JP3910843B2 - 半導体素子分離方法及び半導体素子分離装置 - Google Patents

半導体素子分離方法及び半導体素子分離装置 Download PDF

Info

Publication number
JP3910843B2
JP3910843B2 JP2001380491A JP2001380491A JP3910843B2 JP 3910843 B2 JP3910843 B2 JP 3910843B2 JP 2001380491 A JP2001380491 A JP 2001380491A JP 2001380491 A JP2001380491 A JP 2001380491A JP 3910843 B2 JP3910843 B2 JP 3910843B2
Authority
JP
Japan
Prior art keywords
wafer
semiconductor element
etching
cut
intersection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001380491A
Other languages
English (en)
Other versions
JP2003179005A (ja
Inventor
光博 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2001380491A priority Critical patent/JP3910843B2/ja
Publication of JP2003179005A publication Critical patent/JP2003179005A/ja
Application granted granted Critical
Publication of JP3910843B2 publication Critical patent/JP3910843B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Dicing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体素子分離方法及び半導体素子分離装置に係り、特にウェハ上に形成された複数の半導体素子を個別の半導体素子に分離するための半導体素子分離方法及び半導体素子分離装置に関する。
【0002】
電子機器の小型化、薄型化が進むなかで、電子機器に使用される半導体素子に対してもより一層の薄型化が要求されている。また、複数の半導体素子を積層して一つのパッケージに収容した積層型半導体装置の開発も進められており、半導体素子の薄型化への要求は高まっている。従来の半導体素子の厚みは200〜250μm程度であったが、最近では50μm程度の厚みの半導体素子が作成されるようになっており、さらに薄型化も進められている。
【0003】
また、半導体素子が使用される用途も多様化しており、ユーザの用途に特化した回路のみから構成されたロジック素子やディスクリート素子等の小型の半導体素子も数多く製造されている。
【0004】
【従来の技術】
一般的に、半導体素子はシリコンウェハの表面(回路形成面)上に複数個まとめて形成される。回路形成面に半導体素子が形成されたウェハは、まずバックグラインディング工程にかけられる。バックグラインディング工程では、ウェハに形成された回路形成面の反対側面(裏面)を研磨することにより、ウェハの厚みを減少する。ウェハの厚みが所定の厚みとされた後、ウェハはダイシング工程にかけられ、所定形状の半導体素子に分離される。
【0005】
ダイシング工程では、ウェハはダイシングラインに沿ってダイシングソーにより切削されて、個々の半導体素子に分離される。一般的に、ダイシングラインはウェハの回路形成面に設けられたダイシングマークを画像認識することにより認識される。したがって、ダイシングはウェハの表面を上に向けた状態で行われることが一般的である。
【0006】
また他の方法としては、予めウェハのダイシングラインをウェハ表面側から所定の深さだけダイシングソーにより切削して溝状のハーフカットを形成し(ハーフカット工程)、その後に表面側が接着されるようウェハをグラインダ用保護テープに貼着し、背面をバックグラインディングする(バックグラインディング工程)方法がある。
【0007】
この方法では、バックグラインディング工程においてバックグラインディングを実施することによりウェハの厚さは徐々に薄くなり、そしてハーフカットの形成位置までバックグラインディングが進行した時点で、半導体素子は個別に分離される。
【0008】
【発明が解決しようとする課題】
しかしながら、ダイシングソーを用いてウェハを機械的に切削する場合、微細な切削屑(シリコンウェハではシリコン片)が必然的に発生してしまう。この切削屑は、前記したグラインダ用保護テープとウェハとの間に侵入してしまうおそれがあり、浸入した場合には寸法や熱伝導の不均一を引き起こし、半導体素子の分離歩留りが低下してしまう。
【0009】
また、ウェハをダイシングソーで切削する場合、いわゆるカーフロスが生じる。すなわち、ダイシングソーの厚みに相当するウェハの部分はダイシングソーによって削り取られるため、この部分のウェハは半導体素子を形成する領域として使用できない。現在使用されているダイシングソーの厚さは80〜100μm程度である。したがって、ダイシングラインを中心として、その両側100μm程度の幅の領域は半導体素子の形成に使用することができない。
【0010】
また、ダイシングは高速回転する刃物(ダイシングソー)で機械的にウェハを削り取るものであり、ダイシングソーにより削り取られた部分の周囲には微小なクラック又はチッピングが生じたり、過大な応力が発生してウェハが損傷したりするおそれがある。したがって、半導体素子の周囲部分には所定の幅の禁止領域が設けられる。すなわち、禁止領域には半導体素子回路を形成することはできず、回路形成に関して無効な領域とされる。
【0011】
禁止領域の幅は一般的に50〜100μm程度である。したがって、個々の半導体素子で考えると、周囲の幅100μm程度の領域には回路を形成することができず、その分半導体素子全体の寸法が大きくなってしまう。このため、小さな寸法の半導体素子を製造する場合、禁止領域の面積が半導体素子全体の面積に占める割合が大きくなり、回路形成に有効な面積が減少してしまう。
【0012】
また、ウェハ全体で考えると、一つのダイシングラインに対して、カーフロスの幅と禁止領域の幅とを合わせて最大300μm程度の無効な領域が生じてしまう。半導体素子が大きい場合は、一枚のウェハにおけるダイシングラインの数は少ないため、上記無効な領域がウェハ全体の面積に占める割合は小さい。
【0013】
しかし、半導体装置が小さくなると、ダイシングラインの数も増えてしまう。したがって、上記無効な領域がウェハ全体の面積に占める割合が大きくなり、ウェハを有効に使用することができなくなる。すなわち、一枚のウェハから切り取ることのできる半導体素子の数が減少してしまう。
【0014】
また、ダイシングの前にバックグラインディングされたウェハの面には細かいクラックが生じており、クラックが生じたままにしておくと、クラックの部分を起点として半導体素子が割れてしまうというような問題を生じる可能性がある。この問題は半導体素子が薄くなればなるほど顕著となってくる。このため、バックグラインディングを行った後に、ウェハの裏面に生じたクラックを除去する必要がある。
【0015】
