JP3907453B2 - Control device for vehicle with electric power unit - Google Patents

Control device for vehicle with electric power unit Download PDF

Info

Publication number
JP3907453B2
JP3907453B2 JP2001361813A JP2001361813A JP3907453B2 JP 3907453 B2 JP3907453 B2 JP 3907453B2 JP 2001361813 A JP2001361813 A JP 2001361813A JP 2001361813 A JP2001361813 A JP 2001361813A JP 3907453 B2 JP3907453 B2 JP 3907453B2
Authority
JP
Japan
Prior art keywords
phase
current
motor
electric power
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001361813A
Other languages
Japanese (ja)
Other versions
JP2003164009A (en
Inventor
広之 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001361813A priority Critical patent/JP3907453B2/en
Publication of JP2003164009A publication Critical patent/JP2003164009A/en
Application granted granted Critical
Publication of JP3907453B2 publication Critical patent/JP3907453B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Description

【0001】
【発明の属する技術分野】
本発明は、電気動力装置による電気動力を駆動源のひとつとする電気動力装置付き車輌の制御装置に関する。
【0002】
【従来の技術】
近年、高齢化対策や環境対策、さらには利便性の観点から、電動アシスト自転車や電動車椅子、あるいは電動自動車などの、モータ(電動機)を駆動源のひとつとする電気動力装置付き車輌が盛んに開発されている。
【0003】
このような電気動力装置付き車輌では、速度を減速させる場合、通常、機械的に車輪を拘束する方式が用いられている。このような方式では、エネルギが車輪拘束部分での発熱により消費されることになる。
【0004】
一方、モータは、減速時(制動時)において発電機として動作させることができる。そこで、減速時においてモータを発電動作させ、回生制動(ブレーキ)を用いて制動トルクを得ることが考えられる。
【0005】
回生制動では、バッテリに回生電流が戻るため、バッテリが充電される。よって、省エネルギが実現され、同じバッテリ容量でも、回生制動を用いない場合に比べて走行距離を飛躍的に伸ばすことが可能となる。
【0006】
しかし、バッテリが満充電状態となった後にも回生電流を流し続けると、バッテリが発熱し、バッテリの種類によっては爆発を伴う危険な状態となる。そこで、従来より電気動力装置付き車輌では、回生制動時の過充電防止の方法として、、回生抵抗に回生電流を流して回生電力を消費する方法や、特開平7−143611号公報や特開平8−154304号公報に開示されているように、誘導電動機のトルク電流と励磁電流を調整して駆動効率や回生効率を低下させる方法がある。
【0007】
しかしながら、上述のような回生抵抗に回生電流を流し、回生電力を消費する方法を用いた場合、回生抵抗並びに回生抵抗を有効にするスイッチが必要となり、部品点数が増え、安価に製造することが困難となる。
【0008】
また、誘導電動機のトルク電流と励磁電流を調整して駆動効率や回生効率を低下させる方法を用いた場合、モータに流す対称三相電流をトルク電流と励磁電流に分配するためにモータ回転の電気角を測定する必要がある。これは、回転子が永久磁石の三相同期モータ(以降、ブラシレスモータと称す)に適用する場合も同様である。つまり、回転角測定用のエンコーダが必要となる。
【0009】
以下、ブラシレスモータの駆動制御方法について説明する。
図5は、ブラシレスモータとその駆動制御回路(3相フルブリッジインバータによる駆動制御回路)の構成の概略を図示したものである。
【0010】
モータは回転時において、図6に示すような、角速度ωに比例した三相対称逆起電力Vu、Vv、Vwを発生する。式で表すと式(1)のようになる。
【0011】
【数1】

Figure 0003907453
但し、Aは定数、θは電気角である。
【0012】
この逆起電力と同位相の三相対称正弦波の電流をモータに流すと、モータはその電流振幅に比例したトルクを発生し、加速する。
但し、そのためには電気角θを正確に測定しなければならず、回転角測定用のエンコーダが必要となり、コストアップとなる。そこで、安価にモータを駆動する場合は、図5に示す装置によって、以下に説明するコミュテーション信号を用いた矩形波駆動を用いて駆動制御する。
【0013】
図7に示すように、図6に示す逆起電力の位相を検出したものが、120°の位相差を持つコミュテーション信号CSU、CSV、CSWである。
制御回路3は、このコミュテーション信号と電流指令(速度指令)1を基に、図7に示すような、それぞれの振幅が電流指令1に一致した矩形波の三相電流指令Iuc、Ivc、Iwcを生成する。これらの波形は、形状は矩形波であるが、位相は図6の逆起電力の位相と一致している。
【0014】
この三相電流指令に基づき、モータ5を駆動すると、電流指令を正弦波にした場合と比べて、トルク脈動(トルクリップル)は多いものの、電流振幅に比例した加速トルクが発生し、電流指令1に応じた加速をすることになる。即ち、制御回路3は、電流指令(速度指令)1をコミュテーション信号の情報により三相の電流指令に分配するとともに、電流センサ2a、2bで検出されたモータ電流がこの三相電流指令に追従するように、制御回路3はトランジスタ駆動回路4にスイッチングパターンを与える。トランジスタ駆動回路4はこのスイッチングパターンに従ってトランジスタTr1〜6をオン/オフさせ、モータ5に対称三相電流を流す。
【0015】
以上のように、電気角で120°の位相差を持つ三相の矩形波(コミュテーション信号)を基に、120°で区切られた矩形波の三相電流指令でブラシレスモータを電流駆動させる場合、回転検出器(コミュテーション信号発生器)の電気角分解能が60°で良く、コスト面で有利となる。
【0016】
また、減速させたい場合は、図8に示すように、図7とは逆極性の三相電流指令Iuc、Ivc、Iwcを生成する。こうすることで、加速時とは回転方向が反対の電流振幅に比例した制動トルクが発生し、減速することになる。
【0017】
しかしながら、上述のように、電気角で120°の位相差を持つ三相の矩形波(コミュテーション信号)を基に、120°で区切られた矩形波の三相電流指令でブラシレスモータを電流駆動させる場合、回転検出器(コミュテーション信号発生器)の電気角分解能が60°しかないため、減速時において、脱調させない範囲で、モータに流す対称三相電流をトルク電流と励磁電流に分配すること、つまり三相電流指令をトルク電流指令と励磁電流指令に分配することは困難であり、結果、従来の方法を用いて回生効率と駆動効率を低下させることも困難となる。
【0018】
従って、三相電流指令をトルク電流指令と励磁電流指令に分配する従来の方法を用いるには、回転角測定用のエンコーダによって電気角を測定する必要があり、この場合、駆動効率と回生効率の低下を制御できるとともに、正弦波で電流駆動でき、トルク脈動の少ない駆動が可能となるが、コスト面では不利となり、安価な過充電防止機能を持つ制御装置の提供が困難となる。
【0019】
【発明が解決しようとする課題】
本発明は、上記問題点を解決するために、過充電の場合は、モータ内で回生電力が消費されるようにスイッチングパターンを制御することにより、バッテリへの回生電流を減少させて過充電を防止する電気動力装置付き車輌の制御装置を安価に提供することを目的とする。
【0020】
【課題を解決するための手段】
本発明における請求項1記載の電気動力装置付き車輌の制御装置は、電気角で120°の位相差を持つ三相の矩形波と、回転子が永久磁石の三相同期モータに流れる3相の電流指令と、を基に3相フルブリッジインバータに含まれるスイッチ素子のオン/オフを制御して、前記モータの回転を制御し、減速時には回生制動によりバッテリを充電する機能を有する電気動力装置付き車輌の制御装置であって、前記三相の矩形波に応じて前記3相フルブリッジインバータに含まれるスイッチ素子のオン/オフを制御して、前記モータのu相、v相、w相のうちのいずれか2つの相の間で電流を還流させるためのループを形成する制御回路を具備することを特徴とする。
【0021】
以上のような構成とすることにより、本発明の電気動力装置付き車輌の制御装置は、複雑な機構を追加することなく、簡便な構成をもってバッテリの過充電防止を実現することができる。
【0022】
【発明の実施の形態】
以下、本発明の電気動力装置付き車輌の制御装置に係る実施の形態について図面を交えて説明する。なお、前述した従来例(図5)と同じ構成を有する部材には同一の番号を付記して、説明を省略する。
【0023】
図1は、本実施の形態における電気動力装置付き車輌の制御装置(モータと3相フルブリッジインバータによる駆動制御回路)の構成の概略を図示したものである。但し、トランジスタTr1〜6は、説明を簡単にするためにスイッチとして図示する。図2から図4は、当該装置において、モータの通常回転方向(加速時の回転方向)とは逆方向にトルク(制動トルク)を発生させ、回生制動をかける場合であって、図6および図8の電気角210°〜270°の領域▲4▼における電流経路(スイッチングパターン)を説明するための図である。なお、説明のためにこの領域を選択したが、他の領域でも同様である。
【0024】
領域▲4▼では、図8に示すように、u相からv相へ電流が流れるように、電流指令を生成する。
このとき、電流センサ2aの検出値が電流指令1の値よりも小さい場合には、u相からv相へ流れる電流を増加させるようにスイッチング素子であるトランジスタを制御する。即ち、図2に示すように、トランジスタTr1とTr4をオンとし、u相からv相へ流れる電流を増加させる方向に電源電圧6を印加する。このときの電流経路を太線の矢印で記す。また、この場合、電源6がバッテリの場合には放電することになる。
【0025】
逆に、電流センサ2aの検出値が電流指令1の値よりも大きい場合には、u相からv相へ流れる電流を減少させるように制御する。即ち、図3に示すように、トランジスタTr2とTr3をオンとし、u相からv相へ流れる電流を減少させる方向に電源電圧6を印加する。このときの電流の経路を太線の矢印で記す。
【0026】
この場合、モータ5のインピーダンスZにインダクタンス成分があるので、u相からv相へ電流を流す向きとは逆方向に電圧を印加しても、電流は減少に転じるだけで、すぐには逆流しない。つまり、オンしたトランジスタTr2とTr3に電流が流れることはなく、フリーホイルダイオードD2およびD3を通して電流が流れる。なお、この図2と図3のスイッチングパターンを繰り返してモータ電流を電流指令1に追従させるため、電流が逆流することはない。
【0027】
図3のスイッチングパターンでは、u相からv相へ流れる電流を減少させるとともに、電源6に回生電流が流れ込み、電源6がバッテリの場合には充電されることになる。
【0028】
つまり、満充電時以外のときには、この図3のモード(スイッチングパターン)で電流を減少させれば、電源(バッテリ)6は充電されるので、エネルギ効率がよい。
【0029】
しかし、満充電時には、電源6に流れ込む回生電流が充電に作用せず、電源6を温度上昇させるだけなので、電源6へ回生電流を極力流したくはない。
そこで、領域▲4▼において満充電に近づいた場合に、電流を減少させたいときは、図4に示すように、トランジスタTr6のみをオンさせることにより、モータのu相とw相間で電流を還流させるためのループを形成する。このときの電流経路を太線の矢印で記す。なお、電源(バッテリ)6が満充電に近づいたか否かは、例えば、電源(バッテリ)6の電圧を測定するなど、従来より知られている方法にて行うものとする。
【0030】
この電気角の領域▲4▼では、図6に示すように、Vu<0かつVu<Vwであるので、トランジスタTr6のみをオンさせると、常に図4に示した電流方向にw相電流Iwを流そうとする。
【0031】
また、三相の星型結線されたモータでは以下の式が成り立つ。
Iu+Iv+Iw=0
この式を変形させると以下のようになる。
【0032】
−Iv=Iu−(−Iw)
つまり、還流電流(−Iw)を流すことにより、ダイオードD3を通して電源6に回生する電流(−Iv)は減少することになる。
【0033】
よって、電源6への回生効率が低下し、回生電力はモータ内で消費されることになる。
但し、還流電流(−Iw)の絶対値が大きくなり、対称三相電流Iu、Iv、Iwの位相が本来の位相より大きくずれると、脱調し、制動トルクが得られなくなる。そのため、還流電流(−Iw)の電流指令Iwcは、電流Iuの電流指令Iucによって、以下のように制限しておく必要がある。
【0034】
Iwc=−k×Iuc
但し、kは0<k<1を満たす定数である。
また、領域▲4▼における満充電時のトランジスタTr6の制御は、以下の式に従う。
【0035】
Iw≦Iwcの場合 トランジスタTr6はオフ
Iw>Iwcの場合 トランジスタTr6はオン
つまり、満充電時には、図2と図4のスイッチングパターンを繰り返してモータ電流を電流指令1に追従させることになる。
【0036】
以上のように、本実施の形態におけるモータの駆動制御装置は、複雑な機構を追加することなく、簡便な構成をもって電気動力装置付き車輌の制御装置を安価に実現するものである。
【0037】
【発明の効果】
本発明によれば、過充電の場合には、スイッチングパターンを制御してモータ内で回生電力を消費させるようにすることにより、複雑な機構を追加することなく、簡便な構成をもって過充電の防止を実現できるようにした過充電防止機能を持つ安価な電気動力装置付き車輌の制御装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の電気動力装置付き車輌の制御装置(モータと3相フルブリッジインバータによる駆動制御回路)の構成の概略を示す図
【図2】本発明の実施の形態の電気動力装置付き車輌の制御装置の回生制動時における電流経路を説明するための図であって、領域▲4▼において電流センサの検出値が電流指令の値よりも小さい場合の電流経路を説明するための図
【図3】本発明の実施の形態の電気動力装置付き車輌の制御装置の回生制動時における電流経路を説明するための図であって、領域▲4▼において電流センサの検出値が電流指令の値よりも小さい場合の電流経路を説明するための図
【図4】本発明の実施の形態の電気動力装置付き車輌の制御装置の回生制動時における電流経路を説明するための図であって、領域▲4▼において電流センサの検出値が電流指令の値よりも小さく、かつ、バッテリが満充電の場合の電流経路を説明するための図
【図5】ブラシレスモータとその駆動制御回路(3相フルブリッジインバータによる駆動制御回路)の構成の概略を示す図
【図6】電器角とモータに発生する三相対称逆起電力の関係を示す図
【図7】モータの通常駆動時におけるコミュテーション信号波形と電流指令波形の関係を示す図
【図8】回生制動時におけるコミュテーション信号波形と電流指令波形の関係を示す図
【符号の説明】
1 電流指令
2a、2b 電流センサ
3 制御回路
4 トランジスタ駆動回路
5 モータ
6 電源[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device for a vehicle with an electric power device that uses electric power generated by the electric power device as one of driving sources.
[0002]
[Prior art]
In recent years, from the viewpoint of aging measures, environmental measures, and convenience, vehicles with electric power devices that use motors (electric motors) as one of the driving sources, such as electric assist bicycles, electric wheelchairs, and electric vehicles, have been actively developed. Has been.
[0003]
In such a vehicle with an electric power device, when the speed is reduced, a method of mechanically restraining the wheel is usually used. In such a system, energy is consumed by heat generation at the wheel restraint portion.
[0004]
On the other hand, the motor can be operated as a generator during deceleration (during braking). Therefore, the motor is generating electric power during deceleration, it is conceivable to obtain a braking torque using a regenerative dynamic braking (braking).
[0005]
In regenerative braking, the regenerative current returns to the battery, so the battery is charged. Therefore, energy saving is realized, and even with the same battery capacity, it is possible to dramatically increase the travel distance compared to the case where regenerative braking is not used.
[0006]
However, if the regenerative current continues to flow even after the battery is fully charged, the battery generates heat, and depending on the type of battery, a dangerous state with explosion occurs. Therefore, conventionally, in a vehicle with an electric power device, as a method of preventing overcharge during regenerative braking, a method of flowing regenerative current through a regenerative resistor and consuming regenerative power, Japanese Patent Laid-Open Nos. 7-143611 and 8 As disclosed in Japanese Patent No. -154304, there is a method of reducing the driving efficiency and the regenerative efficiency by adjusting the torque current and the excitation current of the induction motor.
[0007]
However, when using a method for supplying regenerative current to the regenerative resistor and consuming regenerative power as described above, a switch that enables the regenerative resistor and the regenerative resistor is required, which increases the number of components and can be manufactured at low cost. It becomes difficult.
[0008]
In addition, when the method of adjusting the torque current and excitation current of the induction motor to reduce the drive efficiency and regenerative efficiency is used, the motor rotation electric power is used to distribute the symmetrical three-phase current flowing to the motor to the torque current and the excitation current. It is necessary to measure the corner. The same applies to a case where the rotor is applied to a three-phase synchronous motor having a permanent magnet (hereinafter referred to as a brushless motor). That is, an encoder for measuring the rotation angle is required.
[0009]
Hereinafter, a drive control method of the brushless motor will be described.
FIG. 5 schematically shows the configuration of a brushless motor and its drive control circuit (drive control circuit using a three-phase full bridge inverter).
[0010]
When rotating, the motor generates three-phase symmetrical counter electromotive forces Vu, Vv, Vw proportional to the angular velocity ω as shown in FIG. Expressed as a formula, it is as shown in formula (1).
[0011]
[Expression 1]
Figure 0003907453
However, A is a constant and θ is an electrical angle.
[0012]
When a three-phase symmetrical sine wave current having the same phase as the counter electromotive force is passed through the motor, the motor generates a torque proportional to the current amplitude and accelerates.
However, for this purpose, the electrical angle θ must be accurately measured, and an encoder for measuring the rotation angle is required, resulting in an increase in cost. Therefore, when the motor is driven at a low cost, drive control is performed by the apparatus shown in FIG. 5 using rectangular wave driving using a commutation signal described below.
[0013]
As shown in FIG. 7, commutation signals CSU, CSV, and CSW having a phase difference of 120 ° are detected from the phase of the back electromotive force shown in FIG.
Based on the commutation signal and the current command (speed command) 1, the control circuit 3 uses the rectangular wave three-phase current commands Iuc, Ivc, Iwc whose amplitudes coincide with the current command 1 as shown in FIG. Is generated. These waveforms are rectangular waves in shape, but the phase matches the phase of the back electromotive force in FIG.
[0014]
When the motor 5 is driven based on the three-phase current command, an acceleration torque proportional to the current amplitude is generated, although torque pulsation (torque ripple) is larger than when the current command is a sine wave. It will accelerate according to the. That is, the control circuit 3 distributes the current command (speed command) 1 to the three-phase current command according to the information of the commutation signal, and the motor current detected by the current sensors 2a and 2b follows this three-phase current command. Thus, the control circuit 3 gives a switching pattern to the transistor drive circuit 4. The transistor drive circuit 4 turns on / off the transistors Tr <b> 1 to 6 in accordance with this switching pattern, and causes a symmetrical three-phase current to flow through the motor 5.
[0015]
As described above, when a brushless motor is driven by a three-phase current command of a rectangular wave divided by 120 ° based on a three-phase rectangular wave (commutation signal) having a phase difference of 120 ° in electrical angle The rotation detector (commutation signal generator) may have an electrical angle resolution of 60 °, which is advantageous in terms of cost.
[0016]
Further, when it is desired to decelerate, as shown in FIG. 8, three-phase current commands Iuc, Ivc, and Iwc having opposite polarities to those in FIG. 7 are generated. By doing so, a braking torque proportional to the current amplitude opposite to that in acceleration is generated and decelerated.
[0017]
However, as described above, based on a three-phase rectangular wave (commutation signal) having a phase difference of 120 ° in electrical angle, the brushless motor is current-driven with a rectangular wave three-phase current command divided by 120 °. When rotating, the rotational angle detector (commutation signal generator) has an electrical angle resolution of only 60 °. Therefore, during deceleration, the symmetrical three-phase current that flows through the motor is distributed to the torque current and the excitation current within a range that does not step out. That is, it is difficult to distribute the three-phase current command to the torque current command and the excitation current command, and as a result, it is difficult to reduce the regeneration efficiency and the drive efficiency using the conventional method.
[0018]
Therefore, in order to use the conventional method of distributing the three-phase current command to the torque current command and the excitation current command, it is necessary to measure the electrical angle with the encoder for measuring the rotation angle. While it is possible to control the decrease and to drive the current with a sine wave, it is possible to drive with less torque pulsation, but this is disadvantageous in terms of cost and it is difficult to provide a control device having an inexpensive overcharge prevention function.
[0019]
[Problems to be solved by the invention]
In order to solve the above problem, in the case of overcharge, the present invention controls the switching pattern so that regenerative power is consumed in the motor, thereby reducing the regenerative current to the battery and overcharging. An object of the present invention is to provide a control device for a vehicle with an electric power device that can be prevented at low cost.
[0020]
[Means for Solving the Problems]
The control device for a vehicle with an electric power device according to claim 1 of the present invention comprises a three-phase rectangular wave having a phase difference of 120 ° in electrical angle, and a three-phase motor in which a rotor flows through a three-phase synchronous motor of a permanent magnet. Equipped with an electric power unit that controls the on / off of switch elements included in the three-phase full-bridge inverter based on the current command, controls the rotation of the motor, and charges the battery by regenerative braking during deceleration A vehicle control device that controls on / off of a switch element included in the three-phase full-bridge inverter according to the three-phase rectangular wave, and includes a u-phase, a v-phase, and a w-phase of the motor. And a control circuit for forming a loop for circulating current between any two phases .
[0021]
By adopting the above configuration, the control device for a vehicle with an electric power device according to the present invention can realize prevention of overcharge of the battery with a simple configuration without adding a complicated mechanism.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment according to a control device for a vehicle with an electric power device of the present invention will be described with reference to the drawings. In addition, the same number is attached | subjected to the member which has the same structure as the prior art example (FIG. 5) mentioned above, and description is abbreviate | omitted.
[0023]
FIG. 1 schematically shows the configuration of a control device (a drive control circuit using a motor and a three-phase full-bridge inverter) for a vehicle with an electric power device according to the present embodiment. However, the transistors Tr1 to Tr6 are illustrated as switches for simplicity of explanation. 2 to 4 show a case where torque (braking torque) is generated in the direction opposite to the normal rotation direction of the motor (rotation direction during acceleration) and regenerative braking is applied in the apparatus, and FIG. 6 and FIG. FIG. 8 is a diagram for explaining a current path (switching pattern) in a region (4) of 8 electrical angles 210 ° to 270 °. In addition, although this area | region was selected for description, it is the same also in another area | region.
[0024]
In the region (4), as shown in FIG. 8, a current command is generated so that a current flows from the u phase to the v phase.
At this time, when the detection value of the current sensor 2a is smaller than the value of the current command 1, the transistor as the switching element is controlled so as to increase the current flowing from the u phase to the v phase. That is, as shown in FIG. 2, the transistors Tr1 and Tr4 are turned on, and the power supply voltage 6 is applied in the direction of increasing the current flowing from the u phase to the v phase. The current path at this time is indicated by a thick arrow. In this case, when the power source 6 is a battery, it is discharged.
[0025]
Conversely, when the detected value of the current sensor 2a is larger than the value of the current command 1, control is performed so as to reduce the current flowing from the u phase to the v phase. That is, as shown in FIG. 3, the transistors Tr2 and Tr3 are turned on, and the power supply voltage 6 is applied in a direction that reduces the current flowing from the u phase to the v phase. The current path at this time is indicated by a thick arrow.
[0026]
In this case, since there is an inductance component in the impedance Z of the motor 5, even if a voltage is applied in the direction opposite to the direction in which the current flows from the u phase to the v phase, the current simply decreases and does not immediately reverse. . That is, no current flows through the turned-on transistors Tr2 and Tr3, and current flows through the freewheel diodes D2 and D3. Since the switching patterns of FIGS. 2 and 3 are repeated to cause the motor current to follow the current command 1, the current does not flow backward.
[0027]
In the switching pattern of FIG. 3, the current flowing from the u-phase to the v-phase is reduced, and a regenerative current flows into the power source 6, and the power source 6 is charged when it is a battery.
[0028]
That is, when the current is not fully charged, if the current is reduced in the mode (switching pattern) of FIG. 3, the power source (battery) 6 is charged, so that energy efficiency is good.
[0029]
However, when the battery is fully charged, the regenerative current flowing into the power supply 6 does not act on the charge and only raises the temperature of the power supply 6.
Therefore, when it is desired to reduce the current when it is close to full charge in the region (4), as shown in FIG. 4, by turning on only the transistor Tr6, the current is circulated between the u phase and the w phase of the motor. To form a loop. The current path at this time is indicated by a thick arrow. Whether or not the power source (battery) 6 is almost fully charged is determined by a conventionally known method, for example, by measuring the voltage of the power source (battery) 6.
[0030]
In this electrical angle region (4), as shown in FIG. 6, since Vu <0 and Vu <Vw, when only the transistor Tr6 is turned on, the w-phase current Iw is always applied in the current direction shown in FIG. Try to flush.
[0031]
In addition, the following formula is established for a three-phase star-connected motor.
Iu + Iv + Iw = 0
When this equation is transformed, it becomes as follows.
[0032]
−Iv = Iu − (− Iw)
That is, the current (-Iv) regenerated to the power source 6 through the diode D3 is reduced by flowing the reflux current (-Iw).
[0033]
Therefore, the regenerative efficiency to the power source 6 is reduced, and the regenerative power is consumed in the motor.
However, if the absolute value of the return current (-Iw) increases and the phases of the symmetric three-phase currents Iu, Iv, Iw deviate greatly from the original phase, the step-out occurs and the braking torque cannot be obtained. Therefore, the current command Iwc for the return current (−Iw) needs to be limited as follows by the current command Iuc for the current Iu.
[0034]
Iwc = −k × Iuc
However, k is a constant satisfying 0 <k <1.
Further, the control of the transistor Tr6 at the time of full charge in the region {circle around (4)} follows the following equation.
[0035]
When Iw ≦ Iwc When transistor Tr6 is off Iw> Iwc When transistor Tr6 is on, that is, when fully charged, the switching pattern of FIGS. 2 and 4 is repeated to cause the motor current to follow current command 1.
[0036]
As described above, the motor drive control device according to the present embodiment realizes a control device for a vehicle with an electric power device at a low cost with a simple configuration without adding a complicated mechanism.
[0037]
【The invention's effect】
According to the present invention, in the case of overcharging, the switching pattern is controlled so that regenerative power is consumed in the motor, thereby preventing overcharging with a simple configuration without adding a complicated mechanism. Therefore, it is possible to provide an inexpensive control device for a vehicle with an electric power device having an overcharge prevention function.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing the configuration of a control device for a vehicle with an electric power device according to an embodiment of the present invention (a drive control circuit using a motor and a three-phase full bridge inverter). It is a figure for demonstrating the electric current path | route at the time of the regenerative braking of the control apparatus of a vehicle with an electric power unit, Comprising: The electric current path | route in case of the detection value of a current sensor is smaller than the value of an electric current command in area | region (4). FIG. 3 is a diagram for explaining a current path at the time of regenerative braking of the control device for a vehicle with an electric power device according to the embodiment of the present invention, and the detected value of the current sensor in region {circle around (4)}. FIG. 4 is a diagram for explaining a current path at the time of regenerative braking of a control device for a vehicle with an electric power unit according to an embodiment of the present invention. Territory FIG. 5 is a diagram for explaining the current path when the detected value of the current sensor is smaller than the value of the current command in (4) and the battery is fully charged. FIG. 5 is a brushless motor and its drive control circuit (three-phase full). Fig. 6 shows the outline of the configuration of the bridge inverter drive control circuit. Fig. 6 shows the relationship between the electrical angle and the three-phase symmetrical back electromotive force generated in the motor. Fig. 7 shows the commutation signal waveform during normal motor drive. Fig. 8 shows the relationship between the current command waveform and the current command waveform. Fig. 8 shows the relationship between the commutation signal waveform and the current command waveform during regenerative braking.
1 Current command 2a, 2b Current sensor 3 Control circuit 4 Transistor drive circuit 5 Motor 6 Power supply

Claims (1)

電気角で120°の位相差を持つ三相の矩形波と、回転子が永久磁石の三相同期モータに流れる3相の電流指令と、を基に3相フルブリッジインバータに含まれるスイッチ素子のオン/オフを制御して、前記モータの回転を制御し、減速時には回生制動によりバッテリを充電する機能を有する電気動力装置付き車輌の制御装置であって、前記三相の矩形波に応じて前記3相フルブリッジインバータに含まれるスイッチ素子のオン/オフを制御して、前記モータのu相、v相、w相のうちのいずれか2つの相の間で電流を還流させるためのループを形成する制御回路を具備することを特徴とする電気動力装置付き車輌の制御装置。 The switching element included in the three-phase full-bridge inverter is based on a three-phase rectangular wave having a phase difference of 120 ° in electrical angle and a three-phase current command in which the rotor flows through a three-phase synchronous motor of a permanent magnet . A control device for a vehicle with an electric power unit having a function of controlling on / off, controlling rotation of the motor, and charging a battery by regenerative braking at the time of deceleration , wherein A loop for recirculating current between any two of the u-phase, v-phase, and w-phase of the motor is formed by controlling on / off of the switch element included in the three-phase full-bridge inverter. And a control circuit for a vehicle with an electric power device.
JP2001361813A 2001-11-28 2001-11-28 Control device for vehicle with electric power unit Expired - Fee Related JP3907453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001361813A JP3907453B2 (en) 2001-11-28 2001-11-28 Control device for vehicle with electric power unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001361813A JP3907453B2 (en) 2001-11-28 2001-11-28 Control device for vehicle with electric power unit

Publications (2)

Publication Number Publication Date
JP2003164009A JP2003164009A (en) 2003-06-06
JP3907453B2 true JP3907453B2 (en) 2007-04-18

Family

ID=19172411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001361813A Expired - Fee Related JP3907453B2 (en) 2001-11-28 2001-11-28 Control device for vehicle with electric power unit

Country Status (1)

Country Link
JP (1) JP3907453B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011015515A (en) * 2009-07-01 2011-01-20 Nissan Motor Co Ltd System and method for control of electric motor
JP2013048608A (en) * 2011-08-31 2013-03-14 Kokusan Denki Co Ltd Electric working vehicle
WO2013057854A1 (en) 2011-10-17 2013-04-25 パナソニック株式会社 Motor drive system and control method thereof
EP2605399A4 (en) 2011-10-17 2014-02-26 Panasonic Corp Motor drive system and control method thereof
JP6314863B2 (en) * 2015-02-03 2018-04-25 株式会社デンソー Electronic control unit
JP2023540829A (en) * 2021-08-05 2023-09-27 寧徳時代新能源科技股▲分▼有限公司 Power battery heating system, its control method and control circuit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3152027B2 (en) * 1993-09-30 2001-04-03 株式会社日立製作所 Electric vehicle braking control method and electric vehicle control device
JP3232823B2 (en) * 1993-11-16 2001-11-26 株式会社日立製作所 Regenerative braking control method for electric vehicles
JPH099690A (en) * 1995-06-19 1997-01-10 Japan Servo Co Ltd Controller of stepping motor
JP2001157483A (en) * 1999-11-26 2001-06-08 Matsushita Electric Ind Co Ltd Dc brushless motor drive and tape winder using it

Also Published As

Publication number Publication date
JP2003164009A (en) 2003-06-06

Similar Documents

Publication Publication Date Title
JP3695342B2 (en) Electric motor control device
JP3765287B2 (en) Energy converter control device
US7064513B2 (en) Phase angle control for synchronous machine control
JP6062327B2 (en) Inverter device and electric vehicle
JP2712608B2 (en) Drive for electric vehicles
JP3489285B2 (en) Motor control device for electric vehicles
JP5172286B2 (en) Motor control device and control device for hybrid vehicle
US20060049792A1 (en) Motor drive control apparatus, motor drive control method and program of the same
US20090195199A1 (en) Motor drive device
WO2007139126A1 (en) Motor driving control system and its control method
JP4032516B2 (en) Electric drive for automobile
WO2018150793A1 (en) Inverter device and electric vehicle
US6611127B2 (en) Drive circuit for motor/generator
JP5576722B2 (en) Overvoltage suppressing device and motor driving device
US7728557B2 (en) Electric discharge controller, electric discharge control method and its program
JP2004166415A (en) Equipment for driving and controlling motor
JP3907453B2 (en) Control device for vehicle with electric power unit
JP2004336876A (en) Three-phase voltage type-inverter device and method of detecting three-phase ac current phase of three-phase voltage-type inverter device
JP2004147415A (en) Operation controller of motor
JP5354269B2 (en) Alternator control device
KR102011831B1 (en) Motor driving apparatus and electric vehicle including the same
JP3552380B2 (en) Brushless motor drive
JP5975797B2 (en) Power converter
JP4241163B2 (en) Discharge control device, discharge control method, and program
KR102571470B1 (en) Regenerative brake apparatus of open-end winding machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070116

R151 Written notification of patent or utility model registration

Ref document number: 3907453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees