JP3908554B2 - 磁気検出素子の製造方法 - Google Patents

磁気検出素子の製造方法 Download PDF

Info

Publication number
JP3908554B2
JP3908554B2 JP2002032728A JP2002032728A JP3908554B2 JP 3908554 B2 JP3908554 B2 JP 3908554B2 JP 2002032728 A JP2002032728 A JP 2002032728A JP 2002032728 A JP2002032728 A JP 2002032728A JP 3908554 B2 JP3908554 B2 JP 3908554B2
Authority
JP
Japan
Prior art keywords
layer
magnetic
antiferromagnetic
nonmagnetic
ferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002032728A
Other languages
English (en)
Other versions
JP2003092444A (ja
Inventor
直也 長谷川
英治 梅津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2002032728A priority Critical patent/JP3908554B2/ja
Priority to US10/193,675 priority patent/US6901652B2/en
Publication of JP2003092444A publication Critical patent/JP2003092444A/ja
Application granted granted Critical
Publication of JP3908554B2 publication Critical patent/JP3908554B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B2005/3996Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/3116Shaping of layers, poles or gaps for improving the form of the electrical signal transduced, e.g. for shielding, contour effect, equalizing, side flux fringing, cross talk reduction between heads or between heads and information tracks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3143Disposition of layers including additional layers for improving the electromagnetic transducing properties of the basic structure, e.g. for flux coupling, guiding or shielding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49036Fabricating head structure or component thereof including measuring or testing
    • Y10T29/49043Depositing magnetic layer or coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49036Fabricating head structure or component thereof including measuring or testing
    • Y10T29/49043Depositing magnetic layer or coating
    • Y10T29/49044Plural magnetic deposition layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49036Fabricating head structure or component thereof including measuring or testing
    • Y10T29/49043Depositing magnetic layer or coating
    • Y10T29/49046Depositing magnetic layer or coating with etching or machining of magnetic material

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)
  • Thin Magnetic Films (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主に、磁気センサやハードディスクなどに用いられる磁気検出素子の製造方法に係り、特に磁界検出能力を向上させることができる磁気検出素子の製造方法に関する。
【0002】
【従来の技術】
図38は、従来の製造方法によって形成された磁気検出素子の構造を記録媒体との対向面から見た断面図である。
【0003】
図38に示す磁気検出素子は、巨大磁気抵抗効果を利用したGMR(giant magnetoresistive)素子の1種であるスピンバルブ型磁気検出素子と呼ばれるものであり、ハードディスクなどの記録媒体からの記録磁界を検出するものである。
【0004】
このスピンバルブ型磁気検出素子は、下から基板1、下地層2、第1反強磁性層3、固定磁性層(ピン(Pinned)磁性層)4、非磁性材料層5、フリー磁性層(Free)6、保護層7で構成された多層膜8と、この多層膜8の両側部に形成された一対の強磁性層9,9及びこの強磁性層9,9の上に形成された一対の第2反強磁性層10,10及び電極層L,Lとで構成されている。
【0005】
第1反強磁性層3及び第2反強磁性層10,10にはPt−Mn(鉄−マンガン)合金膜、固定磁性層4、フリー磁性層6、及び強磁性層9,9にはNi−Fe(ニッケル−鉄)合金膜、非磁性材料層5にはCu(銅)膜、下地層2及び保護層7にはTa、また電極層L,LにはCr膜が一般的に使用される。
【0006】
固定磁性層4の磁化は、第1反強磁性層3との交換異方性磁界によりY方向(記録媒体からの漏れ磁界方向;ハイト方向)に単磁区化されている。
【0007】
また、強磁性層9,9は第2反強磁性層10,10との交換異方性磁界によりX方向に単磁区化されている。強磁性層9,9とフリー磁性層6は接合部J,Jにおいて接しており、連続したフェロ磁性体になるようにされている。このように、フリー磁性層6はいわゆるエクスチェンジバイアス方式によってX方向に単磁区化されている。エクスチェンジバイアス方式では、フリー磁性層6の両側端面(接合部J,J)に表面磁荷が発生せずフリー磁性層6内に発生する反磁界を小さくできるという利点がある。
【0008】
磁気検出素子では、電極層L,Lから、第2反強磁性層10,10及び強磁性層9,9を介してフリー磁性層6、非磁性材料層5及び固定磁性層4に検出電流(センス電流)が与えられる。ハードディスクなどの記録媒体の走行方向はZ方向であり、記録媒体からの洩れ磁界がY方向に与えられると、フリー磁性層6の磁化がXからY方向へ向けて変化する。このフリー磁性層6内での磁化の方向の変動と、固定磁性層4の固定磁化方向との関係で電気抵抗が変化し(これを磁気抵抗効果という)、この電気抵抗値の変化に基づく電圧変化により、記録媒体からの洩れ磁界が検出される。
【0009】
【発明が解決しようとする課題】
図38の磁気検出素子を製造するときには、基板1上に、下地層2、第1反強磁性層3、固定磁性層4、非磁性材料層5、フリー磁性層6、及び保護層7のそれぞれを一様な膜として成膜した後、図38の多層膜8となる部分以外をイオンミリングによって削る。その後、多層膜8の側面8a,8aに直接接するように強磁性層9,9を成膜し、さらに、強磁性層9,9上に第2反強磁性層10,10及び電極層L,Lを成膜する。
【0010】
つまり、図38の磁気検出素子では、多層膜8の側面8a,8aはミリングによって削られた界面となっている。このようなミリングによって削られた界面に強磁性層9,9を直接接するように成膜しても、強磁性層9,9とフリー磁性層6とを接合部J,Jにおいて連続したフェロ磁性体とすることは難しく、フリー磁性層6をX方向に安定した単磁区化状態にすることが困難であった。
【0011】
また、強磁性層9,9とフリー磁性層6の接合部J,Jは、多層膜8の側面8a,8a上にあるため、接合部J,Jで強磁性層9,9とフリー磁性層6とを磁気的結合させることが難しく、この理由からもフリー磁性層6をX方向に安定した単磁区化状態にすることが困難であった。
【0012】
なお、接合部J,Jで強磁性層9,9とフリー磁性層6との磁気的結合を安定化させるために、多層膜8の側面8a,8aの傾斜角θ1を小さくすると、フリー磁性層6のトラック幅方向(X方向)の寸法を所定の範囲内で形成することが困難になる。
【0013】
このように、図38に示されたエクスチェンジバイアス方式の磁気検出素子では、フリー磁性層6に安定した縦バイアスをかけてX方向に安定した単磁区化状態にすることが困難であるという問題が生じていた。
【0014】
さらに、図38のような構造で強磁性層9,9とフリー磁性層6を確実に接合させるためには、強磁性層9,9の膜厚を厚くする必要がある。しかし、強磁性層9,9の膜厚を厚くすると強磁性層9,9の一方向異方性磁界が小さくなってフリー磁性層6に充分に安定な縦バイアスをかけることが困難になるという問題も生じる。また、強磁性層9,9の膜厚を厚くするとフリー磁性層6の両端には不感領域が出来て再生感度が低下するという問題も生じる。
【0015】
本発明は上記従来の課題を解決するためのものであり、エクスチェンジバイアス方式の磁気検出素子の製造方法であって、フリー磁性層をX方向に安定した単磁区化状態にすることができ、磁界検出感度を向上させることのできる磁気検出素子の製造方法を提供することを目的とする。
【0016】
【課題を解決するための手段】
本発明の磁気検出素子の製造方法は、
(a)基板上に下から順に第1反強磁性層、固定磁性層、非磁性材料層、第1磁性層、及び非磁性層を有する多層膜を成膜する工程と、
(b)前記多層膜を、第1の熱処理温度、第1の大きさの磁界中で、第1の磁場中アニールして前記固定磁性層の磁化方向を所定の方向に固定する工程と、
(c)前記多層膜上に、強磁性層及び第2反強磁性層を成膜する工程と、
(d)前記第2反強磁性層のトラック幅の中央に、底面が前記第2反強磁性層内に位置する凹部を形成する工程と、
(e)前記第2反強磁性層が積層された多層膜を、第2の熱処理温度、第2の大きさの磁界中で第2の磁場中アニールすることにより、前記凹部のトラック幅方向の両側の前記第2反強磁性層と膜厚方向で対向する前記第1磁性層の両側端部の磁化方向を前記固定磁性層の磁化方向と交叉する方向に固定するとともに、前記凹部と膜厚方向で対向する前記第1磁性層の中央部を外部磁界により磁化方向が変動するフリー磁性層とし、前記フリー磁性層の磁化方向を前記固定磁性層の磁化方向と交叉する方向に揃える工程、
を有することを特徴とするものである。
【0017】
本発明では、前記(c)の工程において前記強磁性層及び前記第2反強磁性層を平坦面として形成された前記非磁性層の表面上に積層するものであるので、前記強磁性層及び前記第2反強磁性層も平坦化された層として形成でき、前記強磁性層、前記非磁性層、及び前記フリー磁性層からなるシンセティックフェリ構造において前記強磁性層と前記フリー磁性層間のRKKY相互作用を大きくすることが容易になる。
【0018】
また、本発明では、前記強磁性層及び前記第2反強磁性層が、平坦面である前記非磁性層上に積層されたものであるので、前記強磁性層及び前記第2反強磁性層の積層工程の制御が容易になる。特に、前記強磁性層、前記非磁性層、及び前記フリー磁性層からなるシンセティックフェリ構造において前記強磁性層を薄く形成することができ、前記強磁性層と前記フリー磁性層間のスピンフロップ磁界を大きくすることが容易になる。
【0019】
また、本発明では、前記フリー磁性層である磁性材料層を前記第2反強磁性層及び前記強磁性層の下層にまで延して形成するので、前記フリー磁性層の磁化が前記フリー磁性層の両側端部の表面磁荷によって発生する反磁界の影響を受けることを小さくできる。
【0020】
また、本発明では、前記多層膜上に第2反強磁性層を積層しない状態で、前記多層膜を、磁場中アニールして前記固定磁性層の磁化方向を所定の方向に固定するので、前記多層膜上に第2反強磁性層を積層した状態では、前記第2反強磁性層に交換異方性磁界が発生していない。
【0021】
すなわち、前記第2反強磁性層の交換異方性磁界は、前記(e)の工程において初めて生じ、前記フリー磁性層の磁化方向を所定の方向に移動させることが容易になる。従って、前記第1磁性層の磁化方向を、前記固定磁性層の磁化方向と交叉する方向に固定することが容易になる。
【0022】
また、本発明の製造方法によって製造された磁気検出素子では、トラック幅が前記凹部の底面の幅寸法によって規定される。すなわち、前記凹部の底面に重なる部分でのみ、前記フリー磁性層などの外部磁界によって磁化方向が変化する磁性層の磁化方向を変化させることができる。しかも、前記凹部は、一様の厚さで成膜された前記第2反強磁性層を、反応性イオンエッチング(RIE)やイオンミリングを用いて、トラック幅方向に対する垂直方向に削るだけで形成することができるので、正確な幅寸法で前記凹部を形成することが可能になる。すなわち、磁気検出素子のトラック幅を正確に規定できる。
【0023】
本発明によって形成された磁気検出素子は、前記強磁性層が前記非磁性層の上面に接した状態でトラック幅方向に所定の間隔を開けて形成され、さらに前記強磁性層上に前記第2反強磁性層が積層されているものである。
【0024】
本発明によって形成された磁気検出素子では、前記第2反強磁性層の下層にある強磁性層が、前記第2反強磁性層との磁気的結合によってトラック幅方向に磁化方向がそろえられ、さらに、この強磁性層の下層に非磁性層を介して形成されたフリー磁性層の両側部の磁化方向が、前記強磁性層とのRKKY相互作用によって、前記強磁性層の磁化方向と反平行方向に揃えられる。すなわち、前記第2反強磁性層の下層において前記強磁性層、前記非磁性層、及び前記フリー磁性層がシンセティックフェリ構造となっており、前記第1磁性層の前記第2反強磁性層及び前記強磁性層に重なる領域である両側部は磁化方向が前記固定磁性層の磁化方向と交叉する方向に固定されている。
【0025】
一方、前記フリー磁性層の前記第2反強磁性層及び前記強磁性層に重ならない領域であるトラック幅領域の磁化方向は、外部磁界が与えられない状態のときは前記両側部にならってトラック幅方向と反平行方向を向き、外部磁界がトラック幅方向に垂直な方向(ハイト方向)に与えられると、ハイト方向へ向けて変化する。
【0026】
この前記フリー磁性層のトラック幅領域での磁化の方向の変動と、前記固定磁性層の固定磁化方向との関係で電気抵抗が変化し(これを磁気抵抗効果という)、この電気抵抗値の変化に基づく電圧変化により、記録媒体からの洩れ磁界などの外部磁界が検出される。
【0027】
本発明では、前記第2反強磁性層の下層において前記強磁性層、前記非磁性層、及び前記フリー磁性層がシンセティックフェリ構造となっているので、前記フリー磁性層の両側部における磁化方向を一定方向に揃えるための一方向異方性磁界を大きくすることができる。
【0028】
従って、外部磁界によって前記フリー磁性層の両側部の磁化方向が変化し結果として磁気的トラック幅が大きくなることを抑えることができる。
【0029】
また、前記第2反強磁性層と前記強磁性層との交換結合磁界が比較的弱くても、前記フリー磁性層の磁化方向を確実に、前記固定磁性層の磁化方向と交叉する方向に揃えることが容易になる。
【0030】
また、前記凹部の底面のトラック幅方向の所定の間隔で規定される磁気検出素子のトラック幅(光学的トラック幅)の領域が、実質的に記録磁界の再生に寄与し、磁気抵抗効果を発揮する感度領域となる。
【0031】
すなわち、本発明の磁気検出素子は、磁気検出素子の光学的トラック幅が磁気的トラック幅に等しくなり、不感領域が生じないので、高記録密度化に対応するために磁気検出素子の光学的トラック幅Twを小さくしていった場合の再生出力の低下を抑えることができる。
【0032】
また、前記フリー磁性層に印加されるバイアス磁界の大きさと、前記フリー磁性層の単位面積当りの磁気モーメント(Ms×t)が等しくなるため高感度で高出力な磁気検出素子となる。
【0033】
また、本発明では、前記フリー磁性層である磁性材料層を前記第2反強磁性層及び前記強磁性層の下層にまで延して形成するので、前記フリー磁性層の磁化が前記フリー磁性層の両側端部の表面磁荷によって発生する反磁界の影響を受けることを小さくできる。
【0034】
本発明では、磁気検出素子では、前記凹部の底面が前記第2反強磁性層内に位置しており、前記フリー磁性層と前記強磁性層が、前記非磁性層を介して隣接し、前記フリー磁性層の磁化方向と前記強磁性層の磁化方向が反平行となるフェリ磁性状態となる。
【0035】
このとき、前記フリー磁性層、前記非磁性層及び前記強磁性層からなる多層膜がひとつのフリー磁性層、いわゆるシンセティックフェリフリー磁性層として機能する。シンセティックフェリフリー磁性層では、前記フリー磁性層の膜厚を薄くすることと同等の効果が得られ、フリー磁性層の磁化が変動しやすくなり、磁気抵抗効果素子の磁界検出感度が向上する。なお、前記フリー磁性層と前記強磁性層の単位面積あたりの磁気モーメントの大きさは異なっている必要がある。前記フリー磁性層及び強磁性層の単位面積あたりの磁気モーメントの大きさは、前記強磁性材料層の飽和磁化(Ms)と膜厚(t)の積で表される。
【0036】
なお、前記凹部の底面の下部に位置する前記第2反強磁性層の領域の厚さを0Åより大きく50Å以下にすると、前記凹部の底面の下部に位置する前記第2反強磁性層の領域では前記強磁性層との間に交換結合磁界が発生しないので好ましい。
【0037】
らに、本発明では前記凹部の側面をトラック幅方向に対して垂直面となるようにすることが可能である。すなわち、トラック幅領域から外れた全領域において、第2反強磁性層が反強磁性を発生するために充分な膜厚を有することができ、トラック幅領域から外れた全領域において前記第1磁性層の磁化方向を確実に固定することができる。
【0038】
従って、磁気検出素子のトラック幅領域でのみ前記フリー磁性層の磁化方向を動かし、トラック幅領域周辺におけるサイドリーディングを防止することができる。
【0039】
お、本発明では、前記多層膜の上下に電極層が設けられ、電流が前記多層膜の各層の膜面に対し垂直方向に流れるCPP(current perpendicular to the plane)型の磁気検出素子を形成することができる。
【0040】
CPP型の磁気検出素子を形成するときには、
前記(a)工程の前に、
)基板上に、下部電極層を形成する工程を有することが必要であり、
さらに、前記(dの工程の代わりに以下の工程を有することが好ましい。
)前記第2の反強磁性層上に絶縁層を成膜する工程と、
)前記絶縁層上に、トラック幅方向に中央部に穴部を設けたレジストを積層し、前記絶縁層及び前記第2の反強磁性層の前記穴部に露出した部位を削り込むことにより凹部を形成する工程と、
)前記凹部の底面に電気的に導通する上部電極層を形成する工程。
【0041】
本発明では、前記第2の反強磁性層上に前記絶縁層を設けることにより、前記上部電極層から前記第2反強磁性層へのセンス電流の分流を低減できる。
【0042】
また、上部電極層の一部が前記凹部の中に入り込むことによって、前記上部電極層のトラック幅方向の中央に、前記多層膜方向に突出した突出部を形成できるので、センス電流の電流路を絞り込むことができ出力の向上及びサイドリーディングの低減を図ることができる。
【0043】
また、前記()工程と前記()工程の間に、
)前記凹部から前記絶縁層上にかけて他の絶縁層を成膜する工程と、
)前記凹部の底面上に積層された前記他の絶縁層を除去する工程と、
を有すると、
前記凹部の側面と前記上部電極層との間の絶縁もとることができるので好ましい。
【0044】
また、前記()工程と前記(a)工程の間に、
)前記下部電極層のトラック幅方向の中央に、前記多層膜方向に突出した突出部を形成する工程と、
)前記下部電極層の前記突出部のトラック幅方向の両側部に絶縁層を設ける工程とを有し、
前記(a)工程において、
前記突出部の上面が前記多層膜の下面と接するように、前記多層膜を形成すると、センス電流の電流路を絞り込むことができ出力の向上及びサイドリーディングの低減を図ることができるので好ましい。
【0045】
なお、前記()工程において、
前記突出部の上面と、前記下部電極層の両側端部上に設けられた前記絶縁層の上面を同一平面にすると、前記多層膜を平坦面上に形成することができるので好ましい。
【0046】
また、前記下部電極層及び/又は前記上部電極層を、磁性材料で形成すると、前記下部電極層及び/又は前記上部電極層をシールド層として機能させることができるので磁気検出素子の構造が単純になり製造が容易になる、また、ギャップ長を短くすることができ高記録密度化に適切に対応可能な磁気検出素子を製造できるので好ましい。
【0047】
さらに、前記上部電極層を、前記凹部の底面と電気的に導通する非磁性導電性材料で形成される層と磁性材料で形成される層が積層されたものにすると、前記上部電極層の磁性材料で形成される層から、前記フリー磁性層への磁気的な影響を低減できる。
【0048】
また本発明では、前記非磁性材料層を非磁性導電材料で形成することが好ましい。前記非磁性材料層が非磁性導電材料で形成された磁気検出素子を、スピンバルブGMR型磁気抵抗効果素子(CPP−GMR)と呼んでいる。
【0049】
また本発明では、CPP型の磁気検出素子である場合、前記非磁性材料層を絶縁材料で形成してもよい。この磁気検出素子をスピンバルブトンネル型磁気抵抗効果型素子(CPP−TMR)と呼んでいる。
【0050】
また、前記(a)の工程において、Ruで形成された前記非磁性層とNiFe又はCoFeNiにより形成された前記第1磁性層の間に、比抵抗が前記非磁性層よりも低いCuからなる導電性材料層が形成されていると、前記非磁性層だけの場合よりも大きなスピンフィルター効果を奏することができるようになり、磁気検出素子の磁界検出感度をさらに向上させることができるので好ましい。
【0051】
前記非磁性層膜厚0.4〜1.1nmで形成し、さらに、前記導電性材料層膜厚0.3〜0.5nmで形成することができる。
【0052】
前記フリー磁性層の上面に接して積層された前記非磁性層が導電性材料によって形成されているか、または前記非磁性層と前記フリー磁性層の間に前記導電性材料層が形成されていると、前記非磁性層をスピンフィルター効果を有するバックド層(backedlayer)として機能させることが可能になる。
【0053】
スピンバルブ型磁気検出素子にセンス電流を印加すると、伝導電子はおもに電気抵抗の小さい非磁性材料層付近を移動する。この伝導電子にはアップスピンとダウンスピンの2種類の電子が確率的に等量存在する。
【0054】
スピンバルブ型磁気検出素子の磁気抵抗変化率は、これらの2種類の伝導電子の平均自由行程の行程差に対して正の相関を示す。
【0055】
ダウンスピンの伝導電子については、印加される外部磁界の向きにかかわらず、非磁性材料層とフリー磁性層との界面で常に散乱され、フリー磁性層に移動する確率は低いまま維持され、その平均自由行程はアップスピンの伝導電子の平均自由行程に比べて短いままである。
【0056】
一方、アップスピンの伝導電子については、外部磁界によってフリー磁性層の磁化方向が固定磁性層の磁化方向と平行状態になったときに、非磁性材料層からフリー磁性層に移動する確率が高くなり、平均自由行程が長くなっている。これに対し、外部磁界によってフリー磁性層の磁化方向が固定磁性層の磁化方向に対して平行状態から変化するに従って、非磁性材料層とフリー磁性層との界面で散乱される確率が増加し、アップスピンの伝導電子の平均自由行程が短くなる。
【0057】
このように外部磁界の作用によって、アップスピンの伝導電子の平均自由行程がダウンスピンの伝導電子の平均自由行程に比べて大きく変化し、行程差が大きく変化する。すると、アップスピン電子が受ける抵抗とダウンスピン電子が受ける抵抗の並列回路として表わされる素子全体としての抵抗も大きく変化し、スピンバルブ型磁気検出素子の磁気抵抗変化率(ΔR/R)が大きくなる。
【0058】
ここで、フリー磁性層にバックド層が接続されると、フリー磁性層中を移動するアップスピンの伝導電子がバックド層内にまで移動することが可能になり、バックド層の膜厚に比例してアップスピンの伝導電子の平均自由行程をさらに伸ばすことができる。このため、いわゆるスピンフィルター効果を発現させることが可能となり、伝導電子の平均自由行程の行程差が大きくなって、スピンバルブ型磁気検出素子の磁気抵抗変化率(ΔR/R)をより向上させることができる。
【0059】
本発明では、前記フリー磁性層の膜厚が1.5〜4.5nmの範囲に設定されることが好ましい。
【0060】
スピンフィルター効果によるアップスピンの伝導電子とダウンスピンの伝導電子の平均自由行程差の拡大はフリー磁性層の膜厚が比較的薄い場合により効果を発揮する。
【0061】
フリー磁性層の膜厚が1.5nmより薄いと強磁性材料層として機能するように形成することが難しくなり充分な磁気抵抗効果を得ることができない。また、鏡面反射(specular reflection)せずに通常の散乱(diffusive scattering)をする伝導電子も存在するため、抵抗変化率が低下してしまうので好ましくない。
【0062】
また、フリー磁性層の膜厚が4.5nmより厚いと前記非磁性層に到達する前に散乱されてしまうアップスピンの伝導電子が増加してスピンフィルター効果によって抵抗変化率が変化する割合が減少するため好ましくない。
【0063】
本発明では、前記(a)の工程において、前記固定磁性層を、単位面積あたりの磁気モーメントの大きさが異なる複数の強磁性材料層を、非磁性中間層を介して積層し、前記非磁性中間層を介して隣接する前記強磁性材料層の磁化方向が反平行となるフェリ磁性状態とすることが好ましい。
【0064】
固定磁性層が非磁性中間層の上下に強磁性材料層が積層されたものとして形成されると、これら複数層の強磁性材料層が互いの磁化方向を固定しあい、全体として固定磁性層の磁化方向を一定方向に強力に固定することができる。すなわち、第2反強磁性層と固定磁性層との交換結合磁界Hexを大きな値として得ることができる。
【0065】
また、固定磁性層の固定磁化による反磁界(双極子磁界)を、複数層の強磁性材料層の静磁界結合同士が相互に打ち消し合うことによりキャンセルできる。これにより、固定磁性層の固定磁化による反磁界(双極子磁界)からの、フリー磁性層の変動磁化への寄与を減少させることができる。
【0066】
従って、フリー磁性層の変動磁化の方向を所望の方向に補正することがより容易になり、アシンメトリーの小さい対称性の優れた磁気検出素子を得ることが可能になる。
【0067】
ここで、アシンメトリーとは、再生出力波形の非対称性の度合いを示すものであり、再生出力波形が与えられた場合、波形が対称であればアシンメトリーが小さくなる。従って、アシンメトリーが0に近づく程再生出力波形が対称性に優れていることになる。
【0068】
前記アシンメトリーは、フリー磁性層の変動磁化の方向と固定磁性層の固定磁化の方向とが直交しているときに0となる。アシンメトリーが大きくずれるとメディアからの情報の読み取りが正確にできなくなり、エラーの原因となる。このため、前記アシンメトリーが小さいものほど、再生信号処理の信頼性が向上することになり、スピンバルブ磁気検出素子として優れたものとなる。
【0069】
また、固定磁性層の固定磁化による反磁界(双極子磁界)Hdは、前記フリー磁性層の素子高さ方向において、その端部で大きく中央部で小さいという不均一な分布を持ち、フリー磁性層内における単磁区化が妨げられる場合があるが、固定磁性層を上記の積層構造とすることにより双極子磁界HdをほぼHd=0とすることができ、これによってフリー磁性層内に磁壁ができて磁化の不均一が発生しバルクハウゼンノイズなどが発生することを防止することができる。
【0070】
また、本発明では、前記(a)の工程において、前記フリー磁性層を、単位面積あたりの磁気モーメントの大きさが異なる複数の強磁性材料層を、非磁性中間層を介して積層し、前記非磁性中間層を介して隣接する前記強磁性材料層の磁化方向が反平行となるフェリ磁性状態であると、前記フリー磁性層の膜厚を薄くして磁界検出感度を向上させることと同様の効果が得られるので好ましい。
【0071】
なお、前記強磁性材料層の単位面積あたりの磁気モーメントの大きさは、前記強磁性材料層の飽和磁化(Ms)と膜厚(t)の積で表される。
【0072】
前記非磁性中間層は、Ru、Rh、Ir、Os、Cr、Re、Cuのうち1種あるいは2種以上の合金で形成されることができる。
【0073】
また、本発明では、前記強磁性層と前記フリー磁性層のうち少なくとも一方を、以下の組成を有する磁性材料を用いて形成することが好ましい。
【0074】
組成式がCoFeNiで示され、Feの組成比は9原子%以上で17原子%以下で、Niの組成比は0.5原子%以上で10原子%以下で、残りの組成比はCoである磁性材料。
【0075】
また、本発明では、前記フリー磁性層と前記非磁性材料層との間にCoFe合金あるいはCoからなる中間層を形成することが好ましい。
【0076】
前記中間層が形成されるときには、前記強磁性層と前記フリー磁性層のうち少なくとも一方を、以下の組成を有する磁性材料を用いて形成することが好ましい。組成式がCoFeNiで示され、Feの組成比は7原子%以上で15原子%以下で、Niの組成比は5原子%以上で15原子%以下で、残りの組成比はCoである磁性材料。
【0077】
本発明では、前記強磁性層及び前記フリー磁性層の両方を前記CoFeNiで形成することが好ましい。
【0078】
ところで本発明では、前記第2反強磁性層の下層において前記強磁性層、前記非磁性層、及び前記フリー磁性層が積層フェリ構造であり、前記非磁性層を介して隣接する前記強磁性層とフリー磁性層の磁化方向が反平行となるフェリ磁性状態である。
【0079】
この反平行磁化状態を適切に保つには、前記強磁性層と前記フリー磁性層の材質を改良して前記強磁性層と前記フリー磁性層間に働くRKKY相互作用における交換結合磁界を大きくする必要性がある。
【0080】
前記強磁性層と前記フリー磁性層を形成する磁性材料としてよく使用されるものにNiFe合金がある。NiFe合金は軟磁気特性に優れるため従来からフリー磁性層などに使用されていたが、前記強磁性層と前記フリー磁性層をNiFe合金を用いて積層フェリ構造にした場合、これらの層間の反平行結合力はさほど強くはない。
【0081】
そこで本発明では、前記強磁性層と前記フリー磁性層の材質を改良し、前記強磁性層と前記フリー磁性層間の反平行結合力を強め、トラック幅方向の両側に位置するフリー磁性層の両側端部が外部磁界に対し揺らがないようにし、サイドリーディングの発生を適切に抑制できるようにすべく、前記強磁性層と前記フリー磁性層のうち少なくとも一方、好ましくは両方にCoFeNi合金を使用することしている。Coを含有させることで上記の反平行結合力を強めることができる。
【0082】
図18は、強磁性材料からなる薄膜を非磁性材料層を介して積層したいわゆる積層フェリ構造体のヒステリシスループの概念図である。例えば第1の強磁性材料層(F1)の単位面積あたりの磁気モーメント(飽和磁化Ms×膜厚t)は第2の強磁性材料層(F2)の単位面積あたりの磁気モーメントよりも大きいとする。また外部磁界を図示右方向に与えたとする。
【0083】
第1の強磁性材料層の単位面積あたりの磁気モーメントと第2の強磁性材料層の単位面積あたりの磁気モーメントとのベクトル和(|Ms・t(F1)+Ms・t(F2)|)で求めることができる単位面積あたりの合成磁気モーメントは、0磁界から外部磁界を大きくしていってもある時点までは、一定の大きさである。この単位面積あたりの合成磁気モーメントが一定の大きさである外部磁界領域Aでは、前記第1の強磁性材料層と第2の強磁性材料層間に働く反平行結合力が、前記外部磁界よりも強いので、前記第1及び第2の強磁性材料層の磁化は適切に単磁区化され反平行状態に保たれている。
【0084】
ところが、さらに図示右方向への外部磁界を大きくしていくと、強磁性材料層の単位面積あたりの合成磁気モーメントは傾斜角を有して大きくなっていく。これは、前記外部磁界の方が、前記第1の強磁性材料層及び第2の強磁性材料層間に働く反平行結合力よりも強いから、単磁区化していた第1の強磁性材料層と第2の強磁性材料層の磁化が分散して多磁区化状態となり、ベクトル和で求めることができる単位面積あたりの合成磁気モーメントが大きくなっていくのである。この単位面積あたりの合成磁気モーメントが大きくなっていく外部磁界領域Bでは、もはや前記強磁性材料層の反平行状態は崩れた状態にある。この単位面積あたりの合成磁気モーメントが大きくなり始める出発点の外部磁界の大きさをスピンフロップ磁界(Hsf)と呼んでいる。
【0085】
さらに図示右方向の外部磁界を大きくしていくと、第1の強磁性材料層及び第2の強磁性材料層の磁化は、再び単磁区化され、今度は外部磁界領域Aの場合と異なり、共に図示右方向に磁化され、この外部磁界領域Cでの単位面積あたりの合成磁気モーメントは一定値となる。この単位面積あたりの合成磁気モーメントが一定値となる時点での外部磁界の大きさを飽和磁界(Hs)と呼んでいる。
【0086】
前記CoFeNi合金を第1の強磁性材料層及び第2の強磁性材料層に使用すると、NiFe合金を使用した場合に比べて反平行状態が崩れるときの磁界、いわゆるスピンフロップ磁界(Hsf)を十分に大きくできることがわかった。
【0087】
第1及び第2の強磁性材料層にNiFe合金(比較例)及びCoFeNi合金(実施例)を用いて上記したスピンフロップ磁界の大きさを求めるための実験を以下の膜構成を用いて行った。
【0088】
基板/非磁性材料層(Cu)/第1の強磁性材料層(2.4)/非磁性層(Ru)/第2の強磁性材料層(1.4)。なお括弧書きは膜厚を示し単位はnmである。
【0089】
比較例での第1の強磁性材料層及び第2の強磁性材料層には、Niの組成比が80原子%でFeの組成比が20原子%からなるNiFe合金を使用した。このときのスピンフロップ磁界(Hsf)は約59(kA/m)であった。
【0090】
次に実施例での第1の強磁性材料層及び第2の強磁性材料層には、Coの組成比が87原子%で、Feの組成比が11原子%で、Niの組成比が2原子%からなるCoFeNi合金を使用した。このときのスピンフロップ磁界(Hsf)は約293(kA/m)であった。
【0091】
このように第1の強磁性材料層及び第2の強磁性材料層にはNiFe合金を用いるよりもCoFeNi合金を用いる方が、スピンフロップ磁界を効果的に向上させることができることがわかった。
【0092】
すなわち、前記強磁性層と前記フリー磁性層のうち少なくとも一方、好ましくは両方にCoFeNi合金を使用すると、前記強磁性層と前記フリー磁性層のスピンフロップ磁界を効果的に向上させることができる。
【0093】
次に、CoFeNi合金の組成比について説明する。CoFeNi合金は、非磁性層であるRu層と接することでNiFe合金を用いる場合より、磁歪が1×6-6〜6×10-6程度、正側にシフトすることがわかっている。
【0094】
前記磁歪は−3×10-6から3×10-6の範囲内であることが好ましい。また保磁力は790(A/m)以下であることが好ましい。磁歪が大きいと、成膜ひずみや、他層間での熱膨張係数の差などによって応力の影響を受けやすくなるから前記磁歪は低いことが好ましい。また保磁力は低いことが好ましく、これによってフリー磁性層の外部磁界に対する磁化反転を良好にすることができる。
【0095】
本発明では、非磁性材料層/フリー磁性層/非磁性層/強磁性層の膜構成で形成されるとき、前記CoFeNiのFe組成比は9原子%以上で17原子%以下で、Niの組成比は0.5原子%以上で10原子%以下で、残りの組成比はCoであることが好ましい。Feの組成比が17原子%よりも大きくなると、磁歪が−3×10-6よりも負に大きくなると共に軟磁気特性を劣化させて好ましくない。
【0096】
またFeの組成比が9原子%よりも小さくなると、磁歪が3×10-6よりも大きくなると共に、軟磁気特性の劣化を招き好ましくない。
【0097】
またNiの組成比が10原子%よりも大きくなると、磁歪が3×10-6よりも大きくなると共に、非磁性材料層との間でNiの拡散等による抵抗変化量(ΔR)及び抵抗変化率(ΔR/R)の低下を招き好ましくない。
【0098】
またNiの組成比が0.5原子%よりも小さくなると、磁歪が−3×10-6よりも負に大きくなって好ましくない。
また上記した組成範囲内であれば保磁力を790(A/m)以下にすることができる。
【0099】
次に、前記フリー磁性層と前記非磁性材料層と間にCoFe合金あるいはCoからなる中間層を形成するとき、具体的には、例えば非磁性材料層/中間層(CoFe合金)/フリー磁性層/非磁性層/強磁性層の膜構成で形成されるとき、前記CoFeNiのFe組成比は7原子%以上で15原子%以下で、Niの組成比は5原子%以上で15原子%以下で、残りの組成比はCoであることが好ましい。Feの組成比が15原子%よりも大きくなると、磁歪が−3×10-6よりも負に大きくなると共に軟磁気特性を劣化させて好ましくない。
【0100】
またFeの組成比が7原子%よりも小さくなると、磁歪が3×10-6よりも大きくなると共に、軟磁気特性の劣化を招き好ましくない。
【0101】
またNiの組成比が15原子%よりも大きくなると、磁歪が3×10-6よりも大きくなって好ましくない。
【0102】
またNiの組成比が5原子%よりも小さくなると、磁歪が−3×10-6よりも負に大きくなって好ましくない。
また上記した組成範囲内であれば保磁力を790(A/m)以下にすることができる。
【0103】
なお、CoFeやCoで形成された中間層はマイナス磁歪を有しているため、前記中間層を第1のフリー磁性層と非磁性材料層間に介在させない膜構成の場合に比べて、CoFeNi合金のFe組成をやや少なくし、Ni組成をやや多くしている。
【0104】
また上記の膜構成のように、非磁性材料層とフリー磁性層間にCoFe合金あるいはCoからなる中間層を介在させることで、フリー磁性層と非磁性材料層間での金属元素の拡散をより効果的に防止することができて好ましい。
【0105】
なお、本態では、前記第1反強磁性層と前記第2反強磁性層を同じ組成の反強磁性材料を用いて形成しても、前記第1反強磁性層の磁化方向と前記第2反強磁性層の磁化方向を交叉させることが容易に可能となり、外部磁界が印加されていない状態で、前記フリー磁性層と前記固定磁性層の磁化方向を交叉させることができる。
【0106】
前記第1反強磁性層及び/又は前記第2反強磁性層は、PtMn合金により形成されていることが好ましい。または前記反強磁性層は、X―Mn(ただしXは、Pd,Ir,Rh,Ru,Os,Ni,Feのいずれか1種または2種以上の元素である)合金で、あるいはPt―Mn―X′(ただしX′は、Pd,Ir,Rh,Ru,Au,Ag,Os,Cr,Ni,Ar,Ne,Xe,Krのいずれか1種または2種以上の元素である)合金で形成されることができる。
【0107】
ここで、前記PtMn合金及び前記X−Mnの式で示される合金において、PtあるいはXが37〜63at%の範囲であることが好ましい。特に規定しない限り、〜で示す数値範囲の上限と下限は以下、以上を意味する。
【0108】
また、Pt−Mn−X’の式で示される合金において、X’+Ptが37〜63at%の範囲であることが好ましい。さらに、前記Pt−Mn−X’の式で示される合金において、X’が0.2〜10at%の範囲であることが好ましい。ただし、X’がPd,Ir,Rh,Ru,Os,Ni,Feのいずれか1種または2種以上の元素である場合には、X’は0.2〜40at%の範囲であることが好ましい。
【0109】
第1反強磁性層及び第2反強磁性層として、これらの適切な組成範囲の合金を使用し、これを熱処理することにより、大きな交換結合磁界を発生する第1反強磁性層及び第2反強磁性層を得ることができる。特に、PtMn合金であれば、48kA/m以上、例えば64kA/mを越える交換結合磁界を有し、前記交換結合磁界を失うブロッキング温度が380℃と極めて高い優れた第1反強磁性層及び第2反強磁性層を得ることができる。
【0110】
これらの合金は、成膜直後の状態では、不規則系の面心立方構造(fcc)であるが、熱処理によってCuAuI型の規則型の面心正方構造(fct)に構造変態する。
なお、前記(a)の工程を、同一真空成膜装置内において行うことが好ましい。
【0111】
【発明の実施の形態】
図1から図5は、気検出素子の製造方法を説明するための工程図であり、製造過程にある磁気検出素子を記録媒体との対向面側から見た断面図である。
【0112】
例えば、磁気検出素子が浮上式ヘッドを構成する場合には、セラミック材のスライダのトレーリング端面上にAl23膜などの絶縁膜を介して下部シールド層を積層する。
【0113】
図1に示される工程では、下地層13上に、第1反強磁性層14を積層する。さらに第1固定磁性層15a、非磁性中間層15b、第2固定磁性層15cからなるシンセティックフェリピンド型の固定磁性層15が積層され、固定磁性層15の上層に非磁性材料層16、フリー磁性層17、非磁性層18まで積層された多層膜A1を、スパッタ法や蒸着法などの薄膜形成プロセスによって、同一真空成膜装置中で連続成膜する。
【0114】
下地層13はTaなどからなる。なお、下地層13と第1反強磁性層14の間にあるいは下地層13に代えて、NiFeCrやCrを用いてシード層を形成してもよい。前記シード層は第1反強磁性層14の結晶配向を整えるためのものである。
【0115】
第1反強磁性層14は、PtMn合金、または、X―Mn(ただしXは、Pd,Ir,Rh,Ru,Os,Ni,Feのいずれか1種または2種以上の元素である)合金で、あるいはPt―Mn―X′(ただしX′は、Pd,Ir,Rh,Ru,Au,Ag,Os,Cr,Ni,Ar,Ne,Xe,Krのいずれか1または2種以上の元素である)合金で形成する。
【0116】
これらの合金は、成膜直後の状態では、不規則系の面心立方構造(fcc)であるが、熱処理によってCuAuI型の規則型の面心正方構造(fct)に構造変態する。
【0117】
第1反強磁性層14の膜厚は、トラック幅方向の中心付近において8〜30nmである。
【0118】
第1固定磁性層15a及び第2固定磁性層15cは、強磁性材料により形成されるもので、例えばNiFe合金、Co、CoNiFe合金、CoFe合金、CoNi合金などにより形成されるものであり、特にNiFe合金、CoFe合金、またはCoにより形成されることが好ましい。また、第1固定磁性層15a及び第2固定磁性層15cは同一の材料で形成されることが好ましい。
【0119】
また、非磁性中間層15bは、非磁性材料により形成されるもので、Ru、Rh、Ir、Os、Cr、Re、Cuのうち1種またはこれらの2種以上の合金で形成されている。特にRuによって形成されることが好ましい。
【0120】
非磁性材料層16は、固定磁性層15とフリー磁性層17との磁気的な結合を防止し、またセンス電流が主に流れる層であり、Cu,Cr,Au,Agなど導電性を有する非磁性材料により形成されることが好ましい。特にCuによって形成されることが好ましい。
【0121】
フリー磁性層17は、拡散防止層(中間層)17a及び磁性層17bからなるものである。拡散防止層17aは、強磁性材料からなるもので、例えばCoやCoFeから形成される。この拡散防止層17aは、磁性層17bと非磁性材料層16の相互拡散を防止するためのものである。また、磁性層17bは、強磁性材料により形成されるもので、例えばNiFe合金、Co、CoFeNi合金、CoFe合金、CoNi合金などにより形成される。なお、フリー磁性層17は単層の磁性層として形成されてもよい。
【0122】
また本態のように拡散防止層17aが形成されている場合には、フリー磁性層17の磁性層17bは以下の組成を有する磁性材料で形成することが好ましい。CoFeNi合金であってFeの組成比が7原子%以上で15原子%以下、Niの組成比が5原子%以上で15原子%以下、残りの組成比はCoである磁性材料。
【0123】
これによりフリー磁性層17と強磁性層19,19間で発生するRKKY相互作用における交換結合磁界を強くすることができ、スピンフロップ磁界(Hsf)を約293(kA/m)にまで大きくすることができる。
【0124】
また上記した組成範囲内であると、フリー磁性層17の磁性層17bと強磁性層19の磁歪を−3×10-6から3×10-6の範囲内に収めることができ、また保磁力を790(A/m)以下に小さくできる。
【0125】
さらに、フリー磁性層17の軟磁気特性の向上、磁性層17bのNiが拡散防止層17aや非磁性材料層16に拡散することによる抵抗変化量(ΔR)や抵抗変化率(ΔR/R)の低減の抑制を適切に図ることが可能である。
【0126】
なお、フリー磁性層17が単層の磁性層として形成される場合には、フリー磁性層17は、組成式がCoFeNiで示され、Feの組成比は9原子%以上で17原子%以下で、Niの組成比は0.5原子%以上で10原子%以下で、残りの組成はCoである強磁性材料で形成されることが好ましい。
【0127】
非磁性層18は、Ru、Rh、Ir、Re、Osのうち1種あるいは2種以上の合金で形成する。なお、非磁性層18をRuによって形成するときには、非磁性層の膜厚t1を0.8〜1.1nm、より好ましくは0.85〜0.9nm、となるようものとして形成すると強磁性層19とフリー磁性層17との間のRKKY相互作用を大きくすることができるので好ましい。
【0128】
次に、非磁性層18まで積層された多層膜A1を第1の熱処理温度、Y方向を向いた第1の大きさの磁界中で、第1の磁場中アニールを行い、第1反強磁性層14と第1固定磁性層15aとの間に交換異方性磁界を発生させ、固定磁性層15の磁化方向を図示Y方向に固定する。本態では、第1の熱処理温度を270℃、磁界の第1の大きさを800k(A/m)としている。
【0129】
次に、図2に示されるように強磁性層19、第2反強磁性層20をスパッタ法によって連続成膜し、下地層13から第2反強磁性層20まで積層された多層膜A2を得る。
【0130】
強磁性層19の材料は、フリー磁性層17の磁性層17bと同様の材料を用いる。従って、例えばNiFe合金、Co、CoNiFe合金、CoFe合金、CoNi合金などにより形成される。特に、強磁性層19は、組成式がCoFeNiで示され、Feの組成比は9原子%以上で17原子%以下で、Niの組成比は0.5原子%以上で10原子%以下で、残りの組成はCoである強磁性材料で形成されることが好ましい。
また、第2反強磁性層20の材料は、第1反強磁性層14の材料と同じである。
【0131】
態のように、非磁性層18をRu、Rh、Ir、Re、Osのうち1種あるいは2種以上の合金で形成すると、第1の磁場中アニールにおいて、非磁性層18の表面がほとんど酸化しない。従って、非磁性層18上に強磁性層19をスパッタ成膜する前に、非磁性層18の表面をミリングなどで処理しなくても、フリー磁性層17と強磁性層19との間に非磁性層18を介したRKKY相互作用を働かせることができる。例えばフリー磁性層17と強磁性層19をともにNiFeで形成し、非磁性層18をRuで形成した場合、非磁性層18の表面をミリングなどで処理しなくても42(kA/m)の一方向異方性磁界を発生させることができる。
【0132】
すなわち、非磁性層18と強磁性層19,19との界面を、ミリングによって削られた面としなくてもすむようにできるので、フリー磁性層17の磁化方向を一定方向に揃えるための一方向異方性磁界の低下を防ぐことができる。
【0133】
ただし、強磁性層19とフリー磁性層17は、非磁性層18を介したRKKY相互作用によって磁気的に結合されたものであるので、非磁性層18の表面をミリングによって処理した場合でも、フリー磁性層の磁化方向を一定方向に揃えるために十分な一方向異方性磁界を得ることができる。
【0134】
さらに、非磁性層18をRuで形成し、フリー磁性層17をCoFeで形成するとフリー磁性層17の磁歪を0にすることも可能である。
【0135】
なお、本態の磁気検出素子は、第1反強磁性層14と第2反強磁性層20を同じ組成の反強磁性材料を用いて形成することができる。
【0136】
次に、多層膜A2を第2の熱処理温度、X方向を向いた第2の大きさの磁界中で、第2の磁場中アニールにかけて、第2反強磁性層20と強磁性層19との間に交換異方性磁界を発生させ、強磁性層19の磁化方向を図示X方向に固定する。本態では、第2の熱処理温度を250℃、磁界の第2の大きさを8(kA/m)としている。
【0137】
第2反強磁性層20と強磁性層19との間の交換異方性磁界は、第2の磁場中アニール工程において初めて生じる。従って、第1反強磁性層14と第1固定磁性層15aとの間の交換異方性磁界の方向を図示Y方向に向けたまま、第2反強磁性層20と強磁性層19との間の交換異方性磁界を図示X方向に向けるためには、第2の熱処理温度を、第1反強磁性層14による交換結合磁界が消失するブロッキング温度より低い温度に設定し、第2の磁界の大きさを第1反強磁性層14と第1固定磁性層15aとの間の交換異方性磁界より小さくするだけでよい。また、第2の磁場中アニールをこれらの条件下で行えば、第1反強磁性層14と第2反強磁性層20を同じ組成の反強磁性材料を用いて形成しても、第1反強磁性層14と第1固定磁性層15aとの間の交換異方性磁界の方向を図示Y方向に向けたまま、第2反強磁性層20と強磁性層19との間の交換異方性磁界を図示X方向に向けることができる。すなわち、フリー磁性層17の磁化方向を、固定磁性層15の磁化方向と直交する方向に固定することが容易になる。
【0138】
なお、第2の磁場中アニール時の第2の磁界の大きさは、フリー磁性層17及び強磁性層19の飽和磁界、及びフリー磁性層17及び強磁性層19の反磁界より大きく、フリー磁性層17と強磁性層19との間の反平行結合が崩れるスピンフロップ磁界より小さいことが好ましい。
【0139】
次に、図3に示す工程では、トラック幅分より若干広い領域を覆うリフトオフ用のレジスト層R1を積層する。レジスト層R1には、その下面に切り込み部R1a,R1aが形成されている。なお、図示していないが、第2反強磁性層20の上層にTa、Crなどからなる保護層を形成してもよい。
【0140】
さらに図23に示す工程によって、第2反強磁性層20の上層に電極層21,21を成膜する。本態では、電極層21,21の成膜の際に使用されるスパッタ法は、イオンビームスパッタ法、ロングスロースパッタ法、あるいはコリメーションスパッタ法のいずれか1種以上であることが好ましい。なお、第2の磁場中アニールによって第2反強磁性層20または第2反強磁性層20上に形成された保護層が酸化したときは、第2反強磁性層20の表面または前記保護層の表面をイオンミリングなどによって削り、酸化した部分を除去する。
【0141】
態では、多層膜A2が形成された基板(ウェハ)を、電極層21,21の組成で形成されたターゲットに対し垂直方向に置き、これにより例えばイオンビームスパッタ法を用いることで、前記多層膜A2の表面に対し垂直方向から電極層21,21を成膜する。
【0142】
レジスト層R1の切り込み部R1a,R1a付近には、スパッタ粒子が積層されにくい。従って、レジスト層R1の切り込み部R1a,R1a付近では、電極層21,21は膜厚が薄く形成され、電極層21,21に曲面状の側端面21a,21aが形成される。電極層21,21は、例えば、Au、Rh、W、Cr、Taなどを用いて成膜される。なお、レジスト層R1上には、電極層21,21と同じ組成の層21bが形成される。電極層21,21を成膜した後、レジスト層R1を除去すると、図4に示す状態になる。
【0143】
さらに、図5に示すように、電極層21,21をマスクとして、第2反強磁性層20の電極層21,21によって覆われていない部分を、イオンミリングまたは反応性イオンエッチング(RIE)などによって、削り込むことにより、側面22aが第2反強磁性層20及び強磁性層19を貫通し、底面22bが非磁性層18内に位置し、かつ底面22bがトラック幅Twに相当する幅寸法を有する凹部22を形成する。凹部22の側面22a,22aは、電極層21,21の側端面21a,21aと連続面となる傾斜面または曲面となっている。図5では、凹部22の底面22bが非磁性層18内に位置するように、凹部22を形成している。
【0144】
凹部22の形成後、上部ギャップ層23及び上部シールド層24を形成して図6に示されるような磁気検出素子を得ることができる。
【0145】
なお、下部シールド層11及び上部シールド層24は、NiFeなどの強磁性材料を用いて形成される。なお、下部シールド層11及び上部シールド層24はメッキによって形成されてもよい。また、下部シールド層11及び上部シールド層24は磁化容易軸方向がトラック幅方向を向いていることが好ましい。
【0146】
下部ギャップ層12及び上部ギャップ層23は、Al23、SiO2、Al−Si−Oなどの絶縁性材料によって形成されている。
【0147】
態では、電極層21,21は第2反強磁性層20,20上に積層され、電極層21,21のトラック幅領域C側の側端面21a,21aが、第2反強磁性層20,20のトラック幅領域C側の側端面20a,20aと連続面となっている。さらに、強磁性層19,19のトラック幅領域C側の側端面19a,19aも、電極層21,21の側端面21a,21a及び第2反強磁性層20,20の側端面20a,20aと連続面となっている。
【0148】
なお、図6において、トラック幅領域Cとは、凹部22の底面22bに重なる領域であり、フリー磁性層17の磁化が変動する領域である感度領域Eに等しい。
【0149】
態では、第2反強磁性層20,20の下層にある強磁性層19,19が、第2反強磁性層20,20との磁気的結合によってトラック幅方向(図示X方向)に磁化方向がそろえられ、さらに、この強磁性層19,19の下層に非磁性層18を介して形成されたフリー磁性層17の両側部の磁化方向が、強磁性層19,19とのRKKY相互作用によって、強磁性層19の磁化方向と反平行方向に揃えられる。すなわち、第2反強磁性層20,20の下層において強磁性層19,19、非磁性層18、及びフリー磁性層17がシンセティックフェリ構造となっており、フリー磁性層17の第2反強磁性層20,20及び強磁性層19,19に重なる領域である両側部17s,17sは磁化方向が固定磁性層15の磁化方向と交叉する方向に固定されている。
【0150】
一方、フリー磁性層17の第2反強磁性層20,20及び強磁性層19,19に重ならない領域である中央部(トラック幅領域)17cの磁化方向は、外部磁界が与えられない状態のときは両側部17s,17sにならってトラック幅方向と180°異なる反平行方向(図示X方向と反平行方向)を向き、外部磁界がトラック幅方向に垂直な方向(ハイト方向;図示Y方向)に与えられると、ハイト方向へ向けて変化する。
【0151】
このフリー磁性層17の中央部17cでの磁化の方向の変動と、固定磁性層15の固定磁化方向との関係で電気抵抗が変化し(これを磁気抵抗効果という)、この電気抵抗値の変化に基づく電圧変化又は電流変化により、記録媒体からの洩れ磁界などの外部磁界が検出される。
【0152】
態では、凹部22の底面22bの幅寸法がトラック幅Twを規定する。凹部22の底面22bの幅寸法は、図3に示した工程において、レジスト層R1の寸法を調節すること及び図5の工程において凹部22の深さ寸法を調節することにより規定することができる。
【0153】
なお、凹部22の側面22a,22aの第2反強磁性層20の表面20bに対する垂直方向に対する傾斜角は約20°である。
【0154】
第2反強磁性層20,20はトラック幅領域Cから外れた全領域において、反強磁性を発生するために充分な膜厚を有し、トラック幅領域Cから外れた全領域(トラック幅方向の両側端部S,S)において強磁性層19,19及びフリー磁性層17の磁化方向を確実に固定することができる。すなわち、強磁性層19,19の下層に非磁性層18を介して積層されているフリー磁性層17の磁化方向は、トラック幅方向の両側部17s,17sでのみ強磁性層19,19とのRKKY相互作用により固定される。
【0155】
凹部22の底面22bに重なるフリー磁性層17の領域Eは、外部磁界が印加されない状態おいて、磁化方向が固定された両側部17s,17sにならって図示X方向と反平行方向に揃えられ、外部磁界が印加されるとその磁化方向が変化する。
【0156】
従って、磁気検出素子のトラック幅寸法Twは、凹部22の底面22b幅寸法Twによって決定され、しかも、トラック幅寸法Twから外れた領域で記録信号を読み取ってしまうサイドリーディングを防止することができる。上述したように、本形態では、凹部22は一様の厚さで成膜された第2反強磁性層20を、電極層21,21をマスクとした反応性イオンエッチング(RIE)やイオンミリングを用いて、正確な幅寸法で凹部22の底面22bを形成することが可能になる。すなわち、磁気検出素子のトラック幅寸法Twを正確に規定でき、磁気検出素子の光学的トラック幅が磁気的トラック幅に等しくなり、不感領域が生じないので、高記録密度化に対応するために磁気検出素子の光学的トラック幅Twを小さくしていった場合の再生出力の低下を抑えることができる。
【0157】
また、図6に示される磁気検出素子では、フリー磁性層17を第2反強磁性層20,20及び強磁性層19,19の下層にまで延して形成するので、フリー磁性層17の磁化がフリー磁性層17の両側端面の表面磁荷によって発生する反磁界の影響を受けることを小さくできる。
【0158】
また、第2反強磁性層20,20の下層において強磁性層19,19、非磁性層18、及びフリー磁性層17がシンセティックフェリ構造となっているので、フリー磁性層17の両側部17s,17sにおける磁化方向を一定方向に揃えるための一方向異方性磁界を大きくすることができる。
【0159】
従って、外部磁界によってフリー磁性層17の両側部17s,17sの磁化方向が変化してしまい、結果として磁気的トラック幅が大きくなることを抑えることができる。
【0160】
また、第2反強磁性層20,20と強磁性層19,19との交換結合磁界が比較的弱くても、フリー磁性層17の磁化方向を確実に、固定磁性層15の磁化方向と交叉する方向に揃えることが容易になる。従って、前記第2の磁場中アニールにおける磁場の大きさを8(kA/m)の低磁場とすることができ、固定磁性層15の磁化方向が変化することを抑えることが容易になる。なお、第2の磁界の大きさを8(kA/m)としても、例えばフリー磁性層17と強磁性層19をともにNiFeで形成し、非磁性層18をRuで形成した場合に56(kA/m)の一方向異方性磁界を発生させることができる。また、フリー磁性層17と強磁性層19をともにCoFeで形成し、非磁性層18をRuで形成した場合に152(kA/m)の一方向異方性磁界を発生させることができる。
【0161】
また、本態では、非磁性層18を一定の厚さt1で形成するので、非磁性層18の上面18aが平坦面となる。従って、図2に示される工程において、強磁性層19及び第2反強磁性層20を、表面が平坦面である非磁性層18上に積層することになるので、強磁性層19及び第2反強磁性層20も平坦化された層として形成でき、強磁性層19、非磁性層18、及びフリー磁性層17からなるシンセティックフェリ構造において強磁性層19とフリー磁性層17間のRKKY相互作用を大きくすることが容易になる。
【0162】
また非磁性層18の上面18aが平坦面であると、強磁性層19,19及び第2反強磁性層20,20の積層工程の制御が容易になる。従って、強磁性層19,19の膜厚を薄くでき強磁性層19,19、非磁性層18、及びフリー磁性層17からなるシンセティックフェリ構造において強磁性層19,19とフリー磁性層17間のスピンフロップ磁界を大きくできる。本態では強磁性層19,19の膜厚を例えば1.5nm〜4.0nmにできる。また、フリー磁性層17にかかる一方向異方性磁界を大きくできる。例えば、強磁性層19,19及びフリー磁性層17をNiFeで形成したときには、前記一方向異方性磁界を56(kA/m)とすることができる。または、強磁性層19,19及びフリー磁性層17をCoFeで形成したときには、前記一方向異方性磁界を152(kA/m)とすることができる。
【0163】
なお、図1の工程で、非磁性層18をRuなどの導電性材料で形成すると、非磁性層18が、以下に説明するスピンフィルター効果を有するバックド層として機能し、磁気検出素子の磁界検出感度を向上させることができる。
【0164】
スピンフィルター効果について説明する。図19及び図20はスピンバルブ型磁気検出素子においてバックド層によるスピンフィルター効果を説明するための模式説明図であり、図19はバックド層がない構造例を示す模式図であり、図20はバックド層のある構造例を示す模式図である。
【0165】
巨大磁気抵抗GMR効果は、主として電子の「スピンに依存した散乱」によるものである。つまり磁性材料、ここではフリー磁性層の磁化方向に平行なスピン(例えばアップスピン)を持つ伝導電子の平均自由行程λ+と、磁化方向に逆平行なスピン(例えばダウンスピン)を持つ伝導電子の平均自由行程λ-の差を利用したものである。図19及び図20では、アップスピンを持つ伝導電子を上向き矢印で表わし、ダウンスピンを持つ伝導電子を下向き矢印で表わしている。電子がフリー磁性層115を通り抜けようとするときに、この電子がフリー磁性層115の磁化方向に平行なアップスピンを持てば自由に移動できるが、反対にダウンスピンを持ったときには直ちに散乱されてしまう。
【0166】
これは、アップスピンを持つ電子の平均自由行程λ+が、例えば、50オングストローム程度であるのに対して、ダウンスピンを持つ電子の平均自由行程λ-が6オングストローム程度であり、10分の1程度と極端に小さいためである。
【0167】
フリー磁性層115の膜厚は、6オングストローム程度であるダウンスピンを持つ電子の平均自由行程λ-よりも大きく、50オングストローム程度であるアップスピンを持つ電子の平均自由行程λ+よりも小さく設定されている。
【0168】
従って、電子がフリー磁性層115を通り抜けようとするときに、この電子がフリー磁性層115の磁化方向に平行なアップスピンを持てば自由に移動できるが、反対にダウンスピンを持ったときには直ちに散乱されてしまう(フィルタアウトされる)。
【0169】
固定磁性層113で発生し、非磁性材料層114を通過するダウンスピン電子は、フリー磁性層115と非磁性材料層114との界面付近或いは固定磁性層113と非磁性材料層114との界面付近で散乱され、フリー磁性層115にはほとんど到達しない。つまり、このダウンスピン電子は、フリー磁性層115の磁化方向が回転しても平均自由行程に変化はなく、GMR効果による抵抗変化率に影響しない。従ってGMR効果にはアップスピン電子の挙動のみを考えればよい。
【0170】
固定磁性層113で発生したアップスピン電子はこのアップスピン電子の平均自由行程λ+より薄い厚さの非磁性材料層114中を移動し、フリー磁性層115に到達し、アップスピン電子はフリー磁性層115内を自由に通過できる。これは、アップスピン電子がフリー磁性層115の磁化方向に平行なスピンを持っているためである。
【0171】
固定磁性層113の磁化方向とフリー磁性層115の磁化方向が反平行となる状態では、アップスピン電子はフリー磁性層115の磁化方向に平行なスピンを持った電子でなくなる。すると、アップスピン電子は、フリー磁性層115と非磁性材料層114との界面付近で散乱されることになり、アップスピン電子の有効平均自由行程が急激に減少する。すなわち、抵抗値が増大する。抵抗変化率は、アップスピン電子の有効平均自由行程の変化量と正の相関関係を有する。
【0172】
図20に示すように、バックド層BAが設けられている場合には、フリー磁性層115を通過したアップスピン電子はバックド層BAにおいて、このバックド層BAの材料で決定される追加平均自由行程λ+bを移動した後散乱する。すなわち、バックド層BAを設けたことにより、アップスピン電子の平均自由行程λ+が追加平均自由行程λ+b分だけ延びる。
【0173】
バックド層として機能する非磁性層18を有する本態では、アップスピンの伝導電子の平均自由行程を伸ばすことができる。このため、外部磁界の印加によるアップスピン電子の平均自由行程の変化量が大きくなって、スピンバルブ型磁気検出素子の磁気抵抗変化率(ΔR/R)をより向上させることができる。
【0174】
スピンフィルター効果によるアップスピンの伝導電子とダウンスピンの伝導電子の平均自由行程差の拡大はフリー磁性層17の膜厚が比較的薄い場合により効果を発揮する。
【0175】
フリー磁性層17の膜厚が1.5nmより薄いと強磁性材料層として機能するように形成することが難しくなり充分な磁気抵抗効果を得ることができない。また、鏡面反射(specular reflection)せずに通常の散乱(diffusive scattering)をする伝導電子も存在するため、抵抗変化率が低下してしまうので好ましくない。
【0176】
また、フリー磁性層17の膜厚が4.5nmより厚いと非磁性層18に到達する前に散乱されてしまうアップスピンの伝導電子が増加してスピンフィルター効果によって抵抗変化率が変化する割合が減少するため好ましくない。
【0177】
また、図6では、単位面積あたりの磁気モーメントが異なる前記第1固定磁性層15a(強磁性材料層)と前記第2固定磁性層15c(強磁性材料層)が、前記非磁性中間層15bを介して積層されたものが、一つの固定磁性層15として機能する。すなわち、固定磁性層15は、単位面積あたりの磁気モーメントの大きさが異なる複数の強磁性材料層が、非磁性中間層を介して積層され、前記非磁性中間層を介して隣接する前記強磁性材料層の磁化方向が反平行となるフェリ磁性状態であるものである。
【0178】
第1固定磁性層15aは第1反強磁性層14と接して形成され、第1の磁場中アニールが施されることにより、第1固定磁性層15aと第1反強磁性層14との界面にて交換結合による交換異方性磁界が生じ、第1固定磁性層15aの磁化方向が図示Y方向に固定される。第1固定磁性層15aの磁化方向が図示Y方向に固定されると、非磁性中間層15bを介して対向する第2固定磁性層15cの磁化方向が、第1固定磁性層15aの磁化方向と反平行の状態で固定される。
【0179】
なお、第1固定磁性層15aの磁気モーメントと第2固定磁性層15cの磁気モーメントを足し合わせた合成磁気モーメントの方向が固定磁性層15の磁化方向となる。
【0180】
このように、第1固定磁性層15aと第2固定磁性層15cの磁化方向は、反平行となるフェリ磁性状態になっており、第1固定磁性層15aと第2固定磁性層15cとが互いに他方の磁化方向を固定しあうので、全体として固定磁性層15の磁化方向を一定方向に安定させることができるので好ましい。
【0181】
第1固定磁性層15a及び第2固定磁性層15cは、強磁性材料により形成されるもので、例えばNiFe合金、Co、CoNiFe合金、CoFe合金、CoNi合金などにより形成されるものであり、特にNiFe合金、CoまたはCoFeにより形成されることが好ましい。また、第1固定磁性層15a及び第2固定磁性層15cは同一の材料で形成されることが好ましい。図1では、前記第1固定磁性層15a及び前記第2固定磁性層15cを同じ材料を用いて形成し、さらに、それぞれの膜厚を異ならせることにより、それぞれの単位面積あたりの磁気モーメントを異ならせている。
【0182】
また、非磁性中間層15bは、非磁性材料により形成されるもので、Ru、Rh、Ir、Os、Cr、Re、Cuのうち1種またはこれらの2種以上の合金で形成されている。特にRuによって形成されることが好ましい。
【0183】
固定磁性層15が非磁性中間層15bの上下に第1固定磁性層15a及び第2固定磁性層15cが積層されたものとして形成されると、第1固定磁性層15a及び第2固定磁性層15cが互いの磁化方向を固定しあい、全体として固定磁性層15の磁化方向を一定方向に強力に固定することができる。すなわち、第1反強磁性層14と固定磁性層15との交換結合磁界Hexを、例えば80〜160kA/mと、大きな値として得ることができる。
【0184】
また、本態では、固定磁性層15の固定磁化による反磁界(双極子磁界)を、第1固定磁性層15a及び第2固定磁性層15cの静磁界どうしが相互に打ち消し合うことによりキャンセルできる。これにより、固定磁性層15の固定磁化による反磁界(双極子磁界)からの、フリー磁性層17の変動磁化への寄与を減少させることができる。
【0185】
従って、フリー磁性層17の変動磁化の方向を所望の方向に補正することがより容易になり、アシンメトリーの小さい対称性の優れた磁気検出素子を得ることが可能になる。
【0186】
また、固定磁性層15の固定磁化による反磁界(双極子磁界)Hdは、フリー磁性層17の素子高さ方向において、その端部で大きく中央部で小さいという不均一な分布を持ち、フリー磁性層17内における単磁区化が妨げられる場合があるが、固定磁性層15を上記の積層構造とすることにより双極子磁界HdをほぼHd=0とすることができ、これによってフリー磁性層17内に磁壁ができて磁化の不均一が発生しバルクハウゼンノイズなどが発生することを防止することができる。
ただし、固定磁性層15が単層の強磁性材料層として形成されてもよい。
【0187】
また、第2固定磁性層15cと非磁性材料層16の間にCoなどからなる拡散防止層が形成されていてもよい。この拡散防止層は第2固定磁性層15cと非磁性材料層16の相互拡散を防止する。
【0188】
また、本態では、第1反強磁性層14と第2反強磁性層20,20を同じ組成の反強磁性材料を用いて形成した場合でも、第1反強磁性層14の交換異方性磁界の方向を図示Y方向に向けたまま、第2反強磁性層20,20の交換異方性磁界を図示X方向に向けることができる。すなわち、本態では、フリー磁性層17の磁化方向を、固定磁性層15の磁化方向と直交する方向に固定できる。
【0189】
なお、フリー磁性層17と強磁性層19,19の単位面積あたりの磁気モーメントの大きさは異なっている必要がある。フリー磁性層17及び強磁性層19,19の単位面積あたりの磁気モーメントの大きさは、強磁性材料層の飽和磁化(Ms)と膜厚(t)の積で表される。本態では、強磁性層19,19の膜厚をフリー磁性層17の膜厚より薄くしている。強磁性層19,19の膜厚を薄くすると強磁性層19,19の一方向異方性磁界が大きくなってフリー磁性層17に充分な縦バイアスをかけることが容易になる。
【0190】
また図4に示された工程の後、電極層21,21をマスクとして第2反強磁性層20を第2反強磁性層20内まで掘り込むことにより、図7に示されるような凹部30を有する磁気検出素子を得ることもできる。凹部30は底面30bが第2反強磁性層20内に位置し、かつ底面30bがトラック幅寸法Twであるものである。
【0191】
図7に示される磁気検出素子では、凹部30の底面30bが第2反強磁性層20内に位置しており、フリー磁性層17と強磁性層19が、非磁性層18を介して隣接し、フリー磁性層17の磁化方向と強磁性層19の磁化方向が反平行となるフェリ磁性状態となる。
【0192】
このとき、フリー磁性層17、非磁性層18及び強磁性層19からなる多層膜Fがひとつのフリー磁性層、いわゆるシンセティックフェリフリー磁性層として機能する。シンセティックフェリフリー磁性層では、フリー磁性層の膜厚を薄くすることと同等の効果が得られ、フリー磁性層の磁化が変動しやすくなり、磁気抵抗効果素子の磁界検出感度が向上する。なお、フリー磁性層17と強磁性層19の単位面積あたりの磁気モーメントの大きさは異なっている必要がある。フリー磁性層17の単位面積あたりの磁気モーメントの大きさは、磁性層17bの飽和磁化(Ms)と膜厚(t)の積と拡散防止層17aの飽和磁化(Ms)と膜厚(t)の積の和であり、強磁性層19の単位面積あたりの磁気モーメントの大きさは、強磁性層の飽和磁化(Ms)と膜厚(t)の積で表される。
【0193】
なお、凹部30の底面30bの下部に位置する第2反強磁性層20の領域の厚さt2を0Åより大きく50Å以下にすると、凹部30の底面30bの下部に位置する第2反強磁性層20の領域では強磁性層19との間に交換結合磁界が発生しないので好ましい。
【0194】
また図4に示された工程の後、電極層21,21をマスクとして第2反強磁性層20を強磁性層19内まで掘り込むことにより、図8に示されるような凹部31を有する磁気検出素子を得ることもできる。凹部31は、側面31aが第2反強磁性層20を貫通し、底面31bが強磁性層19内に位置し、かつ底面31bがトラック幅Twに相当する幅寸法を有するものである。
【0195】
図8に示された磁気検出素子でもフリー磁性層17、非磁性層18及び強磁性層19からなる多層膜Fがひとつのフリー磁性層、いわゆるシンセティックフェリフリー磁性層Fとして機能する。本形態では、フリー磁性層の外部磁化によって磁化方向が変化する感度領域Eの上層に第2反強磁性層20が全く存在しない。従って、シンセティックフェリフリー磁性層Fの感度領域Eの磁化方向の外部磁界依存性の変動を鋭敏にでき、磁気検出素子の磁界検出感度を向上できる。
【0196】
気検出素子の製造方法を説明する。
磁気検出素子が浮上式ヘッドを構成する場合には、セラミック材のスライダのトレーリング端面上にAl23膜などの絶縁膜を介して下部シールド層及び下部ギャップ層を積層する。
【0197】
さらに、前述した同様に、図1に示される工程において下地層13上に、第1反強磁性層14、第1固定磁性層15a、非磁性中間層15b、第2固定磁性層15cからなるシンセティックフェリピンド型の固定磁性層15、非磁性材料層16、フリー磁性層17、非磁性層18まで順次積層された多層膜A1を、スパッタ法や蒸着法などの薄膜形成プロセスによって、同一真空成膜装置中で連続成膜する。
【0198】
次に、第1の熱処理温度、Y方向を向いた第1の大きさの磁界中で、第1の磁場中アニールを行い、第1反強磁性層14と第1固定磁性層15aとの間に交換異方性磁界を発生させ、固定磁性層15の磁化方向を図示Y方向に固定する。本態では、第1の熱処理温度を270℃、磁界の第1の大きさを800k(A/m)としている。
【0199】
次に、強磁性層19、第2反強磁性層20をスパッタ法によって連続成膜し、図2に示される下地層13から第2反強磁性層20まで積層された多層膜A2を得る。
【0200】
なお、下地層13、第1反強磁性層14、第1の固定磁性層15a、非磁性中間層15b、第2固定磁性層15cからなるシンセティックフェリピンド型の固定磁性層15、非磁性材料層16、フリー磁性層17、非磁性層18、強磁性層19、第2反強磁性層20の材料は、前述した態と同じであるので説明を省略する。
【0201】
態でも、非磁性層18をRu、Rh、Ir、Re、Osのうち1種あるいは2種以上の合金で形成すると、第1の磁場中アニールにおいて、非磁性層18の表面がほとんど酸化しない。従って、非磁性層18上に強磁性層19をスパッタ成膜する前に、非磁性層18の表面をミリングなどで処理しなくても、フリー磁性層17と強磁性層19との間に非磁性層18を介したRKKY相互作用を働かせることができる。
【0202】
すなわち、非磁性層18と強磁性層19,19との界面を、ミリングによって削られた面としなくてもすむようにできるので、フリー磁性層17の磁化方向を一定方向に揃えるための一方向異方性磁界の低下を防ぐことができる。
【0203】
ただし、強磁性層19とフリー磁性層17は、非磁性層18を介したRKKY相互作用によって磁気的に結合されたものであるので、非磁性層18の表面をミリングによって処理した場合でも、フリー磁性層の磁化方向を一定方向に揃えるために十分な一方向異方性磁界を得ることができる。
【0204】
なお、本態でも、第1反強磁性層14と第2反強磁性層20を同じ組成の反強磁性材料を用いて形成することができる。
【0205】
次に、多層膜A2を第2の熱処理温度、X方向を向いた第2の大きさの磁界中で、第2の磁場中アニールにかけて、第2反強磁性層20と強磁性層19との間に交換異方性磁界を発生させ、強磁性層19の磁化方向を図示X方向に固定する。本態では、第2の熱処理温度を250℃、磁界の第2の大きさを8(kA/m)としている。
【0206】
第2反強磁性層20と強磁性層19との間の交換異方性磁界は、第2の磁場中アニール工程において初めて生じる。従って、第1反強磁性層14と第1固定磁性層15aとの間の交換異方性磁界の方向を図示Y方向に向けたまま、第2反強磁性層20と強磁性層19との間の交換異方性磁界を図示X方向に向けるためには、第2の熱処理温度を、第1反強磁性層14による交換結合磁界が消失するブロッキング温度より低い温度に設定し、第2の磁界の大きさを第1反強磁性層14と第1固定磁性層15aとの間の交換異方性磁界より小さくするだけでよい。また、第2の磁場中アニールをこれらの条件下で行えば、第1反強磁性層14と第2反強磁性層20を同じ組成の反強磁性材料を用いて形成しても、第1反強磁性層14と第1固定磁性層15aとの間の交換異方性磁界の方向を図示Y方向に向けたまま、第2反強磁性層20と強磁性層19との間の交換異方性磁界を図示X方向に向けることができる。すなわち、フリー磁性層17の磁化方向を、固定磁性層15の磁化方向と直交する方向に固定することが容易になる。
【0207】
なお、第2の磁場中アニール時の第2の磁界の大きさは、フリー磁性層17及び強磁性層19の飽和磁界、及びフリー磁性層17及び強磁性層19の反磁界より大きく、フリー磁性層17と強磁性層19との間の反平行結合が崩れるスピンフロップ磁界より小さいことが好ましい。
【0208】
次に、図9に示す工程において、第2反強磁性層20上に、トラック幅Twに等しい間隔W1をあけて一対の第1のレジスト層R2、R2を積層する。
【0209】
第1のレジスト層R2,R2の積層後、図10に示すように、第2反強磁性層20の第1のレジスト層R2、R2によって挟まれた部位、すなわち、第2反強磁性層20の第1のレジスト層R2,R2によってマスクされない部位を、イオンミリングまたは反応性イオンエッチング(RIE)などによって、第2反強磁性層20の表面20aに対する垂直方向、すなわちトラック幅方向(図示X方向)に対する垂直方向(図示Z方向)に削り込むことにより、側面31aが第2反強磁性層20及び強磁性層19を貫通し、底面31bが非磁性層18内に位置し、かつ底面31bがトラック幅Twに相当する幅寸法を有する凹部31を形成する。凹部31の側面31a,31aは、トラック幅方向に対して垂直面になっている。図10では、凹部31の底面31bが非磁性層18内に位置するように、凹部31を形成している。凹部31の形成後、第1のレジスト層R2,R2を除去する。
【0210】
次に、凹部31内及び凹部31の開口部周辺の第2反強磁性層20,20上に、トラック幅方向の幅寸法がW2の領域を覆う第2のレジスト層R3を形成する。レジスト層R3はリフトオフ用のレジスト層であり、下層部に切り欠き部R3a、R3aが形成されている。
【0211】
さらに、図11に示されるように第2反強磁性層20,20のレジスト層R3に覆われていない領域上に導電性材料からなる電極層26,26をスパッタ法によって成膜して多層膜A3を形成する。電極層26,26の形成後、第2のレジスト層R3を除去すると図12に示される磁気検出素子を得ることができる。
【0212】
図12に示される磁気検出素子では、第2反強磁性層20,20上に積層されている電極層26,26のトラック幅領域C側の側端縁26a,26aが、第2反強磁性層20,20のトラック幅領域C側の側端面20a,20aよりも、多層膜A3の外端部S1,S1側に形成される磁気検出素子を得ることができる。なお、トラック幅領域Cとは、多層膜A3中の凹部31の底面31bに重なる領域のことである。すなわち、トラック幅領域Cの幅寸法はトラック幅寸法Twに等しい。また、トラック幅領域Cの幅寸法は、フリー磁性層17の磁化方向が変化する領域である感度領域Eの幅寸法に等しい。
【0213】
電極層26,26のトラック幅領域C側の側端縁26a,26aが第2反強磁性層20,20のトラック幅領域C側の側端面20a,20aよりも、多層膜A3の外端部S1,S1側に形成されていると凹部31の底面31bと電極層26,26及び第2反強磁性層20,20がつくる段差をなだらかにすることができる。従って、磁気検出素子の上層の上部ギャップ層23の膜厚を小さくしても、この段差上に上部ギャップ層23が確実に形成されるようにできる。すなわち、上部シールド層24と電極層26,26、第2反強磁性層20,20、強磁性層19,19、及び非磁性層18との間の電気的短絡をより確実に防止でき、狭ギャップ化に対応できるようになる。
【0214】
また、多層膜A3のトラック幅領域Cの両側近傍における上部シールド層24と下部シールド層11間の距離が大きくなると、上部シールド層24と下部シールド層11の間を通って、検出対象の記録トラックの両側の記録トラックから発生する記録媒体からの磁界が磁気検出素子に侵入しやすくなり、実効トラック幅が大きくなる。すなわち、記録トラック間のクロストークが発生しやすくなる。
【0215】
形態では、前述のように凹部31と電極層26,26及び第2反強磁性層20,20とがつくる段差をなだらかにすることができるので、トラック幅領域Cの両側近傍における上部シールド層24と下部シールド層11間の距離が大きくなることを抑え、実効トラック幅を小さくすることができる。
【0216】
具体的には、強磁性層19,19、第2反強磁性層20,20、電極層26,26のうち、強磁性層19,19及び第2反強磁性層20,20のみと重なる領域S2,S2における上部シールド層24と下部シールド層11間の距離をGls、多層膜A3の中央C1と重なる位置における上部シールド層24と下部シールド層11間の距離をGlcとしたときに、前記GlsとGlcの差の値を、Glc≦Gls≦Glc+90nmを満たす範囲に設定することが好ましい。より好ましくは、前記Glsと前記Glcの値を、Glc≦Gls≦Glc+70nmを満たす範囲に設定することである。さらに好ましくは、前記Glsと前記Glcの値を、Glc≦Gls≦Glc+30nmを満たす範囲に設定することである。
【0217】
あるいは、前記Glsと前記Glcの値を、1.00≦Gls/Glc≦2.50を満たす範囲に設定することが好ましい。より好ましくは、前記Glsと前記Glcの値を、1.00≦Gls/Glc≦2.17を満たす範囲に設定することである。さらに好ましくは、前記Glsと前記Glcの値を、1.00≦Gls/Glc≦1.50を満たす範囲に設定することである。
【0218】
気検出素子の製造方法を説明する。
磁気検出素子が浮上式ヘッドを構成する場合には、セラミック材のスライダのトレーリング端面上にAl23膜などの絶縁膜を介して下部シールド層及び下部ギャップ層を積層する。
【0219】
さらに、前述した同様に、図1に示される工程において、下地層13、第1反強磁性層14、第1固定磁性層15a、非磁性中間層15b、第2固定磁性層15cからなるシンセティックフェリピンド型の固定磁性層15、非磁性材料層16、フリー磁性層17、非磁性層18まで順次積層された多層膜A1を、スパッタ法や蒸着法などの薄膜形成プロセスによって、同一真空成膜装置中で連続成膜する。
【0220】
次に、第1の熱処理温度、Y方向を向いた第1の大きさの磁界中で、第1の磁場中アニールを行い、第1反強磁性層14と第1固定磁性層15aとの間に交換異方性磁界を発生させ、固定磁性層15の磁化方向を図示Y方向に固定する。本態では、第1の熱処理温度を270℃、磁界の第1の大きさを800k(A/m)としている。
【0221】
次に、強磁性層19、第2反強磁性層20をスパッタ法によって連続成膜し、図2に示される下地層13から第2反強磁性層20まで積層された多層膜A2を得る。
【0222】
なお、下地層13、第1反強磁性層14、第1固定磁性層15a、非磁性中間層15b、第2固定磁性層15cからなるシンセティックフェリピンド型の固定磁性層15、非磁性材料層16、フリー磁性層17、非磁性層18、強磁性層19、第2反強磁性層20の材料は、前述した同じであるので説明を省略する。
【0223】
態でも、非磁性層18をRu、Rh、Ir、Re、Osのうち1種あるいは2種以上の合金で形成すると、第1の磁場中アニールにおいて、非磁性層18の表面がほとんど酸化しない。従って、非磁性層18上に強磁性層19をスパッタ成膜する前に、非磁性層18の表面をミリングなどで処理しなくても、フリー磁性層17と強磁性層19との間に非磁性層18を介したRKKY相互作用を働かせることができる。
【0224】
すなわち、非磁性層18と強磁性層19との界面を、ミリングによって削られた面としなくてもすむようにできるので、フリー磁性層17の磁化方向を一定方向に揃えるための一方向異方性磁界の低下を防ぐことができる。
【0225】
ただし、強磁性層19とフリー磁性層17は、非磁性層18を介したRKKY相互作用によって磁気的に結合されたものであるので、非磁性層18の表面をミリングによって処理した場合でも、フリー磁性層17の磁化方向を一定方向に揃えるために十分な一方向異方性磁界を得ることができる。
【0226】
なお、本態でも、第1反強磁性層14と第2反強磁性層20を同じ組成の反強磁性材料を用いて形成することができる。
【0227】
次に、多層膜A2を第2の熱処理温度、X方向を向いた第2の大きさの磁界中で、第2の磁場中アニールにかけて、第2反強磁性層20と強磁性層19との間に交換異方性磁界を発生させ、強磁性層19の磁化方向を図示X方向に固定する。本態では、第2の熱処理温度を250℃、磁界の第2の大きさを8(kA/m)としている。
【0228】
第2反強磁性層20と強磁性層19との間の交換異方性磁界は、第2の磁場中アニール工程において初めて生じる。従って、第1反強磁性層14と第1固定磁性層15aとの間の交換異方性磁界の方向を図示Y方向に向けたまま、第2反強磁性層20と強磁性層19との間の交換異方性磁界を図示X方向に向けるためには、第2の熱処理温度を、第1反強磁性層14による交換結合磁界が消失するブロッキング温度より低い温度に設定し、第2の磁界の大きさを第1反強磁性層14と第1固定磁性層15aとの間の交換異方性磁界より小さくするだけでよい。また、第2の磁場中アニールをこれらの条件下で行えば、第1反強磁性層14と第2反強磁性層20を同じ組成の反強磁性材料を用いて形成しても、第1反強磁性層14と第1固定磁性層15aとの間の交換異方性磁界の方向を図示Y方向に向けたまま、第2反強磁性層20と強磁性層19との間の交換異方性磁界を図示X方向に向けることができる。すなわち、フリー磁性層17の磁化方向を、固定磁性層15の磁化方向と直交する方向に固定することが容易になる。
【0229】
なお、第2の磁場中アニール時の第2の磁界の大きさは、フリー磁性層17及び強磁性層19の飽和磁界、及びフリー磁性層17及び強磁性層19の反磁界より大きく、フリー磁性層17と強磁性層19との間の反平行結合が崩れるスピンフロップ磁界より小さいことが好ましい。
【0230】
次に、図9に示す工程において、第2反強磁性層20上に、トラック幅Twに等しい間隔W1をあけて一対の第1のレジスト層R2、R2を積層する。
【0231】
第1のレジスト層R2,R2の積層後、図10に示すように、第2反強磁性層20の第1のレジスト層R2、R2によって挟まれた部位、すなわち、第2反強磁性層20の第1のレジスト層R2,R2によってマスクされない部位を、イオンミリングまたは反応性イオンエッチング(RIE)などによって、第2反強磁性層20の表面(側端面)20aに対する垂直方向、すなわちトラック幅方向(図示X方向)に対する垂直方向(図示Z方向)に削り込むことにより凹部31を形成する。凹部31の側面31a,31aは、トラック幅方向に対して垂直面になっている。図10では、凹部31の底面31bが非磁性層18内に位置するように、凹部31を形成している。凹部31の形成後、第1のレジスト層R2,R2を除去する。
【0232】
次に、図13に示されるように、底面R4aのトラック幅方向の幅寸法W3がレジスト層R1の底面R1bの幅寸法W1よりも小さいリフトオフ用の第2のレジスト層R4を、凹部31の底面31b上に形成する。
【0233】
次に、図14に示されるように、凹部31の底面31bの第2のレジスト層R4に覆われていない領域上及び第2反強磁性層20,20上に電極層27,27をスパッタ法によって成膜することにより多層膜A4を形成する。
【0234】
なお、スパッタの入射角度を調節して、電極層27,27のトラック幅領域C側の側端縁27a,27aを、凹部31の底面31bと第2のレジスト層R4が接合しているところまで延して形成することにより、第2反強磁性層20,20上に積層される電極層27,27のトラック幅領域C側の側端縁27a,27aが、強磁性層19,19のトラック幅領域C側の側端縁(側端面)19a,19a及び第2反強磁性層20,20のトラック幅領域C側の側端縁(側端面)20a,20aよりも多層膜A4の中央部C1側に延されて形成されるようにできる。なお、図14においてトラック幅領域Cとは、電極層27,27の側端縁27a,27aに挟まれる領域である。
【0235】
このとき、レジスト層R4の底面R4aのトラック幅方向寸法W3と電極層27,27の側端縁27a,27a間距離は等しくなる。なお、電極層27,27の側端縁27a,27a間距離が磁気検出素子のトラック幅寸法Twを規定する。このトラック幅寸法Twの領域、すなわち、トラック幅領域Cが実質的に磁気抵抗効果を発揮し得る領域である感度領域Eである。
【0236】
電極層27,27の成膜後、第2のレジスト層R4を除去すると、図15に示されるように多層膜A4が得られる。
【0237】
なお、本態の磁気検出素子は、第1反強磁性層14と第2反強磁性層20を同じ組成の反強磁性材料を用いて形成することができる。
【0238】
なお、第2反強磁性層20と電極層27,27の間にTaなどの非磁性材料からなる保護層を成膜してもよい。
【0239】
多層膜A4上に上部ギャップ層23及び上部シールド層24を積層して図15に示される磁気検出素子を得る。
【0240】
強磁性層19,19及び第2反強磁性層20,20は、電極層27,27に比べて比抵抗が大きい材料によって形成される。電極層27,27が強磁性層19,19及び第2反強磁性層20,20上のみに積層されると、電極層27,27に供給された直流電流は強磁性層19,19及び第2反強磁性層20,20を介して非磁性層18、フリー磁性層17、非磁性材料層、及び固定磁性層15に流れることになり、磁気検出素子の直流抵抗値が大きくなってしまう。
【0241】
電極層27,27のトラック幅領域C側の側端縁27a,27aが、強磁性層19,19のトラック幅領域C側の側端縁(側端面)19a,19a及び第2反強磁性層20,20のトラック幅領域C側の側端縁(側端面)20a,20aよりも多層膜A4の中央部C1側に延されていると、電極層27,27の側端縁27a,27aを非磁性層18上にまで延長でき、電極層27,27に供給された直流電流を強磁性層19,19及び第2反強磁性層20,20を介さずに流すことができるので、磁気検出素子の直流抵抗値を小さくできる。
【0242】
なお、図15の磁気検出素子のトラック幅Twは、一対の電極層27,27のトラック幅領域C側の側端縁27a,27a間距離で規定されるので、第2の反強磁性層20,20のトラック幅領域C側の側端縁(側端面)20a,20a付近の領域で組成が変化したりだれが生じたりすることによって、第2の反強磁性層20,20の側端縁(側端面)20a,20a付近に重なるフリー磁性層17の両側部17s,17sの磁化方向が動きやすくなっても、トラック幅Twが変化することを抑えることができる。
【0243】
なお、前述した図10の工程では、凹部31を底面31bが非磁性層18内に位置するように形成しているが、本形態では底面が第2反強磁性層20内または強磁性層19内に位置するような凹部を形成してもよい。
【0244】
また、図1に示された工程において、多層膜A1を形成するときに、非磁性層18とフリー磁性層17の間に、非磁性層18よりも比抵抗が低い材料、例えばCuからなる導電性材料層50を形成し、最終的に図16に示される磁気検出素子が得られるようにしてもよい。
【0245】
比抵抗が非磁性層18よりも低い導電性材料からなる導電性材料層50が形成されていると、非磁性層18だけの場合よりも大きなスピンフィルター効果を奏することができるようになり、磁気検出素子の磁界検出感度をさらに向上させることができるので好ましい。なお、導電性材料層50をCuを用いて形成すると、NiFeやCoFeNiによって形成されたフリー磁性層17と結晶格子定数の値が近くなり、大きなスピンフィルター効果を奏することができる。
【0246】
導電性材料層50を形成するときには、例えば非磁性層18をRuによって膜厚t3が0.4〜1.1nmであるものとして形成し、さらに、導電性材料層50をCuによって膜厚t4が0.3〜0.5nmであるものとして形成することができる。
【0247】
また、図1に示された工程において、多層膜A1を形成するときに、フリー磁性層40を、単位面積あたりの磁気モーメントの大きさが異なる第1フリー磁性層40a(強磁性材料層)及び第2フリー磁性層40c(強磁性材料層)を非磁性中間層40bを介して積層された、いわゆるシンセティックフェリフリー型のフリー磁性層として形成し、最終的に図17に示される磁気検出素子を得るようにしてもよい。
【0248】
図17に示される磁気検出素子は、フリー磁性層が、単位面積あたりの磁気モーメントの大きさが異なる複数の強磁性材料層が、非磁性層を介して積層され、非磁性層を介して隣接する強磁性材料層の磁化方向が反平行となるフェリ磁性状態であるものである。
【0249】
第1フリー磁性層40aは拡散防止層(中間層)40a1と磁性層40a2からなっている。この拡散防止層40a1は、例えばCoまたはCoFeからなるものであり、磁性層40a2と非磁性材料層16の相互拡散を防止する。
【0250】
第1フリー磁性層40a及び第2フリー磁性層40cは、強磁性材料により形成されるもので、例えばNiFe合金、Co、CoNiFe合金、CoFe合金、CoNi合金などにより形成されるものであり、特にNiFe合金により形成されることが好ましい。
【0251】
また、非磁性中間層40bは、非磁性材料により形成されるもので、Ru、Rh、Ir、Os、Cr、Re、Cuのうち1種あるいは2種以上の合金で形成されている。特にRuによって形成されることが好ましい。
【0252】
なお、第1フリー磁性層40a及び第2フリー磁性層40cは、それぞれの単位面積あたりの磁気モーメントが異なるように形成されている。単位面積あたりの磁気モーメントは、飽和磁化(Ms)と膜厚(t)の積で表される。
【0253】
態では、第1フリー磁性層40aと非磁性材料層16の間に、拡散防止層40a1が形成されているので、磁性層40a2の単位面積あたりの磁気モーメントと拡散防止層40a1の単位面積あたりの磁気モーメントの和と、第2フリー磁性層40cの単位面積あたりの磁気モーメントを異ならせる。
【0254】
なお、第2フリー磁性層40cの厚さは0.5〜2.5nmの範囲であることが好ましい。また、第1フリー磁性層40aの厚さは2.5〜4.5nmの範囲であることが好ましい。なお、第1フリー磁性層40aの厚さが3.0〜4.0nmの範囲であることがより好ましく、さらに好ましくは3.5〜4.0nmの範囲であることである。第1フリー磁性層40aの厚さが前記の範囲を外れると、スピンバルブ型磁気検出素子の磁気抵抗変化率を大きくすることができなくなるので好ましくない。
【0255】
図4では、単位面積あたりの磁気モーメントが異なる第1フリー磁性層40aと第2フリー磁性層40cが、非磁性中間層40bを介して積層されたものが、一つのフリー磁性層40として機能する。
【0256】
第1フリー磁性層40aと第2フリー磁性層40cの磁化方向は180度異なる反平行のフェリ磁性状態になっている。このとき、第1フリー磁性層40aの磁化方向が、強磁性層19から発生する磁界の方向に向き、第2フリー磁性層40cの磁化方向が、180度反対方向に向いた状態になる。
【0257】
第1フリー磁性層40aと第2フリー磁性層40cの磁化方向が180度異なる反平行のフェリ磁性状態になると、フリー磁性層40の膜厚を薄くすることと同等の効果が得られ、実効的な磁気的膜厚(Ms×t)が小さくなり、フリー磁性層40の磁化が変動しやすくなって、磁気抵抗効果素子の磁界検出感度が向上する。
【0258】
第1フリー磁性層40aの単位面積あたりの磁気モーメントと第2フリー磁性層40cの単位面積あたりの磁気モーメントを足し合わせた単位面積あたりの合成磁気モーメントの方向がフリー磁性層40の磁化方向となる。
【0259】
ただし、固定磁性層15の磁化方向との関係で出力に寄与するのは第1フリー磁性層40aの磁化方向のみである。
【0260】
また、第1フリー磁性層40aと第2フリー磁性層40cの磁気的膜厚の関係が異ならされていると、フリー磁性層40のスピンフロップ磁界を大きくできる。
【0261】
スピンフロップ磁界とは、磁化方向が反平行である2つの磁性層に対し、外部磁界を印加したときに、2つの磁性層の磁化方向が反平行でなくなる外部磁界の大きさを指す。
【0262】
フリー磁性層40のヒステリシスループの概念図として図18を示す。このM−H曲線は、図17に示す構成のフリー磁性層40に対してトラック幅方向から外部磁界を印加したときの、フリー磁性層40の磁化Mの変化を示したものである。
【0263】
また、図18中、F1で示す矢印は、第1フリー磁性層40aの磁化方向を表わし、F2で示す矢印は、第2フリー磁性層40cの磁化方向を表わす。
【0264】
図18に示すように、外部磁界が小さいときは、第1フリー磁性層40aと第2フリー磁性層40cがフェリ磁性状態、すなわち矢印F1及びF2の方向が反平行になっているが、外部磁界Hの大きさがある値を越えると、第1フリー磁性層40aと第2フリー磁性層40cのRKKY結合が壊され、フェリ磁性状態を保てなくなる。これが、スピンフロップ転移である。またこのスピンフロップ転移が起きるときの外部磁界の大きさがスピンフロップ磁界であり、図18ではHsfで示している。なお、図中Hcfは、フリー磁性層40の磁化の保磁力を示している。
【0265】
第1フリー磁性層40a及び第2フリー磁性層40cの、それぞれの単位面積あたりの磁気モーメントが異なるように形成されているとフリー磁性層40のスピンフロップ磁界Hsfが大きくなる。これにより、フリー磁性層40がフェリ磁性状態を保つ磁界の範囲が広くなり、フリー磁性層40のフェリ磁性状態の安定度が増す。
【0266】
また本態のように拡散防止層40a1が形成されている場合には、フリー磁性層を構成する第1フリー磁性層の磁性層40a2及び第2フリー磁性層40cは以下の組成を有する磁性材料で形成することが好ましい。前記CoFeNi合金であってFeの組成比が7原子%以上で15原子%以下、Niの組成比が5原子%以上で15原子%以下、残りの組成比はCoである。
【0267】
これにより第1フリー磁性層40aと第2フリー磁性層40c間で発生するRKKY相互作用における交換結合磁界を強くすることができる。具体的には、反平行状態が崩れるときの磁界、すなわちスピンフロップ磁界(Hsf)を約293(kA/m)にまで大きくすることができる。
【0268】
よって、強磁性層19の下に位置する第1フリー磁性層40a及び第2フリー磁性層40cの両側端部の磁化を適切に反平行状態にピン止めでき、サイドリーディングの発生を抑制することができる。
【0269】
なお第1フリー磁性層40a及び第2フリー磁性層40cの双方を前記CoFeNi合金で形成することが好ましい。これにより、より安定して高いスピンフロップ磁界を得ることができ、第1フリー磁性層40aと第2フリー磁性層40cとを適切に反平行状態に磁化できる。
【0270】
また上記した組成範囲内であると、第1フリー磁性層40aと第2フリー磁性層40cの磁歪を−3×10-6から3×10-6の範囲内に収めることができ、また保磁力を790(A/m)以下に小さくできる。
【0271】
さらに、フリー磁性層40の軟磁気特性の向上、非磁性材料層16間でのNiの拡散による抵抗変化量(ΔR)や抵抗変化率(ΔR/R)の低減の抑制を適切に図ることが可能である。
【0272】
なお、第1フリー磁性層40aが磁性層40a2のみからなり、拡散防止層40a1が形成されないときには、組成式がCoFeNiで示され、Feの組成比は9原子%以上で17原子%以下で、Niの組成比は0.5原子%以上で10原子%以下で、残りの組成はCoである磁性材料を用いて磁性層40a2及び第2フリー磁性層40cを形成することが好ましい。
【0273】
なお、前述した全ての磁気検出素子において、非磁性層18とフリー磁性層17の間に、非磁性層18よりも比抵抗が低い材料からなる導電性材料層50を形成してもよい。また、前述した全ての磁気検出素子のフリー磁性層17をシンセティックフェリフリー型のフリー磁性層として形成してもよい。
【0274】
図12、図15、図16、図17に示された磁気検出素子でも、凹部31の側面31a,31a及び凹部22の側面22a,22aをトラック幅方向に対して垂直面となるようにすることが可能である。すなわち、トラック幅領域Cから外れた全領域において、第2反強磁性層20,20が反強磁性を発生するために充分な膜厚を有することができ、トラック幅領域Cから外れた全領域においてフリー磁性層17の磁化方向を確実に固定することができる。
【0275】
従って、磁気検出素子のトラック幅領域C(感度領域E)でのみフリー磁性層17の磁化方向を動かすことができ、トラック幅領域C周辺におけるサイドリーディングを防止することができる。
【0276】
また、フリー磁性層17を第2反強磁性層20,20及び強磁性層19,19の下層にまで延して形成するので、フリー磁性層17の磁化がフリー磁性層17の両側端面の表面磁荷によって発生する反磁界の影響を受けることを小さくできる。
【0277】
また、第2反強磁性層20,20の下層において強磁性層19,19、非磁性層18、及びフリー磁性層17がシンセティックフェリ構造となっているので、フリー磁性層17の両側部17s,17sにおける磁化方向を一定方向に揃えるための一方向異方性磁界を大きくすることができる。
【0278】
従って、外部磁界によってフリー磁性層17の両側部17s,17sの磁化方向が変化してしまい、結果として磁気的トラック幅が大きくなることを抑えることができる。
【0279】
また、第2反強磁性層20,20と強磁性層19,19との交換結合磁界が比較的弱くても、フリー磁性層17の磁化方向を確実に、固定磁性層15の磁化方向と交叉する方向に揃えることが容易になる。従って、前記第2の磁場中アニールにおける磁場の大きさを8000A/mの低磁場とすることができ、固定磁性層15の磁化方向が変化することを抑えることが容易になる。
【0280】
また、本態では、図2に示される工程において、強磁性層19及び第2反強磁性層20を、表面が平坦面である非磁性層18上に積層しているので、強磁性層19及び第2反強磁性層20も平坦化された層として形成でき、強磁性層19、非磁性層18、及びフリー磁性層17からなるシンセティックフェリ構造において強磁性層19とフリー磁性層17間のRKKY相互作用を大きくすることが容易になる。
【0281】
また、非磁性層18の上面18aが平坦面であると、強磁性層19,19及び第2の反強磁性層20,20の積層工程の制御が容易になる。従って、強磁性層19,19の膜厚を薄くでき強磁性層19,19、非磁性層18、及びフリー磁性層17からなるシンセティックフェリ構造において強磁性層19,19とフリー磁性層17間のスピンフロップ磁界を大きくできる。本態では強磁性層19,19の膜厚を例えば1.5nm〜4.0nmにできる。また、フリー磁性層17にかかる一方向異方性磁界を大きくできる。例えば、強磁性層19,19及びフリー磁性層17をNiFeで形成したときには、前記一方向異方性磁界を56(kA/m)とすることができる。または、強磁性層19,19及びフリー磁性層17をCoFeで形成したときには、前記一方向異方性磁界を152(kA/m)とすることができる。
【0282】
なお、非磁性層18をRuなどの導電性材料で形成すると、非磁性層18が、スピンフィルター効果を有することになり、磁気検出素子の磁界検出感度を向上させることができる。
【0283】
ところで図1ないし図17では、固定磁性層、非磁性材料層、フリー磁性層を有する多層膜のトラック幅方向(図示X方向)の両側部S,S上に電極層21、26、27が設けられ、前記電極層21、26、27から前記多層膜内に流れる電流が、前記多層膜内を各層の膜面に対して平行な方向に流れるCIP(current in the plane)型の磁気検出素子の製造方法を説明した。
【0284】
一方、図21以降で説明する磁気検出素子の製造方法は、前記多層膜の上下に電極層が設けられ、前記電極層から前記多層膜内に流れる電流が、前記多層膜の各層の膜面に対し垂直方向に流れるCPP(current perpendicular to the plane)型の磁気検出素子の製造方法である。
【0285】
まず、図21では、基板上(図示せず)にNiFeなどの磁性材料からなり下部シールド層を兼ねる下部電極層70を形成し、その上に図1で形成したのと同じ多層膜A1を形成する。
【0286】
その後、多層膜A1を第1の熱処理温度、Y方向を向いた第1の大きさの磁界中で、第1の磁場中アニールを行い、第1の反強磁性層14と第1の固定磁性層15aとの間に交換異方性磁界を発生させ、固定磁性層15の磁化方向を図示Y方向に固定する。本態では、前記第1の熱処理温度を270℃、磁界の第1の大きさを800k(A/m)としている。
【0287】
図1の説明をしたときに述べたように、非磁性層18は、Ru、Rh、Ir、Re、Osのうち1種あるいは2種以上の合金で形成する。なお、非磁性層18をRuによって形成するときには、非磁性層の膜厚t1を0.8〜1.1nm、より好ましくは0.85〜0.9nm、となるようものとして形成すると強磁性層19とフリー磁性層17との間のRKKY相互作用を大きくすることができるので好ましい。
【0288】
次に、図22に示すごとく、非磁性層18上に、強磁性層19を再成膜し、さらに強磁性層19上に第2の反強磁性層20、絶縁層71を連続成膜する。
【0289】
絶縁層71は、例えばAl23、SiO2、AlN、Ti23、Ti35、Al−Si−Oなどの絶縁材料で形成される。
【0290】
次に絶縁層71まで形成された多層膜B1を、第2の熱処理温度、X方向を向いた第2の大きさの磁界中で、第2の磁場中アニールにかけて、第2の反強磁性層20と強磁性層19との間に、交換異方性磁界を発生させ、強磁性層19の磁化方向を図示X方向と180°異なる反平行方向に固定する。強磁性層19の磁化方向が図示X方向と180°異なる反平行方向に固定されると、フリー磁性層17の磁化方向は非磁性層18を介した強磁性層19とのRKKY相互作用によって、図示X方向に固定される。本態では、前記第2の熱処理温度を250℃、磁界の第2の大きさを24k(A/m)としている。
【0291】
フリー磁性層17と強磁性層19の磁化方向が上述のような関係になるのは、フリー磁性層17の単位面積当りの磁気モーメントが強磁性層19の単位面積当りの磁気モーメントより大きく、磁界の第2の大きさがフリー磁性層17と強磁性層19間のスピンフロップ磁界よりも小さいためである。
【0292】
第2の反強磁性層20による交換異方性磁界は、第2の磁場中アニール工程において初めて生じる。従って、第1の反強磁性層14による交換異方性磁界の方向を図示Y方向に向けたまま、第2の反強磁性層20による交換異方性磁界を図示X方向と180°異なる反平行方向に向けるためには、前記第2の熱処理温度を、第1の反強磁性層14による交換結合磁界が消失するブロッキング温度より低い温度に設定し、前記第2の磁界の大きさを第1の反強磁性層14による交換異方性磁界より小さくするだけでよい。また、第2の磁場中アニールをこれらの条件下で行えば、第1の反強磁性層14と第2の反強磁性層20を同じ組成の反強磁性材料を用いて形成しても、第1の反強磁性層14による交換異方性磁界の方向を図示Y方向に向けたまま、第2の反強磁性層20による交換異方性磁界を図示X方向と反平行方向に向けることができる。すなわち、フリー磁性層17の磁化方向を、固定磁性層15の磁化方向と直交する方向に固定することが容易になる。
【0293】
なお、第2の磁場中アニール時の第2の磁界の大きさは、フリー磁性層17及び強磁性層19の飽和磁界、及びフリー磁性層17及び強磁性層19の反磁界より大きく、フリー磁性層17と強磁性層19間の反平行結合が崩れるスピンフロップ磁界より小さいことが好ましい。
【0294】
次に、絶縁層71の上に露光現像によってトラック幅方向(図示X方向)の中央部に穴部90aが設けられたレジスト層90を形成する。レジスト層90の内側端面90bは、絶縁層71の表面(または基板表面)に対する垂直面である。ただし、内側端面90bは下面から上面にかけて徐々に穴部90aのトラック幅方向への間隔が広がる傾斜面あるいは湾曲面で形成されてもよい。
【0295】
次に図24に示す矢印F方向からのイオンミリングまたは反応性イオンエッチング(RIE)によってレジスト層90に覆われていない絶縁層71、第2の反強磁性層20、強磁性層19を完全に削り込み、非磁性層18を途中まで削り込む。図24では、多層膜に形成された凹部31の側面31aは絶縁層71の表面(または基板表面)に対する垂直面である。そして、レジスト層90を除去する。
【0296】
なおレジスト層90の内側端面90bが傾斜面あるいは湾曲面であるとき又はイオンミリングにおけるイオンビーム入射角が垂直方向から傾いているときには、前記イオンミリングによる削り込みによって多層膜に形成された凹部31の側面31aも傾斜面あるいは湾曲面として形成される。
【0297】
態では、ベタ膜状態で成膜された絶縁層71上にレジスト層90を形成した上で、レジスト層90をマスクとしてイオンミリングまたは反応性イオンエッチング(RIE)を行っている。しかし、図22工程で形成される絶縁層71をベタ膜の状態で成膜する代わりに、第2反強磁性層20または第2反強磁性層20の上に形成されるTaなどからなる保護層上のトラック幅方向(図示X方向)の中央部に、リフトオフ用のレジスト層を形成した上で、絶縁層71と同じ絶縁性材料をスパッタ成膜し、その後前記レジストを除去してトラック幅方向(図示X方向)の中央部に穴部が設けられた絶縁層を形成してもよい。この場合、この前記穴部が設けられた絶縁層をマスクとしてイオンミリングまたは反応性イオンエッチング(RIE)により、第2反強磁性層及び強磁性層19を削って凹部を形成する。
【0298】
なお、前記第2の磁場中アニールは、多層膜B1に凹部31を形成した後行う方が好ましい。
【0299】
図25に示す工程では、絶縁層71上から前記凹部31の側面31a及び底面31bにかけてAl23、SiO2、AlNあるいはTiCなどの絶縁材料からなる他の絶縁層72をスパッタ成膜する。スパッタ法には、イオンビームスパッタ法、ロングスロースパッタ法、コリメーションスパッタ法などを使用できる。
【0300】
ここで注意すべき点は、他の絶縁層72を形成する際のスパッタ角度θ1にある。図25に示すようにスパッタ方向Gは、多層膜の各層の膜面の垂直方向に対しθ1のスパッタ角度を有しているが本形態では前記スパッタ角度θ1をできる限り大きくして(すなわちより寝かせて)、凹部31の側面31aに他の絶縁層72が成膜されやすいようにすることが好ましい。例えば前記スパッタ角度θ1は50°から70°である。
【0301】
このように前記スパッタ角度θ1を大きくすることで、凹部31の側面31aに形成される他の絶縁層72のトラック幅方向(図示X方向)への膜厚tz1を、絶縁層71の上面及び凹部31の底面31bに形成される他の絶縁層72の膜厚tz2よりも厚く形成できる。このように他の絶縁層72の膜厚を調整しないと次工程でのイオンミリングで、凹部31の側面31aの他の絶縁層72がすべて除去されてしまい、あるいは他の絶縁層72が残ってもその膜厚は非常に薄くなり、適切に分流ロスを低減させるための絶縁層として機能させることができない。
【0302】
次に図26に示すように多層膜の各層の膜面と垂直方向(図示X方向と垂直方向)あるいは垂直方向に近い角度(多層膜の各層表面の垂直方向に対し0°から20°の角度からイオンミリングを施す。このとき凹部31の底面31bに形成された他の絶縁層72を適切に除去するまでイオンミリングを施す。このイオンミリングによって絶縁層71の上面71aに形成された他の絶縁層72も除去される。一方、凹部31の側面31aに形成された他の絶縁層72も若干削れるものの、凹部31の底面31bに形成された他の絶縁層72よりも厚い膜厚tz1を有し、しかもイオンミリングのミリング方向Hは、凹部31の側面31aに形成された他の絶縁層72から見ると浅い入射角度になるため、凹部31の側面31aに形成された他の絶縁層72は、凹部31の底面31bに形成された他の絶縁層72に比べて削られ難く、よって凹部31の側面31aには適度な膜厚の他の絶縁層72が残される。
【0303】
凹部31の側面31aに残される他の絶縁層72のトラック幅方向における膜厚tz3は5nmから10nmであることが好ましい。
【0304】
図26に示すように第2の反強磁性層20上面は絶縁層71によって覆われ、また凹部31の側面31aは他の絶縁層72によって覆われた状態になっている。 そして、図27に示すように、絶縁層71、72から凹部31の底面31bにかけて、NiFeなどの磁性材料からなり上部シールド層を兼ねる上部電極層73をメッキ形成する。
以上のようにして図28に示される磁気検出素子が形成される。
【0305】
図28に示される磁気検出素子は、第2の反強磁性層20上を絶縁層71によって、また凹部31の側面31a上を適切に他の絶縁層72,72によって覆うことができ、シールド層から流れる電流が、第2反強磁性層20等に分流せず、前記電流は前記凹部31の底面31b上の他の絶縁層72、72間の間隔で決定されるトラック幅Tw内を適切に流れる。よって図28に示す構造の磁気検出素子であれば、電流経路が、他の絶縁層72,72のトラック幅方向の間隔で決まるトラック幅Twから広がることを抑制でき再生出力が大きく、実効トラック幅が狭いCPP型の磁気検出素子を製造することが可能になる。
【0306】
さらに、上部電極層73は、フリー磁性層17から下地層13までの多層膜に対する電流経路が、凹部31によって絞り込まれるので、多層膜の両側部に電流が分流することを適切に抑制でき、より効果的に再生出力の大きい磁気検出素子を製造することが可能になる。
【0307】
また図23に示された工程の後、第2反強磁性層20を第2反強磁性層20の途中まで掘り込むことにより、図29に示されるような凹部32を有する磁気検出素子を得ることもできる。凹部32は底面32bが第2反強磁性層20内に位置するものである。
【0308】
図29に示される磁気検出素子では、凹部32の底面32bが第2反強磁性層20内に位置しており、フリー磁性層17と強磁性層19が、非磁性層18を介して隣接し、フリー磁性層17の磁化方向と強磁性層19の磁化方向が反平行となるフェリ磁性状態となる。
【0309】
このとき、フリー磁性層17、非磁性層18及び強磁性層19からなる多層膜Fがひとつのフリー磁性層、いわゆるシンセティックフェリフリー磁性層として機能する。
【0310】
このとき、第2の反強磁性層20の、凹部32の底面32bの下部に位置する領域の厚さt2を、0Åより大きく50Å以下にする。本態のように、第2の反強磁性層20の、凹部32の底面32bの下部に位置する領域の厚さt2を0Åより大きく50Å以下にすると、凹部32の底面32bの下部に位置する第2の反強磁性層20の領域では交換結合磁界が発生しない。そして、凹部32が形成されないトラック幅方向両側部S,Sでは、第2の反強磁性層20と強磁性層19との間に交換結合磁界が発生する。
【0311】
すなわち、強磁性層19の磁化方向は、凹部32の底面32bに重なる領域以外のトラック幅方向両側部S,Sでのみ、第2の反強磁性層との間の交換結合磁界によって固定される。従って、強磁性層19の下層に非磁性層18を介して積層されているフリー磁性層17の磁化方向も、トラック幅方向両側部S,Sでのみ強磁性層19とのRKKY相互作用により固定される。
【0312】
凹部32の底面32bに重なるフリー磁性層17の領域Eは、外部磁界が印加されない状態おいて、磁化方向が固定された両側部S,Sにならって図示X方向に揃えられ、外部磁界が印加されるとその磁化方向が変化する。
【0313】
また図23に示された工程の後、強磁性層19の途中まで掘り込むことにより、図30に示されるような凹部32を有する磁気検出素子を得ることもできる。凹部32は、側面32aが第2反強磁性層20を貫通し、底面32bが強磁性層19内に位置するものである。
【0314】
図30に示された磁気検出素子でもフリー磁性層17、非磁性層18及び強磁性層19からなる多層膜Fがひとつのフリー磁性層、いわゆるシンセティックフェリフリー磁性層Fとして機能する。本形態では、フリー磁性層の外部磁化によって磁化方向が変化する感度領域Eの上層に第2反強磁性層20が全く存在しない。従って、シンセティックフェリフリー磁性層Fの感度領域Eの磁化方向の外部磁界依存性の変動を鋭敏にでき、磁気検出素子の磁界検出感度を向上できる。
【0315】
また、図21に示された工程において、多層膜A1を形成するときに、非磁性層18とフリー磁性層17の間に、非磁性層18よりも比抵抗が低い材料、例えばCuからなる導電性材料層50を形成し、最終的に図31に示される磁気検出素子が得られるようにしてもよい。
【0316】
比抵抗が非磁性層18よりも低い導電性材料からなる導電性材料層50が形成されていると、非磁性層18だけの場合よりも大きなスピンフィルター効果を奏することができるようになり、磁気検出素子の磁界検出感度をさらに向上させることができるので好ましい。なお、導電性材料層50をCuを用いて形成すると、NiFeやCoFeNiによって形成されたフリー磁性層17と結晶格子定数の値が近くなり、大きなスピンフィルター効果を奏することができる。
【0317】
導電性材料層50を形成するときには、例えば非磁性層18をRuによって膜厚t3が0.4〜1.1nmであるものとして形成し、さらに、導電性材料層50をCuによって膜厚t4が0.3〜0.5nmであるものとして形成することができる。
【0318】
また、図21に示された工程において、多層膜A1を形成するときに、フリー磁性層40を、単位面積あたりの磁気モーメントの大きさが異なる第1フリー磁性層40a(強磁性材料層)及び第2フリー磁性層40c(強磁性材料層)を非磁性中間層40bを介して積層された、いわゆるシンセティックフェリフリー型のフリー磁性層として形成し、最終的に図32に示される磁気検出素子を得るようにしてもよい。なお、第1フリー磁性層40a(強磁性材料層)及び第2フリー磁性層40c(強磁性材料層)と非磁性中間層40bの材料及び膜厚は図17に示された磁気検出素子のフリー磁性層40と同じにすることが好ましい。
【0319】
図32に示される磁気検出素子は、フリー磁性層40が、単位面積あたりの磁気モーメントの大きさが異なる複数の強磁性材料層が、非磁性層を介して積層され、非磁性層を介して隣接する強磁性材料層の磁化方向が反平行となる人工フェリ磁性状態であるものである。
【0320】
図29ないし図32に示す磁気検出素子も、第1の反強磁性層14の下に下部シールド層を兼用した下部電極層70が設けられ、また第2の反強磁性層20上には絶縁層71が設けられ、凹部31、32、33の側面31a、32a、33aに他の絶縁層72が設けられ、さらに絶縁層71上、及び他の絶縁層72上から凹部31、32、33の底面31b、32b、33b上にかけて上部シールド層を兼用した上部電極層73が設けられている。
【0321】
態のように、非磁性層18をRu、Rh、Ir、Re、Osのうち1種あるいは2種以上の合金で形成すると、第1の磁場中アニールにおいて、非磁性層18の表面がほとんど酸化しない。従って、非磁性層18上に強磁性層19をスパッタ成膜する前に、非磁性層18の表面をミリングなどで処理しなくても、フリー磁性層17と強磁性層19との間に非磁性層18を介したRKKY相互作用を働かせることができる。例えばフリー磁性層17と強磁性層19をともにNiFeで形成し、非磁性層18をRuで形成した場合、非磁性層18の表面をミリングなどで処理しなくても42(kA/m)の一方向異方性磁界を発生させることができる。
【0322】
すなわち、非磁性層18と強磁性層19,19との界面を、ミリングによって削られた面としなくてもすむようにできるので、フリー磁性層17と強磁性層19の間の反平行結合磁界及びフリー磁性層17の磁化方向を一定方向に揃えるための一方向異方性磁界の低下を防ぐことができる。
【0323】
ただし、強磁性層19とフリー磁性層17は、非磁性層18を介したRKKY相互作用によって磁気的に結合されたものであるので、非磁性層18の表面をミリングによって処理した場合でも、第2反強磁性層20と強磁性層19間の交換結合磁界を非磁性層18を介してフリー磁性層17に十分媒介することができ、フリー磁性層の磁化方向を一定方向に揃えるために十分な一方向異方性磁界を得ることができる。
【0324】
さらに、非磁性層18をRuで形成し、フリー磁性層17をCoFeで形成するとフリー磁性層17の磁歪を0にすることも可能である。
【0325】
なお、本態の磁気検出素子は、第1反強磁性層14と第2反強磁性層20を同じ組成の反強磁性材料を用いて形成することができる。
【0326】
図33及び図34に示す磁気検出素子は、図28の磁気検出素子と同じくCPP型の磁気検出素子であるが、下部シールド層を兼ねる下部電極層80の形状が図28のそれとは異なっている。
【0327】
図33に示す磁気検出素子は、図28と同じ多層膜Aの膜構成を有し、しかも第2反強磁性層20上には絶縁層71が形成され、凹部31の側面31aには他の絶縁層72が形成され、さらに絶縁層71上から凹部31の底面31b上にかけて上部シールド層を兼用した上部電極層73が設けられており、この点で図28と一致している。
【0328】
図28と異なるのは、NiFeなどの磁性材料からなる下部シールド層を兼用した下部電極層80のトラック幅方向(図示X方向)の中央部に、多層膜A方向(図示Z方向)に突出した突出部80aが設けられ、この突出部80aの上面80a1が多層膜Aの下面に接しており、突出部80aから多層膜A内に(あるいは多層膜Aから突出部80aに)電流が流れるようになっている点である。
【0329】
そして図33に示す磁気検出素子では下部電極層80のトラック幅方向(図示X方向)における両側端部80bと多層膜A間に絶縁層81が設けられている。絶縁層81は、Al23、SiO2、AlN、Ti23、Ti35、Al−Si−Oなどの絶縁材料で形成される。
【0330】
図33に示す磁気検出素子では、下部電極層80は、突出部80aの形成によって多層膜Aに対する電流経路が絞り込まれ、さらに下部電極層80の両側端部80bと多層膜A間に絶縁層81が設けられたことで、両側端部80bから多層膜A内に電流が分流することを適切に抑制でき、より効果的に再生出力の大きい磁気検出素子を製造することが可能になる。
【0331】
なお、図33に示す磁気検出素子では、下部電極層80の突出部80aの上面80a1のトラック幅方向(図示X方向)の幅寸法は領域Eのトラック幅方向(図示X方向)における幅寸法と一致しているが、上面80a1の幅寸法が領域Eの幅寸法より広くてもよい。より好ましくは上面80a1の幅寸法がトラック幅Twと一致することである。これによってより効果的に多層膜Aに対しトラック幅Twの領域内にのみ電流を流すことができ再生出力の大きい磁気検出素子を製造することが可能である。
【0332】
また図33に示す形態では、下部電極層80に形成された突出部80aのトラック幅方向(図示X方向)における両側面80a2は、突出部80aのトラック幅方向における幅寸法が、多層膜Aから離れる(図示Z方向と逆方向)にしたがって徐々に広がる傾斜面あるいは湾曲面で形成されているが、両側面80a2は、トラック幅方向(図示X方向)に対して垂直面であってもかまわない。
【0333】
図34に示す態は、図33に示す態と同じ形状の下部電極層80を有している。すなわち図34に示す下部電極層80のトラック幅方向(図示X方向)の中央部には、多層膜A方向(図示Z方向)に突出した突出部80aが設けられ、この突出部80aの上面80a1が多層膜Aの下面に接しており、突出部80aから多層膜A内に(あるいは多層膜Aから突出部80aに)電流が流れるようになっている。そして下部電極層80のトラック幅方向(図示X方向)における両側端部80bと多層膜A間に絶縁層が設けられている。
【0334】
図34に示す態では図33と異なって、第2反強磁性層20上に絶縁層71が設けられておらず、また凹部31の側面31aに他の絶縁層72が設けられていない。そしてNiFeなどの磁性材料からなり、上部シールド層を兼用する上部電極層73は第2反強磁性層20上から凹部31の側面31a上及び底面31b上にかけて直接接合されている。
【0335】
図34に示す態では、図33に示す態に比べて上部電極層73と第2反強磁性層20間、及び上部電極層73と凹部31の側面31a間が絶縁されていないので、電流経路はトラック幅Twよりも広がりやすく再生出力は劣るものと考えられるが、多層膜Aの下面側で、下部電極層80に形成された突出部80aによって電流経路を絞り込むことができ、電流経路の広がりを抑えて再生出力の低下を抑制することができる。
【0336】
また図33及び図34に示す磁気検出素子では、下部電極層80に形成された突出部80aの上面80a1と、その両側に形成された絶縁層81の上面81aとが同一平面で形成されていることが好ましい。これによって突出部80a上から絶縁層81上にかけて形成される多層膜Aの各層の膜面をトラック幅方向に、より平行に形成でき、再生特性に優れた磁気検出素子を製造することが可能になる。
【0337】
図33及び図34に示す磁気検出素子の下部電極層80及び絶縁層81の製造方法を説明する。
【0338】
まず、図35に示すように、NiFeなどの磁性材料を用いて、下部電極層80をメッキまたはスパッタ形成し、表面をポリシング等で平滑化処理した後、下部電極層80のトラック幅方向(図示X方向)の中央部上にレジスト層92を形成する。
【0339】
次に、図36に示すように、このレジスト層92に覆われていない下部電極層80の両側端部80bをイオンミリングで途中まで削り込む。これによって下部電極層80のトラック幅方向の中央部に突出部80aを形成することができる。
【0340】
さらに、図37に示すように、レジスト層92に覆われていない下部電極層80の両側端面80b上に絶縁層81をスパッタ成膜し、絶縁層81の上面81aが下部電極層80の突出部80aの上面80a1とほぼ同一平面となった時点で前記スパッタ成膜を終了する。そしてレジスト層92を除去する。
【0341】
なおレジスト層92を除去した後、下部電極層80の突出部80aの上面80a1及び絶縁層81の上面81aをCMPなどを用いて研磨し、突出部80aの上面80a1と絶縁層81の上面81aを高精度に同一平面となるようにしてもよい。この場合最初のポリシング等の平滑化処理を省略することができる。
【0342】
レジスト層92を除去した後、下部電極層80及び絶縁層81上に、多層膜Aを積層する。
【0343】
図28ないし図34に示すCPP型の磁気検出素子では下部シールド層を兼ねる下部電極層70または80及び上部シールド層を兼ねる上部電極層73を多層膜の上下に接して形成しているが、このような構成によって電極層とシールド層とを別々に形成する必要性が無くなり、CPP型の磁気検出素子の製造を容易化することが可能になる。
【0344】
しかも電極機能とシールド機能とを兼用させれば、シールド層間の間隔で決定されるギャップ長G1を非常に短くすることができ、今後の高記録密度化により適切に対応可能な磁気検出素子を製造することが可能になる。
【0345】
ただし、必要ならば、絶縁層71、72から凹部31、32、33の底面31b、32b、33bにかけて点線で示された非磁性層74を積層した後、非磁性層74上に上部電極層73を形成してもよい。非磁性層74は、Ta、Ru、Rh、Ir、Cr、Re、Cuなどの非磁性導電材料で形成されることが好ましい。
【0346】
非磁性層74は上部ギャップ層としての役割を有するものであるが、非磁性層74は電流経路の出入口となる凹部31、32、33の底面31b、32b、33bにも形成されるため、例えば絶縁材料からなる非磁性層74で覆うことは前記電流が多層膜内に流れにくくなるため好ましくない。よって本形態では非磁性層74を非磁性導電材料で形成することが好ましい。
【0347】
また、本形態では、多層膜の上面及び/または下面に、例えばAu、W、Cr、Taなどからなる電極層を設け、多層膜と反対側の電極層の面にギャップ層を介して磁性材料製のシールド層を設ける構成であってもかまわない。
【0348】
図28ないし図34に示すCPP型の磁気検出素子においても、図6、図7、図8、図12、図15、図16、図17のCIP型の磁気検出素子と同じ効果を期待することができる。
【0349】
すなわち本形態では、凹部31、32、33は一様の厚さで成膜された第2反強磁性層を、反応性イオンエッチング(RIE)やイオンミリングを用いて、トラック幅方向(図示X方向)に対し垂直方向に削るだけで形成することができるので、正確な幅寸法で凹部31、32、33を形成することが可能になる。すなわち、磁気検出素子のトラック幅Twを正確に規定できる。
【0350】
また、磁気検出素子の形成時に設定されたトラック幅(光学的トラック幅)Twの領域に不感領域が生じないので、高記録密度化に対応するために磁気検出素子の光学的トラック幅Twを小さくしていった場合の再生出力の低下を抑えることができる。
【0351】
さらに、本態では磁気検出素子の側端面がトラック幅方向に対して垂直となるように形成されることが可能なので、フリー磁性層17のトラック幅方向長さのバラつきを抑えることができる。以上によってサイドリーディングの発生を適切に抑制することが可能になる。
【0352】
なお、図28ないし図34に示す磁気検出素子では非磁性材料層16がCuなどの非磁性導電材料で形成されてもよいし、あるいは非磁性材料層16がAl23やSiO2などの絶縁材料で形成されてもよい。前者の磁気検出素子はスピンバルブGMR型磁気抵抗効果素子と呼ばれる構造(CPP−GMR)であり、後者の磁気検出素子はスピンバルブトンネル型磁気抵抗効果型素子(CPP−TMR)と呼ばれる構造である。
【0353】
トンネル型磁気抵抗効果型素子は、トンネル効果を利用して抵抗変化を生じさせるものであり、固定磁性層15とフリー磁性層17との磁化が反平行のとき、最も非磁性材料層16を介したトンネル電流が流れにくくなって、抵抗値は最大になり、一方、固定磁性層15とフリー磁性層17との磁化が平行のとき、最もトンネル電流は流れ易くなり抵抗値は最小になる。
【0354】
この原理を利用し、外部磁界の影響を受けてフリー磁性層17の磁化が変動することにより、変化する電気抵抗を電圧変化(定電流動作の場合)または電流変化(定電圧動作の場合)としてとらえ、記録媒体からの洩れ磁界が検出されるようになっている。
【0355】
なお、CPP−GMR型の磁気検出素子は、光学トラック幅Twを0.1μm以下、特に0.06μm以下にして、200Gbit/in2以上の記録密度に対応する際に特に有効である。
【0356】
以上詳述した態のCIP型磁気検出素子及びCPP型磁気検出素子の上に書き込み用のインダクティブ素子が積層されてもよい。
また本発明の磁気検出素子は、磁気センサやハードディスクなどに用いられる。
【0357】
【発明の効果】
以上、詳細に説明した本発明は、前記(c)の工程において前記強磁性層及び前記第2反強磁性層を平坦面として形成された前記非磁性層の表面上に積層するものであるので、前記強磁性層及び前記第2反強磁性層も平坦化された層として形成でき、前記強磁性層、前記非磁性層、及び前記フリー磁性層からなるシンセティックフェリ構造において前記強磁性層と前記フリー磁性層間のRKKY相互作用を大きくすることが容易になる。
【0358】
また、前記強磁性層及び前記第2の反強磁性層が、平坦面である前記非磁性層上に積層されたものであると、前記強磁性層及び前記第2の反強磁性層の積層工程の制御が容易になる。特に、前記強磁性層、前記非磁性層、及び前記フリー磁性層からなるシンセティックフェリ構造において前記強磁性層を薄く形成することができ、前記強磁性層と前記フリー磁性層間のスピンフロップ磁界を大きくすることが容易になる。
【0359】
また、本発明では、前記フリー磁性層である磁性材料層を前記第2反強磁性層及び前記強磁性層の下層にまで延して形成するので、前記フリー磁性層の磁化が前記フリー磁性層の両側端部の表面磁荷によって発生する反磁界の影響を受けることを小さくできる。
【0360】
また、本発明では、前記多層膜上に第2反強磁性層を積層しない状態で、前記多層膜を、磁場中アニールして前記固定磁性層の磁化方向を所定の方向に固定するので、前記多層膜上に第2反強磁性層を積層した状態では、前記第2反強磁性層に交換異方性磁界が発生していない。
【0361】
すなわち、前記第2反強磁性層の交換異方性磁界は、前記(e)の工程において初めて生じ、前記フリー磁性層の磁化方向を所定の方向に移動させることが容易になる。従って、前記フリー磁性層の磁化方向を、前記固定磁性層の磁化方向と直交する方向に固定することが容易になる。
【0362】
また、本発明の製造方法によって製造された磁気検出素子では、トラック幅が前記凹部の底面の幅寸法によって決定される。すなわち、前記凹部の底面に重なる部分でのみ、前記フリー磁性層などの外部磁界によって磁化方向が変化する磁性層の磁化方向を変化させることができる。しかも、前記凹部は、一様の厚さで成膜された前記第2反強磁性層を、反応性イオンエッチング(RIE)やイオンミリングを用いて、トラック幅方向に対する垂直方向に削るだけで形成することができるので、正確な幅寸法で前記凹部を形成することが可能になる。すなわち、磁気検出素子のトラック幅を正確に規定できる。
【0363】
なお、本発明において前記非磁性層を、例えばRu、Rh、Ir、Re、Osのうち1種あるいは2種以上の合金で形成すると、前記非磁性層の表面がほとんど酸化しない。従って、前記非磁性層上に前記強磁性層をスパッタ成膜する前に、前記非磁性層の表面をミリングなどで処理しなくても、前記フリー磁性層と前記強磁性層との間に前記非磁性層を介したRKKY相互作用を働かせることができる。
【0364】
すなわち、本発明の磁気検出素子の製造方法によれば、前記非磁性層と前記強磁性層との界面を、ミリングによって削られた面としなくてもすむようにできるので、前記フリー磁性層の両側部における磁化方向を一定方向に揃えるための一方向異方性磁界の低下を防ぐことができる。
【0365】
また本発明における磁気検出素子はCIP型の磁気検出素子でもCPP型の磁気検出素子でもどちらにも適用可能である。
【図面の簡単な説明】
【図1】気検出素子の製造方法の一工程を示す断面図、
【図2】1の次工程を示す断面図、
【図3】2の次工程を示す断面図、
【図4】3の次工程を示す断面図、
【図5】4の次工程を示す断面図、
【図6】参考例の磁気検出素子をABS面側から見た断面図、
【図7】本施の形態磁気検出素子をABS面側から見た断面図、
【図8】参考例の磁気検出素子をABS面側から見た断面図、
【図9】気検出素子の製造方法の一工程を示す断面図、
【図10】9の次工程を示す断面図、
【図11】10の次工程を示す断面図、
【図12】参考例の磁気検出素子をABS面側から見た断面図、
【図13】参考例の磁気検出素子の製造方法の一工程を示す断面図、
【図14】13の次工程を示す断面図、
【図15】参考例の磁気検出素子をABS面側から見た断面図、
【図16】参考例の磁気検出素子をABS面側から見た断面図、
【図17】参考例の磁気検出素子をABS面側から見た断面図、
【図18】シンセティックフェリフリー型の磁性層のヒステリシスループの概念図、
【図19】バックド層によるスピンフィルター効果を説明するための模式説明図、
【図20】バックド層によるスピンフィルター効果を説明するための模式説明図、
【図21】気検出素子の製造方法の一工程を示す断面図、
【図22】21の次工程を示す断面図、
【図23】22の次工程を示す断面図、
【図24】23の次工程を示す断面図、
【図25】24の次工程を示す断面図、
【図26】25の次工程を示す断面図、
【図27】26の次工程を示す断面図、
【図28】参考例の磁気検出素子をABS面側から見た断面図、
【図29】本施の形態磁気検出素子をABS面側から見た断面図、
【図30】参考例の磁気検出素子をABS面側から見た断面図、
【図31】参考例の磁気検出素子をABS面側から見た断面図、
【図32】参考例の磁気検出素子をABS面側から見た断面図、
【図33】参考例の磁気検出素子をABS面側から見た断面図、
【図34】参考例の磁気検出素子をABS面側から見た断面図、
【図35】気検出素子の製造方法の一工程を示す断面図、
【図36】35の次工程を示す断面図、
【図37】36の次工程を示す断面図、
【図38】従来の磁気検出素子の断面図、
【符号の説明】
11 下部シールド層
12 下部ギャップ層
13 下地層
14 第1反強磁性層
15 固定磁性層
15a 第1固定磁性層
15b 非磁性中間層
15c 第2固定磁性層
16 非磁性材料層
17 フリー磁性層
17a 拡散防止層(中間層)
17b 強磁性層
18 非磁性層
19 強磁性層
20 第2反強磁性層
21、26、27 電極層
22、30、31 凹部
23 上部ギャップ層
24 上部シールド層
70 下部電極層
71 絶縁層
72 他の絶縁層
73 上部電極層
C トラック幅領域(中央部)
E 感度領域
S 両側部

Claims (14)

  1. (a)基板上に下から順に第1反強磁性層、固定磁性層、非磁性材料層、第1磁性層、及び非磁性層を有する多層膜を成膜する工程と、
    (b)前記多層膜を、第1の熱処理温度、第1の大きさの磁界中で、第1の磁場中アニールして前記固定磁性層の磁化方向を所定の方向に固定する工程と、
    (c)前記多層膜上に、強磁性層及び第2反強磁性層を成膜する工程と、
    (d)前記第2反強磁性層のトラック幅の中央に、底面が前記第2反強磁性層内に位置する凹部を形成する工程と、
    (e)前記第2反強磁性層が積層された多層膜を、第2の熱処理温度、第2の大きさの磁界中で第2の磁場中アニールすることにより、前記凹部のトラック幅方向の両側の前記第2反強磁性層と膜厚方向で対向する前記第1磁性層の両側端部の磁化方向を前記固定磁性層の磁化方向と交叉する方向に固定するとともに、前記凹部と膜厚方向で対向する前記第1磁性層の中央部を外部磁界により磁化方向が変動するフリー磁性層とし、前記フリー磁性層の磁化方向を前記固定磁性層の磁化方向と交叉する方向に揃える工程、
    を有することを特徴とする磁気検出素子の製造方法。
  2. 前記()の工程において、前記凹部の底面の下部に位置する前記第2反強磁性層の領域の厚さを0Åより大きく50Å以下にする請求項に記載の磁気検出素子の製造方法。
  3. 前記(a)工程の前に、
    )基板上に、下部電極層を形成する工程を有し、
    前記(d)の工程の代わりに、
    )前記第2の反強磁性層上に絶縁層を成膜する工程と、
    )前記絶縁層上に、トラック幅方向の中央部に穴部を設けたレジストを積層し、前記絶縁層及び前記第2の反強磁性層の前記穴部に露出する部位を削りこむことにより、前記第2反強磁性層のトラック幅の中央に、底面が前記第2反強磁性層内に位置する凹部を形成する工程と、
    )前記凹部の底面に電気的に導通する上部電極層を形成する工程と、
    を有する請求項1又は2に記載の磁気検出素子の製造方法。
  4. 前記()工程と前記()工程の間に、
    )前記凹部から前記絶縁層上にかけて他の絶縁層を成膜する工程と、
    )前記凹部の底面上に積層された前記他の絶縁層を除去する工程と、
    を有する請求項記載の磁気検出素子の製造方法。
  5. 前記()工程と前記(a)工程の間に、
    )前記下部電極層のトラック幅方向の中央に、前記多層膜方向に突出した突出部を形成する工程と、
    )前記下部電極層の前記突出部のトラック幅方向の両側部に絶縁層を設ける工程とを有し、
    前記(a)工程において、
    前記突出部の上面が前記多層膜の下面と接するように、前記多層膜を形成する請求項またはに記載の磁気検出素子の製造方法。
  6. 前記()工程において、
    前記突出部の上面と、前記下部電極層の両側端部上に設けられた前記絶縁層の上面を同一平面にする請求項記載の磁気検出素子の製造方法。
  7. 前記下部電極層、あるいは、前記上部電極層、又は、前記下部電極層及び前記上部電極層を、磁性材料で形成する請求項ないしのいずれかに記載の磁気検出素子の製造方法。
  8. 前記上部電極層を、前記凹部の底面と電気的に導通する非磁性導電性材料で形成される層と磁性材料で形成される層が積層されたものとして形成する請求項ないしのいずれかに記載の磁気検出素子の製造方法。
  9. 前記非磁性材料層を非磁性導電材料で形成する請求項ないしのいずれかに記載の磁気検出素子の製造方法。
  10. 前記非磁性材料層を絶縁材料で形成する請求項ないしのいずれかに記載の磁気検出素子の製造方法。
  11. 前記(a)の工程において、Ruで形成された前記非磁性層とNiFe又はCoFeNiにより形成された前記第1磁性層の間に、比抵抗が前記非磁性層よりも低いCuからなる導電性材料層を形成する請求項1ないし10のいずれかに記載の磁気検出素子の製造方法。
  12. 前記非磁性層膜厚、0.4〜1.1nm形成する請求項11に記載の磁気検出素子の製造方法。
  13. 前記導電性材料層膜厚0.3〜0.5nm形成する請求項11または12に記載の磁気検出素子の製造方法。
  14. 前記(a)の工程において、前記フリー磁性層を、単位面積あたりの磁気モーメントの大きさが異なる複数の強磁性材料層を非磁性中間層を介して積層することによって形成する請求項1ないし13のいずれかに記載の磁気検出素子の製造方法。
JP2002032728A 2001-07-13 2002-02-08 磁気検出素子の製造方法 Expired - Fee Related JP3908554B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002032728A JP3908554B2 (ja) 2001-07-13 2002-02-08 磁気検出素子の製造方法
US10/193,675 US6901652B2 (en) 2001-07-13 2002-07-11 Method for manufacturing magnetic sensing element having improved magnetic field sensitivity

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001214276 2001-07-13
JP2001-214276 2001-07-13
JP2002032728A JP3908554B2 (ja) 2001-07-13 2002-02-08 磁気検出素子の製造方法

Publications (2)

Publication Number Publication Date
JP2003092444A JP2003092444A (ja) 2003-03-28
JP3908554B2 true JP3908554B2 (ja) 2007-04-25

Family

ID=26618727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002032728A Expired - Fee Related JP3908554B2 (ja) 2001-07-13 2002-02-08 磁気検出素子の製造方法

Country Status (2)

Country Link
US (1) US6901652B2 (ja)
JP (1) JP3908554B2 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10214946B4 (de) * 2002-04-04 2006-01-19 "Stiftung Caesar" (Center Of Advanced European Studies And Research) TMR-Sensor
JP3837102B2 (ja) 2002-08-20 2006-10-25 Tdk株式会社 電磁変換素子、薄膜磁気ヘッド、磁気ヘッドアセンブリおよび磁気再生装置、ならびに電磁変換素子の製造方法
US7280324B2 (en) 2004-02-17 2007-10-09 Hitachi Global Storage Technologies Netherlands B.V. Magnetoresistive sensor having improved antiparallel tab free layer biasing
US7916520B2 (en) * 2004-08-25 2011-03-29 Nec Corporation Memory cell and magnetic random access memory
JP2006351668A (ja) * 2005-06-14 2006-12-28 Alps Electric Co Ltd 磁気検出素子及びその製造方法
JP2007141381A (ja) * 2005-11-18 2007-06-07 Alps Electric Co Ltd Cpp型薄膜磁気ヘッド及びその製造方法
US7606009B2 (en) * 2006-03-15 2009-10-20 Hitachi Global Storage Technologies Netherlands B.V. Read sensor stabilized by bidirectional anisotropy
US7839606B2 (en) * 2006-06-09 2010-11-23 Hitachi Global Storage Technologies Netherlands B.V. Magnetic head having oxidized read sensor edges to reduce sensor current shunting
KR101042338B1 (ko) 2009-10-08 2011-06-17 한국과학기술연구원 자기터널접합 디바이스 및 그 제조 방법
EP2477227B1 (en) * 2011-01-13 2019-03-27 Crocus Technology S.A. Magnetic tunnel junction comprising a polarizing layer
US8675318B1 (en) 2011-11-22 2014-03-18 Western Digital (Fremont), Llc Method and system for providing a read transducer having a reduced shield-to-shield spacing
JP5802565B2 (ja) * 2012-01-18 2015-10-28 アルプス電気株式会社 磁気センサ
US8711528B1 (en) 2012-06-29 2014-04-29 Western Digital (Fremont), Llc Tunnel magnetoresistance read head with narrow shield-to-shield spacing
US9269382B1 (en) 2012-06-29 2016-02-23 Western Digital (Fremont), Llc Method and system for providing a read transducer having improved pinning of the pinned layer at higher recording densities
US8760822B1 (en) 2012-11-28 2014-06-24 Western Digital (Fremont), Llc Method and system for providing a read transducer having an extended pinned layer and soft magnetic bias structures with improved stability
US9318130B1 (en) 2013-07-02 2016-04-19 Western Digital (Fremont), Llc Method to fabricate tunneling magnetic recording heads with extended pinned layer
US9214172B2 (en) 2013-10-23 2015-12-15 Western Digital (Fremont), Llc Method of manufacturing a magnetic read head
US9147404B1 (en) 2015-03-31 2015-09-29 Western Digital (Fremont), Llc Method and system for providing a read transducer having a dual free layer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5949623A (en) * 1997-09-11 1999-09-07 International Business Machines Corporation Monolayer longitudinal bias and sensor trackwidth definition for overlaid anisotropic and giant magnetoresistive heads
JP3710324B2 (ja) 1999-06-03 2005-10-26 アルプス電気株式会社 スピンバルブ型薄膜磁気素子及び薄膜磁気ヘッド及びスピンバルブ型薄膜磁気素子の製造方法
JP3710349B2 (ja) 1999-06-03 2005-10-26 アルプス電気株式会社 スピンバルブ型薄膜磁気素子及び薄膜磁気ヘッド及びスピンバルブ型薄膜磁気素子の製造方法
JP3657487B2 (ja) * 2000-02-02 2005-06-08 アルプス電気株式会社 スピンバルブ型薄膜磁気素子およびその製造方法、およびこのスピンバルブ型薄膜磁気素子を備えた薄膜磁気ヘッド
JP3694440B2 (ja) * 2000-04-12 2005-09-14 アルプス電気株式会社 交換結合膜の製造方法、及び前記交換結合膜を用いた磁気抵抗効果素子の製造方法、ならびに前記磁気抵抗効果素子を用いた薄膜磁気ヘッドの製造方法
JP3958947B2 (ja) * 2001-09-14 2007-08-15 アルプス電気株式会社 磁気検出素子及びその製造方法

Also Published As

Publication number Publication date
US6901652B2 (en) 2005-06-07
US20030163913A1 (en) 2003-09-04
JP2003092444A (ja) 2003-03-28

Similar Documents

Publication Publication Date Title
JP3291208B2 (ja) 磁気抵抗効果型センサおよびその製造方法とそのセンサを備えた磁気ヘッド
US6714388B2 (en) Magnetic sensing element having improved magnetic sensitivity
JP3908554B2 (ja) 磁気検出素子の製造方法
US6862159B2 (en) Cpp magnetic sensing element in which pinned magnetic layers of upper and lower multilayer films are magnetized antiparallel to each other, method for making the same, and magnetic sensing device including the same
JP3657487B2 (ja) スピンバルブ型薄膜磁気素子およびその製造方法、およびこのスピンバルブ型薄膜磁気素子を備えた薄膜磁気ヘッド
JP2001216612A (ja) スピンバルブ型薄膜磁気素子およびこのスピンバルブ型薄膜磁気素子を備えた薄膜磁気ヘッド
JP2002076472A (ja) スピンバルブ型薄膜磁気素子およびこのスピンバルブ型薄膜磁気素子を備えた薄膜磁気ヘッド
JP3939503B2 (ja) 磁気検出素子及びその製造方法
US6731479B2 (en) Spin-valve thin-film magnetic element with a ferromagnetic underlayer of hard bias
US6893734B2 (en) Magnetic sensing element with improved sensitivity and method for making the same
US6760200B2 (en) Spin-valve thin-film magnetic element suitable for track narrowing and thin-film magnetic head using the same
JP2002151757A (ja) 薄膜磁気素子及びその製造方法
JP2004022114A (ja) 磁気ヘッド及びその製造方法
JP3699000B2 (ja) スピンバルブ型薄膜素子およびその製造方法
US6721148B2 (en) Magnetoresistive sensor, thin-film read/write head, and magnetic recording apparatus using the sensor
JP3774375B2 (ja) 磁気検出素子及びその製造方法、ならびに前記磁気検出素子を用いた薄膜磁気ヘッド
JP3904447B2 (ja) 磁気検出素子の製造方法
JP3889276B2 (ja) 磁気検出素子
JP3774374B2 (ja) 磁気検出素子及びその製造方法
US6716537B1 (en) Magnetoresistive element having multilayered film capable of effectively conducting a detecting current for detecting external magnetic field and method for making the same
JP3766600B2 (ja) 磁気検出素子及びその製造方法
JP3939519B2 (ja) 磁気検出素子及びその製造方法
JP3839684B2 (ja) 薄膜磁気素子の製造方法
JP3839682B2 (ja) 薄膜磁気素子
JP3961251B2 (ja) 磁気検出素子の製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees