JP3901109B2 - Manufacturing method of heat radiator, heat radiator, power module substrate and power module using the heat radiator - Google Patents

Manufacturing method of heat radiator, heat radiator, power module substrate and power module using the heat radiator Download PDF

Info

Publication number
JP3901109B2
JP3901109B2 JP2003053116A JP2003053116A JP3901109B2 JP 3901109 B2 JP3901109 B2 JP 3901109B2 JP 2003053116 A JP2003053116 A JP 2003053116A JP 2003053116 A JP2003053116 A JP 2003053116A JP 3901109 B2 JP3901109 B2 JP 3901109B2
Authority
JP
Japan
Prior art keywords
radiator
thermal expansion
heat
plate
power module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003053116A
Other languages
Japanese (ja)
Other versions
JP2004266002A (en
Inventor
和明 久保
敏之 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003053116A priority Critical patent/JP3901109B2/en
Publication of JP2004266002A publication Critical patent/JP2004266002A/en
Application granted granted Critical
Publication of JP3901109B2 publication Critical patent/JP3901109B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、被放熱体の熱を放熱させる放熱体の製造方法及び放熱体並びにこの放熱体を用いたパワーモジュール用基板及びパワーモジュールに関するものである。
【0002】
【従来の技術】
半導体装置としてのパワーモジュールは、一般に、半導体チップがパワーモジュール用基板に搭載され、半導体チップの熱がパワーモジュール用基板に伝導されることから、パワーモジュール用基板に伝わる熱を放熱する必要がある。
このような被放熱体としてのパワーモジュール用基板は、セラミックス材料からなる絶縁基板(セラミックス基板)に金属薄板が直接積層され、この金属薄板に可塑性多孔質金属層を介し、ヒートシンクからなる放熱体が積層接着される(例えば、特許文献1参照)。可塑性多孔質金属層は、気孔率20〜50%のCuの多孔質焼結体であって、絶縁基板が、これに搭載されている半導体チップからの熱を受けたとき、その熱変形を吸収する応力緩和層をなす構成であり、これにより、絶縁基板及び放熱体の反りや割れを防止でき、放熱体が良好な放熱作用を果たすこともできるようになっている。
【0003】
【特許文献1】
特開平8−335652号公報(第4−12頁、図1〜図5)
【0004】
【発明が解決しようとする課題】
ところで、前記従来では、被放熱体としてのパワーモジュール用基板に設けられた可塑性多孔質金属層が、絶縁基板や放熱体の熱変形を吸収するので、絶縁基板と放熱体との熱膨張係数が異なっても、絶縁基板,放熱体に反りや割れが起こるのを防止できるようにしているものの、絶縁基板と放熱体との間に可塑性多孔質金属層が介在しているので、その分だけ熱抵抗が上昇して熱伝導率が低下してしまい、そのため、放熱体の放熱効果が悪くなっていた。
【0005】
一般に、放熱体は、被放熱体との間で互いに熱膨張係数の異なる材質で構成する場合、両者の熱膨張係数の差による反りを防止するために、両者の熱膨張係数を合わせることが容易に考えられる。この場合、熱膨張係数の低い方(被放熱体)に合わせることになるが、そうすると、反りを低減できる反面、その分だけ熱伝導率が低下して放熱効果の低下をきたしてしまい、反り対策と良好な放熱効果との双方を兼ね備えたものの要請に応えることができない問題があった。
【0006】
この発明は、このような事情を考慮してなされたもので、その目的は、被放熱体と間で熱膨張係数差があっても、これに拘わることなく反りを低減することができるとともに、熱伝導率が低下することも抑制することができる放熱体の製造方法及び放熱体並びにこの放熱体を用いたパワーモジュール用基板及びパワーモジュールを提供することにある。
【0007】
【課題を解決するための手段】
前記目的を達成するために、この発明は以下の手段を提案している。
請求項1に係る発明は、被放熱体の熱を放熱させる放熱体の製造方法であって、板状体同士の間に、該板状体の熱膨張係数より低い材質からなり,かつ一方の面と他方の面とに亘る厚み方向と連絡し,かつ該厚み方向と交差方向で互いに連なる連絡開口部を有して設けられた低熱膨張材を配した後、前記各板状体により前記低熱膨張材を狭持した状態で、前記板状体同士の間に該板状体と材質が異なる溶湯を注入し、前記低熱膨張材を鋳包むことを特徴とする。
【0008】
この発明に係る放熱体の製造方法によれば、前記低熱膨張材を放熱体本体に鋳包む際に予め、板状体により低熱膨張材を狭持しておき、この状態で板状体同士の間に溶湯を注入して、前記低熱膨張材を放熱体本体に鋳包むため、放熱体の厚み方向及び沿面方向に対する低熱膨張材の配設位置が高精度に位置決めされる。すなわち、低熱膨張材を放熱体本体に鋳包む際に、低熱膨張材に作用する溶湯の注入圧により、低熱膨張材の放熱体本体に対する配設位置がずれ易いことになるが、この際、低熱膨張材は板状体により狭持されているので、前記注入圧による低熱膨張材の前記配設位置のずれ発生が抑制されることになる。これにより、熱膨張係数,熱伝導率等の特性を安定させて放熱体を形成することができ、量産品質を確保できるようになる。さらに併せて、低熱膨張材の前記位置ずれに起因した、低熱膨張材の放熱体(本体)表面への露出も抑制されるため、被放熱体が載置される放熱体本体表面を平滑面となり、絶縁基板と放熱体とを良好に密着させることができ、被放熱体の熱を放熱体に確実に伝導できるようになる。
また、放熱体と,この放熱体の熱膨張係数と異なる熱膨張係数の被放熱体とをはんだ接合した際に放熱体に発生する反りと略同等且つ反対方向の反りが、低熱膨張材を鋳包む際に放熱体に生じるように、板状体の厚さを各別に異ならせる設定を容易に行うことができるようになる。このように板状体の厚さを各別に設定することにより、低熱膨張材を鋳包む際に放熱体に発生した反りと、この放熱体と被放熱体とをはんだ接合した際に放熱体に発生しようとする反りとが互いに相殺し合い、結果として放熱体と被放熱体との双方が平坦となり、被放熱体と放熱体との密着性が確保されることになるため、被放熱体の熱を放熱体に確実に伝導できるようになる。
さらに、板状体同士の間にこれら板状体と材質が異なる溶湯を注入するため、被放熱体側の熱膨張係数,発熱量等に応じて、放熱体全体の熱膨張係数,及び熱伝導率を適宜調整することができ、放熱体と被放熱体とをはんだ接合する際,及び放熱体と被放熱体とを接合した状態で使用する際に放熱体に反りが発生することが確実に抑制される。
【0009】
請求項2に係る発明は、被放熱体の熱を放熱させる放熱体であって、放熱体本体と,該放熱体本体の熱膨張係数より低い材質からなる低熱膨張材とを備え、前記放熱体本体は、板状体,及び該板状体と材質が異なる鋳造体を少なくとも備えた積層体をなし、かつ前記板状体が前記放熱体本体の各最外層に各々配設された構成をなし、前記低熱膨張材は、一方の面と他方の面とに亘る厚み方向と連絡し、かつ該厚み方向と交差方向で互いに連なる連絡開口部を有し、かつ前記板状体同士の間に前記連絡開口部を介して前記鋳造体により鋳包まれて配設されていることを特徴とする。
【0010】
この発明に係る放熱体によれば、放熱体内部に低熱膨張材が配設されているので、放熱体の熱膨張係数が可及的に小さくなり、これにより、被放熱体と放熱体とをはんだ等によって接合した際、放熱体に被放熱体に向かう反りが発生することを確実に抑制する。また、放熱体本体が積層体をなし、この積層体の各最外層に板状体が配設されているので、放熱体の被放熱体との当接面が平滑面となる。これにより、放熱体と被放熱体とが互いに良好に密着することになり、被放熱体からの熱が放熱体へ確実に伝導することになる。さらに、低熱膨張材が放熱体本体の内部に前記連絡開口部を介して鋳包まれて配設されているので、放熱体内部に低熱膨張材が設けられた構成においても、放熱体の厚さ方向,及びこの方向に垂直な方向に放熱体本体が連通することになり、放熱体の熱伝導率の低下が抑制される。
以上により、放熱体の熱膨張係数を可及的に小さくでき、放熱体の前記反りの発生を抑制することができるとともに、このような構成においても放熱体の熱伝導率の低下を最小限に抑制することができるようになる。
さらにまた、鋳造体は板状体と材質が異なっているため、被放熱体側の熱膨張係数,発熱量等に応じて、放熱体全体の熱膨張係数,及び熱伝導率を適宜調整することができ、放熱体と被放熱体とをはんだ接合する際,及び放熱体と被放熱体とを接合した状態で使用する際に放熱体に反りが発生することが確実に抑制される。
【0011】
請求項3に係る発明は、請求項2記載の放熱体において、前記板状体が純Cu又はCu合金からなり、前記鋳造体が純Al又はAl合金からなることを特徴とする。
【0012】
この発明に係る放熱体によれば、板状体が純Cu又はCu合金からなり、鋳造体が純Al又はAl合金からなるので、被放熱体側の熱膨張係数,発熱量等に応じて、放熱体全体の熱膨張係数,及び熱伝導率を適宜調整することができ、放熱体と被放熱体とをはんだ接合する際,及び放熱体と被放熱体とを接合した状態で使用する際に放熱体に反りが発生することが確実に抑制される。また、純Al又はAl合金は、鋳造性に優れているため鋳造欠陥の発生が抑制され、従って、放熱体全体の熱伝導率の低下が最小限に抑制される。
【0013】
請求項4に係る発明は、請求項2又は3に記載の放熱体において、前記板状体が圧延材であることを特徴とする。
【0014】
この発明に係る放熱体によれば、板状体が圧延材であるため、板状体に内在する空孔等の内部欠陥の含有が最小限に抑制され、放熱体の熱伝導率の低下が抑制される。すなわち、放熱体本体全体が例えば,鋳造体である場合、巣を始めとする内部欠陥が発生する場合があり、この内部欠陥が放熱体内部における熱の伝導を阻害することになるため、放熱体全体の熱伝導率の低下を招くことがある。しかしながら、前述したように板状体が圧延材の場合、前記内部欠陥が形成される場合が少ないため、前記熱伝導率の低下が最小限に抑制される。
【0015】
請求項5に係る発明は、請求項2から4のいずれか一項に記載の放熱体において、前記各板状体の厚さは、放熱体において、被放熱体側の熱膨張係数が放熱体側の熱膨張係数より小さいとき、被放熱体側の板状体の厚さを放熱体側の板状体の厚さより厚く形成する一方、被放熱体側の熱膨張係数が放熱体側の熱膨張係数より大きいとき、被放熱体側の板状体の厚さを放熱体側の板状体の厚さより薄く形成することを特徴とする。
【0016】
この発明に係る放熱体によれば、各板状体の厚さが前述のように設定されているので、鋳造体を形成する際に放熱体に発生した反りと、この放熱体と被放熱体とをはんだ接合した際に放熱体に発生しようとする反りとが互いに相殺し合い、結果として放熱体と被放熱体との双方が平坦となる。従って、被放熱体と放熱体との密着性が確保されることになるため、被放熱体の熱を放熱体に確実に伝導できるようになる。
【0017】
請求項6に係る発明は、請求項2から5のいずれか一項に記載の放熱体において、前記低熱膨張材は、帯状の単位板状体を同列位置で互いに組付けて前記連絡開口部を連続的に有する連鎖状体に形成し、該連鎖状体を同一平面上で複数列設けるとともに、互いに隣接する列毎に前記連絡開口部の位置をずらして配設することを特徴とする。
【0018】
この発明に係る放熱体によれば、帯状の単位板状体を同列位置で互いに組付けて連絡開口部を連続的に有する連鎖状体に形成し、該連鎖状体を同一平面上で複数列設けるとともに、互いに隣接する列毎に前記連絡開口部の位置をずらして配設したので、一方の面と他方の面とに亘る厚み方向に互いに連なる連絡開口部を有する低熱膨張材を確実に形成できる。
【0019】
請求項7に係る発明は、絶縁基板と,該絶縁基板の一方の面側に設けられた放熱体とを備えたパワーモジュール用基板であって、前記放熱体は、請求項2から6のいずれか一項に記載の放熱体であることを特徴とする。
【0020】
この発明に係るパワーモジュール用基板によれば、放熱体が請求項2から6のいずれか一項に記載の放熱体であるので、この放熱体の熱膨張係数を可及的に小さくでき、放熱体の前記反りの発生を抑制することができるとともに、このような構成においても放熱体の熱伝導率の低下を最小限に抑制することができるため、反り発生抑制効果と熱伝導率の低下抑制効果との双方を有するパワーモジュール用基板を提供できるようになる。
【0021】
請求項8に係る発明は、請求項7記載のパワーモジュール用基板において、前記絶縁基板の前記一方の面に金属層を、他方の面に回路層を各々備え、前記金属層及び前記回路層は、純Al,Al合金,純Cu,又はCu合金からなることを特徴とする。
【0022】
この発明に係るパワーモジュール用基板によれば、絶縁基板と放熱体との熱膨張係数の差に拘わることなく、両者の反りを可及的に抑えつつ良好な熱伝導率を有するパワーモジュール用基板が確実に得られる。
【0023】
請求項9に係る発明は、請求項7又は8に記載のパワーモジュール用基板の前記絶縁基板の他方の面側に、チップを搭載してなることを特徴とする。
【0024】
この発明に係るパワーモジュールによれば、絶縁基板と放熱体との熱膨張係数の差に拘わることなく、両者の反りを可及的に抑えつつ良好な熱伝導率を有するパワーモジュールが得られる。
【0025】
【発明の実施の形態】
以下、図面を参照し、この発明の実施の形態について説明する。図1はこの発明の一実施形態に係るパワーモジュール用基板を適用したパワーモジュールを示す全体図である。
本実施形態のパワーモジュールPにおいて、パワーモジュール用基板10は、大別すると図1に示すように、絶縁基板11と,放熱体16とを備える。
絶縁基板11は、例えばAlN,Al2O3,Si3N4,SiC等により所望の大きさに形成され、絶縁基板11の上面に回路層12が,下面に金属層13がそれぞれ積層接合されている。回路層12及び金属層13は、純Al,Al合金,純Cu,Cu合金等により形成され、はんだ付け又はろう付け等により絶縁基板11上下面に積層接合されている。
【0026】
絶縁基板11上面に設けられた回路層12上面に、はんだ14によって半導体チップ30が搭載される一方、絶縁基板11下面に設けられた金属層13の下面に、はんだ15によって或いはろう付けや拡散接合等によって放熱体16が接合され、更に、この放熱体16下面に冷却シンク部31が設けられている。このように構成されたパワーモジュールPにおいては、絶縁基板11側から放熱体16に伝導された熱が、冷却シンク部31内の冷却液(或いは冷却空気)32により外部に放熱される構成となっている。尚、放熱体16は、冷却シンク部31に取付ねじ33によって密着した状態で取付けられている。
【0027】
ここで、放熱体16は放熱体本体17と,放熱体本体17の熱膨張係数より低い材質からなる低熱膨張材18とを備えている。
放熱体本体17は、図2に示すように、純Cu又はCu合金からなる板状体17aと,純Al又はAl合金からなる鋳造体17bとを備えた積層体をなし、且つ板状体17aが放熱体本体17の各最外層,すなわち絶縁基板11側,及び冷却シンク部31側に各々配設された構成となっている。ここで、板状体17aは圧延材により形成されている。
【0028】
一方、低熱膨張材18は、図3に示すように、一方の面と他方の面とに亘る厚み方向と連絡し、かつこの厚み方向と交差方向で互いに連なる連絡開口部40を有して設けられている。この低熱膨張材18は、図2に示すように、放熱体本体17(放熱体16)の前記厚み方向の略中央部に連絡開口部40を介して、鋳造体17bに鋳包まれて配設されている。
具体的に述べると、低熱膨張材18は、図3に示すように、例えば二枚からなる帯状の単位板状体41,42を前記厚み方向に沿って組付けることで連絡開口部40を連続的に有する連鎖状体43が形成される。そして、これら連鎖状体43が同一平面上で複数列設けられるとともに、連絡開口部40を互いに隣接する列毎に互い違いに配列して形成されている。
【0029】
ここで、放熱体本体17のうち板状体17aは、前述したように、純Cu又はCu合金,好ましくは純度99.9%以上の高純度Cuによって形成され、鋳造体17bは、純Al又はAl合金,好ましくは純度99.5%以上のAl合金によって形成されており、従って、放熱体本体17は全体として変形抵抗が小さく,且つ熱伝導性の良好な材質,いわゆる高熱伝導材によって形成されている。高熱伝導材としては、熱伝導率が例えば、100W/m・K以上,好ましくは150W/m・K以上のものである。
一方、低熱膨張材18は、放熱体本体17の熱膨張係数より低い材質からなっており、鋳造体17bに鋳包む,すなわち放熱体本体17の内部に埋設することで、放熱体16全体の熱膨張係数と絶縁基板11の熱膨張係数との差が可及的に近づく構成となっている。この低熱膨張材18は、Fe―Ni系合金,例えばインバー合金からなり、熱膨張係数がおよそ5×10−6/℃以下である。ここで、インバー合金とは、室温付近でほとんど熱膨張が生じない合金であって、Feが64.6mol%で、Niが35.4mol%の組成率となっている。但し、Fe中には、それ以外の不可避不純物が含まれたものもインバー合金と呼ばれている。
以上のように構成されたパワーモジュールPにおいては、絶縁基板11側の熱膨張係数が放熱体16側の熱膨張係数より小さくなっており、この場合、絶縁基板11側の板状体17aの厚さが冷却シンク部31側の板状体17aの厚さより厚く形成されている。
【0030】
以上のように構成された放熱体16を形成する製造方法について説明する。
まず、純Cu又はCu合金からなる圧延材の板状体17a同士の間に、低熱膨張材18を配した後、各板状体17aにより低熱膨張材18を狭持した状態で、低熱膨張材18側面側から純Al又はAl合金からなる溶湯を注入する。この際、溶湯はまず、低熱膨張材18の連絡開口部40に至る。ここで、低熱膨張材18は、図3において前述したように、連絡開口部40が厚み方向に連絡しているため、連絡開口部40に至った溶湯は低熱膨張材18を狭持している各板状体17aの低熱膨張材18との当接面にまで至る。そして、この溶湯を冷却硬化することで、放熱体16の最外層を構成する各板状体17a同士を接合するとともに,低熱膨張材18を鋳包む鋳造体17bが形成され、放熱体16が形成される。
【0031】
以上説明したように、本実施形態によるパワーモジュール用基板10によれば、放熱体16が、放熱体本体17の熱膨張係数より低い材質からなる低熱膨張材18を備えているので、放熱体16全体としての熱膨張係数を確実に下げることができ、絶縁基板11と放熱体16全体との熱膨張係数の差を可及的に小さくすることができる。
【0032】
このため、絶縁基板11と放熱体16とをはんだ15(若しくはろう付けや拡散接合等)によって接合した場合、放熱体16に絶縁基板11に向かう反りが発生することを確実に抑制することができる。これにより、放熱体16を冷却シンク部31に取り付けても、冷却シンク部31と放熱体16との間に間隙が発生することを防止することができ、放熱体16から冷却シンク部31へ高効率に熱を伝導することができる。
【0033】
しかも、低熱膨張材18が金属であってかつ相応の熱伝導率を有しているので、絶縁基板11上の半導体チップ30からの発熱が、回路層12,絶縁基板11,金属層13,はんだ15,放熱体16及び冷却シンク部31を介して外部に良好に放熱されることになる。すなわち、パワーモジュールP全体としての熱伝導率が低下することを抑制することができ、結果として、半導体チップ30の温度上昇をも抑制することができる。
【0034】
ここで、絶縁基板11側の板状体17aの厚さを冷却シンク部31側の板状体17aの厚さより厚く形成しているので、鋳造体17bを形成する際、放熱体16には、絶縁基板11へ向かう反りが発生することになる。また、この放熱体16を絶縁基板11と接合する際、絶縁基板11の熱膨張係数は放熱体16の熱膨張係数より小さいので、放熱体16には、絶縁基板11へ向かう方向に反りが発生しようとする。この際、放熱体16には、鋳造体17bを形成した際に絶縁基板11から遠ざかる方向に反りが生じているので、これらの各反りが互いに相殺し合うことになり、結果として放熱体16と絶縁基板11との双方を平坦とすることができ、これらを良好に互いに密着させることができる。
すなわち、放熱体16と,この放熱体16の熱膨張係数と異なる熱膨張係数の絶縁基板11とをはんだ接合した際に放熱体16に発生する反りと略同等且つ反対方向の反りが、低熱膨張材18を鋳造体17bに鋳包む際に放熱体16全体に生じるように、板状体17aの厚さを絶縁基板11側と冷却シンク部31側とで各別に異ならせる設定を容易になすことができるようになり、放熱体16と絶縁基板11とを良好に密着させることができ、絶縁基板11の熱を放熱体16に確実に伝導させる構成を容易に形成することができる。
【0035】
また、低熱膨張材18を放熱体本体17に鋳包む際に予め、板状体17aにより低熱膨張材18を狭持しておき、この状態で低熱膨張材18の側面側から溶湯を注入するため、放熱体16の厚み方向,及び沿面方向に対する低熱膨張材18の配設位置を高精度に位置決めすることができる。すなわち、低熱膨張材18を放熱体本体17に鋳包む際に、低熱膨張材18に作用する溶湯の注入圧により、低熱膨張材18の放熱体本体17に対する配設位置がずれ易いことになるが、この際、低熱膨張材18は板状体17aにより狭持されているので、前記注入圧による低熱膨張材18の配設位置のずれ発生を抑制することができる。これにより、熱膨張係数,熱伝導率等の特性を安定させてパワーモジュール用基板10を形成することができ、量産品質を確保することができる。
【0036】
さらに併せて、形成される放熱体16の各最外層に板状体17aが配設されるので、放熱体16表面に低熱膨張材18が露出することを抑制することができ、絶縁基板11が載置される放熱体16表面を平滑面とすることを容易に実現することができる。ここで、前述したように、板状体17aを圧延材としているため、放熱体16の絶縁基板11との当接面を平滑面とすることをより確実に実現することができる。従って、放熱体16と絶縁基板11との各当接面を互いに一様に密着させることができ、絶縁基板11からの熱を放熱体16に確実に伝導することができる。
【0037】
また、低熱膨張材18が、鋳造体17bにより連絡開口部40を介して鋳包まれて配設されているので、放熱体16内部に低熱膨張材18が設けられた構成においても、放熱体16の厚さ方向,及びこの方向に垂直な方向に放熱体本体17が連通することになり、放熱体16の熱伝導率の低下を最小限に抑制することができる。従って、放熱体16の熱膨張率の低下と,熱伝導率の低下抑制との双方を図ることができる。また、板状体17aと鋳造体17bとが各々異種材料から形成されているので、絶縁基板11側の熱膨張係数,発熱量等に応じて、放熱体16全体の熱膨張係数,及び熱伝導率を適宜調整することができ、放熱体16と絶縁基板11とをはんだ接合する際,及びパワーモジュールPとして使用する際に放熱体16に発生する反りを確実に抑制することができる。さらに、鋳造体17bを形成する純Al又はAl合金は、良好な湯流れを実現する等,鋳造性に優れているため鋳造欠陥の発生を抑制することができ、従って、放熱体16全体の熱伝導率の低下を最小限に抑制することができる。
【0038】
さらに、板状体17aが圧延材であるため、板状体17aに内在する空孔等の内部欠陥の含有を最小限に抑制することができ、放熱体16の熱伝導率の低下を抑制することができる。すなわち、放熱体本体17全体が例えば,鋳造体である場合、巣を始めとする内部欠陥が発生し易いが、この場合、放熱体16内部を熱が伝導する際、前記内部欠陥が熱伝導を阻害することになるため、放熱体16全体の熱伝導率の低下を招くことになる。しかしながら、前述したように板状体17aが圧延材の場合、前記内部欠陥が発生する場合が少ないため、前記熱伝導率の低下を抑制することができる。
【0039】
さらにまた、低熱膨張材18が、帯状の単位板状体41,42を同列位置で互いに組付けて連絡開口部40を連続的に有する連鎖状体43に形成し、連鎖状体43を同一平面上で複数列設けるとともに、互いに隣接する列毎に連絡開口部40の位置をずらして配設したので、一方の面と他方の面とに亘る厚み方向に互いに連なる連絡開口部40を有する低熱膨張材18を確実に形成することができる。
【0040】
なお、本発明は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば、放熱体本体17に設けられた低熱膨張材18として、Fe―Ni系合金を用いた例を示したが、他の低熱膨張材、例えば高炭素鋼(Fe−C),42アロイ,モリブデン(Mo),タングステン(W)等で構成しても、同様の作用効果が得られる。
【0041】
また、放熱体16表面に冷却シンク部31を設けた構成を示したが、この構成に限らず、コルゲートフィンを設けた構成としてもよい。すなわち、放熱体16表面にろう材を介して接合された接合部と、接合部の一端に設けられ接合部と直交して立上がる立上がり部と、立上がり部の上端に設けられ接合部に平行且つ離間する方向に延びる平坦部と、平坦部の一端に設けられ平坦部に直交且つ放熱体16に向かって折返る折返し部とを備えた突出部を、放熱体16の沿面方向に沿って繰返し連続して設けた構成としてもよい。なお、この構成においては、立上がり部と平坦部と折返し部と放熱体16表面とが空間を形成することになる。
【0042】
さらに、放熱体16が取り付けられる絶縁基板11として、放熱体16側の面に金属層13が設けられた例を示したが、金属層13を設けず絶縁基板11をろう材を介して放熱体16に直接接合しても、同様の作用効果が得られる。
また、低熱膨張材18に替えて,いわゆるコルゲート,コルゲートルーバ, 厚さ方向にエキスパンドした断面矩形の連絡開口部40を有するエキスパンド構造,若しくは前述した実施形態で示したいわゆる,ハニカム構造を一層設けたもの,又は前記各構成のうちの一つを複数積層させた構成としてもよい。
【0043】
さらにまた、絶縁基板11側の板状体17aにおいて、絶縁基板11側の表面を平滑面としたが、この表面において、絶縁基板11が接合される領域を、絶縁基板11側へ凸とする台座部を形成してもよい。この場合、板状体17aは圧延材ではなく鋳造により形成してもよい。また、各板状体17aの低熱膨張材18側の表面において、任意の領域を凹ませて形成してもよく、さらに、波形の凹凸形状を付与する等してもよく、平滑面に限らない。
また、低熱膨張材18表裏面を板状体17aを介して狭持した状態で、その後、低熱膨張材18の側面から溶湯を注入したが、低熱膨張材18を一方の板状体17a上へ載置した後、低熱膨張材18をシリコン粒子により埋設し、そして、低熱膨張材18上に他方の板状体17aを載置した後、各板状体17aを介してこれらを押圧し、その後、溶湯を注入してもよい。
【0044】
【発明の効果】
以上説明したように、請求項1に係る発明によれば、放熱体の厚み方向に対する低熱膨張材の配設位置を高精度に位置決めすることができるため、熱膨張係数,熱伝導率等の特性を安定させてパワーモジュール用基板を形成することができ、量産品質を確保することができる。また、絶縁基板が載置される放熱体表面を平滑面とすることを容易且つ確実に実現することができ、放熱体と絶縁基板とを互いに一様に密着させることができるため、絶縁基板からの熱を放熱体に確実に伝導することができる。さらに、放熱体と,この放熱体の熱膨張係数と異なる熱膨張係数の絶縁基板とをはんだ接合した際に放熱体に発生する反りと略同等且つ反対方向の反りが、低熱膨張材を鋳包む際に放熱体に生じるように、板状体の厚さを各別に異ならせて設定することが容易になる。さらにまた、溶湯は板状体と材質が異なっているため、絶縁基板側の熱膨張係数,発熱量等に応じて、放熱体全体の熱膨張係数,及び熱伝導率を適宜調整することができる。
【0045】
請求項2に係る発明によれば、絶縁基板と放熱体とをはんだ等によって接合した際、放熱体に絶縁基板に向かう反りが発生することを確実に抑制することができる。また、放熱体の絶縁基板との当接面を平滑面とする構成を確実に実現することができる。さらに、放熱体内部に低熱膨張材が設けられた構成においても、放熱体の厚さ方向,及びこの方向に垂直な方向に放熱体本体が連通することになり、放熱体の熱伝導率の低下を最小限に抑制することができる。従って、放熱体の熱膨張率の低下と,熱伝導率の低下抑制との双方を図ることができる。さらに、放熱体本体と鋳造体とは各々異なる材質により形成されているので、絶縁基板側の熱膨張係数,発熱量等に応じて、放熱体全体の熱膨張係数,及び熱伝導率を適宜調整することができる。
【0046】
請求項3に係る発明によれば、板状体が純Cu又はCu合金からなり、鋳造体が純Al又はAl合金からなるので、絶縁基板側の熱膨張係数,発熱量等に応じて、放熱体全体の熱膨張係数,及び熱伝導率を適宜調整することができるとともに、放熱体自体の熱伝導率の低下発生を最小限に抑制することができる。
【0047】
請求項4に係る発明によれば、板状体が圧延材であるため、板状体に内在する空孔等の内部欠陥の含有を最小限に抑制することができ、放熱体の熱伝導率の低下を抑制することができる。
【0048】
請求項5に係る発明によれば、鋳造体を形成する際に放熱体に発生した反りと、この放熱体と被放熱体とをはんだ接合した際に放熱体に発生しようとする反りとが互いに相殺し合い、結果として放熱体と被放熱体との双方が平坦となる。従って、被放熱体と放熱体との密着性が確保されることになるため、被放熱体の熱を放熱体に確実に伝導することができる。
【0049】
請求項6に係る発明によれば、帯状の単位板状体を同列位置で互いに組付けて連絡開口部を連続的に有する連鎖状体に形成し、該連鎖状体を同一平面上で複数列設けるとともに、互いに隣接する列毎に前記連絡開口部の位置をずらして配設したので、一方の面と他方の面とに亘る厚み方向に互いに連なる連絡開口部を有する低熱膨張材を確実に形成できる。
【0050】
請求項7に係る発明によれば、この放熱体の熱膨張係数を可及的に小さくでき、放熱体の前記反りの発生を抑制することができるとともに、このような構成においても放熱体の熱伝導率の低下を最小限に抑制することができるため、反り発生抑制効果と熱伝導率の低下抑制効果との双方を有するパワーモジュール用基板を提供することができる。
【0051】
請求項8に係る発明によれば、絶縁基板と放熱体との熱膨張係数の差に拘わることなく、両者の反りを可及的に抑えつつ良好な熱伝導率を有するパワーモジュール用基板が確実に得られる。
【0052】
請求項9に係る発明によれば、絶縁基板と放熱体との熱膨張係数の差に拘わることなく、両者の反りを可及的に抑えつつ良好な熱伝導率を有するパワーモジュールが得られる。
【図面の簡単な説明】
【図1】 この発明の一実施形態に係る放熱体を適用したパワーモジュールを示す全体図である。
【図2】 図1に示す放熱体の断面側面図である。
【図3】 図2に示す低熱膨張材の要部を示す斜視図である。
【符号の説明】
10 パワーモジュール用基板
11 絶縁基板
16 放熱体
17 放熱体本体
17a 板状体
17b 鋳造体
18 低熱膨張材
30 半導体チップ(チップ)
40 連絡開口部
41,42 単位板状体
43 連鎖状体
P パワーモジュール
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a heat radiating body that radiates heat from a heat radiating body, a heat radiating body, a power module substrate using the heat radiating body, and a power module.
[0002]
[Prior art]
Generally, a power module as a semiconductor device has a semiconductor chip mounted on a power module substrate, and heat of the semiconductor chip is conducted to the power module substrate. Therefore, it is necessary to dissipate heat transmitted to the power module substrate. .
In such a power module substrate as a heat sink, a metal thin plate is directly laminated on an insulating substrate (ceramic substrate) made of a ceramic material, and a heat sink made of a heat sink is interposed on the metal thin plate with a plastic porous metal layer. Laminated and bonded (see, for example, Patent Document 1). The plastic porous metal layer is a porous sintered body of Cu having a porosity of 20 to 50%, and when the insulating substrate receives heat from the semiconductor chip mounted thereon, it absorbs the thermal deformation. Thus, it is possible to prevent warping and cracking of the insulating substrate and the heat radiating body, and the heat radiating body can also perform a good heat radiating action.
[0003]
[Patent Document 1]
JP-A-8-335652 (page 4-12, FIGS. 1 to 5)
[0004]
[Problems to be solved by the invention]
By the way, in the prior art, the plastic porous metal layer provided on the power module substrate as the heat radiating member absorbs thermal deformation of the insulating substrate and the heat radiating member, so that the thermal expansion coefficient between the insulating substrate and the heat radiating member is large. Although it is possible to prevent the insulating substrate and the heat sink from warping or cracking even if they are different, since the plastic porous metal layer is interposed between the insulating substrate and the heat sink, the heat is increased accordingly. The resistance is increased and the thermal conductivity is lowered, so that the heat dissipation effect of the radiator is deteriorated.
[0005]
In general, when the heat dissipating body is made of a material having a different thermal expansion coefficient from the heat radiating body, it is easy to match the thermal expansion coefficients of both in order to prevent warping due to the difference in thermal expansion coefficient between the two. Can be considered. In this case, the thermal expansion coefficient should be adjusted to the lower one (heat radiating body). However, if this is done, the warpage can be reduced. On the other hand, the thermal conductivity is reduced by that amount, resulting in a reduction in the heat dissipation effect. However, there was a problem that it was not possible to meet the demands of what had both good heat dissipation effects.
[0006]
This invention was made in consideration of such circumstances, and its purpose is to reduce warpage without regard to this even if there is a difference in thermal expansion coefficient between the heat radiating body and It is in providing the manufacturing method of a heat radiator and heat radiator which can also suppress decline in thermal conductivity, the board | substrate for power modules using this heat radiator, and a power module.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention proposes the following means.
The invention according to claim 1 is a method of manufacturing a radiator that dissipates the heat of a radiator, and is made of a material having a lower coefficient of thermal expansion than that of the plates, A low thermal expansion material provided with a communication opening that communicates with the thickness direction across the surface and the other surface and that is connected to each other in the direction intersecting with the thickness direction; In a state where the expansion material is held, a molten metal having a material different from that of the plate-like bodies is injected between the plate-like bodies, and the low thermal expansion material is cast.
[0008]
According to the method for manufacturing a radiator according to the present invention, when the low thermal expansion material is cast into the radiator body, the low thermal expansion material is held in advance by a plate-like body, and in this state, Since the molten metal is poured in between and the low thermal expansion material is cast into the heat radiating body, the low thermal expansion material is disposed with high accuracy in the thickness direction and the creeping direction of the heat radiating body. That is, when the low thermal expansion material is cast into the radiator body, the position of the low thermal expansion material relative to the radiator body is likely to shift due to the injection pressure of the molten metal acting on the low thermal expansion material. Since the expansion material is held by the plate-like body, the occurrence of a shift in the arrangement position of the low thermal expansion material due to the injection pressure is suppressed. Thereby, characteristics, such as a thermal expansion coefficient and heat conductivity, can be stabilized, a heat radiator can be formed, and mass production quality can be secured. In addition, since the exposure of the low thermal expansion material to the radiator (main body) surface due to the displacement of the low thermal expansion material is also suppressed, the surface of the radiator main body on which the radiator is placed becomes a smooth surface. The insulating substrate and the heat radiating body can be satisfactorily adhered, and the heat of the heat radiating body can be reliably conducted to the heat radiating body.
In addition, when the heat sink and a heat radiating body having a thermal expansion coefficient different from the thermal expansion coefficient of the heat sink are soldered together, the warpage in the opposite direction is substantially the same as the warp generated in the heat sink. It is possible to easily set the thickness of the plate-like body to be different from each other so as to be generated in the radiator when wrapping. In this way, by setting the thickness of the plate-like body separately, the warp generated in the heat sink when casting the low thermal expansion material and the heat sink when the heat sink and the heat sink are soldered together. The warpage to be generated cancels each other, and as a result, both the heat radiating body and the heat radiating body become flat, and the adhesion between the heat radiating body and the heat radiating body is secured. Can be reliably conducted to the radiator.
Furthermore, since a molten metal having a material different from that of the plate-like bodies is injected between the plate-like bodies, the thermal expansion coefficient and the thermal conductivity of the entire radiator are determined according to the thermal expansion coefficient, the amount of heat generated, etc. on the radiator side. The heat sink can be reliably suppressed from being warped when soldered between the heat sink and the heat sink and when used with the heat sink and the heat sink bonded. Is done.
[0009]
The invention according to claim 2 is a heat radiating body for radiating the heat of the heat radiating body, comprising a heat radiating body and a low thermal expansion material made of a material having a lower thermal expansion coefficient than the heat radiating body. The main body comprises a plate-like body and a laminated body including at least a cast body made of a material different from that of the plate-like body, and the plate-like body is disposed on each outermost layer of the heat radiating body. The low thermal expansion material communicates with the thickness direction across one surface and the other surface, and has a communication opening that is continuous with the thickness direction and in the crossing direction, and between the plate-like bodies, It is characterized by being disposed by being cast by the cast body through a communication opening.
[0010]
According to the radiator of the present invention, since the low thermal expansion material is disposed inside the radiator, the thermal expansion coefficient of the radiator is reduced as much as possible. When joined by solder or the like, it is possible to reliably prevent the heat sink from warping toward the heat sink. Further, since the heat dissipating body main body forms a laminated body, and the plate-like body is disposed in each outermost layer of the laminated body, the contact surface of the heat dissipating body with the heat radiating body becomes a smooth surface. As a result, the heat radiating body and the heat radiating body are in good contact with each other, and the heat from the heat radiating body is reliably conducted to the heat radiating body. Further, since the low thermal expansion material is cast and disposed inside the radiator body through the communication opening, the thickness of the radiator is also provided in the configuration in which the low thermal expansion material is provided inside the radiator. The heat radiating body main body communicates in the direction and the direction perpendicular to this direction, and the decrease in the thermal conductivity of the heat radiating body is suppressed.
As described above, the thermal expansion coefficient of the heat radiating body can be made as small as possible, the occurrence of the warpage of the heat radiating body can be suppressed, and even in such a configuration, the decrease in the thermal conductivity of the heat radiating body can be minimized. It becomes possible to suppress.
Furthermore, since the material of the cast body is different from that of the plate-like body, the thermal expansion coefficient and the thermal conductivity of the entire heat radiating body can be appropriately adjusted according to the thermal expansion coefficient, the amount of heat generated, etc. It is possible to reliably suppress warping of the heat sink when the heat sink and the heat sink are joined by soldering and when the heat sink and the heat sink are used in a joined state.
[0011]
The invention according to claim 3 is the heat dissipating body according to claim 2, wherein the plate-like body is made of pure Cu or a Cu alloy, and the cast body is made of pure Al or an Al alloy.
[0012]
According to the heat radiator according to the present invention, the plate-like body is made of pure Cu or a Cu alloy, and the cast body is made of pure Al or an Al alloy. The thermal expansion coefficient and thermal conductivity of the entire body can be adjusted as appropriate, and heat is dissipated when soldering the heat sink and the heat sink and when using the heat sink and the heat sink. Warping of the body is reliably suppressed. Moreover, since pure Al or Al alloy is excellent in castability, generation | occurrence | production of a casting defect is suppressed, Therefore, the fall of the thermal conductivity of the whole heat radiator is suppressed to the minimum.
[0013]
The invention according to claim 4 is the radiator according to claim 2 or 3, characterized in that the plate-like body is a rolled material.
[0014]
According to the heat radiator according to the present invention, since the plate-like body is a rolled material, the inclusion of internal defects such as voids in the plate-like body is suppressed to a minimum, and the thermal conductivity of the heat radiator is reduced. It is suppressed. That is, when the entire heat dissipating body is, for example, a cast body, internal defects such as nests may occur, and this internal defect obstructs heat conduction inside the heat dissipating body. May reduce overall thermal conductivity. However, as described above, when the plate-like body is a rolled material, the internal defects are rarely formed, so that the decrease in the thermal conductivity is minimized.
[0015]
According to a fifth aspect of the present invention, in the radiator according to any one of the second to fourth aspects, the thickness of each of the plate-like bodies is such that the thermal expansion coefficient on the radiator side is on the radiator side. When the coefficient of thermal expansion is smaller than the thickness of the radiator on the side of the radiator, the thickness of the radiator on the side of the radiator is larger than the coefficient of thermal expansion on the side of the radiator, The thickness of the plate-like body on the radiator side is formed to be thinner than the thickness of the plate-like body on the radiator side.
[0016]
According to the heat dissipating body according to the present invention, since the thickness of each plate-like body is set as described above, the warp generated in the heat dissipating body when forming the cast body, the heat dissipating body and the heat dissipating body And the warp that is to occur in the heat dissipating member when they are soldered to each other, and as a result, both the heat dissipating member and the heat dissipating member become flat. Accordingly, since the adhesion between the heat radiating body and the heat radiating body is ensured, the heat of the heat radiating body can be reliably conducted to the heat radiating body.
[0017]
The invention according to claim 6 is the heat radiating body according to any one of claims 2 to 5, wherein the low thermal expansion material is formed by assembling the band-like unit plate-like bodies to each other at the same position to form the communication opening. The chain-like body is formed in a continuous manner, and the chain-like body is provided in a plurality of rows on the same plane, and the position of the communication opening is shifted for each row adjacent to each other.
[0018]
According to the heat dissipating body according to the present invention, the band-like unit plate-like bodies are assembled to each other at the same row position to form a chain-like body having continuous connection openings, and the chain-like bodies are arranged in a plurality of rows on the same plane. Since the position of the connection opening is shifted for each adjacent row, a low thermal expansion material having connection openings that are continuous in the thickness direction across one surface and the other surface is reliably formed. it can.
[0019]
The invention according to claim 7 is a power module substrate comprising an insulating substrate and a radiator provided on one surface side of the insulating substrate, wherein the radiator is any one of claims 2 to 6. It is a heat radiator as described in any one item .
[0020]
According to the power module substrate of the present invention, since the radiator is the radiator according to any one of claims 2 to 6, the thermal expansion coefficient of the radiator can be made as small as possible. The occurrence of the warpage of the body can be suppressed, and even in such a configuration, since the decrease in the thermal conductivity of the heat radiating body can be suppressed to the minimum, the effect of suppressing the occurrence of warpage and the decrease in the thermal conductivity can be suppressed. It becomes possible to provide a power module substrate having both effects.
[0021]
According to an eighth aspect of the present invention, in the power module substrate according to the seventh aspect, a metal layer is provided on the one surface of the insulating substrate, and a circuit layer is provided on the other surface. It consists of pure Al, Al alloy, pure Cu, or Cu alloy.
[0022]
According to the power module substrate according to the present invention, the power module substrate having good thermal conductivity while suppressing the warpage of both as much as possible regardless of the difference in thermal expansion coefficient between the insulating substrate and the radiator. Is definitely obtained.
[0023]
The invention according to claim 9 is characterized in that a chip is mounted on the other surface side of the insulating substrate of the power module substrate according to claim 7 or 8.
[0024]
According to the power module of the present invention, it is possible to obtain a power module having good thermal conductivity while suppressing the warpage of both as much as possible regardless of the difference in thermal expansion coefficient between the insulating substrate and the radiator.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an overall view showing a power module to which a power module substrate according to an embodiment of the present invention is applied.
In the power module P of the present embodiment, the power module substrate 10 includes an insulating substrate 11 and a radiator 16 as shown in FIG.
The insulating substrate 11 is formed to have a desired size by, for example, AlN, Al2O3, Si3N4, SiC, or the like, and the circuit layer 12 is laminated on the upper surface of the insulating substrate 11 and the metal layer 13 is laminated on the lower surface. The circuit layer 12 and the metal layer 13 are formed of pure Al, Al alloy, pure Cu, Cu alloy or the like, and are laminated and bonded to the upper and lower surfaces of the insulating substrate 11 by soldering or brazing.
[0026]
The semiconductor chip 30 is mounted on the upper surface of the circuit layer 12 provided on the upper surface of the insulating substrate 11 by solder 14, while the lower surface of the metal layer 13 provided on the lower surface of the insulating substrate 11 is connected by solder 15 or brazing or diffusion bonding. The heat sink 16 is joined by, for example, and a cooling sink portion 31 is provided on the lower surface of the heat sink 16. In the power module P configured as described above, the heat conducted from the insulating substrate 11 side to the heat radiating body 16 is radiated to the outside by the cooling liquid (or cooling air) 32 in the cooling sink portion 31. ing. The radiator 16 is attached to the cooling sink portion 31 in close contact with the attachment screw 33.
[0027]
Here, the radiator 16 includes a radiator body 17 and a low thermal expansion material 18 made of a material lower than the thermal expansion coefficient of the radiator body 17.
As shown in FIG. 2, the heat dissipating body 17 is a laminate including a plate-like body 17a made of pure Cu or Cu alloy and a cast body 17b made of pure Al or Al alloy, and the plate-like body 17a. Are arranged on the outermost layers of the radiator body 17, that is, on the insulating substrate 11 side and the cooling sink portion 31 side. Here, the plate-like body 17a is formed of a rolled material.
[0028]
On the other hand, as shown in FIG. 3, the low thermal expansion material 18 is provided with a communication opening 40 that communicates with the thickness direction across one surface and the other surface and that is continuous with the thickness direction and the crossing direction. It has been. As shown in FIG. 2, the low thermal expansion material 18 is disposed in a cast body 17b in a substantially central portion in the thickness direction of the heat radiator body 17 (heat radiator 16) via a communication opening 40. Has been.
Specifically, as shown in FIG. 3, the low thermal expansion material 18 includes, for example, two band-shaped unit plate-like bodies 41 and 42 that are assembled along the thickness direction so that the communication opening 40 is continuously formed. Thus, the chain 43 is formed. The chain-like bodies 43 are provided in a plurality of rows on the same plane, and the connection openings 40 are alternately arranged in rows adjacent to each other.
[0029]
Here, the plate-like body 17a of the heat radiating body 17 is formed of pure Cu or a Cu alloy, preferably high purity Cu having a purity of 99.9% or more, as described above, and the cast body 17b is made of pure Al or It is made of an Al alloy, preferably an Al alloy having a purity of 99.5% or more. Therefore, the heat dissipating body 17 is made of a material having a small deformation resistance and a good thermal conductivity, that is, a so-called high heat conducting material. ing. The high thermal conductivity material has a thermal conductivity of, for example, 100 W / m · K or more, preferably 150 W / m · K or more.
On the other hand, the low thermal expansion material 18 is made of a material having a lower thermal expansion coefficient than that of the heat radiating body 17, and is embedded in the casting body 17 b, that is, embedded in the heat radiating body main body 17. The difference between the expansion coefficient and the thermal expansion coefficient of the insulating substrate 11 is as close as possible. The low thermal expansion material 18 is made of an Fe—Ni alloy, such as an Invar alloy, and has a thermal expansion coefficient of about 5 × 10 −6 / ° C. or less. Here, the Invar alloy is an alloy that hardly undergoes thermal expansion near room temperature, and has a composition ratio of 64.6 mol% Fe and 35.4 mol% Ni. However, Fe containing other inevitable impurities is also called an Invar alloy.
In the power module P configured as described above, the thermal expansion coefficient on the insulating substrate 11 side is smaller than the thermal expansion coefficient on the radiator 16 side. In this case, the thickness of the plate-like body 17a on the insulating substrate 11 side is small. Is formed thicker than the thickness of the plate-like body 17a on the cooling sink portion 31 side.
[0030]
A manufacturing method for forming the radiator 16 configured as described above will be described.
First, after arranging the low thermal expansion material 18 between the plate-like bodies 17a of the rolled material made of pure Cu or Cu alloy, the low thermal expansion material 18 is sandwiched between the plate-like bodies 17a. The molten metal which consists of pure Al or Al alloy is inject | poured from 18 side surface side. At this time, the molten metal first reaches the connection opening 40 of the low thermal expansion material 18. Here, as described above with reference to FIG. 3, the low thermal expansion material 18 has the communication opening 40 connected in the thickness direction, so that the molten metal reaching the communication opening 40 sandwiches the low thermal expansion material 18. Each plate-like body 17a reaches the contact surface with the low thermal expansion material 18. Then, the molten metal is cooled and hardened to join the plate-like bodies 17a constituting the outermost layer of the heat radiating body 16, and the cast body 17b for casting the low thermal expansion material 18 is formed. Is done.
[0031]
As described above, according to the power module substrate 10 according to the present embodiment, the radiator 16 includes the low thermal expansion material 18 made of a material lower than the thermal expansion coefficient of the radiator body 17. The overall thermal expansion coefficient can be reliably reduced, and the difference in thermal expansion coefficient between the insulating substrate 11 and the entire radiator 16 can be made as small as possible.
[0032]
For this reason, when the insulating substrate 11 and the heat radiating body 16 are joined by the solder 15 (or brazing, diffusion bonding, or the like), it is possible to reliably suppress the heat radiating body 16 from warping toward the insulating substrate 11. . As a result, even if the radiator 16 is attached to the cooling sink portion 31, it is possible to prevent a gap from being generated between the cooling sink portion 31 and the radiator 16 and to increase the height from the radiator 16 to the cooling sink portion 31. Heat can be conducted efficiently.
[0033]
Moreover, since the low thermal expansion material 18 is a metal and has a suitable thermal conductivity, the heat generated from the semiconductor chip 30 on the insulating substrate 11 is generated by the circuit layer 12, the insulating substrate 11, the metal layer 13, and the solder. 15, the heat is radiated well to the outside through the radiator 16 and the cooling sink 31. That is, it can suppress that the heat conductivity as the whole power module P falls, As a result, the temperature rise of the semiconductor chip 30 can also be suppressed.
[0034]
Here, since the thickness of the plate-like body 17a on the insulating substrate 11 side is thicker than the thickness of the plate-like body 17a on the cooling sink portion 31 side, when forming the cast body 17b, Warping toward the insulating substrate 11 occurs. Further, when the heat radiating body 16 is joined to the insulating substrate 11, the thermal expansion coefficient of the insulating substrate 11 is smaller than the thermal expansion coefficient of the heat radiating body 16, so that the heat radiating body 16 warps in the direction toward the insulating substrate 11. try to. At this time, since the heat sink 16 is warped in the direction away from the insulating substrate 11 when the cast body 17b is formed, these warpages cancel each other. As a result, the heat sink 16 and Both the insulating substrate 11 and the insulating substrate 11 can be made flat, and these can be satisfactorily adhered to each other.
That is, when the heat radiating body 16 and the insulating substrate 11 having a thermal expansion coefficient different from the thermal expansion coefficient of the heat radiating body 16 are solder-bonded, a warpage substantially equal to and opposite to the warpage generated in the heat radiating body 16 is low thermal expansion. The thickness of the plate-like body 17a can be easily set differently between the insulating substrate 11 side and the cooling sink portion 31 side so that the material 18 is formed in the entire heat radiating body 16 when the material 18 is cast into the cast body 17b. As a result, the heat dissipating body 16 and the insulating substrate 11 can be satisfactorily adhered to each other, and a configuration for reliably conducting the heat of the insulating substrate 11 to the heat dissipating body 16 can be easily formed.
[0035]
In addition, when the low thermal expansion material 18 is cast into the heat radiating body 17, the low thermal expansion material 18 is previously held by the plate-like body 17 a, and the molten metal is injected from the side surface side of the low thermal expansion material 18 in this state. The arrangement position of the low thermal expansion material 18 in the thickness direction and the creeping direction of the radiator 16 can be positioned with high accuracy. That is, when the low thermal expansion material 18 is cast into the heat radiating body 17, the placement position of the low thermal expansion material 18 with respect to the heat radiating body 17 is likely to be shifted due to the injection pressure of the molten metal acting on the low thermal expansion material 18. In this case, since the low thermal expansion material 18 is sandwiched by the plate-like body 17a, it is possible to suppress the occurrence of a shift in the arrangement position of the low thermal expansion material 18 due to the injection pressure. Thereby, characteristics, such as a thermal expansion coefficient and thermal conductivity, can be stabilized and the board | substrate 10 for power modules can be formed, and mass-production quality can be ensured.
[0036]
In addition, since the plate-like body 17a is disposed on each outermost layer of the heat radiating body 16 to be formed, the low thermal expansion material 18 can be suppressed from being exposed on the surface of the heat radiating body 16, and the insulating substrate 11 can be It is possible to easily realize the surface of the radiator 16 to be placed as a smooth surface. Here, as described above, since the plate-like body 17a is made of a rolled material, it is possible to more reliably realize that the contact surface of the radiator 16 with the insulating substrate 11 is a smooth surface. Accordingly, the contact surfaces of the radiator 16 and the insulating substrate 11 can be uniformly adhered to each other, and heat from the insulating substrate 11 can be reliably conducted to the radiator 16.
[0037]
Further, since the low thermal expansion material 18 is cast and disposed through the communication opening 40 by the casting body 17b, the heat radiation body 16 is also provided in the configuration in which the low thermal expansion material 18 is provided inside the heat radiation body 16. Accordingly, the heat dissipating body 17 communicates in the thickness direction and in the direction perpendicular to this direction, and a decrease in the thermal conductivity of the heat dissipating body 16 can be minimized. Therefore, both the reduction of the thermal expansion coefficient of the radiator 16 and the suppression of the reduction of the thermal conductivity can be achieved. Further, since the plate-like body 17a and the cast body 17b are made of different materials, respectively, the thermal expansion coefficient and heat conduction of the entire radiator 16 according to the thermal expansion coefficient, the amount of heat generated, etc. on the insulating substrate 11 side. The rate can be adjusted as appropriate, and the warp generated in the heat radiating body 16 when the heat radiating body 16 and the insulating substrate 11 are solder-bonded and when used as the power module P can be reliably suppressed. Further, pure Al or Al alloy forming the cast body 17b is excellent in castability such as realizing a good hot water flow, so that the occurrence of casting defects can be suppressed. A decrease in conductivity can be minimized.
[0038]
Furthermore, since the plate-like body 17a is a rolled material, the inclusion of internal defects such as voids in the plate-like body 17a can be suppressed to a minimum, and a decrease in the thermal conductivity of the radiator 16 can be suppressed. be able to. That is, if the entire radiator body 17 is, for example, a cast body, internal defects such as nests are likely to occur. In this case, when heat is conducted through the radiator 16, the internal defects conduct heat. Therefore, the heat conductivity of the entire radiator 16 is reduced. However, as described above, when the plate-like body 17a is a rolled material, the internal defects are rarely generated, so that a decrease in the thermal conductivity can be suppressed.
[0039]
Furthermore, the low thermal expansion material 18 forms the chain-like body 43 in the same plane by assembling the band-like unit plate-like bodies 41 and 42 to each other at the same row position and continuously forming the communication opening 40. Since a plurality of rows are provided above, and the positions of the connection openings 40 are shifted for each adjacent row, the low thermal expansion having the connection openings 40 connected to each other in the thickness direction over one surface and the other surface. The material 18 can be reliably formed.
[0040]
In addition, this invention is not limited to the said embodiment, A various change can be added in the range which does not deviate from the meaning of this invention. For example, although the example using the Fe-Ni type alloy was shown as the low thermal expansion material 18 provided in the radiator body 17, other low thermal expansion materials such as high carbon steel (Fe-C), 42 alloy, molybdenum Even if it is made of (Mo), tungsten (W) or the like, the same effect can be obtained.
[0041]
Moreover, although the structure which provided the cooling sink part 31 in the heat radiator 16 surface was shown, it is good also as a structure which provided not only this structure but a corrugated fin. That is, a joining portion joined to the surface of the heat radiating body 16 via a brazing material, a rising portion provided at one end of the joining portion and rising up perpendicular to the joining portion, and provided at an upper end of the rising portion and parallel to the joining portion and A projecting portion including a flat portion extending in a separating direction and a folded portion provided at one end of the flat portion and orthogonal to the flat portion and folded back toward the radiator 16 is continuously repeated along the creeping direction of the radiator 16. It is good also as a structure provided. In this configuration, the rising portion, the flat portion, the folded portion, and the surface of the radiator 16 form a space.
[0042]
Further, as the insulating substrate 11 to which the heat radiating body 16 is attached, an example in which the metal layer 13 is provided on the surface on the heat radiating body 16 side is shown, but the insulating substrate 11 is not provided with the metal layer 13 and the heat radiating body is interposed via the brazing material. Even if it is directly joined to 16, a similar effect can be obtained.
Further, in place of the low thermal expansion material 18, a so-called corrugate, corrugated louver, an expanded structure having a communication opening 40 having a rectangular cross section expanded in the thickness direction, or the so-called honeycomb structure shown in the above-described embodiment is further provided. It is good also as a structure which laminated | stacked two or more of things or said each structure.
[0043]
Furthermore, in the plate-like body 17a on the insulating substrate 11 side, the surface on the insulating substrate 11 side is a smooth surface. On this surface, a pedestal in which a region to which the insulating substrate 11 is bonded protrudes toward the insulating substrate 11 side. A part may be formed. In this case, the plate-like body 17a may be formed by casting instead of a rolled material. Further, on the surface on the low thermal expansion material 18 side of each plate-like body 17a, an arbitrary region may be formed in a concave shape, and a corrugated uneven shape may be added, and the surface is not limited to a smooth surface. .
Further, the molten metal was injected from the side surface of the low thermal expansion material 18 with the front and back surfaces of the low thermal expansion material 18 being sandwiched by the plate-like body 17a, but the low thermal expansion material 18 was placed on one plate-like body 17a. After placing, the low thermal expansion material 18 is embedded with silicon particles, and after placing the other plate-like body 17a on the low thermal expansion material 18, these are pressed through each plate-like body 17a, Alternatively, molten metal may be injected.
[0044]
【The invention's effect】
As described above, according to the first aspect of the present invention, the location of the low thermal expansion material relative to the thickness direction of the radiator can be positioned with high accuracy, and therefore characteristics such as thermal expansion coefficient and thermal conductivity can be obtained. The power module substrate can be formed while stabilizing the mass production quality. In addition, it is possible to easily and reliably realize a smooth surface on the surface of the heat sink on which the insulating substrate is placed, and the heat radiator and the insulating substrate can be uniformly adhered to each other. This heat can be reliably conducted to the heat radiating body. Further, when the heat sink and the insulating substrate having a thermal expansion coefficient different from the thermal expansion coefficient of the heat sink are soldered together, the warp substantially equal to and opposite to the warp generated in the heat sink casts the low thermal expansion material. In this case, the thickness of the plate-like body can be easily set differently so as to be generated in the radiator. Furthermore, since the material of the molten metal is different from that of the plate-like body, the thermal expansion coefficient and the thermal conductivity of the entire radiator can be appropriately adjusted according to the thermal expansion coefficient on the insulating substrate side, the heat generation amount, and the like. .
[0045]
According to the second aspect of the present invention, when the insulating substrate and the heat radiating body are joined by solder or the like, it is possible to reliably suppress the warping of the heat radiating body toward the insulating substrate. Moreover, the structure which makes the contact surface with the insulated substrate of a heat sink a smooth surface is reliably realizable. Furthermore, even in a configuration in which a low thermal expansion material is provided inside the radiator, the radiator body communicates in the thickness direction of the radiator and in a direction perpendicular to this direction, resulting in a decrease in the thermal conductivity of the radiator. Can be minimized. Therefore, it is possible to achieve both a reduction in the thermal expansion coefficient of the heat radiating body and a reduction in the thermal conductivity. Furthermore, since the heat dissipating body and the cast body are made of different materials, the heat expansion coefficient and the thermal conductivity of the entire heat dissipating body are appropriately adjusted according to the thermal expansion coefficient and heat generation on the insulating substrate side. can do.
[0046]
According to the invention of claim 3, since the plate-like body is made of pure Cu or a Cu alloy and the cast body is made of pure Al or an Al alloy, the heat dissipation is performed according to the thermal expansion coefficient, the heat generation amount, etc. on the insulating substrate side. The thermal expansion coefficient and the thermal conductivity of the entire body can be adjusted as appropriate, and the occurrence of a decrease in the thermal conductivity of the radiator itself can be suppressed to a minimum.
[0047]
According to the invention of claim 4, since the plate-like body is a rolled material, the inclusion of internal defects such as vacancies existing in the plate-like body can be minimized, and the thermal conductivity of the radiator. Can be suppressed.
[0048]
According to the invention which concerns on Claim 5, the curvature which generate | occur | produced in the heat sink when forming a casting and the curvature which is going to generate | occur | produce in a heat sink when this heat sink and a to-be-heat-dissipated body are soldered mutually. As a result, both the heat radiating body and the heat radiating body become flat. Therefore, since the adhesiveness between the heat radiating body and the heat radiating body is ensured, the heat of the heat radiating body can be reliably conducted to the heat radiating body.
[0049]
According to the invention of claim 6, the band-like unit plate-like bodies are assembled to each other at the same row position to form a chain-like body having continuous communication openings, and the chain-like bodies are arranged in a plurality of rows on the same plane. Since the position of the connection opening is shifted for each adjacent row, a low thermal expansion material having connection openings that are continuous in the thickness direction across one surface and the other surface is reliably formed. it can.
[0050]
According to the invention of claim 7, the thermal expansion coefficient of the heat radiating body can be made as small as possible, the occurrence of the warp of the heat radiating body can be suppressed, and even in such a configuration, the heat of the heat radiating body can be reduced. Since a decrease in conductivity can be suppressed to a minimum, a power module substrate having both a warp generation suppressing effect and a thermal conductivity decrease suppressing effect can be provided.
[0051]
According to the invention of claim 8, a power module substrate having a good thermal conductivity while suppressing the warpage of both as much as possible regardless of the difference in thermal expansion coefficient between the insulating substrate and the heat radiating member is ensured. Is obtained.
[0052]
According to the ninth aspect of the present invention, a power module having good thermal conductivity can be obtained while suppressing the warpage of both as much as possible, regardless of the difference in thermal expansion coefficient between the insulating substrate and the radiator.
[Brief description of the drawings]
FIG. 1 is an overall view showing a power module to which a heat radiator according to an embodiment of the present invention is applied.
FIG. 2 is a cross-sectional side view of the radiator shown in FIG.
3 is a perspective view showing a main part of the low thermal expansion material shown in FIG. 2. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Power module substrate 11 Insulating substrate 16 Heat radiating body 17 Heat radiating body main body 17a Plate-shaped body 17b Casting body 18 Low thermal expansion material 30 Semiconductor chip (chip)
40 communication openings 41, 42 unit plate-like body 43 chain-like body P power module

Claims (9)

被放熱体の熱を放熱させる放熱体の製造方法であって、
板状体同士の間に、該板状体の熱膨張係数より低い材質からなり,かつ一方の面と他方の面とに亘る厚み方向と連絡し,かつ該厚み方向と交差方向で互いに連なる連絡開口部を有して設けられた低熱膨張材を配した後、
前記各板状体により前記低熱膨張材を狭持した状態で、前記板状体同士の間に該板状体と材質が異なる溶湯を注入し、前記低熱膨張材を鋳包むことを特徴とする放熱体の製造方法。
A method of manufacturing a radiator that dissipates heat from a radiator,
Between the plate-like bodies, made of a material lower than the thermal expansion coefficient of the plate-like bodies, and communicated with the thickness direction over one surface and the other surface, and continuous with each other in the thickness direction and the crossing direction. After arranging the low thermal expansion material provided with an opening,
In a state where the low thermal expansion material is sandwiched between the plate-like bodies, a molten metal having a material different from that of the plate-like bodies is injected between the plate-like bodies, and the low thermal expansion material is cast. A method for manufacturing a radiator.
被放熱体の熱を放熱させる放熱体であって、
放熱体本体と,該放熱体本体の熱膨張係数より低い材質からなる低熱膨張材とを備え、
前記放熱体本体は、板状体,及び該板状体と材質が異なる鋳造体を少なくとも備えた積層体をなし、かつ前記板状体が前記放熱体本体の各最外層に各々配設された構成をなし、
前記低熱膨張材は、一方の面と他方の面とに亘る厚み方向と連絡し、かつ該厚み方向と交差方向で互いに連なる連絡開口部を有し、かつ前記板状体同士の間に前記連絡開口部を介して前記鋳造体により鋳包まれて配設されていることを特徴とする放熱体。
A radiator that dissipates the heat of the radiator,
A radiator body and a low thermal expansion material made of a material lower than the thermal expansion coefficient of the radiator body;
The heat dissipating body main body is a laminate including at least a plate-like body and a cast body made of a material different from that of the plate-like body, and the plate-like body is disposed on each outermost layer of the heat dissipating body main body. No configuration,
The low thermal expansion material communicates with the thickness direction extending from one surface to the other surface, and has a communication opening that is continuous with the thickness direction in the cross direction, and the communication between the plate-like bodies. A heat dissipating body, wherein the heat dissipating body is disposed by being cast by the cast body through an opening.
請求項2記載の放熱体において、
前記板状体が純Cu又はCu合金からなり、前記鋳造体が純Al又はAl合金からなることを特徴とする放熱体。
In the heat radiator according to claim 2,
The radiator is characterized in that the plate-like body is made of pure Cu or Cu alloy, and the cast body is made of pure Al or Al alloy.
請求項2又は3に記載の放熱体において、
前記板状体が圧延材であることを特徴とする放熱体。
In the heat radiator according to claim 2 or 3,
The radiator is characterized in that the plate-like body is a rolled material.
請求項2から4のいずれか一項に記載の放熱体において、
前記各板状体の厚さは、放熱体において、被放熱体側の熱膨張係数が放熱体側の熱膨張係数より小さいとき、被放熱体側の板状体の厚さを放熱体側の板状体の厚さより厚く形成する一方、
被放熱体側の熱膨張係数が放熱体側の熱膨張係数より大きいとき、被放熱体側の板状体の厚さを放熱体側の板状体の厚さより薄く形成することを特徴とする放熱体。
In the heat radiator as described in any one of Claim 2 to 4,
The thickness of each plate-like body is such that when the thermal expansion coefficient on the radiator side is smaller than the thermal expansion coefficient on the radiator body, the thickness of the plate-like body on the radiator side is the thickness of the radiator body. While forming thicker than the thickness,
When the thermal expansion coefficient on the radiator side is larger than the thermal expansion coefficient on the radiator side, the thickness of the plate on the radiator side is made thinner than the thickness of the plate on the radiator side.
請求項2から5のいずれか一項に記載の放熱体において、
前記低熱膨張材は、帯状の単位板状体を同列位置で互いに組付けて前記連絡開口部を連続的に有する連鎖状体に形成し、該連鎖状体を同一平面上で複数列設けるとともに、互いに隣接する列毎に前記連絡開口部の位置をずらして配設することを特徴とする放熱体。
In the heat radiator according to any one of claims 2 to 5,
The low thermal expansion material is formed in a chain-like body continuously having the connecting openings by assembling the band-like unit plate-like bodies at the same row position, and providing the chain-like body in a plurality of rows on the same plane, A heat dissipating body characterized in that the connecting openings are arranged so as to be shifted in rows adjacent to each other.
絶縁基板と,該絶縁基板の一方の面側に設けられた放熱体とを備えたパワーモジュール用基板であって、
前記放熱体は、請求項2から6のいずれか一項に記載の放熱体であることを特徴とするパワーモジュール用基板。
A power module substrate comprising an insulating substrate and a heat dissipator provided on one surface side of the insulating substrate,
The said heat radiator is a heat radiator as described in any one of Claim 2 to 6, The board | substrate for power modules characterized by the above-mentioned.
請求項7記載のパワーモジュール用基板において、
前記絶縁基板の前記一方の面に金属層を、他方の面に回路層を各々備え、前記金属層及び前記回路層は、純Al,Al合金,純Cu,又はCu合金からなることを特徴とするパワーモジュール用基板。
The power module substrate according to claim 7,
A metal layer is provided on the one surface of the insulating substrate, and a circuit layer is provided on the other surface, and the metal layer and the circuit layer are made of pure Al, Al alloy, pure Cu, or Cu alloy. Power module substrate.
請求項7又は8に記載のパワーモジュール用基板の前記絶縁基板の他方の面側に、チップを搭載してなることを特徴とするパワーモジュール。9. A power module comprising a chip mounted on the other surface side of the insulating substrate of the power module substrate according to claim 7 or 8.
JP2003053116A 2003-02-28 2003-02-28 Manufacturing method of heat radiator, heat radiator, power module substrate and power module using the heat radiator Expired - Lifetime JP3901109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003053116A JP3901109B2 (en) 2003-02-28 2003-02-28 Manufacturing method of heat radiator, heat radiator, power module substrate and power module using the heat radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003053116A JP3901109B2 (en) 2003-02-28 2003-02-28 Manufacturing method of heat radiator, heat radiator, power module substrate and power module using the heat radiator

Publications (2)

Publication Number Publication Date
JP2004266002A JP2004266002A (en) 2004-09-24
JP3901109B2 true JP3901109B2 (en) 2007-04-04

Family

ID=33117821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003053116A Expired - Lifetime JP3901109B2 (en) 2003-02-28 2003-02-28 Manufacturing method of heat radiator, heat radiator, power module substrate and power module using the heat radiator

Country Status (1)

Country Link
JP (1) JP3901109B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4354377B2 (en) * 2004-09-28 2009-10-28 三菱電機株式会社 Semiconductor device
DE102009045181B4 (en) * 2009-09-30 2020-07-09 Infineon Technologies Ag Power semiconductor module

Also Published As

Publication number Publication date
JP2004266002A (en) 2004-09-24

Similar Documents

Publication Publication Date Title
JP5120284B2 (en) Semiconductor device
JP5892281B2 (en) Power module substrate with heat sink and power module
JP6201827B2 (en) Manufacturing method of power module substrate with heat sink
JP5061442B2 (en) Insulated circuit board and insulated circuit board with cooling sink
JP2004153075A (en) Substrate for power module and power module
JP3901109B2 (en) Manufacturing method of heat radiator, heat radiator, power module substrate and power module using the heat radiator
JP3885745B2 (en) Radiator, power module substrate using this radiator, power module, and method of manufacturing radiator
JP2010238965A (en) Substrate for power module, method for manufacturing substrate for power module, and power module
JP3912255B2 (en) Power module substrate and power module
JP3938079B2 (en) Power module substrate manufacturing method
JP2008159946A (en) Cooling device of semiconductor module, and manufacturing method therefor
JP3960192B2 (en) Radiator
JP4179055B2 (en) Power module substrate, radiator and method of manufacturing the radiator
JP2004266059A (en) Process for producing heat sink, heat sink, substrate for power modules employing the heat sink and power module
JP3975910B2 (en) Radiator
JP2004327711A (en) Semiconductor module
JP2017183533A (en) Heat sink with circuit board and manufacturing method therefor
JP5614127B2 (en) Power module substrate and manufacturing method thereof
JP2004266060A (en) Process for producing heat sink, heat sink,substrate for power module employing the heat sink, and power module
JP2004207619A (en) Power module and substrate therefor
JP3933031B2 (en) Radiator
JP4225119B2 (en) Manufacturing method of radiator and manufacturing method of power module substrate
JP3873870B2 (en) Radiator
JP3901078B2 (en) Power module substrate and power module
JP4019914B2 (en) Power module substrate and power module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061225

R150 Certificate of patent or registration of utility model

Ref document number: 3901109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

EXPY Cancellation because of completion of term