本発明は上記の点に鑑みてなされたものであり、バックグラインディングにより生じたウェハのクラックを効率的に除去し実装後の信頼性を大幅に向上させると共に、半導体素子の分離に必要なウェハにおける無効な領域の面積を大幅に減少してウェハにおいて半導体素子として使用可能な領域を増大することを目的とする。
【0016】
【課題を解決するための手段】
上記の課題は、次に述べる各手段を講じることにより解決することができる。
【0017】
請求項1記載の発明は、
複数の半導体素子が形成されたウェハを個々の半導体素子に分離する半導体素子分離方法であって、
前記ウェハ上を相対的に格子状に走査するノズルからプラズマを照射することにより、回路が形成された前記ウェハの表面側から、前記半導体素子を分離する分離位置をパーシャルプラズマエッチングしてハーフカットを形成するエッチング工程と、
前記ウェハの表面側にテープ材を貼着した後、前記ウェハの裏面を前記ハーフカットと連通しないよう残部を残し所定の厚さだけ機械的に研磨する研磨工程と、
前記ウェハの裏面側からエッチングまたは化学的機械的研磨を施すことにより、前記ウェハを個々の半導体素子に分離する分離工程とを有し、
前記エッチング工程で前記ウェハを格子状にハーフカットする際、格子の交点でのハーフカット深さと、該格子の交点以外の位置におけるハーフカット深さが略同一深さとなるよう前記パーシャルプラズマエッチングの条件を調整したことを特徴とするものである。
【0020】
また、請求項2記載の発明は、
請求項1記載の半導体素子分離方法であって、
前記エッチング工程で、パーシャルプラズマエッチングのノズルが前記ウェハを格子状に走査することによりハーフカットを行ない、かつ前記格子の交点においては前記走査の走査速度を他の位置における走査速度の略倍の走査速度としたことを特徴とするものである。
【0021】
また、請求項3記載の発明は、
請求項1記載の半導体素子分離方法であって、
前記エッチング工程で、パーシャルプラズマエッチングのノズルが前記ウェハを格子状に走査することによりハーフカットを行ない、
かつ、前記格子の交点においては、他の位置におけるハーフカットの深さと略同じ深さになるように前記パーシャルプラズマエッチングの条件を選定することを特徴とするものである。
【0022】
また、請求項4記載の発明は、
請求項3記載の半導体素子分離方法であって、
前記交点における前記パーシャルプラズマエッチングの条件は、前記交点におけるエッチング速度を、前記他の位置におけるエッチング速度の略半分にするよう選定してなることを特徴とするものである。
【0023】
また、請求項5記載の発明は、
請求項1乃至4のうちいずれか1項に記載の半導体素子分離方法であって、
前記分離工程に、
プラズマエッチング、ウェットエッチング、及びパーシャルプラズマエッチングのうちのいずれかを用いることを特徴とするものである。
【0024】
上記のように、分離工程においてプラズマエッチング、ウェットエッチング、及びパーシャルプラズマエッチングのうちのいずれを用いる構成としても、研磨工程においてウェハに発生した微小なクラック等を確実に除去することができる。
【0025】
また、請求項6記載の発明は、
請求項1乃至5のうちいずれか1項に記載の半導体素子分離方法であって、
前記エッチング工程を実施する前に、前記ウェハの表面に、前記半導体素子の形成領域を覆うレジストを配設するレジスト工程を有することを特徴とするものである。
【0027】
請求項7記載の発明は、
複数の半導体素子が形成されたウェハを個々の半導体素子に分離する半導体素子分離装置であって、
前記ウェハ上を相対的に格子状に走査するノズルからプラズマを照射することにより、回路が形成された前記ウェハの表面側から、前記半導体素子を分離する分離位置をパーシャルプラズマエッチングしてハーフカットを形成する手段と、
該ハーフカットを形成する際、格子の交点でのハーフカット深さと、該格子の交点以外の位置におけるハーフカット深さが略同一深さとなるよう前記パーシャルプラズマエッチングの条件を調整する手段と、
前記ウェハの表面側にテープ材を貼着した後、前記ウェハの裏面を前記ハーフカットと連通しないよう残部を残し所定の厚さだけ機械的に研磨された前記ウェハを、
前記ウェハの裏面側からエッチングまたは化学的機械的研磨を実施することにより、前記ウェハを個々の半導体素子に分離する手段とを有することを特徴とするものである。
【0028】
また、請求項8記載の発明は、
請求項7記載の半導体素子分離装置であって、
前記ウェハ上の交点の位置を予め認識するための認識装置と、
前記認識装置で認識した交点位置においてパーシャルプラズマエッチングの走査速度を略倍にするための駆動装置を備えたことを特徴とするものである。
【0031】
上記した請求項1及び請求項7記載の各発明によれば、先ず半導体素子を分離する分離位置をウェハの表面側からエッチングすることによりハーフカットを行なう。このように、ハーフカットをエッチングにより行なうことにより、ハーフカットを機械的に形成する場合に必然的に発生するウェハ片の発生を、本発明では防止することができる。よって、従来のようにウェハ片がテープ材(グラインダ用保護テープ)とウェハとの間に侵入してしまうことはなくなり、半導体素子の分離歩留りの向上を図ることができる。
【0032】
また、エッチングによりハーフカットを形成することにより、ダイシングソーによりハーフカットを実施する場合に比べてハーフカットの幅を狭くできる。また、エッチングによりハーフカットを形成するため、機械加工であるダイシングソーでハーフカットを形成した際に発生するカーフロスを少なくできるため、1枚のウェハから採れる半導体素子数を増大させることができる。
【0033】
また、ウェハの裏面をハーフカットと連通しないよう残部を残し所定の厚さだけ機械的に研磨するため、エッチングに比べ短時間でウェハの裏面を所定の厚さとすることができる。なお、この研磨終了時においては、ウェハの裏面に残部が存在するため、半導体素子は分離されていない状態を維持している。
【0034】
上記の研磨の次に実施される分離処理では、ウェハの裏面側からエッチングまたは化学的機械的研磨を施すことにより残部を除去し、ウェハを個々の半導体素子に分離する。よって、研磨時に機械加工を実施することにより、ウェハに微小なクラック,チッピング,及び応力が発生したとしても、ウェハの微小なクラック等が発生している層(残部を含む)は除去される。
【0035】
この際、微小なクラック等が発生している層は、エッチングまたは化学的機械的研磨により除去されるため、機械加工と異なりこの除去処理時に分離される各半導体素子にクラック等が残るようなことはない。よって、信頼性の高い半導体素子を形成することができる。
【0036】
請求項2乃至4、請求項8記載の発明によれば、エッチング工程で、パーシャルプラズマエッチングのノズルを走査させてハーフカットを行なう際、格子の交点においては走査の走査速度を他の位置における走査速度の略倍の走査速度とするか、或いは格子の交点においては他の位置におけるハーフカットの深さと略同じ深さになるようにパーシャルプラズマエッチングの条件を選定するか、或いは交点におけるエッチング速度を他の位置におけるエッチング速度の略半分にするよう選定することにより、交点においてノズルの走査が2回実施されても、この交点におけるハーフカットの深さを他の位置におけるハーフカットの深さと同一の深さとすることができる。
【0037】
また、請求項5記載の発明によれば、分離処理(分離工程)において研磨時にウェハに発生した微小なクラック等を確実に除去することができる。
【0038】
また、請求項6記載の発明によれば、エッチング工程を実施する前に、半導体素子の形成領域をレジストで覆うことにより、エッチング工程で半導体素子の回路にダメージが発生することを防止することができる。
【0040】
【発明の実施の形態】
次に、本発明の実施の形態について図面と共に説明する。
【0041】
図1は、本発明の一実施例である半導体素子分離方法の各工程を説明するための工程図である。尚、同図においては、理解を容易とするためにウェハ2の厚さを実際のものよりも厚く図示している。
【0042】
図1(A)は、半導体素子分離処理を実施する前のウェハ2を示している。この段位において、ウェハ2には複数半導体素子が形成されている。また、各半導体素子を構成する回路面は、ウェハ2の表面2aに形成されている。
【0043】
ウェハ2には、先ずレジスト層8が配設される。図1(B)はレジスト層8が形成された状態を示している。
【0044】
このレジスト層8は、後述するエッチングのためのマスキングとして設けられるものであり、少なくとも各半導体素子の回路面を覆うよう形成されている。また、ウェハ2の後に各半導体素子12の分離処理が行われる分離位置7(以下、この分離位置をダイシングラインという)には、レジスト層8は形成されていない。よって、ウェハ2のダイシングライン7は、ウェハ2の表面2aに露出した状態となっている。
【0045】
レジスト層8が形成されると、次に、図1(C)に示すように、ウェハ2に対してエッチングが実施される(エッチング工程)。本発明では、このエッチングとして、パーシャルプラズマエッチングを用いている。
【0046】
これは、プラズマエッチングによれば、エッチングにより形成される面をプラズマの方向に対して略平行にすることができる。すなわち、エッチングにより形成される面をウェハ2の表面(又は裏面)に対してほぼ垂直として精度のよい加工による分離を達成することができるためである。
【0047】
ところで、プラズマエッチングには、ウェハ2の全体に対して同時にプラズマを照射してエッチングを行なう一括プラズマエッチングと、部分的にプラズマ密度を高めて照射するパーシャルプラズマエッチングがある。
【0048】
ここで用いるパーシャルプラズマエッチングでは、ダイシングライン7の近辺のみを選択的にかつ高密度のプラズマでエッチングできるので、効率的に処理が行なえ、処理時間の短縮を図ることができる。また、局所的エッチング深さや速度等の制御が容易となる。
【0049】
ここで、図3を参照して、パーシャルプラズマエッチングを行なう半導体素子分離装置20について説明する。同図に示す半導体素子分離装置20は、チャンバ22と、処理ガス導入管24と、マグネトロン26と、XYZテーブルと駆動部30とを有する。
【0050】
チャンバ22は、内部が所定の減圧環境となるように真空ポンプ等の排気手段に接続される。載置台としてのXYZテーブル28はチャンバ22内に設けられ、その上に被処理体であるウェハ2が載置される。XYZテーブル28は、駆動部30によりX,Y,Z方向に移動可能に構成されている。
【0051】
XYZテーブル28の上方には、ガス導入管24から延在したノズル24aが配置されている。このノズル24aの上方の部位はマグネトロン26に接続されており、ガス導入管を流れてきた処理ガスにマグネトロン26からの高周波が照射されプラズマが発生する。プラズマはノズル24aからウェハに局部的に照射され、ウェハ2がプラズマの作用により部分的にエッチングされる。
【0052】
プラズマが照射される部位は、XYZテーブル28を駆動部30によりXY方向(水平方向)に駆動してウェハをノズル24aに対して相対的に移動することにより変えることができる。また、XYZテーブルをZ方向(垂直方向)に移動することにより、ノズル24aとウェハの間の距離を調整することができる。
【0053】
上述の構成の半導体素子分離装置20を用いて図1(C)に示すエッチング工程を行なうことにより、ウェハ2のダイシングライン7をエッチングすることができる。即ち、ノズル24aからのプラズマがウェハ2のダイシングライン7に沿って局部的に照射されるよう、駆動部30によりXYZテーブル28を移動することにより、ウェハ2にダイシングライン7を効率的に精度よく行なうことができる。
【0054】
この際、前記のようにダイシングライン7を除きレジスト層8が形成されているため、ウェハ2の半導体素子12が形成された領域がエッチングされるようなことはない。よって、半導体素子12の回路にダメージが発生することを防止できる。
【0055】
尚、本実施例に係る半導体素子分離装置20では、ウェハ2をノズル24aに対して移動するように構成しているが、これに限られるものではない。すなわち、ノズル24aに対してウェハ2を移動するよう構成としてもよく、或いは双方が移動する構成としてもよい。
【0056】
この半導体素子分離装置20によるエッチング処理は、ウェハ2が200mmウェハで厚さが750μmである場合、表面2aからのエッチング深さが20μm〜150μm程度となるよう実施される。即ち、本実施例におけるエッチング処理では、ウェハ2を完全に分離することはせず、ウェハ2の途中位置まで溝を形成する(以下、この溝をハーフカット3という)。尚、ハーフカット3の幅は、約10〜20μmである。
【0057】
図2は、半導体素子分離装置20において、ノズル24aがウェハ2上を相対的に走査(本実施例では、実際に移動するのはウェハ2である)する走査軌跡を説明するためのウェハ2の平面図である。同図において梨地で示す領域はレジスト層8が形成された領域であり、同図に一点鎖線で示すのはウェハ2を分離するダイシングライン7を示している。尚、図示の便宜上、図2には一部しか図示していなが、レジスト層8はウェハ2の表面2aの全面に形成される。
【0058】
ノズル24aがウェハ2上を相対的に走査する際、同図に示すように、X方向往復走査とY方向往復を行ない、全体としてノズル24aはウェハ2上を格子状に走査する。そして、各格子が1個の半導体素子12の形成領域に相当する。また、ノズル24aの速度は、駆動部30によりXYZテーブル28の移動速度を調整することにより制御することが可能である。
【0059】
本実施例では、上記のようにノズル24aがウェハ2上を格子状に走査する際、格子の交点においては、走査の走査速度を他の位置における走査速度の略倍の走査速度とする構成とている。即ち、Y方向に対するダイシングライン7とX方向に対するダイシングライン7が交差する位置(図2に矢印Cで示す位置であり、この位置を格子の交点という)におけるノズル24aの走査速度を、格子の交点以外の位置における走査速度の略2倍の走査速度としている。
【0060】
この構成とすることにより、格子の交点CではX方向走査とY方向走査の2回のエッチング処理が実施されるが、格子の交点Cにおいてノズル24aの走査速度を他の位置における走査速度の略2倍の走査速度としたことにより、この交点Cにおけるハーフカット3の深さを他の位置におけるハーフカット3の深さと同一の深さとすることができる。これにより、後に説明する分離工程において半導体素子12を確実に分離することが可能となる。
【0061】
また、マグネトロン26の出力や処理ガスの流量を調整することにより、またプラズマによるエッチング速度を略半分にしてやることにより、同様の効果を得ることができる。この際、格子の交点Cを認識する認識装置を設けておき、この認識装置の出力に基づきエッチング速度或いは走査速度を可変する構成としてもよい。尚、ノズル24aから照射されるプラズマのXY方向のおける断面積は、被処理基体となるウェハ2の面積よりも小さいことが必要である。
【0062】
ここで再び図1に戻り、半導体素子分離処理の説明を続ける。
上記したハーフカット3を形成するためのエッチング工程が終了すると、O2プラズマ等によりアッシングを行ない、レジスト層8を除去する。その後、ウェハ2を上下反対に位置させた上で、ウェハ2をバックグラインドテープ4に貼着する。ウェハ2は、図示しない粘着材によりバックグラインドテープ4に貼り付けられる。このバックグラインドテープ4に貼り付けられた状態において、ウェハ2の表面2aは図中下部に位置し、ウェハ2の裏面2bは図中上部に位置した状態となる。
【0063】
上記のようにウェハ2がバックグラインドテープ4に装着されると、ウェハ2はバックグラインド装置に装着され、図1(D)に示されるように、ウェハ2の裏面2bに対し機械的な研磨処理が実施される(研磨工程)。前記したように、ウェハ2は750μm程度の厚みを有しており、このままではウェハ2から形成される半導体素子12の厚みが厚くなってしまう。
【0064】
このため、ウェハ2の裏面2b(回路形成面と反対側の面)を研磨することによりウェハ2の厚みを薄くし、半導体素子12の薄型化を図る。このような研磨をバックグラインドと称する。
【0065】
本実施例における研磨工程では、約600〜730μm程度の研磨処理が実施されるが、本実施例ではウェハ2の裏面2bを機械的に研磨するため、エッチングに比べて短時間でウェハ2の裏面2bを所定の厚さに研磨することができる。また、研磨工程では、図1(E)に示すように、ウェハ2は所定の厚み(例えば20〜150μm程度)となるまで研磨される。この際、バックグラインドテープ4は回路形成面を保護する機能を奏する。
【0066】
また、研磨工程では、ウェハ2の厚みを半導体素子12の厚さまでは研磨せず、所定の厚みだけ大きい厚さに止めておく。これにより、ハーフカット3は裏面2bと連通することはなく、従って半導体素子12は残部5により繋がった状態となっている。尚、この残部5の厚さは、例えば10〜50μmに設定されている。
【0067】
上記した研磨工程が終了すると、続いて半導体素子12を所定の厚さまでエッチングする分離工程を実施する。この分離工程を実施することにより残部5は除去され、よって図1(F)に示されるように、ウェハ2は個々の半導体素子12に分離される。
【0068】
この分離工程では、ウェハ2の裏面2b側からエッチングによりウェハ2を半導体素子12に分離するため、研磨工程においてウェハ2の裏面2bに発生する微小なクラック,チッピング,及び応力を除去することができる。
即ち、研磨工程では、前記したように機械的な研磨が実施されるため、研磨速度は向上できるものの、ウェハ2の裏面2bに上記の微小なクラック等が発生するおそれがある。これをそのまま残した状態でウェハ2を半導体素子12に分離すると、半導体素子12が経時的に損傷し、また所定の動作ができなくなるおそれがある。
【0069】
そこで本実施例では、上記したように研磨工程においてウェハ2の厚みを半導体素子12の厚さまでは研磨せず、所定の厚みだけ大きい厚さに止めておき、分離工程において半導体素子12の所定厚さまでエッチングする構成としている。これにより、微小なクラック等が発生している層は、エッチング処理により除去される。エッチング処理は、機械加工と異なり処理時にクラック等が発生するようなことはない。よって、分離された半導体素子12にクラック等が残存することはなく、信頼性の高い半導体素子12を形成することができる。
【0070】
尚、分離工程で用いるエッチング方法としては、ドライエッチングを用いてもよく、またウェットエッチングでもよいが、プラズマエッチングを用いることが好ましい。また、プラズマエッチングは、一括プラズマエッチングでもよく、パーシャルプラズマエッチングを用いることとしてもよい。更に、化学的機械的研磨(CMP)を用いることも可能である。このいずれの方法を用いても、上記したウェハ2に発生する微小なクラック等を除去することができる。
【0071】
上記したように本実施例に係る半導体素子分離方法によれば、エッチングによりハーフカット3を形成するため、従来のハーフカットを機械的に形成する場合に必然的に発生していたウェハ片の発生を防止することができる。よって、従来のようにウェハ片がバックグラインドテープ4(グラインダ用保護テープ)とウェハ2との間に侵入してしまうことはなくなり、半導体素子12の分離歩留りの向上を図ることができる。
【0072】
また、エッチングによりハーフカット3を形成することにより、従来のダイシングソーによりハーフカットを実施する場合に比べてハーフカット3の幅を狭くできる。具体的には、ダイシングソーの幅は80μm〜100μm程度であるため、従来ではダイシングラインに沿った100μm程度の幅の領域が除去される。これに対して本実施例では、エッチングによりハーフカット3を形成するため、その幅はエッチング可能な幅である10μm〜20μm程度となる。
【0073】
したがって、半導体素子12を分離するために使用される領域の面積(すなわち半導体素子を形成することができない領域の面積)は、従来のダイシングに比較して5分の1から10分の1程度となり、一枚のウェハから作られる半導体素子の数を約15パーセント程度増やすことができる。
【0074】
また、エッチングによる半導体素子12の分離によれば、ダイシングの際にチッピングが生じる可能性がある禁止領域を設ける必要がない。すなわち、分離される半導体素子12の周囲に禁止領域を設ける必要がなく、分離された半導体素子12の表面全体にわたって回路が形成されていてもよい。したがって、従来のように禁止領域を設ける必要がないため、半導体素子12の有効面積を増大することができる。
【0075】
【発明の効果】
上述の如く本発明によれば、ハーフカットをエッチングにより行なうことによりウェハ片の発生を防止することができ、よってウェハ片がテープ材とウェハとの間に侵入することがなくなるため、半導体素子の分離歩留りの向上を図ることができる。
【0076】
また、エッチングによりハーフカットを形成することにより、ハーフカットの幅を狭くできると共にカーフロスを少なくできるため、1枚のウェハから採れる半導体素子数を増大させることができる。
【0077】
また、研磨時において機械加工を実施することにより発生する微小なクラック等が発生している層は、エッチングまたは化学的機械的研磨により除去されるため、信頼性の高い半導体素子を形成することができる。
【0078】
また交点においてノズルの走査が2回実施されても、この交点におけるハーフカットの深さを他の位置におけるハーフカットの深さと同一の深さとすることができる。
【0079】
更に、エッチングを実施する前に半導体素子の形成領域をレジストで覆うため、半導体素子の回路にダメージが発生することを防止することができる。
【図面の簡単な説明】
【図1】本発明の一実施例である半導体素子分離方法を説明するための工程を示す図である。
【図2】本発明の一実施例である半導体素子分離方法により分離されるウェハの平面図である。
【図3】本発明の一実施例である半導体素子分離方法に用いられる半導体素子分離装置の構成図である。
【符号の説明】
2 ウェハ
2a 表面
2b 裏面
3 溝
4 バックグラインドテープ
5 残部
7 ダイシングライン
8 レジスト層
12 半導体素子
20 半導体素子分離装置
22 チャンバ22
24 処理ガス導入管
24a ノズル
26 マグネトロン
28 XYZテーブル
30 駆動部

Claims (8)

  1. 複数の半導体素子が形成されたウェハを個々の半導体素子に分離する半導体素子分離方法であって、
    前記ウェハ上を相対的に格子状に走査するノズルからプラズマを照射することにより、回路が形成された前記ウェハの表面側から、前記半導体素子を分離する分離位置をパーシャルプラズマエッチングしてハーフカットを形成するエッチング工程と、
    前記ウェハの表面側にテープ材を貼着した後、前記ウェハの裏面を前記ハーフカットと連通しないよう残部を残し所定の厚さだけ機械的に研磨する研磨工程と、
    前記ウェハの裏面側からエッチングまたは化学的機械的研磨を施すことにより、前記ウェハを個々の半導体素子に分離する分離工程とを有し、
    前記エッチング工程で前記ウェハを格子状にハーフカットする際、格子の交点でのハーフカット深さと、該格子の交点以外の位置におけるハーフカット深さが略同一深さとなるよう前記パーシャルプラズマエッチングの条件を調整したことを特徴とする半導体素子分離方法。
  2. 請求項1記載の半導体素子分離方法であって、
    前記エッチング工程で、パーシャルプラズマエッチングのノズルが前記ウェハを格子状に走査することによりハーフカットを行ない、かつ前記格子の交点においては前記走査の走査速度を他の位置における走査速度の略倍の走査速度としたことを特徴とする半導体素子分離方法。
  3. 請求項1記載の半導体素子分離方法であって、
    前記エッチング工程で、パーシャルプラズマエッチングのノズルが前記ウェハを格子状に走査することによりハーフカットを行ない、
    かつ、前記格子の交点においては、他の位置におけるハーフカットの深さと略同じ深さになるように前記パーシャルプラズマエッチングの条件を選定することを特徴とする半導体素子分離方法。
  4. 請求項3記載の半導体素子分離方法であって、
    前記交点における前記パーシャルプラズマエッチングの条件は、前記交点におけるエッチング速度を、前記他の位置におけるエッチング速度の略半分にするよう選定してなることを特徴とする半導体素子分離方法。
  5. 請求項1乃至4のうちいずれか1項に記載の半導体素子分離方法であって、
    前記分離工程に、
    プラズマエッチング、ウェットエッチング、及びパーシャルプラズマエッチングのうちのいずれかを用いることを特徴とする半導体素子分離方法。
  6. 請求項1乃至5のうちいずれか1項に記載の半導体素子分離方法であって、
    前記エッチング工程を実施する前に、前記ウェハの表面に、前記半導体素子の形成領域を覆うレジストを配設するレジスト工程を有することを特徴とする半導体素子分離方法。
  7. 複数の半導体素子が形成されたウェハを個々の半導体素子に分離する半導体素子分離装置であって、
    前記ウェハ上を相対的に格子状に走査するノズルからプラズマを照射することにより、回路が形成された前記ウェハの表面側から、前記半導体素子を分離する分離位置をパーシャルプラズマエッチングしてハーフカットを形成する手段と、
    該ハーフカットを形成する際、格子の交点でのハーフカット深さと、該格子の交点以外の位置におけるハーフカット深さが略同一深さとなるよう前記パーシャルプラズマエッチングの条件を調整する手段と、
    前記ウェハの表面側にテープ材を貼着した後、前記ウェハの裏面を前記ハーフカットと連通しないよう残部を残し所定の厚さだけ機械的に研磨された前記ウェハを、
    前記ウェハの裏面側からエッチングまたは化学的機械的研磨を実施することにより、前記ウェハを個々の半導体素子に分離する手段と
    を有することを特徴とする半導体素子分離装置。
  8. 請求項7記載の半導体素子分離装置であって、
    前記ウェハ上の交点の位置を予め認識するための認識装置と、
    前記認識装置で認識した交点位置においてパーシャルプラズマエッチングの走査速度を略倍にするための駆動装置を備えたことを特徴とする半導体素子分離装置。
JP2001380491A 2001-12-13 2001-12-13 半導体素子分離方法及び半導体素子分離装置 Expired - Fee Related JP3910843B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001380491A JP3910843B2 (ja) 2001-12-13 2001-12-13 半導体素子分離方法及び半導体素子分離装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001380491A JP3910843B2 (ja) 2001-12-13 2001-12-13 半導体素子分離方法及び半導体素子分離装置

Publications (2)

Publication Number Publication Date
JP2003179005A JP2003179005A (ja) 2003-06-27
JP3910843B2 true JP3910843B2 (ja) 2007-04-25

Family

ID=19187179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001380491A Expired - Fee Related JP3910843B2 (ja) 2001-12-13 2001-12-13 半導体素子分離方法及び半導体素子分離装置

Country Status (1)

Country Link
JP (1) JP3910843B2 (ja)

Families Citing this family (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4234630B2 (ja) * 2003-05-29 2009-03-04 古河電気工業株式会社 貫通構造を有する薄膜化回路基板の製造方法と保護用粘着テープ
JP2006253402A (ja) * 2005-03-10 2006-09-21 Nec Electronics Corp 半導体装置の製造方法
JP4731244B2 (ja) * 2005-08-11 2011-07-20 株式会社ディスコ ウエーハの分割方法
JP2008134694A (ja) 2006-11-27 2008-06-12 Philtech Inc Rfパウダーの付加方法およびrfパウダー付加基体シート
JP2008134695A (ja) 2006-11-27 2008-06-12 Philtech Inc 基体データ管理システム
JP2008135446A (ja) 2006-11-27 2008-06-12 Philtech Inc Rfパウダーの製造方法
JP2008135951A (ja) 2006-11-28 2008-06-12 Philtech Inc Rfパウダー粒子、rfパウダー、およびrfパウダー含有基体
JP2008134815A (ja) 2006-11-28 2008-06-12 Philtech Inc Rfパウダーの提供方法およびrfパウダー含有液
JP2008134816A (ja) 2006-11-28 2008-06-12 Philtech Inc Rfパウダー粒子、rfパウダー、およびrfパウダーの励起方法
US8237622B2 (en) 2006-12-28 2012-08-07 Philtech Inc. Base sheet
KR100927778B1 (ko) 2008-03-05 2009-11-20 앰코 테크놀로지 코리아 주식회사 반도체 패키지 제조 방법
GB2459302A (en) * 2008-04-18 2009-10-21 Xsil Technology Ltd A method of dicing wafers to give high die strength
US8154456B2 (en) 2008-05-22 2012-04-10 Philtech Inc. RF powder-containing base
US8188924B2 (en) 2008-05-22 2012-05-29 Philtech Inc. RF powder and method for manufacturing the same
US8642448B2 (en) 2010-06-22 2014-02-04 Applied Materials, Inc. Wafer dicing using femtosecond-based laser and plasma etch
CN102376827A (zh) * 2010-08-13 2012-03-14 大连美明外延片科技有限公司 AlGaInP发光二极管的制备方法
US9129904B2 (en) 2011-06-15 2015-09-08 Applied Materials, Inc. Wafer dicing using pulse train laser with multiple-pulse bursts and plasma etch
US8557683B2 (en) 2011-06-15 2013-10-15 Applied Materials, Inc. Multi-step and asymmetrically shaped laser beam scribing
US8759197B2 (en) 2011-06-15 2014-06-24 Applied Materials, Inc. Multi-step and asymmetrically shaped laser beam scribing
US9029242B2 (en) 2011-06-15 2015-05-12 Applied Materials, Inc. Damage isolation by shaped beam delivery in laser scribing process
US9126285B2 (en) 2011-06-15 2015-09-08 Applied Materials, Inc. Laser and plasma etch wafer dicing using physically-removable mask
US8557682B2 (en) 2011-06-15 2013-10-15 Applied Materials, Inc. Multi-layer mask for substrate dicing by laser and plasma etch
US8598016B2 (en) 2011-06-15 2013-12-03 Applied Materials, Inc. In-situ deposited mask layer for device singulation by laser scribing and plasma etch
US8507363B2 (en) 2011-06-15 2013-08-13 Applied Materials, Inc. Laser and plasma etch wafer dicing using water-soluble die attach film
US8912077B2 (en) 2011-06-15 2014-12-16 Applied Materials, Inc. Hybrid laser and plasma etch wafer dicing using substrate carrier
US8703581B2 (en) 2011-06-15 2014-04-22 Applied Materials, Inc. Water soluble mask for substrate dicing by laser and plasma etch
US8951819B2 (en) 2011-07-11 2015-02-10 Applied Materials, Inc. Wafer dicing using hybrid split-beam laser scribing process with plasma etch
US8652940B2 (en) 2012-04-10 2014-02-18 Applied Materials, Inc. Wafer dicing used hybrid multi-step laser scribing process with plasma etch
US8946057B2 (en) 2012-04-24 2015-02-03 Applied Materials, Inc. Laser and plasma etch wafer dicing using UV-curable adhesive film
US8969177B2 (en) 2012-06-29 2015-03-03 Applied Materials, Inc. Laser and plasma etch wafer dicing with a double sided UV-curable adhesive film
US9048309B2 (en) 2012-07-10 2015-06-02 Applied Materials, Inc. Uniform masking for wafer dicing using laser and plasma etch
US8993414B2 (en) 2012-07-13 2015-03-31 Applied Materials, Inc. Laser scribing and plasma etch for high die break strength and clean sidewall
US8845854B2 (en) 2012-07-13 2014-09-30 Applied Materials, Inc. Laser, plasma etch, and backside grind process for wafer dicing
US8940619B2 (en) 2012-07-13 2015-01-27 Applied Materials, Inc. Method of diced wafer transportation
US8859397B2 (en) 2012-07-13 2014-10-14 Applied Materials, Inc. Method of coating water soluble mask for laser scribing and plasma etch
US9159574B2 (en) 2012-08-27 2015-10-13 Applied Materials, Inc. Method of silicon etch for trench sidewall smoothing
US9252057B2 (en) 2012-10-17 2016-02-02 Applied Materials, Inc. Laser and plasma etch wafer dicing with partial pre-curing of UV release dicing tape for film frame wafer application
US8975162B2 (en) 2012-12-20 2015-03-10 Applied Materials, Inc. Wafer dicing from wafer backside
US8980726B2 (en) 2013-01-25 2015-03-17 Applied Materials, Inc. Substrate dicing by laser ablation and plasma etch damage removal for ultra-thin wafers
US9236305B2 (en) 2013-01-25 2016-01-12 Applied Materials, Inc. Wafer dicing with etch chamber shield ring for film frame wafer applications
WO2014159464A1 (en) 2013-03-14 2014-10-02 Applied Materials, Inc. Multi-layer mask including non-photodefinable laser energy absorbing layer for substrate dicing by laser and plasma etch
JP6084883B2 (ja) * 2013-04-08 2017-02-22 株式会社ディスコ 円形板状物の分割方法
US8883614B1 (en) 2013-05-22 2014-11-11 Applied Materials, Inc. Wafer dicing with wide kerf by laser scribing and plasma etching hybrid approach
US9105710B2 (en) 2013-08-30 2015-08-11 Applied Materials, Inc. Wafer dicing method for improving die packaging quality
US9224650B2 (en) 2013-09-19 2015-12-29 Applied Materials, Inc. Wafer dicing from wafer backside and front side
US9460966B2 (en) 2013-10-10 2016-10-04 Applied Materials, Inc. Method and apparatus for dicing wafers having thick passivation polymer layer
US9041198B2 (en) 2013-10-22 2015-05-26 Applied Materials, Inc. Maskless hybrid laser scribing and plasma etching wafer dicing process
JP6302644B2 (ja) * 2013-11-11 2018-03-28 株式会社ディスコ ウェーハの加工方法
US9312177B2 (en) 2013-12-06 2016-04-12 Applied Materials, Inc. Screen print mask for laser scribe and plasma etch wafer dicing process
US9299614B2 (en) 2013-12-10 2016-03-29 Applied Materials, Inc. Method and carrier for dicing a wafer
US9293304B2 (en) 2013-12-17 2016-03-22 Applied Materials, Inc. Plasma thermal shield for heat dissipation in plasma chamber
US9018079B1 (en) 2014-01-29 2015-04-28 Applied Materials, Inc. Wafer dicing using hybrid laser scribing and plasma etch approach with intermediate reactive post mask-opening clean
US9012305B1 (en) 2014-01-29 2015-04-21 Applied Materials, Inc. Wafer dicing using hybrid laser scribing and plasma etch approach with intermediate non-reactive post mask-opening clean
US9299611B2 (en) 2014-01-29 2016-03-29 Applied Materials, Inc. Method of wafer dicing using hybrid laser scribing and plasma etch approach with mask plasma treatment for improved mask etch resistance
US8927393B1 (en) 2014-01-29 2015-01-06 Applied Materials, Inc. Water soluble mask formation by dry film vacuum lamination for laser and plasma dicing
US8991329B1 (en) 2014-01-31 2015-03-31 Applied Materials, Inc. Wafer coating
US9236284B2 (en) 2014-01-31 2016-01-12 Applied Materials, Inc. Cooled tape frame lift and low contact shadow ring for plasma heat isolation
US9130030B1 (en) 2014-03-07 2015-09-08 Applied Materials, Inc. Baking tool for improved wafer coating process
US20150255349A1 (en) 2014-03-07 2015-09-10 JAMES Matthew HOLDEN Approaches for cleaning a wafer during hybrid laser scribing and plasma etching wafer dicing processes
US9275902B2 (en) 2014-03-26 2016-03-01 Applied Materials, Inc. Dicing processes for thin wafers with bumps on wafer backside
US9076860B1 (en) 2014-04-04 2015-07-07 Applied Materials, Inc. Residue removal from singulated die sidewall
US8975163B1 (en) 2014-04-10 2015-03-10 Applied Materials, Inc. Laser-dominated laser scribing and plasma etch hybrid wafer dicing
US8932939B1 (en) 2014-04-14 2015-01-13 Applied Materials, Inc. Water soluble mask formation by dry film lamination
US8912078B1 (en) 2014-04-16 2014-12-16 Applied Materials, Inc. Dicing wafers having solder bumps on wafer backside
US8999816B1 (en) 2014-04-18 2015-04-07 Applied Materials, Inc. Pre-patterned dry laminate mask for wafer dicing processes
US8912075B1 (en) 2014-04-29 2014-12-16 Applied Materials, Inc. Wafer edge warp supression for thin wafer supported by tape frame
US9159621B1 (en) 2014-04-29 2015-10-13 Applied Materials, Inc. Dicing tape protection for wafer dicing using laser scribe process
US8980727B1 (en) 2014-05-07 2015-03-17 Applied Materials, Inc. Substrate patterning using hybrid laser scribing and plasma etching processing schemes
US9112050B1 (en) 2014-05-13 2015-08-18 Applied Materials, Inc. Dicing tape thermal management by wafer frame support ring cooling during plasma dicing
US9034771B1 (en) 2014-05-23 2015-05-19 Applied Materials, Inc. Cooling pedestal for dicing tape thermal management during plasma dicing
US9142459B1 (en) 2014-06-30 2015-09-22 Applied Materials, Inc. Wafer dicing using hybrid laser scribing and plasma etch approach with mask application by vacuum lamination
US9093518B1 (en) 2014-06-30 2015-07-28 Applied Materials, Inc. Singulation of wafers having wafer-level underfill
US9165832B1 (en) 2014-06-30 2015-10-20 Applied Materials, Inc. Method of die singulation using laser ablation and induction of internal defects with a laser
US9130057B1 (en) 2014-06-30 2015-09-08 Applied Materials, Inc. Hybrid dicing process using a blade and laser
US9349648B2 (en) 2014-07-22 2016-05-24 Applied Materials, Inc. Hybrid wafer dicing approach using a rectangular shaped two-dimensional top hat laser beam profile or a linear shaped one-dimensional top hat laser beam profile laser scribing process and plasma etch process
US9196498B1 (en) 2014-08-12 2015-11-24 Applied Materials, Inc. Stationary actively-cooled shadow ring for heat dissipation in plasma chamber
US9117868B1 (en) 2014-08-12 2015-08-25 Applied Materials, Inc. Bipolar electrostatic chuck for dicing tape thermal management during plasma dicing
US9281244B1 (en) 2014-09-18 2016-03-08 Applied Materials, Inc. Hybrid wafer dicing approach using an adaptive optics-controlled laser scribing process and plasma etch process
US9177861B1 (en) 2014-09-19 2015-11-03 Applied Materials, Inc. Hybrid wafer dicing approach using laser scribing process based on an elliptical laser beam profile or a spatio-temporal controlled laser beam profile
US11195756B2 (en) 2014-09-19 2021-12-07 Applied Materials, Inc. Proximity contact cover ring for plasma dicing
US9196536B1 (en) 2014-09-25 2015-11-24 Applied Materials, Inc. Hybrid wafer dicing approach using a phase modulated laser beam profile laser scribing process and plasma etch process
US9130056B1 (en) 2014-10-03 2015-09-08 Applied Materials, Inc. Bi-layer wafer-level underfill mask for wafer dicing and approaches for performing wafer dicing
US9245803B1 (en) 2014-10-17 2016-01-26 Applied Materials, Inc. Hybrid wafer dicing approach using a bessel beam shaper laser scribing process and plasma etch process
US10692765B2 (en) 2014-11-07 2020-06-23 Applied Materials, Inc. Transfer arm for film frame substrate handling during plasma singulation of wafers
US9330977B1 (en) 2015-01-05 2016-05-03 Applied Materials, Inc. Hybrid wafer dicing approach using a galvo scanner and linear stage hybrid motion laser scribing process and plasma etch process
US9159624B1 (en) 2015-01-05 2015-10-13 Applied Materials, Inc. Vacuum lamination of polymeric dry films for wafer dicing using hybrid laser scribing and plasma etch approach
US9355907B1 (en) 2015-01-05 2016-05-31 Applied Materials, Inc. Hybrid wafer dicing approach using a line shaped laser beam profile laser scribing process and plasma etch process
JP6738591B2 (ja) * 2015-03-13 2020-08-12 古河電気工業株式会社 半導体ウェハの処理方法、半導体チップおよび表面保護テープ
US9601375B2 (en) 2015-04-27 2017-03-21 Applied Materials, Inc. UV-cure pre-treatment of carrier film for wafer dicing using hybrid laser scribing and plasma etch approach
US9478455B1 (en) 2015-06-12 2016-10-25 Applied Materials, Inc. Thermal pyrolytic graphite shadow ring assembly for heat dissipation in plasma chamber
US9721839B2 (en) 2015-06-12 2017-08-01 Applied Materials, Inc. Etch-resistant water soluble mask for hybrid wafer dicing using laser scribing and plasma etch
US9679785B2 (en) * 2015-07-27 2017-06-13 Semtech Corporation Semiconductor device and method of encapsulating semiconductor die
US9972575B2 (en) 2016-03-03 2018-05-15 Applied Materials, Inc. Hybrid wafer dicing approach using a split beam laser scribing process and plasma etch process
US9852997B2 (en) 2016-03-25 2017-12-26 Applied Materials, Inc. Hybrid wafer dicing approach using a rotating beam laser scribing process and plasma etch process
US9793132B1 (en) 2016-05-13 2017-10-17 Applied Materials, Inc. Etch mask for hybrid laser scribing and plasma etch wafer singulation process
US11158540B2 (en) 2017-05-26 2021-10-26 Applied Materials, Inc. Light-absorbing mask for hybrid laser scribing and plasma etch wafer singulation process
US10363629B2 (en) 2017-06-01 2019-07-30 Applied Materials, Inc. Mitigation of particle contamination for wafer dicing processes
KR102030409B1 (ko) * 2017-07-28 2019-10-10 (주) 예스티 웨이퍼 다이싱 방법 및 웨이퍼를 다이싱하기 위한 시스템
US10535561B2 (en) 2018-03-12 2020-01-14 Applied Materials, Inc. Hybrid wafer dicing approach using a multiple pass laser scribing process and plasma etch process
US11355394B2 (en) 2018-09-13 2022-06-07 Applied Materials, Inc. Wafer dicing using hybrid laser scribing and plasma etch approach with intermediate breakthrough treatment
JP7146931B2 (ja) * 2018-09-20 2022-10-04 三井化学東セロ株式会社 電子装置の製造方法
JP7213477B2 (ja) * 2019-05-29 2023-01-27 パナソニックIpマネジメント株式会社 素子チップの製造方法
US11011424B2 (en) 2019-08-06 2021-05-18 Applied Materials, Inc. Hybrid wafer dicing approach using a spatially multi-focused laser beam laser scribing process and plasma etch process
US11342226B2 (en) 2019-08-13 2022-05-24 Applied Materials, Inc. Hybrid wafer dicing approach using an actively-focused laser beam laser scribing process and plasma etch process
US10903121B1 (en) 2019-08-14 2021-01-26 Applied Materials, Inc. Hybrid wafer dicing approach using a uniform rotating beam laser scribing process and plasma etch process
US11600492B2 (en) 2019-12-10 2023-03-07 Applied Materials, Inc. Electrostatic chuck with reduced current leakage for hybrid laser scribing and plasma etch wafer singulation process
US11211247B2 (en) 2020-01-30 2021-12-28 Applied Materials, Inc. Water soluble organic-inorganic hybrid mask formulations and their applications

Also Published As

Publication number Publication date
JP2003179005A (ja) 2003-06-27

Similar Documents

Publication Publication Date Title
JP3910843B2 (ja) 半導体素子分離方法及び半導体素子分離装置
JP4288229B2 (ja) 半導体チップの製造方法
CN1269192C (zh) 半导体器件的制造方法和半导体器件的制造设备
JP5591181B2 (ja) 半導体チップの製造方法
US7767554B2 (en) Method of manufacturing semicondictor chip
CN109309047B (zh) 处理衬底的方法
JP2002093752A (ja) 半導体素子分離方法及び半導体素子分離装置
US8148240B2 (en) Method of manufacturing semiconductor chips
KR20060099435A (ko) 반도체장치의 제조방법
JP2005504445A (ja) 基板、特に半導体ウェハの加工
US20090186465A1 (en) Wafer dividing method
JP2010182753A (ja) ウエーハの分割方法
JP2003197569A (ja) 半導体チップの製造方法
CN109979879B (zh) 半导体芯片制造方法
TWI556303B (zh) 分離晶圓基材上表層之複數個半導體元件晶粒方法
JPH0467650A (ja) 半導体装置の製造方法
JP2010166371A (ja) 圧電デバイスの製造方法
JP6991673B2 (ja) 剥離方法
JP2003124147A (ja) 半導体装置の製造方法
JP2020092191A (ja) デバイスチップの製造方法
TWI771893B (zh) 陣列式晶片的切割方法
JP2006294840A (ja) 半導体固片の仕上げ加工方法
JP2020102588A (ja) ウェーハの加工方法
JP2001196332A (ja) レーザ光を用いた硬質非金属膜の切断方法
JP4288092B2 (ja) 厚さが薄いウエハからチップを製造する方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070125

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees