセットベアリングエリア値)を用いて、表面粗さに基づく摩擦係数の管理を行うことを特徴とする表面粗さに基づく摩擦係数の管理手法。
【0026】
(構成15) 媒体表面にRmax15nm以下の表面粗さを有する情報記録媒体における表面粗さに基づく摩擦係数の管理手法であって、
AFM測定による最大高さ(Rmax)から0.5〜7nm深さ(スライスレベル)におけるベアリングエリアを用いて、表面粗さに基づく摩擦係数の管理を行うことを特徴とする表面粗さに基づく摩擦係数の管理手法。
【0027】
(構成16) 媒体表面にRmax15nm以下の表面粗さを有する情報記録媒体における表面粗さに基づく摩擦係数の管理手法であって、
AFM測定による最大高さ(Rmax)から、Rmaxの20〜40%に相当する深さをスライスレベルとしたときのベアリングエリアを用いて、表面粗さに基づく摩擦係数の管理を行うことを特徴とする表面粗さに基づく摩擦係数の管理手法。
【0028】
(構成17) 構成14乃至16の表面粗さに基づく摩擦係数の管理手法に基づいて、所望の媒体表面を有する情報記録媒体を製造する情報記録媒体の製造方法。
【0029】
(構成18) 情報記録媒体用基板表面を情報記録媒体表面に反映させて、所望の媒体表面とするための情報記録媒体用基板の製造方法において、構成14乃至16の表面粗さに基づく摩擦係数の管理手法に基づいて、所望の基板表面を有する情報記録媒体用基板を製造する情報記録媒体用基板の製造方法。
【0030】
(構成19) Rmax15nm以下の表面粗さを有する情報記録媒体用基板表面の表面状態の管理手法であって、
AFM(原子間力顕微鏡)によってベアリングカーブの繰り返し測定を行った場合に、最大突起高さ(BA=0%)付近において、ベアリング高さの測定値が急速にバラツキ始めるベアリングエリア値を求め、
BA=0%からベアリング高さの測定値が急速にバラツキ始めるベアリングエリア値までのデータを除外した各種AFM測定値を利用することを特徴とする表面状態の管理手法。
【0031】
(構成20) 構成19の表面状態の管理手法に基づいて、所望の基板表面を有する情報記録媒体用基板を製造する情報記録媒体用基板の製造方法。
【0032】
(構成21) Rmax15nm以下の表面粗さを有する情報記録媒体表面の表面状態の管理手法であって、
AFM(原子間力顕微鏡)によってベアリングカーブの繰り返し測定を行った場合に、最大突起高さ(BA=0%)付近において、ベアリング高さの測定値が急速にバラツキ始めるベアリングエリア値を求め、
BA=0%からベアリング高さの測定値が急速にバラツキ始めるベアリングエリア値までのデータを除外した各種AFM測定値を利用することを特徴とする表面状態の管理手法。
【0033】
(構成22) 構成21の表面状態の管理手法に基づいて、所望の媒体表面を有する情報記録媒体を製造する情報記録媒体の製造方法。
【0034】
【作用】
構成1によれば、情報記録媒体用基板(磁気記録媒体用基板)の表面について、後述する構成14の方法によって、実験から、ベアリング高さの測定値が急速にバラツキ始めるベアリングエリア値0.2%〜1.0%を求め、また、真のピーク高さから0.5〜5nm深さをスライスレベルとして求め、このスライスレベルにおけるベアリングエリア値(オフセットベアリングエリア値:OBA%)を90%以下に規定することによって、情報記録媒体(磁気記録媒体)にしたときに表面粗さに基づく摩擦係数が小さな(通常は3以下の)情報記録媒体(磁気記録媒体)が得られる。
【0035】
また、構成2のように前記構成1におけるスライスレベルの深さを、Rmaxの20〜45%に相当する深さをスライスレベルとして、このスライスレベルにおけるベアリングエリア値(オフセットベアリングエリア値:OBA%)を90%以下に規定することによって、情報記録媒体(磁気記録媒体)にしたときに表面粗さに基づく摩擦係数が小さな(通常は3以下の)情報記録媒体(磁気記録媒体)が得られる。
特に、構成1、2は、情報記録媒体用基板(磁気記録媒体用基板)の表面粗さがRmax10nm以下の基板の場合に適している。
なお、Rmax=10〜11nm程度の情報記録媒体用基板(磁気記録媒体用基板)にあっては、例えば、スライスレベル=4nm(Rmaxの36〜40%)、OBA%=70%以下が好ましい。Rmax=7〜8nm程度の情報記録媒体用基板(磁気記録媒体用基板)にあっては、例えば、スライスレベル=3nm(Rmaxの38〜43%)、OBA%=90%以下(CSS方式の磁気記録媒体用基板の場合、好ましくは40%±20%(20〜60%)、ロードアンロード方式の磁気記録媒体用基板の場合、好ましくは70%±20%(50〜90%))が好ましい。Rmax=5〜6nm程度の情報記録媒体用基板(磁気記録媒体用基板)にあっては、例えば、スライスレベル=1.5〜2nm(Rmaxの25〜40%)、OBA%=80%以下(ロードアンロード方式の磁気記録媒体用基板の場合、好ましくは、60%±20%(40〜80%))が好ましい。また、基板表面が超平滑なRmaxが3nm以下の情報記録媒体用基板(磁気記録媒体用基板)にあっては、例えば、スライスレベル=0.5〜1.3nm(Rmaxの20〜43%)、OBA%=90%以下(ロードアンロード方式の磁気記録媒体用基板の場合、好ましくは、70%±20%(50〜90%)が好ましい。
なお、ベアリング高さの測定値が急速にバラツキ始めるベアリングエリア値は0.5%程度であれば良く、詳しくは、0.2〜1.0%、好ましくは0.3〜0.7%、さらに好ましくは0.4〜0.6%の範囲内の値であれば良い。
【0036】
構成3によれば、情報記録媒体用基板(磁気記録媒体用基板)が、表面を精密研磨及び/又はエッチング処理されたガラス基板であることによって、構成1又は2記載の情報記録媒体用基板(磁気記録媒体用基板)が確実かつ容易に得られる。エッチング処理の具体的な製造方法としては、後述する構成9〜12の手段が挙げられる。
【0037】
構成4、5によれば、構成1、2と同様に、媒体表面にRmax15nm以下の表面粗さを有する情報記録媒体(磁気記録媒体)であって、媒体表面の表面粗さ(テクスチャ)に基づく摩擦係数が小さな(通常は3以下の)情報記録媒体(磁気記録媒体)が得られる。
特に、構成4、5は、情報記録媒体表面(磁気記録媒体表面)の表面粗さがRmax10nm以下の情報記録媒体(磁気記録媒体)の場合に適している。
なお、媒体表面の表面粗さRmax=10〜11nm程度の情報記録媒体(磁気記録媒体)にあっては、例えば、スライスレベル=4nm(Rmaxの36〜40%)、OBA%=70%以下が好ましい。Rmax=7〜8nm程度の情報記録媒体(磁気記録媒体)にあっては、例えば、スライスレベル=3nm(Rmaxの38〜43%)、OBA%=90%以下(CSS方式の磁気記録媒体の場合、好ましくは40%±20%(20〜60%)、ロードアンロード方式の磁気記録媒体の場合、好ましくは70%±20%(50〜90%))が好ましい。Rmax=5〜6nm程度の情報記録媒体(磁気記録媒体)にあっては、例えば、スライスレベル=1.5〜2nm(Rmaxの25〜40%)、OBA%=80%以下(ロードアンロード方式の磁気記録媒体の場合、好ましくは、60%±20%(40〜80%))が好ましい。また、媒体表面が超平滑なRmaxが3nm以下の情報記録媒体(磁気記録媒体)にあっては、例えば、スライスレベル=0.5〜1.3nm(Rmaxの20〜43%)、OBA%=90%以下(ロードアンロード方式の磁気記録媒体の場合、好ましくは、70%±20%(50〜90%)が好ましい。
なお、ベアリング高さの測定値が急速にバラツキ始めるベアリングエリア値は0.5%程度であれば良く、詳しくは、0.2〜1.0%、好ましくは0.3〜0.7%、さらに好ましくは0.4〜0.6%の範囲内の値であれば良い。
構成4〜6の媒体表面を得るためには、前記構成1〜3のように媒体表面の表面状態を基板表面によって制御し、該基板表面に下地層、磁性層、保護層、潤滑層などを成膜して所望の媒体表面を得る方法や、基板上に形成する何れかの層の表面状態を制御し、所望の媒体表面を得る方法などが挙げられる。表面状態を制御する方法としては、機械的処理、化学的処理、スパッタによる結晶粒の成長、レーザー光などの光学的処理などが挙げられる。
なお、前記構成3に示す、表面を精密研磨及び/又はエッチング処理された情報記録媒体(磁気記録媒体)用ガラス基板を用いることによって、構成4〜6に記載の情報記録媒体(磁気記録媒体)が確実かつ容易に得られるので好ましい。また、磁性層と磁気ヘッドとの間に媒体表面の表面状態を制御する層を設ける必要がないので、磁気記録媒体と磁気ヘッドとのスペーシング(浮上高さ)が低減し、高記録密度再生が可能となるので好ましい。
【0038】
構成6によれば、媒体表面の表面粗さ(テクスチャ)に基づく摩擦係数を3以下と規定することによって、表面粗さに基づく摩擦係数が3以下である情報記録媒体(磁気記録媒体)が確実に得られる。好ましくは摩擦係数を2以下、さらに好ましくは1.5以下が望ましい。
【0039】
構成7によれば、各種潤滑剤をそれぞれ形成した情報記録媒体(磁気記録媒体)における摩擦係数とオフセットベアリングエリアとの相関を調べ、潤滑剤による摩擦力が小さくなる潤滑剤を選択することができる。
なお、構成14〜16に記載の表面粗さに基づく摩擦係数の管理手法を用い、表面に潤滑剤を形成したものについて、同様に評価を行うことによっても、潤滑剤による摩擦力が小さくなる潤滑剤を選択できることは言うまでもない。
【0040】
構成8によれば、PFPE(perfluoro alkyl polyether)に分類され、主鎖にエーテル結合を含み、−(OCF2F2)m(OCF2)n−直鎖構造を有し、かつ、末端基として水酸基を有する潤滑剤を用いることによって、潤滑剤による摩擦力を確実に小さくできる。
【0041】
構成9〜14は、前記構成1〜3の情報記録媒体用基板(磁気記録媒体用基板)、構成4〜8の情報記録媒体(磁気記録媒体)を得るための具体的な方法である。但し、前記構成1〜3の情報記録媒体用基板(磁気記録媒体用基板)、構成4〜8の情報記録媒体(磁気記録媒体)は、下記の製造方法によっては限定されない。
構成9によれば、加熱した化学強化処理液にガラス基板を浸漬し、ガラス基板表層のイオンを化学強化処理液中のイオンでイオン交換してガラス基板を化学強化する工程と、化学強化処理液から引き上げられたガラス基板の表面をケイフッ酸を含む処理液で処理する工程とを有することで、表面粗さのバラツキを抑えられ、OBA%を適確に制御することが可能となる。本発明者らは、ベアリングエリアをAFMによって測定した場合のAFM自体の測定バラツキ(グライド高さに影響を与えることがなく、摩擦係数に影響を与えることがないと考えられる異常突起による測定バラツキ)に関し、化学強化ガラス基板についてその原因を究明したところ、測定バラツキの原因となる異常突起などが、化学強化処理工程で多く引き起こされるか、又は、精密研磨後の化学強化処理工程によって表面粗さが増加することが原因であることがわかった。そして、この測定バラツキの原因を抑えることによって、OBA%を適確に制御することができると考えた。化学強化処理後の処理としてケイフッ酸処理することで、前記の測定バラツキの原因となる異常突起などが除去され、厳密にOBA%を制御することができる。
また、構成10のように、化学強化する工程前に、ガラス基板表面を化学的処理により所望の表面粗さに制御することが好ましい。化学強化処理後に所望の表面粗さに制御する化学的処理(ケイフッ酸処理を除く)を行うと、化学強化層(圧縮応力層、引張応力層)に変化をもたらし、基板の平坦性を悪化させるなどの原因になるので好ましくない。
構成11のように、前記化学的処理は、硫酸、燐酸、硝酸、フッ酸、ケイフッ酸のなかから選択される少なくとも1種の酸、又はアルカリを含む処理液で処理する。これらの酸やアルカリの濃度や、処理温度、処理時間は、得ようとする基板の表面状態に合わせて適宜調整して行う。
構成12のように、化学強化処理後のケイフッ酸処理のケイフッ酸濃度は、0.01〜10重量%が好ましい。0.01重量%未満の場合、AFMの測定バラツキの原因である異常突起などが確実に除去されない場合があり好ましくなく、10重量%を超える場合は、ガラス基板表面がエッチングされ化学強化処理前の化学的処理によって制御した基板表面の表面状態が変化したり、表面粗さが増加することになり好ましくない。好ましくは、0.05〜7重量%、さらに好ましくは、0.1〜5重量%が制御性の点で好ましい。
また、構成13のように、構成9〜12によって得られた情報記録媒体(磁気記録媒体)用ガラス基板の表面上に、少なくとも記録層(磁性層)を形成することにより、所望の摩擦係数を有する情報記録媒体(磁気記録媒体)が得られる。本発明における磁性層の材料は特に限定されない。公知の磁性層材料を用いることができる。また、磁性層以外に磁性層の結晶配向を制御し磁気特性を向上させる下地層や、磁気記録媒体の耐食性や機械的耐久性を向上させる保護層や、摩擦係数を調整する潤滑層、下地層や磁性層の結晶粒径や粒径分布を制御するシード層などを形成することもできる。これらの、シード層、下地層、保護層、潤滑層も、公知の材料を用いることができる。
【0042】
構成14によれば、オフセットベアリングエリアと摩擦係数との相関関係(例えば図5)は、比例関係にありかつ感度の高い相関関係であるので、オフセットベアリングエリアを用いて、情報記録媒体(磁気記録媒体)表面における表面粗さに基づく摩擦係数を精度良く設計又は管理できる。
特に、構成14は、情報記録媒体(磁気記録媒体)の媒体表面粗さに基づく摩擦係数を管理する際、情報記録媒体用基板(磁気記録媒体用基板)や情報記録媒体(磁気記録媒体)の表面粗さ管理に適用でき、それらの表面の表面粗さがRmax15nm以下、さらにはRmax10nm以下のものに対して適している。構成15によれば、最大突起高さ(Rmax)から0.5〜7nm深さ(スライスレベル)におけるベアリングエリアを用いて、また構成16によれば、最大突起高さ(Rmax)から、Rmaxの20〜45%に相当する深さをスライスレベルとしたときのベアリングエリアを用いて、それぞれ、表面粗さに基づく摩擦係数の管理を行うことで、AFM測定バラツキの影響があるものの、表面粗さに基づく摩擦係数を大まかに設計又は管理することが可能である。
【0043】
構成17によれば、前記構成14〜16の表面粗さに基づく摩擦係数の管理手法に基づいて、所望の媒体表面を有する情報記録媒体(磁気記録媒体)を製造することにより、所望の摩擦係数を有する情報記録媒体(磁気記録媒体)が得られる。所望の媒体表面を有する情報記録媒体(磁気記録媒体)を得る方法としては、媒体表面の表面状態を基板表面によって制御し、該基板表面に下地層、記録層(磁性層)、保護層、潤滑層などを成膜して所望の媒体表面を得る方法や、基板上に形成する何れかの層の表面状態を制御し、所望の媒体表面を得る方法などが挙げられる。
特に、情報記録媒体(磁気記録媒体)と磁気ヘッドとのスペーシング(浮上高さ)を低減し、高記録密度再生を可能とするには、基板表面を制御することが好ましく、構成18のように、構成14〜16の表面粗さに基づく摩擦係数の管理手法に基づいて、所望の基板表面を有する情報記録媒体用基板(磁気記録媒体用基板)の製造方法に適用することが好ましい。
【0044】
構成19や21によれば、情報記録媒体用基板(磁気記録媒体用基板)や情報記録媒体(磁気記録媒体)の表面状態の管理手法として、BA=0%からベアリング高さの測定値が急速にバラツキ始めるベアリングエリア値までのデータを除外した各種AFM測定値を利用することによって、AFMの測定バラツキの問題を解決できる。例えば、OBA%を用いるとAFM測定バラツキの影響を受けにくく、表面粗さに基づく摩擦係数を精度良く設計又は管理できる。
なお、構成19や21でいう各種AFM測定値には、OBA%(オフセットベアリングエリア)以外に、Rmax、Ra、Ra/Rmax、BA%(ベアリングエリア)等が含まれる。
また、例えば、AFM測定データから測定値がばらつくデータを除外し、この除外後のデータを用いて、ベアリングカーブや、Rmax、Ra、Ra/Rmax、BA%等を求めることで、AFM測定バラツキの影響を除外でき、正確なデータが得られる。これらの操作は、AFM測定装置における設定によって容易に行うことができる。
構成20のように、構成19の表面状態の管理手法に基づいて、所望の基板表面を有する情報記録媒体用基板(磁気記録媒体用基板)の製造方法に適用することにより、所望の摩擦係数を有する情報記録媒体(磁気記録媒体)を得るための情報記録媒体用基板(磁気記録媒体用基板)が得られる。
また、構成22のように、構成21の表面状態の管理手法に基づいて、所望の媒体表面を有する情報記録媒体(磁気記録媒体)の製造方法に適用することにより、所望の摩擦係数を有する情報記録媒体(磁気記録媒体)が得られる。
【0045】
【発明の実施の形態】
本発明のハードディスクドライブに搭載する磁気記録媒体の媒体設計から、磁気記録媒体用基板、及び磁気記録媒体の製造方法について以下に説明する。
図11は、磁気記録媒体の媒体設計から、磁気記録媒体用基板、及び磁気記録媒体の製造方法を説明するための図である。図12は、磁気記録媒体用基板、及び磁気記録媒体の製造方法を説明するための図である。
最終的に磁気記録媒体を得るために、図11に示すように、大きくわけて媒体設計工程(工程a〜e)、磁気記録媒体用基板製造工程(工程f)、磁気記録媒体製造工程(工程g)を経て製造される。
【0046】
媒体(磁気記録媒体表面)設計工程は、
a.媒体(磁気記録媒体)表面の表面粗さ(Rmax)と媒体表面に磁気ヘッドが接触し始める磁気ヘッドの浮上量(グライドハイト)との関係を求める工程と、
b.前記a工程で求めた関係から、所望なグライドハイトを達成するための媒体表面の表面粗さ(Rmax)を決定する工程と、
c.ハードディスクドライブのスピンドルモーターの駆動トルクに応じて、媒体表面における摩擦係数の許容範囲を決定する工程と、
d.OBA%(オフセットベアリングエリア)と摩擦係数との相関関係を求める工程と、
e.前記d工程で求めた相関関係から、所望の摩擦係数となるためのOBA%を決定する工程と、
を有する。
【0047】
なお、OBA%(オフセットベアリングエリア)は、媒体表面設計を行うためのパラメータであって本発明の特徴であり、以下の工程(図11に示す工程d−1〜d−4)によって決定する。以下の工程は通常、複数のサンプル(磁気記録媒体や磁気記録媒体用基板)を準備して決定される。
d−1.AFMによりRmaxとベアリングエリアとの関係を求める工程と、
d−2.媒体表面粗さに応じた真のピーク高さ(ベアリング高さの測定値が急速にばらつき始めるベアリング値)を決定する工程と、
d−3.前記d−2工程で求めた真のピーク高さからの深さと、ベアリングエリアとの相関を求め、ベアリングエリアの変化量が大きくなるスライスレベルを決定する工程と、
d−4.前記d−3工程で決定したスライスレベルにおけるベアリングエリア値(OBA%:オフセットベアリングエリア)を決定する工程と、
を有する。
尚、上記の媒体設計工程における摩擦係数、媒体表面の表面粗さは記録密度との関係からハードディスクドライブメーカーよりある程度、許容範囲を設定される場合が多く、磁気記録媒体用基板製造メーカーや磁気記録媒体製造メーカーは、上記c工程を省略する場合がある。
【0048】
媒体表面が、上記媒体設計工程によって決定したOBA%となるために、基板表面が所望のOBA%を持つ磁気記録媒体用基板を作製する。以下に本発明の磁気記録媒体用化学強化ガラス基板の製造工程を示す。
磁気記録媒体用化学強化ガラス基板の製造工程は、図12の工程f−1〜f−8に示すように、
f−1.磁気記録媒体用化学強化ガラス基板の製造条件とOBA%との関係を調べる工程(製造条件決定後は省略化)と、
f−2.円盤状のガラス基板を成形する基板成形工程と、
f−3.ガラス基板に中心孔をあけ、円盤状基板の内外周を研削加工する形状加工工程と、
f−4.ガラス基板の主表面をラッピングする研削工程と、
f−5.ガラス基板の主表面をポリッシングする研磨工程(尚、必要に応じてガラス基板の端面をポリッシングする端面研磨工程を有しても良い。)と、
f−6.ガラス基板表面を強化する化学強化工程と、
f−7.化学強化工程を終えたガラス基板をケイフッ酸処理する工程と、
f−8.ガラス基板を検査し、梱包する工程と、
を有する。
尚、各工程間にガラス基板を洗浄する洗浄工程を必要に応じて適宜導入する。また、上記f−1工程における製造条件とは、例えば、基板表面をポリッシングする研磨条件(研磨剤種、研磨剤粒径、圧力、時間、研磨パッド種等)、基板表面の粗さを制御する化学的処理条件(薬液種、濃度、温度、時間)、ガラス基板を化学強化処理する化学強化処理条件(溶融塩種、加熱温度、時間)、化学強化後のケイフッ酸処理条件(濃度、温度、時間)などが挙げられる。予めこれらの関係を実験によって各種条件が求められているので、実際のガラス基板の製造工程では、f−1工程は省略されることがある。また、f−2工程とf−3工程は、ダイレクトプレスによってドーナツ状基板を成形することも可能であり、f−2工程とf−3工程を同じ工程で行うこともできる。
本発明の化学強化ガラス基板の製造工程において、化学強化処理液から引き上げられたガラス基板の表面をケイフッ酸を含む処理液で処理する工程とを有することに特徴がある。化学強化処理後のガラス基板の表面をケイフッ酸を含む処理液で処理することで、表面粗さのバラツキを抑えられ、OBA%を適確に制御することが可能となる。ケイフッ酸処理が、AFM自体の測定バラツキの原因(グライド高さに影響を与えることがなく、摩擦係数に影響を与えることがないと考えられる異常突起)を、効果的に除去でき厳密にOBA%を制御することができる。図13が本発明の磁気記録媒体用ガラス基板の製造方法によって得られた磁気記録媒体用ガラス基板のRmaxとOBA%3nmとの関係を示す図(ケイフッ酸処理条件、濃度:1.0重量%、処理時間:100秒、基板枚数128枚)、図14が化学強化処理後、ガラス基板の表面を硫酸処理(硫酸処理条件、濃度:10重量%、処理条件:100秒、基板枚数128枚)して得られた磁気記録媒体用ガラス基板のRmaxとOBA%3nmとの関係を示す図である。尚、図13、14ともに、OBA%3nmが20〜40%の範囲に入るように、磁気記録媒体用ガラス基板を製造したものである。図13と図14と対比してもわかるように、図13の場合、ほぼOBA%3nm=20〜40%の範囲内にあり、しかも、Rmax=8nm付近にかたまって分布されていることがわかる。一方、図14の場合、OBA%3nmが20〜40%の範囲に収まっていないと共に、Rmaxも約5nm〜約16nmと広く分布していることがわかる。このように、化学強化処理後のガラス基板の表面をケイフッ酸処理することにより、AFM自体の測定バラツキの原因を効果的に除去することができ、厳密にOBA%を制御できることがわかる。
【0049】
次に、磁気記録媒体を得るために、前記工程によって得られた磁気記録媒体用ガラス基板上に磁性層等を成膜して磁気記録媒体を製造する。以下に典型的な磁気記録媒体の製造工程を示す。
磁気記録媒体の製造工程は、図12の工程g−1〜g−4に示すように、
g−1.ガラス基板上に下地層を形成する工程と、
g−2.下地層上に磁性層を形成する工程と、
g−3.磁性層上に保護層を形成する工程と、
g−4.保護層上に潤滑層を形成する工程と、
を有する。
尚、上記下地層、磁性層、保護層、潤滑層の材料は特に限定されない。また、ガラス基板と下地層との間に下地層及び磁性層の結晶粒径、粒径分布を制御する目的で、シード層を設けても良い。また、下地層と磁性層との間に、磁性層の結晶配向を制御する中間層を設けても良い。これらの各層の膜厚や組成は求める特性に応じて適宜調整して形成される。
以下に上記工程に従って、磁気記録媒体用基板、磁気記録媒体を作製する例を示す。
【0050】
(実施例1)
以下、2.5インチ径ハードディスクドライブ(4200rpm)、1媒体約5GBの記録容量を要求される場合の媒体設計を例にする。
(1)要求されるグライドハイトより規定されるRmaxの設計
上記5GBの記録容量を達成するために、S/N比の向上と、トラック幅の狭化を理由としてリードライト(R/W)ヘッドの浮上量は20nm程度まで低下させる必要がある。このためグライドハイトを8〜10nm程度まで低減しなければならない。これは、僅か10nmのヘッド浮上量においても、ヘッド−媒体間の接触が起こってはならないことになる。
図3は、媒体表面の表面粗さRmax(AFMで測定)と、媒体表面に磁気ヘッドが接触し始める磁気ヘッドの浮上量(グライドハイト)との関係を示すグラフである。このグラフから要求される10nmのグライドハイトを達成するためには、Rmaxで8nm程度以下にしなければならない。
(2)上記(1)で規定されたRmaxにおける摩擦係数の設計
上記(1)により、要求されるグライドハイトを達成するためのRmaxが規定された。この制約の中で、媒体に対する磁気ヘッド吸着を回避するための摩擦係数の設計を行う。ハードディスクドライブの摩擦係数の上限は、スピンドルモーターの駆動トルクにより規定される。駆動トルクにて回転できないほど、摩擦が大きいとき、磁気ヘッドは媒体表面に吸着する。今回の実施例での4200rpmモーターのモデルにおいては、摩擦係数の上限は3以下と規定されている。
さて、上述したように、摩擦係数を制御するOBA%とは、ある一定の深さ空間内の突起密度を代表するものであるから、規定されるRmaxに応じ、摩擦に対して最も感度のよいスライス位置を決定する必要がある。
図4は、上記(1)で規定したRmaxが8nm近傍の各種媒体を用意し、その媒体におけるベアリングカーブを示す。各々の媒体のRmax、Ra値はほぼ同等であるが、ベアリングカーブは大きく異なっており、したがって、突起密度や突起形状等が異なり、ひいては摩擦係数が異なる。これらの媒体(の摩擦係数)を区別するに当たり、最適スライスレベルとして、ベアリングエリア0.5%に対応するベアリング高さ(真のピーク高さ)から3nm深さを設定する。そして、このようにスライスレベルを最大突起高さからオフセットさせたときのベアリングエリアをオフセットベアリングエリアとし、OBA%@3nmと記す。
図5は、図2で示した集団をOBA%@3nmで表現したものである。OBA%@3nmの導入により、Rmax、Ra、Rmax/Raでは不可能であった摩擦係数管理が可能となった。上記の摩擦係数の上限値<3の規定に対し、一定のマージンを確保して、OBA%@3nm=40%±20%で規格管理をする。これによって、摩擦係数は0.5〜2.5の範囲内に管理される。
【0051】
磁気記録媒体の媒体表面が上記(1)、(2)で規定したRmax、OBA%@3nm=40%±20%となるようにするため、本実施例では、磁気記録媒体用基板の表面粗さを、上記規定したRmax、OBA%@3nm=40%±20%となるように作製し、その基板上に、下地層、磁性層、保護層、潤滑層を形成して磁気記録媒体を作製した。
【0052】
(3)磁気記録媒体用基板の作製
溶融ガラスをダイレクトプレスによって円盤状のガラス基板を得、形状加工(孔開け、面取り加工)、端面研磨工程を経て外径65mmφ、内径20mmφのアルミノシリケートガラス基板を得た。その後、ラッピング工程、ポリッシング工程、化学強化工程、ケイフッ酸によるエッチング処理を経て磁気記録媒体用ガラス基板を作製した。
尚、ポリッシング工程後のガラス基板の表面粗さ(AFMで測定)は、Rmax=5.72nm、Ra=0.53nmであった。また、化学強化条件は、硝酸カリウムと硝酸ナトリウムの混合溶融塩中に、処理温度:340℃、処理時間:2時間で行い、化学強化後のケイフッ酸処理条件は、濃度:0.12vol%、処理時間100秒で行った。
得られたガラス基板の表面粗さをAFM(原子間力顕微鏡)で測定したところ、Rmax=6.92nm、Ra=0.79nm、OBA%@3nm=41%、であった。
【0053】
(4)磁気記録媒体の作製
上記(3)によって得られた磁気記録媒体用ガラス基板の両面に、インライン型スパッタリング装置を用いて、NiAlシード層、CrV下地層、CoCrPtTa磁性層、水素化カーボン保護層を順次成膜し、ディップ法によってパーフルオロポリエーテル液体潤滑剤(フォンブリン社製:Zdol2000)を成膜して磁気記録媒体を作製した。
得られた磁気記録媒体の表面粗さをAFM(原子間力顕微鏡)で測定したところ、Rmax=7.55nm、Ra=0.88nm、OBA%@3nm=43%、摩擦係数約1.5であった。また、得られた磁気記録媒体のTDFHは、8.4nmであった。このように、設計範囲内の磁気記録媒体が得られた。
さらに、10万回のCSS耐久試験を行ったところ、ヘッドクラッシュや、吸着現象は起こらなかった。また、ヘッドの摩耗現象も見られなかった。
【0054】
なお、AFMにより同一測定エリアにおいて繰り返し測定(21回連続)の再現性を調べたところ、Rmaxから4nmの深さにおけるベアリングエリア(BA%@4nm)測定値が3σで3.6であってバラツキが大きいのに対し、OBA%@4nmの測定値は3σで1.8であってバラツキが半減した。つまり、OBA%の方がAFM測定バラツキの影響を受けにくいことがわかる。
【0055】
(実施例2)
上記実施例1では、(1)グライドハイトより規定されたRmaxの制約下で、(2)摩擦係数の良好な媒体表面を設計し、(3)その設計によって得られた表面粗さをもつ磁気記録媒体用基板を作製し、(4)基板上に少なくとも磁性層を形成して磁気記録媒体を作製した。
つまり、前述した摩擦力の式F=μN十F1+F2+F3+…において、表現され右辺第1項(μN)を設計したことになる。
ここで、摩擦力低減のためには、線形結合する右辺第2項(潤滑剤によるメニスカス力F1)の寄与を小さく抑えることも重要である。
そこで、実施例2では、上述の摩擦係数管理手法を用いることによって、塗布潤滑剤の最適化を行い、より高記録密度化に対応した磁気記録媒体を作製する。
【0056】
具体的には、潤滑剤として、PFPE(perfluoro alkyl polyether)に分類される以下の2種の潤滑剤を検討した。なお、両者とも主鎖はエーテル結合を含み、−(OCF2F2)m(OCF2)n−直鎖構造をしている。
(a)Zdol2000:末端基=水酸基、(b)AM3000:末端基=ピペロニル基 図6は、両者の潤滑剤に対するOBA%@3nmと摩擦係数との関係を表した図である。同図に示すように、本実施例における磁気ヘッド−媒体との組合わせにおいては、(a)Zdol2000の方が、摩擦係数を低域できる(F1が小さい)ことがわかる。
従って、上記選定した潤滑剤を用いた磁気記録媒体を作製することによって、高記録密度化に対応した好適な磁気記録媒体を得ることができる。
【0057】
(実施例3〜6)
実施例1において、ポリッシング工程と化学強化工程との間にケイフッ酸による化学的処理を行い、表面粗さの制御を行ったこと以外は実施例1と同様にして磁気記録媒体用基板、磁気記録媒体を作製した。尚、表面粗さ制御を行うため、ガラス基板を少なくともアルカリ金属酸化物とアルカリ土類酸化物を含有し、アルカリ土類酸化物の含有量が3mol%未満(具体的には、SiO2:58〜75重量%、Al23:5〜23重量%、Li2O:3〜10重量%、Na2O:4〜13重量%を主成分として含有する)を含むガラスを用いた。ポリッシング工程と化学強化工程との間に行うケイフッ酸処理条件は、濃度:0.12vol%、処理時間:200秒で行った。また、化学強化後のケイフッ酸処理時間を、70秒(実施例3)、80秒(実施例4)、90秒(実施例5)、100秒(実施例6)と変化させて、処理時間による表面粗さの変化を調べた。
その結果、図15〜図17にあるように、化学強化後のケイフッ酸処理の処理時間が長くなるに従って、Raはほぼ一定であったが、Rmaxが低下していることがわかる。このことから、化学強化後のケイフッ酸処理によって、AFMの測定バラツキに起因する異常突起が除去され、Rmaxが低減し、結果的にOBA%もばらつきなく制御することができるようになったと考えられる。
【0058】
(実施例7〜9)
次に、実施例1において、ポリッシング条件及び、化学強化後のケイフッ酸処理条件を適宜調整することにより、ロードアンロード方式用磁気記録媒体用基板、磁気記録媒体を作製した。実施例7、8、9の磁気記録媒体は、それぞれ記録容量が、5GB、10GB、15GBとなるように媒体設計、摩擦係数管理を行い作製したものである。
表1に実施例7〜9で得られた磁気記録媒体用基板の表面状態(表面粗さ(Rmax、OBA%)、スライスレベル、浮上特性を示す。
【0059】
【表1】
Figure 0003912575
【0060】
上記表にしめすように、浮上特性(ヘッドクラッシュやフライスティクション)も良好な磁気記録媒体が得られた。
【0061】
(比較例1)
実施例1における化学強化後のケイフッ酸処理に変え、硫酸処理(濃度:10重量%、時間:100秒)に変えた以外は、実施例1と同様にして磁気記録媒体用基板、磁気記録媒体を作製した。その結果、Rmax=6.15nm、OBA%3nm=72%となり、OBA%3nm=40%±20%の規格の範囲内に収めることができなかった。これは、AFMの測定バラツキの原因と考えられる異常突起が十分に除去できなかったことなどが原因で、OBA%3nmを制御できなかったと考えられる。尚、この得られた磁気記録媒体の摩擦係数を測定したところ、3.5となり3を超え、磁気ヘッドの吸着を回避することができなかった。
【0062】
本発明は、上述の実施例に限定されるものではない。
【0063】
例えば、OBAのスライスは3nmに限られない。各種媒体に応じて適宜逮択される。
【0064】
媒体の表面粗さを作る場所は、基板表面に限られない。例えば、下地層、保護層等にテクスチャーを形成してもよい。所定の表面粗さを形成する方法も、エッチング法に限らず、メカニカルテクスチャー、スパッタテクスチャー、レーザーテクスチャーや、微粒子を混在させこの微粒子によって所定の表面粗さにしても良い。但し、好ましくは、各突起の曲率半径等がほぼ同じとなるテクスチャー方法が好ましい。
【0065】
表面状態を測定する手法として、AFM(原子間力顕微鏡)の代わりに、STM(走査型トンネル顕微鏡)や、触針式表面粗さ計を用いることが可能である。但し、AFM(原子間力顕微鏡)の場合は、比較的容易に、表面状態を正確に、高精度、高分解能で測定できる点で、他の測定方法に比べ優れている。
【0066】
実施例2における潤滑剤も各種媒体によって適した潤滑剤が選定される。潤滑剤の形成方法もディップ法(浸漬法)に限らない。真空蒸着によって潤滑剤を形成しても良い。
【0067】
本発明はCSS方式の磁気記録媒体に限らず、実施例7〜9に示すように磁気ヘッドの低浮上化がより進展するロードアンロード方式の磁気記録媒体におけるフライングスティクション(Flying Stiction)回避のための管理手法としても有効である。
また、ポリッシング工程後の表面粗さ制御工程における化学的処理工程に使用する薬液としてケイフッ酸に限らず、硫酸、燐酸、硝酸、フッ酸、ケイフッ酸のなかから選択される少なくとも1種の酸、又はアルカリを含む処理液で処理しても構わない。
【0068】
基板の大ききも2.5インチに限らず、1インチ、3インチ、3.5インチなどの各種サイズに適用できる。
【0069】
また、本発明は、磁気記録媒体用基板や磁気記録媒体に限らず、光ピックアップレンズなどが搭載されたヘッドスライダーを利用して記録再生する光磁気記録媒体用基板や光磁気記録媒体への適用もでき、それらの表面の管理手法としても有効である。
【0070】
【発明の効果】
本発明によれば、Rmax15nm以下(特にRmax10nm以下)の表面粗さを有する情報記録媒体用基板(磁気記録媒体用基板)及び情報記録媒体(磁気記録媒体)において、表面粗さに基づく摩擦係数を精度良く設計又は管理できる。
また、本発明によれば、Rmax15nm以下(特にRmax10nm以下)の表面粗さを有する表面状態の管理において、AFMの測定バラツキの問題を解決できる。
【図面の簡単な説明】
【図1】AFM測定によるRmaxと摩擦係数との関係を表す図である。
【図2】AFM測定によるRaと摩擦係数との関係を表す図である。
【図3】AFM測定によるRmaxとグライドハイトとの関係を表す図である。
【図4】AFM測定によるBA%と真のピーク高さからの深さとの関係を説明するための図である。
【図5】OBA%@3nmと摩擦係数との関係を表す図である。
【図6】潤滑剤を塗布した媒体におけるOBA%@3nmと摩擦係数との関係を表す図である。
【図7】最大突起高さ付近におけるBA%とベアリング高さとの関係を表す図である。
【図8】オフセットベアリングエリアを説明するための図である。
【図9】ヘッドと突起との接触状態を説明するための図である。
【図10】BA%@4nmと摩擦係数との関係を表す図である。
【図11】磁気記録媒体の媒体設計から、磁気記録媒体用基板、及び磁気記録媒体の製造方法を説明するための図である。
【図12】磁気記録媒体用基板、及び磁気記録媒体の製造方法を説明するための図である。
【図13】化学強化処理後、ガラス基板の表面をケイフッ酸処理して得られた磁気記録媒体用ガラス基板のRmaxとOBA%3nmとの関係を示す図である。
【図14】化学強化処理後、ガラス基板の表面を硫酸処理して得られた磁気記録媒体用ガラス基板のRmaxとOBA%3nmとの関係を示す図である。
【図15】化学強化後のケイフッ酸による処理時間とRaとの関係を示す図である。
【図16】化学強化後のケイフッ酸による処理時間とRmaxとの関係を示す図である。
【図17】化学強化後のケイフッ酸による処理時間とOBA%3nmとの関係を示す図である。

Claims (9)

  1. 加熱した化学強化処理液にガラス基板を浸漬し、ガラス基板表層のイオンを化学強化処理液中のイオンでイオン交換してガラス基板を化学強化する工程と、化学強化処理液から引き上げたガラス基板の表面をケイフッ酸を含む処理液で処理する工程と、を有、表面が精密研磨及びエッチング処理され、Rmaxが10nm以下の表面粗さを有する磁気記録媒体用化学強化ガラス基板の製造方法であって、
    前記製造方法によって得られた複数の磁気記録媒体用ガラス基板に関し、
    ベアリングエリアの測定値が0.5%に対応するベアリング高さ(真のピーク高さ)から3nm深さスライスレベルにおけるベアリングエリアの測定値であるオフセットベアリングエリアの測定値(以下「OBA%@3nm」という)と表面粗さに基づく摩擦係数との相関関係を求め、
    また、所望の基板表面状態を形成するための前記製造方法における形成条件とOBA%@3nmとの相関関係を予め求めておき、
    前記OBA%@3nmと摩擦係数との相関関係を介して、前記形成条件を選択することによって、所望の基板表面を有する磁気記録媒体用ガラス基板を得る
    ことを特徴とする磁気記録媒体用ガラス基板の製造方法。
  2. 請求項1に記載の磁気記録媒体用ガラス基板の製造方法は、
    化学強化する工程前にガラス基板表面を化学的処理により所望の表面粗さに制御する工程を有することを特徴とする請求項1に記載の磁気記録媒体用ガラス基板の製造方法。
  3. 前記磁気記録媒体用化学強化ガラス基板が、Rmaxが8nm以下の表面粗さを有することを特徴とする請求項1又は2に記載の磁気記録媒体用ガラス基板の製造方法。
  4. 前記化学的処理は、硫酸、燐酸、硝酸、フッ酸、ケイフッ酸の中から選択される少なくとも1種の酸、又はアルカリを含む処理液で処理することを特徴とする請求項2に記載の磁気記録媒体用ガラス基板の製造方法。
  5. 前記ケイフッ酸の濃度が、0.01〜10重量%であることを特徴とする請求項1乃至4の何れか一に記載の磁気記録媒体用ガラス基板の製造方法。
  6. 請求項1乃至5のいずれか一に記載の磁気記録媒体用ガラス基板の製造方法によって得られた前記磁気記録媒体用化学強化ガラス基板の表面上に、少なくとも磁性層を形成することにより、
    前記磁気記録媒体用化学強化ガラス基板の表面に磁性層を成膜した磁気記録媒体であって、グライドハイトが10nm以下である低グライドの磁気記録媒体を得ることを特徴とする磁気記録媒体の製造方法。
  7. 媒体表面の表面粗さに基づく摩擦係数が3以下であることを特徴とする請求項6に記載の磁気記録媒体の製造方法。
  8. 各種潤滑剤をそれぞれ形成した磁気記録媒体における摩擦係数とオフセットベアリングエリアの測定値との相関を調べ、潤滑剤による摩擦力が小さくなる潤滑剤を採用したことを特徴とする請求項6又は7に記載の磁気記録媒体の製造方法。
  9. 前記潤滑剤が、PFPE(perfluoro alkyl polyether)に分類され、主鎖にエーテル結合を含み、−(OCF)m(OCF)n−直鎖構造を有し、かつ、末端基として水酸基を有する潤滑剤であることを特徴とする請求項8に記載の磁気記録媒体の製造方法。
JP2000387183A 1999-12-21 2000-12-20 磁気記録媒体用ガラス基板の製造方法、及び磁気記録媒体の製造方法 Expired - Fee Related JP3912575B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000387183A JP3912575B2 (ja) 1999-12-21 2000-12-20 磁気記録媒体用ガラス基板の製造方法、及び磁気記録媒体の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-363416 1999-12-21
JP36341699 1999-12-21
JP2000387183A JP3912575B2 (ja) 1999-12-21 2000-12-20 磁気記録媒体用ガラス基板の製造方法、及び磁気記録媒体の製造方法

Publications (2)

Publication Number Publication Date
JP2001243617A JP2001243617A (ja) 2001-09-07
JP3912575B2 true JP3912575B2 (ja) 2007-05-09

Family

ID=26581478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000387183A Expired - Fee Related JP3912575B2 (ja) 1999-12-21 2000-12-20 磁気記録媒体用ガラス基板の製造方法、及び磁気記録媒体の製造方法

Country Status (1)

Country Link
JP (1) JP3912575B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007272995A (ja) * 2006-03-31 2007-10-18 Hoya Corp 磁気ディスク装置および非磁性基板の良否判定方法、磁気ディスク、並びに磁気ディスク装置
JP5243992B2 (ja) * 2009-02-20 2013-07-24 日立マクセル株式会社 磁気テープ表層における潤滑剤層の厚み評価方法
US9348217B2 (en) * 2012-03-30 2016-05-24 Hoya Corporation Mask blank substrate, substrate with multilayer reflection film, transmissive mask blank, reflective mask blank, transmissive mask, reflective mask, and semiconductor device fabrication method
WO2014050241A1 (ja) 2012-09-28 2014-04-03 Hoya株式会社 磁気ディスク用ガラス基板、磁気ディスク、磁気ディスク用ガラス基板の製造方法
MY168621A (en) * 2014-03-31 2018-11-14 Hoya Corp Magnetic-disk glass substrate
RU210188U1 (ru) * 2021-08-31 2022-03-31 Николай Иванович Покинтелица Устройство для определения коэффициента трения смазочных материалов

Also Published As

Publication number Publication date
JP2001243617A (ja) 2001-09-07

Similar Documents

Publication Publication Date Title
US6548139B2 (en) Glass substrate for magnetic recording medium, magnetic recording medium, and method of manufacturing the same
US6277465B1 (en) Glass substrate for information recording medium
US10607647B2 (en) Magnetic disk substrate with specified changes in height or depth between adjacent raised or lowered portions and an offset portion on a main surface within a range of 92.0 to 97.0% in a radial direction from a center, a magnetic disk with substrate and magnetic disk device
US8096148B2 (en) Method for fabricating a glass substrate, magnetic disk, and method for fabricating the same
JP4338769B2 (ja) 磁気ディスク用ガラス基板の製造方法、及び磁気ディスクの製造方法
US6395634B1 (en) Glass substrate for magnetic recording medium, magnetic recording medium, and method of manufacturing the same
US5972460A (en) Information recording medium
US6852010B2 (en) Substrate for an information recording medium, information recording medium using the substrate, and method of producing the substrate
US7220446B2 (en) Management technique of friction coefficient based on surface roughness, substrate for information recording medium, information recording medium and manufacture method thereof
JP3359304B2 (ja) 磁気記録媒体用ガラス基板、磁気記録媒体及びそれらの製造方法
US7255943B2 (en) Glass substrate for a magnetic disk, magnetic disk, and methods of producing the glass substrate and the magnetic disk
JP3912575B2 (ja) 磁気記録媒体用ガラス基板の製造方法、及び磁気記録媒体の製造方法
US9865293B2 (en) Magnetic-disk substrate having a small waviness, for use as a magnetic disk, and a magnetic-disk drive device for use with the magnetic disk
US8153284B2 (en) Method for fabricating a glass substrate, method for fabricating a magnetic disk, and magnetic disk
JP3616610B2 (ja) 磁気記録媒体用ガラス基板、磁気記録媒体及びそれらの製造方法
US20050172670A1 (en) Method of manufacturing a glass substrate for a magnetic disk and method of manufacturing a magnetic disk
JPH10241144A (ja) 情報記録媒体用ガラス基板及びその製造方法並びに該基板を用いた磁気記録媒体及びその製造方法
JP3590562B2 (ja) 磁気ディスク用ガラス基板、磁気ディスク、磁気ディスク用ガラス基板の製造方法、および磁気ディスクの製造方法
JP6104668B2 (ja) 情報記録媒体用ガラス基板の製造方法、及びキャリア
JP2005141824A (ja) 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法
JP3590563B2 (ja) 磁気ディスク用ガラス基板の作製方法、および磁気ディスクの製造方法
JP2000348332A (ja) 磁気記録媒体用基板とその表面管理方法及び磁気記録媒体

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040423

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040608

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3912575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees