JP3909791B2 - Transfer method of transparent conductive film - Google Patents

Transfer method of transparent conductive film Download PDF

Info

Publication number
JP3909791B2
JP3909791B2 JP11031099A JP11031099A JP3909791B2 JP 3909791 B2 JP3909791 B2 JP 3909791B2 JP 11031099 A JP11031099 A JP 11031099A JP 11031099 A JP11031099 A JP 11031099A JP 3909791 B2 JP3909791 B2 JP 3909791B2
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
substrate
layer
adhesive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11031099A
Other languages
Japanese (ja)
Other versions
JP2000306441A (en
Inventor
一郎 別宮
忠宏 古川
明良 村上
和己 新井
尚 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyodo Printing Co Ltd
Original Assignee
Kyodo Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyodo Printing Co Ltd filed Critical Kyodo Printing Co Ltd
Priority to JP11031099A priority Critical patent/JP3909791B2/en
Priority to US09/548,952 priority patent/US6413693B1/en
Priority to EP00303238A priority patent/EP1046945B1/en
Priority to DE60040361T priority patent/DE60040361D1/en
Priority to TW089107242A priority patent/TW514607B/en
Priority to KR10-2000-0020243A priority patent/KR100382824B1/en
Publication of JP2000306441A publication Critical patent/JP2000306441A/en
Priority to US10/027,289 priority patent/US6830864B2/en
Application granted granted Critical
Publication of JP3909791B2 publication Critical patent/JP3909791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables

Description

【0001】
【発明の属する技術分野】
この発明は、プラスチック材料からなるシート基材の一面に、転写によって透明導電膜を形成する技術であり、転写すべき透明導電膜を、プラスチック材料に比べて耐熱性にすぐれた基板側に形成しておく転写技術に関する。
【0002】
【発明の背景】
この種の転写技術は、液晶表示装置などの光学的な表示装置のための電極あるいは配線となる透明導電膜を形成する技術の一つとして知られている。この転写による技術は、基本的に、一時的に透明導電膜を支持する仮の基板上に、剥離層を介して透明導電膜を形成しておき、その透明導電膜を接着剤の層を介して別のシート基材に転写するという方法である。その基本については、たとえば特開平2−174011の公報が示している。なお、接着剤層については、一般に、仮の基板の透明導電膜上に形成するが、場合によっては、別のシート基材の側に形成しておくこともできる。
【0003】
転写すべき透明導電膜としては、ITO(インジウム−チン−オキサイド)やSnO2などの金属酸化物を用いるが、それらの材料は、高温で成膜するほど低抵抗を示す。実用上、たとえば150℃以上の基板温度で比抵抗3.0×10‐4Ωcm以下の特性が望まれる。そこで、その上に透明導電膜を形成する仮の基板としては、最終的に透明導電膜を支持する別のシート基材に比べて耐熱性にすぐれたものを選択すべきである。特に、別のシート基材として、プラスチック材料を用いる場合には、それが肝要である。その点から、特開平11−24081号の公報は、剥離層の材料としてポリイミド樹脂を用い、しかも、仮の基板として、ポリイミド樹脂を有効に塗膜化するため、分子内に弗素原子および珪素原子を含まず、かつ剥離層のポリイミドの焼成温度を超えるガラス転移温度をもつ耐熱性ポリマーを用いる技術を示している。
【0004】
発明者らは、そうした転写によって透明導電膜を形成する技術について、いろいろと実験し検討したところ、仮の基板の側から透明導電膜を別のシート基材の側に転写する際、その透明導電膜にクラックが発生するおそれがあることに着目した。その原因を探ったところ、透明導電膜が薄く比較的にもろい性質をもち、それが転写時に加わる外力に耐えきれないことに起因していることが判明した。外力の主因は、透明導電膜をシート基材の側に接着するための接着剤の硬化収縮に伴う応力であり、それが転写時に仮の基板を引き剥がす際に透明導電膜に作用することになる。また、転写後にそうした応力が残ると、高温、高湿等のストレスがかかった場合にクラックが発生しやすくなる。このような接着剤の側から加わる応力に対し、透明導電膜を保護するという考え方は、前記した公報を含め今までは何も考慮されていなかった。そして特に、そうした応力に起因する問題は、耐熱性の仮の基板として、セラミックス、ガラス、金属(42アロイ、銅合金等の熱膨張の小さい金属材料が好適である)の単体、あるいはそれらの複数を積層し複合したものなど、プラスチック材料であるシート基材に比べて大きな剛性をもつものを用いるときに顕著である。また、これらの仮の基板は、パターン形成を前提にすると、温度や湿度に対する寸法安定性が重要であり、プラスチック材料は望ましい材料ではない。
【0005】
【発明の解決すべき課題】
したがって、この発明は、転写時の外力から透明導電膜を有効に保護する技術を提供することを第1の目的とする。
また、この発明は、外力の主因となる接着剤の層の厚さを有効に制御することができる技術を提供することを他の目的とする。
【0006】
【課題を解決するための手段】
この発明では、耐熱性にすぐれた基板の側に予め形成した透明導電膜を、プラスチック材料からなるシート基材の側に転写するに際し、転写すべき透明導電膜を、耐熱性の基板上、転写時に剥離部分となる剥離層と、前記したクラックの発生から保護するための保護膜とでサンドイッチ状にはさみ込んだ形態にする。透明導電膜は、転写時、剥離層と保護膜とによって保護されているため、特に接着剤層の側の保護膜が前記した外力を吸収あるいは緩衝するように作用し、クラックの発生を有効に防ぐことができる。
【0007】
透明導電膜をサンドイッチ状にはさむ一方の剥離層としては、透明導電膜の材料であるITO等を高温で成膜可能なだけの耐熱性、そうしたITO等とのしっかりした密着性、透明導電膜をパターニングする際のエッチングプロセス等に対する耐性、さらには、仮の基板との適度な密着性(剥離するまでにしっかりと仮の基板に密着し、しかも、他層にダメージを与えずに剥離可能であるような密着性であり、たとえば、90°剥離で数g〜100g/cm程度の引き剥がし力が必要なだけの密着性)をもつことが必要である。この剥離層として好適な材料はポリイミドである。前記した特開平11−24081号の公報の7ページの比較例1では、ポリイミド膜−ガラス基板の場合、剥離しにくいという記載があるが、実験によれば、仮の基板がガラスであっても特別な処理を行うことなくポリイミド膜は剥離可能である。しかし、ポリイミドも種類によってガラスとの密着性を異にする。ピロメリット酸無水物と4,4’−ジアミノジフェニルエーテルから合成される第1のものは、表面にSiO2がコートされたガラスとの密着性はそれほど良くなく、剥離層の材料として適している。それに対し、ベンゾフェノンテトラカルボン酸無水物、あるいはピロメリット酸無水物と3,3’−ジアミノジフェニルスルホンから合成される第2のポリイミドは、第1のものよりもガラスとの密着性が良い。しかも、ポリイミドとガラスとの密着性はベークをすると良くなり、時間の経過とともに次第に低下し、一定のところで変化しなくなる。しかし、そのように密着性が低下したものを再びベークすると、密着性は元に戻る。第1のポリイミドはベーク直後でもガラスから剥離することができるが、数日すると水洗でも剥がれてしまうほど密着性が低下する(90°剥離で1g/cm未満)。それに対し、第2のポリイミドはベーク直後ではガラスから剥がすことができないが、時間が経過すれば剥がすことができるようになる。こうしたポリイミドの密着性の変化は、ポリイミドの吸湿が原因していると考えられる。したがって、ポリイミドのそうした特性を考慮しつつ、ポリイミドを剥離層として用いることができる。また、たとえば密着性の良くない第1のポリイミドにシランカップリング剤を添加することによって、ガラスとの密着性を最適化することができる。
【0008】
一方、透明導電膜をサンドイッチ状にはさむ他方の保護膜は、剥離層と相俟って透明導電膜を保護するための膜であり、アルキッド、アクリル、ウレタン等の有機系の樹脂のほか、無機系、あるいは無機系と有機系とのハイブリッド樹脂などを用いることできる。無機系の材料として、たとえばテトラアルコキシシランのアルコール溶液(コーティング溶液)があり、より厚く塗布する際には、これに有機成分を入れたコーティング溶液もある(たとえば、商品名セラメートC−533、ZRS−5PH/触媒化成)。剥離層が0.1〜2μm、透明導電膜が0.1〜0.4μmの厚さに対し、保護膜は0.5〜2μmの厚さであり、保護特性の点からすると、その硬さを鉛筆硬度(JIS K5401)がH以上、好ましくは2H以上に設定するのが良い。また、この保護膜の上にカラー表示のためのカラーフィルタ層を形成するときには、剥離層の除去に対しカラーフィルタ層および接着剤層を保護する機能をもたせるようにもすべきである。
【0009】
さらに、透明導電膜としては、前記したITOやSnO などの金属酸化物を用いることができ、特には、透明性および比抵抗などの特性面ですぐれたITOが好ましい。このITOなどは、スパッタ、イオンプレーティングあるいは電子ビーム蒸着などの公知の方法によって形成することができる。また、耐熱性の仮の基板としては、セラミックス、ガラス、金属の単体か、それらが複合された基板を広く適用することができるが、特にはガラス基板が好ましい。ガラスは耐熱性にすぐれるだけでなく、その上に透明導電膜やカラーフィルタ層などを正確に位置合わせしつつ形成することができるからである。そして、ガラスは、前記したように、剥離層の材料であるポリイミドとの関係からも好適な材料である。
【0010】
次に、透明導電膜をシート基材の側に接着するための接着剤層としては、熱をかけずに硬化する紫外線硬化型のものが好ましい。その中でもカチオン重合型のもの、たとえば、エポキシ系の紫外線硬化型接着剤が最適である。塗布の厚さは、2〜20μm程度であり、充分な接着強度を得ることができ、透過率を失わない薄さをもつ値に設定する。こうした接着剤層は、ラミネート時の押圧条件により膜厚分布に差が生じたり、脇から接着剤がはみ出したりする。そのため、接着剤層の部分に、その接着剤層の厚さを制御するためのスペーサ手段を設けるようにするのが良い。スペーサ手段としては、接着剤層の中に混入したスペーサ粒子、あるいは保護膜の上に形成したスペーサパターンなどを用いることができる。
【0011】
なお、プラスチック材料からなるシート基材は、シート(枚葉)、ロールのいずれの形態でも用いることができ、好ましい厚さは100〜700μmの範囲である。したがって、ここでいうシート基材は、いわゆるフィルムやシートを含むシート状の部材を包含する概念である。材料であるプラスチックとしては、ポリエーテルスルホン、ポリエステル、ポリカーボネート、塩化ビニール、ナイロン、ポリアリレート、アクリル、ポリイミド等を適用することができる。
【0012】
【実施例】
以下、添付の図面に示す実施例を参照しながら、この発明の内容をさらに具体的に説明する。
まず、図1に示すように、洗浄したガラス基板10を用意し、その一面に剥離層としての透明なポリイミド層20を塗布によって形成する。ガラス基板10の厚さは0.7〜1.1mm程度であり、全体として剛性をもっている。このガラス基板10は、その表面に転写すべき透明導電膜などを支持する基板であるため、良好な表面平滑性、たとえば暗室下5000Luxの明るさの反射光で目視により観察した時にキズや突起等が見えない程度の表面平滑性(基板表面の外観規格)をもっていることが望ましい。また、ポリイミド層20は、前記した第1のポリイミドに固形分比で0.1%のシランカップリング剤を添加したものであり、その厚さが0.1〜2μmである。勿論、このポリイミド層20については、塗布した後、加熱処理により硬化させる。ガラス基板10は、ポリイミド硬化のための加熱処理に充分に耐えうることは勿論である。
【0013】
次に、図2に示すように、そうしたガラス基板10のポリイミド層20上に、ITO膜を成膜した後、それをパターニングすることによって、透明導電膜30を形成する。ITO膜の成膜に当たってはガラス基板10の温度を150℃以上とし、前記したような比抵抗の低い膜を得る。そして、図3に示すように、ガラス基板10上の透明導電膜30を被うように、アクリル系の保護膜40を1〜2μmの厚さに形成する。
【0014】
この後、図4に示すように、保護膜40の上にイエロー、マゼンタ、シアンの色パターン50Y,50M,50Cを含むカラーフィルタ層50をフォトリソグラフィ法によって形成する。色パターン50Y,50M,50Cの材料として、染料あるいは顔料などの着色剤をポリイミド樹脂溶液に溶解あるいは分散させた公知の塗布材料を用いることができる(たとえば、特開平10−170716号)。各色パターンはストライプ形状であり、その幅は50〜200μmであり、隣り合う色パターンの間の距離は5〜20μmである。また、カラーフィルタ層50は、反射型のものであり、その厚さが0.2〜2μmである。この際、カラーフィルタ層50の各色パターン50Y,50M,50CおよびパターニングしたITO膜は、寸法安定性にすぐれたガラス基板10上で位置合わせを行っているので、パターニングや位置合わせの上で何ら問題が起こらない。
【0015】
さらに、図5に示すように、カラーフィルタ層50の上を全体的に被うように、接着剤層60を塗布によって形成する。接着剤層60としては、紫外線硬化型であり、カチオン重合型のエポキシ系の紫外線硬化型接着剤(旭電化工業株式会社製のUV硬化樹脂KR500)を用いる。塗布の厚さは、2〜20μm程度であり、充分な接着強度を得ることができ、透過率を失わない薄さをもつ値に設定する。このとき、接着剤層60の中に、スペーサ手段としてスペーサ粒子、たとえばベンゾグアナミンの4μm球形粒子(図示しない)を混入する。スペーサ粒子は、塗布すべき材料の中に予め添加しておき、基板10への塗布を行う。この際、接着剤は液状であり、スペーサ粒子の大きさよりやや厚めに塗膜の厚さをコントロールすることが望ましい。この状態でガラス基板10とプラスチックシートであるシート基材80をラミネートすると、膜厚が全面均一の接着剤層60を得ることができる。なお、スペーサ粒子の混入量としては、接着剤層60を形成した後で、面内分布量が40個/mm2程度となるよう調整するのが好ましい。ここで、接着剤層60のエポキシ樹脂は、光硬化によってたとえば数%程度の体積収縮を生じるが、スペーサ粒子はそうした変化が生じにくい。そのため、接着剤層60の体積収縮に伴ってスペーサ粒子の部分に不都合な変形や応力が生じ、ITO膜にクラックが生じることがある。これを避けるため、スペーサ粒子の粒子径は所定以下の大きさにすべきであり、たとえば5.5μm以下に設定するのが好ましい。スペーサ手段としては、スペーサ粒子のほか、図6に示すように、カラーフィルタ層50の各色パターン50Y,50M,50Cの間(この部分は、透明導電膜30のパターンがない部分でもある)に、島状あるいはストライプ状にパターニングしたスペーサパターン70を用いることもできる。スペーサパターン70は、不都合な変形や応力によって透明導電膜30に損傷を与えるようなことがない。また、スペーサパターン70は、黒色の色材を混入したポリイミド樹脂を利用して形成することができる。そうすれば、液晶表示をするとき、表示のコントラストを向上させるというメリットをも得る。
【0016】
この後、図7に示すように、接着剤層60の側に、ポリエーテルスルホン基板からなるシート基材80(厚さが100〜700μm)を配置し、透明導電膜30およびカラーフィルタ層50などをガラス基板10側からシート基材80側に転写する。この転写処理に際しては、シート基材80側から紫外線を照射するが、併せて、照射に伴う接着剤層60の側(硬化対象物)の温度上昇を積極的に抑え、できるだけ常温に近い温度にする。この転写時、特にダメージを受けやすい透明導電膜30は、剥離層としてのポリイミド膜20と保護膜40との間にサンドイッチされているため、接着剤層60の硬化および転写に伴う外力から有効に保護される。
【0017】
転写後、剥離層としてのポリイミド層20を除去する。それは、透明導電膜30と液晶表示のためのドライバーICとの電気的な接続を可能とするためでもあり、液晶駆動のための実効電圧の向上を図るためでもある。ポリイミド層20の除去については、ヒドラジン−エチレンジアミンを用いた湿式エッチングを用いる。この際、前記保護膜40は、このエッチャントから接着剤層60、カラーフィルタ層50を保護する。
【図面の簡単な説明】
【図1】剥離層を形成したガラス基板を示す断面図である。
【図2】ガラス基板上に透明導電膜を形成した状態を示す断面図である。
【図3】透明導電膜のパターンの上に保護膜を形成した状態を示す断面図である。
【図4】保護膜の上にカラーフィルタ層を形成した状態を示す断面図である。
【図5】カラーフィルタ層の上に接着剤層を塗布した状態を示す断面図である。
【図6】スペーサパターンを利用した場合の断面図である。
【図7】転写の際の状態を示す断面図である。
【符号の説明】
10 ガラス基板
20 ポリイミド層(剥離層)
30 透明導電膜
40 保護膜
50 カラーフィルタ層
60 接着剤層
70 スペーサパターン
80 シート基材
[0001]
BACKGROUND OF THE INVENTION
This invention is a technique for forming a transparent conductive film on one surface of a sheet base material made of a plastic material by transfer, and the transparent conductive film to be transferred is formed on the substrate side, which is superior in heat resistance compared to the plastic material. It relates to transfer technology.
[0002]
BACKGROUND OF THE INVENTION
This type of transfer technique is known as one of the techniques for forming a transparent conductive film to be an electrode or wiring for an optical display device such as a liquid crystal display device. In this transfer technique, basically, a transparent conductive film is formed on a temporary substrate that temporarily supports the transparent conductive film via a release layer, and the transparent conductive film is then passed through an adhesive layer. Transfer to another sheet base material. The basics are disclosed in, for example, Japanese Patent Laid-Open No. 2-174011. The adhesive layer is generally formed on the transparent conductive film of the temporary substrate, but may be formed on the side of another sheet base material depending on the case.
[0003]
As the transparent conductive film to be transferred, a metal oxide such as ITO (indium-tin-oxide) or SnO2 is used, and these materials exhibit lower resistance as the film is formed at a higher temperature. Practically, for example, characteristics with a specific resistance of 3.0 × 10 −4 Ωcm or less at a substrate temperature of 150 ° C. or higher are desired. Therefore, as the temporary substrate on which the transparent conductive film is formed, a substrate having excellent heat resistance as compared with another sheet base material that finally supports the transparent conductive film should be selected. In particular, when a plastic material is used as another sheet base material, it is essential. In view of this, Japanese Patent Application Laid-Open No. 11-24081 uses a polyimide resin as a material for the release layer, and in order to effectively form a polyimide resin film as a temporary substrate, And a technique using a heat-resistant polymer having a glass transition temperature exceeding the firing temperature of the polyimide of the release layer.
[0004]
The inventors have experimented and studied various techniques for forming a transparent conductive film by such transfer. When transferring the transparent conductive film from the temporary substrate side to another sheet base material side, the transparent conductive film is formed. We paid attention to the possibility of cracks in the film. As a result of investigating the cause, it was found that the transparent conductive film is thin and has a relatively fragile property, which cannot withstand the external force applied during transfer. The main cause of external force is the stress accompanying the curing shrinkage of the adhesive for adhering the transparent conductive film to the sheet substrate side, and it acts on the transparent conductive film when peeling off the temporary substrate at the time of transfer Become. If such stress remains after transfer, cracks are likely to occur when stress such as high temperature and high humidity is applied. The concept of protecting the transparent conductive film against the stress applied from the adhesive side has not been considered until now, including the above-mentioned gazette. In particular, the problem caused by such stress is that, as a heat-resistant temporary substrate, ceramic, glass, metal (a metal material having a small thermal expansion such as 42 alloy or copper alloy is preferable), or a plurality of them. This is conspicuous when a material having a larger rigidity than a sheet base material that is a plastic material, such as a composite material obtained by laminating and composites. In addition, when these temporary substrates are premised on pattern formation, dimensional stability with respect to temperature and humidity is important, and plastic materials are not desirable materials.
[0005]
Problems to be Solved by the Invention
Accordingly, a first object of the present invention is to provide a technique for effectively protecting a transparent conductive film from an external force during transfer.
Another object of the present invention is to provide a technique capable of effectively controlling the thickness of an adhesive layer that is a main cause of external force.
[0006]
[Means for Solving the Problems]
In this invention, when transferring the transparent conductive film previously formed on the side of the substrate having excellent heat resistance to the side of the sheet base material made of plastic material, the transparent conductive film to be transferred is transferred onto the heat resistant substrate. A sandwich layer is sometimes formed between a release layer that sometimes becomes a release portion and a protective film for protecting against the occurrence of cracks. Since the transparent conductive film is protected by the peeling layer and the protective film at the time of transfer, the protective film on the side of the adhesive layer acts so as to absorb or buffer the external force described above, effectively generating cracks. Can be prevented.
[0007]
As the peeling layer that sandwiches the transparent conductive film in a sandwich shape, heat resistance that allows ITO, which is a material of the transparent conductive film, to be formed at a high temperature, firm adhesion with such ITO, etc. Resistance to etching process during patterning, and appropriate adhesion to temporary substrate (adheres firmly to temporary substrate before peeling, and can be removed without damaging other layers) For example, it is necessary to have adhesiveness that requires a peeling force of about several g to 100 g / cm at 90 ° peeling. A suitable material for the release layer is polyimide. In Comparative Example 1 on page 7 of the above-mentioned Japanese Patent Application Laid-Open No. 11-24081, there is a description that it is difficult to peel in the case of a polyimide film-glass substrate, but according to experiments, even if the temporary substrate is glass, The polyimide film can be peeled off without any special treatment. However, polyimide also has different adhesion to glass depending on the type. The first compound synthesized from pyromellitic anhydride and 4,4′-diaminodiphenyl ether does not have very good adhesion with glass whose surface is coated with SiO2, and is suitable as a material for the release layer. On the other hand, the second polyimide synthesized from benzophenone tetracarboxylic anhydride or pyromellitic anhydride and 3,3′-diaminodiphenyl sulfone has better adhesion to glass than the first. Moreover, the adhesion between the polyimide and the glass is improved by baking, and gradually decreases with the passage of time, and does not change at a certain point. However, when the adhesive having such a lowered adhesiveness is baked again, the adhesiveness is restored. The first polyimide can be peeled off from the glass even immediately after baking, but after a few days, the adhesiveness decreases so as to be peeled off even after washing with water (less than 1 g / cm at 90 ° peeling). On the other hand, the second polyimide cannot be peeled off from the glass immediately after baking, but can be peeled off after a lapse of time. Such a change in adhesion of polyimide is considered to be caused by moisture absorption of polyimide. Therefore, it is possible to use polyimide as a release layer while considering such characteristics of polyimide. Further, for example, by adding a silane coupling agent to the first polyimide having poor adhesion, the adhesion with glass can be optimized.
[0008]
On the other hand, the other protective film sandwiching the transparent conductive film is a film for protecting the transparent conductive film in combination with the release layer. In addition to organic resins such as alkyd, acrylic and urethane, inorganic Or a hybrid resin of inorganic type and organic type can be used. As an inorganic material, for example, there is an alcohol solution (coating solution) of tetraalkoxysilane, and when applying thicker, there is also a coating solution in which an organic component is added (for example, trade names Ceramate C-533, ZRS). -5PH / catalyst conversion). The protective layer has a thickness of 0.5 to 2 μm, whereas the peelable layer has a thickness of 0.1 to 2 μm and the transparent conductive film has a thickness of 0.1 to 0.4 μm. Is set to a pencil hardness (JIS K5401) of H or higher, preferably 2H or higher. Further, when a color filter layer for color display is formed on the protective film, it should have a function of protecting the color filter layer and the adhesive layer against the removal of the release layer.
[0009]
Furthermore, as the transparent conductive film, the above-described metal oxides such as ITO and SnO 2 can be used. In particular, ITO excellent in characteristics such as transparency and specific resistance is preferable. The ITO or the like can be formed by a known method such as sputtering, ion plating, or electron beam evaporation. In addition, as the heat-resistant temporary substrate, ceramics, glass, a single metal, or a substrate in which they are combined can be widely applied, and a glass substrate is particularly preferable. This is because glass is not only excellent in heat resistance, but can be formed while accurately aligning a transparent conductive film, a color filter layer, and the like thereon. And glass is a suitable material also from the relationship with the polyimide which is a material of a peeling layer as mentioned above.
[0010]
Next, the adhesive layer for adhering the transparent conductive film to the sheet substrate side is preferably an ultraviolet curable type that cures without applying heat. Among them, a cationic polymerization type, for example, an epoxy ultraviolet curing adhesive is most suitable. The thickness of the coating is about 2 to 20 μm, and can be set to a value having such a thickness that sufficient adhesive strength can be obtained and the transmittance is not lost. Such an adhesive layer has a difference in film thickness distribution depending on pressing conditions during lamination, or the adhesive protrudes from the side. Therefore, it is preferable to provide spacer means for controlling the thickness of the adhesive layer in the adhesive layer portion. As the spacer means, spacer particles mixed in the adhesive layer or a spacer pattern formed on the protective film can be used.
[0011]
In addition, the sheet | seat base material which consists of plastic materials can be used with any form of a sheet | seat (sheet | leaf) and a roll, and preferable thickness is the range of 100-700 micrometers. Therefore, the sheet base material here is a concept including a sheet-like member including a so-called film or sheet. As the plastic material, polyethersulfone, polyester, polycarbonate, vinyl chloride, nylon, polyarylate, acrylic, polyimide, and the like can be applied.
[0012]
【Example】
Hereinafter, the content of the present invention will be described more specifically with reference to the embodiments shown in the accompanying drawings.
First, as shown in FIG. 1, a cleaned glass substrate 10 is prepared, and a transparent polyimide layer 20 as a release layer is formed on one surface thereof by coating. The thickness of the glass substrate 10 is about 0.7 to 1.1 mm, and has rigidity as a whole. Since this glass substrate 10 is a substrate that supports a transparent conductive film to be transferred on its surface, it has good surface smoothness, such as scratches and protrusions when visually observed with reflected light having a brightness of 5000 Lux under a dark room. It is desirable to have a surface smoothness (appearance standard of the substrate surface) that cannot be seen. In addition, the polyimide layer 20 is obtained by adding a silane coupling agent of 0.1% in terms of solid content to the first polyimide, and has a thickness of 0.1 to 2 μm. Of course, the polyimide layer 20 is applied and then cured by heat treatment. Of course, the glass substrate 10 can sufficiently withstand the heat treatment for curing the polyimide.
[0013]
Next, as shown in FIG. 2, after forming an ITO film on the polyimide layer 20 of the glass substrate 10, a transparent conductive film 30 is formed by patterning the ITO film. In forming the ITO film, the temperature of the glass substrate 10 is set to 150 ° C. or higher to obtain a film having a low specific resistance as described above. And as shown in FIG. 3, the acrylic protective film 40 is formed in thickness of 1-2 micrometers so that the transparent conductive film 30 on the glass substrate 10 may be covered.
[0014]
Thereafter, as shown in FIG. 4, a color filter layer 50 including yellow, magenta, and cyan color patterns 50Y, 50M, and 50C is formed on the protective film 40 by photolithography. As a material for the color patterns 50Y, 50M, and 50C, a known coating material in which a colorant such as a dye or a pigment is dissolved or dispersed in a polyimide resin solution can be used (for example, JP-A-10-170716). Each color pattern has a stripe shape, the width is 50 to 200 μm, and the distance between adjacent color patterns is 5 to 20 μm. The color filter layer 50 is of a reflective type and has a thickness of 0.2 to 2 μm. At this time, the color patterns 50Y, 50M, and 50C of the color filter layer 50 and the patterned ITO film are aligned on the glass substrate 10 having excellent dimensional stability, so there is no problem in patterning or alignment. Does not happen.
[0015]
Further, as shown in FIG. 5, an adhesive layer 60 is formed by coating so as to cover the color filter layer 50 as a whole. As the adhesive layer 60, an ultraviolet curable epoxy-type ultraviolet curable adhesive (UV curable resin KR500 manufactured by Asahi Denka Kogyo Co., Ltd.) is used. The thickness of the coating is about 2 to 20 μm, and can be set to a value having such a thickness that sufficient adhesive strength can be obtained and the transmittance is not lost. At this time, spacer particles, for example, 4 μm spherical particles (not shown) of benzoguanamine are mixed in the adhesive layer 60 as spacer means. The spacer particles are added in advance to the material to be applied, and are applied to the substrate 10. At this time, the adhesive is liquid, and it is desirable to control the thickness of the coating film slightly thicker than the size of the spacer particles. When the glass substrate 10 and the sheet base material 80 which is a plastic sheet are laminated in this state, the adhesive layer 60 having a uniform film thickness can be obtained. The amount of spacer particles mixed is preferably adjusted so that the in-plane distribution amount becomes about 40 particles / mm 2 after the adhesive layer 60 is formed. Here, the epoxy resin of the adhesive layer 60 causes volume shrinkage of, for example, about several percent by photocuring, but the spacer particles are unlikely to undergo such changes. Therefore, in accordance with the volume shrinkage of the adhesive layer 60, an undesirable deformation or stress occurs in the spacer particle portion, and a crack may occur in the ITO film. In order to avoid this, the particle diameter of the spacer particles should be a predetermined size or less, and is preferably set to 5.5 μm or less, for example. As the spacer means, in addition to the spacer particles, as shown in FIG. 6, between the color patterns 50Y, 50M, and 50C of the color filter layer 50 (this portion is also a portion without the pattern of the transparent conductive film 30), A spacer pattern 70 patterned in an island shape or a stripe shape can also be used. The spacer pattern 70 does not damage the transparent conductive film 30 due to undesired deformation or stress. The spacer pattern 70 can be formed using a polyimide resin mixed with a black color material. If it does so, when performing a liquid crystal display, the merit of improving the contrast of a display is also acquired.
[0016]
Thereafter, as shown in FIG. 7, a sheet base material 80 (having a thickness of 100 to 700 μm) made of a polyethersulfone substrate is disposed on the adhesive layer 60 side, and the transparent conductive film 30 and the color filter layer 50, etc. Is transferred from the glass substrate 10 side to the sheet base material 80 side. In this transfer process, ultraviolet rays are irradiated from the sheet base material 80 side. At the same time, the temperature increase on the side of the adhesive layer 60 (curing target) accompanying irradiation is actively suppressed, and the temperature is as close to room temperature as possible. To do. Since the transparent conductive film 30 that is particularly susceptible to damage during the transfer is sandwiched between the polyimide film 20 as the release layer and the protective film 40, it is effective from the external force accompanying the curing and transfer of the adhesive layer 60. Protected.
[0017]
After the transfer, the polyimide layer 20 as a release layer is removed. This is also to enable electrical connection between the transparent conductive film 30 and a driver IC for liquid crystal display, and to improve the effective voltage for driving the liquid crystal. For the removal of the polyimide layer 20, wet etching using hydrazine-ethylenediamine is used. At this time, the protective film 40 protects the adhesive layer 60 and the color filter layer 50 from the etchant.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a glass substrate on which a release layer is formed.
FIG. 2 is a cross-sectional view showing a state where a transparent conductive film is formed on a glass substrate.
FIG. 3 is a cross-sectional view showing a state in which a protective film is formed on a transparent conductive film pattern.
FIG. 4 is a cross-sectional view showing a state in which a color filter layer is formed on a protective film.
FIG. 5 is a cross-sectional view showing a state in which an adhesive layer is applied on a color filter layer.
FIG. 6 is a cross-sectional view when a spacer pattern is used.
FIG. 7 is a cross-sectional view showing a state during transfer.
[Explanation of symbols]
10 Glass substrate 20 Polyimide layer (peeling layer)
30 transparent conductive film 40 protective film 50 color filter layer 60 adhesive layer 70 spacer pattern 80 sheet base material

Claims (6)

プラスチック材料からなるシート基材の一面に、転写によって透明導電膜を形成するに際し、転写すべき前記透明導電膜を、前記プラスチック材料に比べて耐熱性にすぐれた基板側に形成しておく転写方法であって、前記透明導電膜は比抵抗3.0×10 −4 Ωcm以下の特性をもつものであり、前記耐熱性にすぐれた基板上に前記透明導電膜が、転写時に剥離部分となる剥離層と、その透明導電膜を保護するための保護膜とではさみ込まれ、それにより、クラックの発生が防止されていることを特徴とする、透明導電膜の転写方法。When forming a transparent conductive film by transfer on one surface of a sheet base material made of a plastic material, the transfer method is to form the transparent conductive film to be transferred on the substrate side that has better heat resistance than the plastic material The transparent conductive film has a characteristic of a specific resistance of 3.0 × 10 −4 Ωcm or less, and the transparent conductive film is peeled off on the substrate having excellent heat resistance as a peeling portion at the time of transfer. A method for transferring a transparent conductive film, characterized in that the layer is sandwiched between a protective film for protecting the transparent conductive film , thereby preventing generation of cracks . 前記耐熱性にすぐれた基板は、セラミックス、ガラス、金属の単体か、それらが複合された基板であり、しかも、前記剥離層は、ポリイミド系の樹脂からなる、請求項1の転写方法。The transfer method according to claim 1, wherein the substrate having excellent heat resistance is a single body of ceramic, glass, or metal, or a substrate in which these are combined, and the release layer is made of a polyimide resin. 前記耐熱性にすぐれた基板上、前記保護膜の上にさらに接着剤層を含む、請求項1の転写方法。The transfer method according to claim 1, further comprising an adhesive layer on the substrate having excellent heat resistance and on the protective film. 前記接着剤層の部分に、その接着剤層の厚さを制御するためのスペーサ手段を備える、請求項3の転写方法。The transfer method according to claim 3, further comprising spacer means for controlling a thickness of the adhesive layer in a portion of the adhesive layer. 前記スペーサ手段は、前記接着剤層の中に混入したスペーサ粒子、あるいは前記保護膜の上に形成したスペーサパターンのいずれかである、請求項4の転写方法。The transfer method according to claim 4, wherein the spacer means is either spacer particles mixed in the adhesive layer or a spacer pattern formed on the protective film. 前記透明導電膜は、液晶カラー表示装置の電極であり、カラー表示のためのカラーフィルタ層が前記保護膜の上に形成され、前記接着剤層がそのカラーフィルタ層を被っている、請求項3の転写方法。The transparent conductive film is an electrode of a liquid crystal color display device, a color filter layer for color display is formed on the protective film, and the adhesive layer covers the color filter layer. Transfer method.
JP11031099A 1999-04-19 1999-04-19 Transfer method of transparent conductive film Expired - Fee Related JP3909791B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP11031099A JP3909791B2 (en) 1999-04-19 1999-04-19 Transfer method of transparent conductive film
US09/548,952 US6413693B1 (en) 1999-04-19 2000-04-13 Method for transferring transparent conductive film
DE60040361T DE60040361D1 (en) 1999-04-19 2000-04-17 Method for transmitting a transparent, conductive film
EP00303238A EP1046945B1 (en) 1999-04-19 2000-04-17 Method for transferring transparent conductive film
TW089107242A TW514607B (en) 1999-04-19 2000-04-18 Method for transferring transparent conductive film
KR10-2000-0020243A KR100382824B1 (en) 1999-04-19 2000-04-18 Method for transferring transparent conductive film
US10/027,289 US6830864B2 (en) 1999-04-19 2001-12-20 Method for transferring transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11031099A JP3909791B2 (en) 1999-04-19 1999-04-19 Transfer method of transparent conductive film

Publications (2)

Publication Number Publication Date
JP2000306441A JP2000306441A (en) 2000-11-02
JP3909791B2 true JP3909791B2 (en) 2007-04-25

Family

ID=14532478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11031099A Expired - Fee Related JP3909791B2 (en) 1999-04-19 1999-04-19 Transfer method of transparent conductive film

Country Status (6)

Country Link
US (2) US6413693B1 (en)
EP (1) EP1046945B1 (en)
JP (1) JP3909791B2 (en)
KR (1) KR100382824B1 (en)
DE (1) DE60040361D1 (en)
TW (1) TW514607B (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3909791B2 (en) * 1999-04-19 2007-04-25 共同印刷株式会社 Transfer method of transparent conductive film
EP1089113B1 (en) * 1999-09-28 2010-03-03 Kyodo Printing Co., Ltd. Transfer body and method using the same
JP4812971B2 (en) * 2000-10-13 2011-11-09 共同印刷株式会社 Method for manufacturing electrode substrate of liquid crystal display device
JP4707243B2 (en) * 2001-01-25 2011-06-22 共同印刷株式会社 Manufacturing method of electrode substrate for liquid crystal display element
JP4910237B2 (en) * 2001-03-06 2012-04-04 凸版印刷株式会社 Method for manufacturing electrode substrate for color liquid crystal display device
KR100830449B1 (en) * 2001-12-05 2008-05-20 엘지전자 주식회사 print film for attaching on surface of home appliance
JP2004012802A (en) * 2002-06-06 2004-01-15 Nec Lcd Technologies Ltd Liquid crystal display
JP3949535B2 (en) * 2002-08-06 2007-07-25 日本板硝子株式会社 Light control body, laminated glass, and method of manufacturing light control body
US20050087513A1 (en) * 2003-10-09 2005-04-28 Tsung-Neng Liao Method of forming transparent conductive layer on substrate
GB0327093D0 (en) * 2003-11-21 2003-12-24 Koninkl Philips Electronics Nv Active matrix displays and other electronic devices having plastic substrates
WO2005091062A1 (en) * 2004-03-20 2005-09-29 Hewlett-Packard Development Company, L.P. Applying colour elements and busbars to a display substrate
JP2007048564A (en) * 2005-08-09 2007-02-22 Fujikura Ltd Manufacturing method of substrate with transparent conductive film
EP2251389B8 (en) 2005-08-12 2012-09-19 Cambrios Technologies Corporation Nanowire ink
JP4647434B2 (en) * 2005-08-25 2011-03-09 共同印刷株式会社 Electrode substrate for liquid crystal display device, manufacturing method thereof, and liquid crystal display device
JP2008091685A (en) * 2006-10-03 2008-04-17 Seiko Epson Corp Element substrate, and its production process
US8018568B2 (en) 2006-10-12 2011-09-13 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
KR101545219B1 (en) 2006-10-12 2015-08-18 캄브리오스 테크놀로지즈 코포레이션 Nanowire-based transparent conductors and applications thereof
GB2444081B (en) * 2006-11-24 2011-05-11 Ocuity Ltd Manufacture of a birefringent liquid crystal component
US8018563B2 (en) 2007-04-20 2011-09-13 Cambrios Technologies Corporation Composite transparent conductors and methods of forming the same
US8778116B2 (en) 2007-12-07 2014-07-15 Meijyo Nano Carbon Co., Ltd. Method for producing carbon nanotube-containing conductor
WO2010003066A2 (en) * 2008-07-03 2010-01-07 University Of Florida Research Foundation, Inc. Transparent conducting electrode
WO2011063089A2 (en) * 2009-11-20 2011-05-26 3M Innovative Properties Company Surface-modified adhesives
CN102834472B (en) 2010-02-05 2015-04-22 凯博瑞奥斯技术公司 Photosensitive ink compositions and transparent conductors and method of using the same
WO2013035298A1 (en) * 2011-09-08 2013-03-14 シャープ株式会社 Display device and method for manufacturing same
WO2014059263A1 (en) * 2012-10-12 2014-04-17 Corning Incorporated Articles having retained strength
TWI524825B (en) * 2012-10-29 2016-03-01 財團法人工業技術研究院 Method of transferring carbon conductive film
KR20140135918A (en) * 2013-05-16 2014-11-27 주식회사 잉크테크 Method for preparing transparent electrode film
WO2016158988A1 (en) * 2015-03-31 2016-10-06 日産化学工業株式会社 Composition for forming release layer, and release layer
JP2017013247A (en) * 2015-06-26 2017-01-19 凸版印刷株式会社 Electrode release film, color filter substrate with electrode, and production method of them
WO2018020333A1 (en) 2016-07-29 2018-02-01 Semiconductor Energy Laboratory Co., Ltd. Separation method, display device, display module, and electronic device
CN106526941A (en) * 2016-12-30 2017-03-22 惠科股份有限公司 Improvement method of display panel machining technology and display panel machining equipment
KR102083660B1 (en) 2018-07-30 2020-03-02 주식회사 베스트마킹 System for controlling the size of printing unit and control method thereof
WO2020174678A1 (en) * 2019-02-28 2020-09-03 三菱電機株式会社 Analysis method and sample preparation device

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151705A (en) 1983-02-18 1984-08-30 株式会社日立製作所 Base with transparent conductive film and method of producing same
JPS60231396A (en) 1984-05-01 1985-11-16 三菱レイヨン株式会社 Laminate having semiconductor layer
US5155005A (en) * 1990-03-29 1992-10-13 Fuji Photo Film Co., Ltd. Method of producing polychromatic colored image
US5411792A (en) * 1992-02-27 1995-05-02 Sumitomo Metal Mining Co., Ltd. Transparent conductive substrate
US5514502A (en) * 1993-08-16 1996-05-07 Fuji Photo Film Co., Ltd. Photopolymerizable composition, color filter, and production of color filter
KR0153029B1 (en) * 1993-10-28 1998-11-16 시노자키 아키히코 Formation of transparent conductive film
US5747152A (en) * 1993-12-02 1998-05-05 Dai Nippon Printing Co., Ltd. Transparent functional membrane containing functional ultrafine particles, transparent functional film, and process for producing the same
JPH07244212A (en) * 1994-01-11 1995-09-19 Fuji Photo Film Co Ltd Photosensitive material for color filter and production of color filter using the same
US5521035A (en) 1994-07-11 1996-05-28 Minnesota Mining And Manufacturing Company Methods for preparing color filter elements using laser induced transfer of colorants with associated liquid crystal display device
US5834327A (en) 1995-03-18 1998-11-10 Semiconductor Energy Laboratory Co., Ltd. Method for producing display device
EP0740184A3 (en) * 1995-04-28 1998-07-29 Canon Kabushiki Kaisha Liquid crystal device, process for producing same and liquid crystal apparatus
US5771110A (en) * 1995-07-03 1998-06-23 Sanyo Electric Co., Ltd. Thin film transistor device, display device and method of fabricating the same
US6023318A (en) * 1996-04-15 2000-02-08 Canon Kabushiki Kaisha Electrode plate, process for producing the plate, liquid crystal device including the plate and process for producing the device
KR100271487B1 (en) 1997-05-23 2000-11-15 김순택 Donor film for color filter
JPH1124081A (en) 1997-06-27 1999-01-29 Minnesota Mining & Mfg Co <3M> Optical element and laminated transfer sheet
JP4028043B2 (en) * 1997-10-03 2007-12-26 コニカミノルタホールディングス株式会社 Liquid crystal light modulation device and method for manufacturing liquid crystal light modulation device
US6265051B1 (en) * 1998-11-20 2001-07-24 3Com Corporation Edge connectors for printed circuit boards comprising conductive ink
JP3909791B2 (en) * 1999-04-19 2007-04-25 共同印刷株式会社 Transfer method of transparent conductive film
EP1089113B1 (en) * 1999-09-28 2010-03-03 Kyodo Printing Co., Ltd. Transfer body and method using the same

Also Published As

Publication number Publication date
DE60040361D1 (en) 2008-11-13
US6830864B2 (en) 2004-12-14
US20020055057A1 (en) 2002-05-09
US6413693B1 (en) 2002-07-02
EP1046945B1 (en) 2008-10-01
TW514607B (en) 2002-12-21
EP1046945A3 (en) 2001-10-10
KR20000071717A (en) 2000-11-25
JP2000306441A (en) 2000-11-02
KR100382824B1 (en) 2003-05-09
EP1046945A2 (en) 2000-10-25

Similar Documents

Publication Publication Date Title
JP3909791B2 (en) Transfer method of transparent conductive film
JP4667471B2 (en) Transparent conductive film, method for producing the same, and touch panel provided with the same
JP4780254B2 (en) Conductive substrate, manufacturing method thereof, and touch panel
US5858624A (en) Method for assembling planarization and indium-tin-oxide layer on a liquid crystal display color filter with a transfer process
JP4058256B2 (en) Anti-reflection film and anti-reflection treated object
JPH07168006A (en) Antireflection coating, antireflection film and manufacture thereof
JP3862202B2 (en) Active matrix layer and transfer method
CN108139823B (en) Thin film touch sensor and manufacturing method thereof
JPH1124081A (en) Optical element and laminated transfer sheet
JP2002316378A (en) Transparent conductive laminated body and touch panel using the same
JPH09123333A (en) Laminated film
JP3682714B2 (en) Active matrix layer and transfer method
JP2001166120A (en) Transfer body and method utilizing same
JP4502441B2 (en) Support method and layer structure of transparent conductive film by adhesive
JP2003280550A (en) Method for producing display device
JP3040693B2 (en) Transparent conductive laminated film
JP5076267B2 (en) Polymer sheet manufacturing method and display element substrate using the same
JP3425775B2 (en) Surface protection film for optical components
JPH11348189A (en) Optical plastic substrate
JPH11143641A (en) Transparent electrode substrate
JPH10339869A (en) Base film for display element
JP3248734B2 (en) Color filter and manufacturing method thereof
JP3897561B2 (en) Plastic sheet having inorganic material thin film and method for producing the same
JPH06186550A (en) Plastic film substrate for liquid crystal display device and production of liquid crystal display device
JPH09277426A (en) Transparent conductive film and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140202

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees