JP3900680B2 - Thermal adhesive composite fiber, non-woven fabric and absorbent article using the same - Google Patents

Thermal adhesive composite fiber, non-woven fabric and absorbent article using the same Download PDF

Info

Publication number
JP3900680B2
JP3900680B2 JP15377198A JP15377198A JP3900680B2 JP 3900680 B2 JP3900680 B2 JP 3900680B2 JP 15377198 A JP15377198 A JP 15377198A JP 15377198 A JP15377198 A JP 15377198A JP 3900680 B2 JP3900680 B2 JP 3900680B2
Authority
JP
Japan
Prior art keywords
component
fiber
melting point
heat
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15377198A
Other languages
Japanese (ja)
Other versions
JPH11323663A (en
Inventor
満 小島
真吾 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP15377198A priority Critical patent/JP3900680B2/en
Publication of JPH11323663A publication Critical patent/JPH11323663A/en
Application granted granted Critical
Publication of JP3900680B2 publication Critical patent/JP3900680B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Absorbent Articles And Supports Therefor (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は異形断面を有する熱接着性複合繊維及びこれを用いた不織布と吸収性物品に関する。更に詳しくは不織布化工程の熱処理温度が低く、かつ、隠蔽性に優れたポリオレフィン系の異形断面を有する熱接着性複合繊維及びこれを用いた不織布と吸収性物品に関するものである。
【0002】
【従来の技術】
低融点樹脂を鞘成分とし、高融点樹脂を芯成分とする熱接着性複合繊維を用いた不織布は風合い(触感)や不織布強力等の特性が好まれ、紙おむつや生理用品等の衛生材料の表面材として使用されている。このような不織布は、短繊維の場合、通常、熱接着性複合繊維をカード工程や空気流開繊工程によってウエブとした後、加熱処理や加圧処理によって鞘成分を溶融し、繊維交絡点を融着する事によって作製される。
一方、長繊維の代表としては、スパンボンド法によって容易に製造することができる。通常、紡糸口金より吐出した長繊維群をエアーサッカーなどに導入して牽引延伸し、開繊して捕集コンベヤー上に集積してウェブを得た後、加圧処理によって鞘成分を溶融し、繊維交絡点を融着する事によって作成される。
繊維交絡点を融着する方式は、加熱エンボスロール等による熱圧着方式と、サクションバンドドライヤーやサクションドラムドライヤー等による熱風接着方式とに大別する事ができる。それぞれの方式により作製される不織布は、ポイントボンド不織布、スルーエアー不織布と呼ばれ用途に応じて使い分けられる。
【0003】
このような熱接着性(鞘/芯)複合繊維として知られているものには、例えばポリエチレン/ポリプロピレン系複合繊維(以下、PE/PPと略記する)[特公昭52−37097号公報]、ポリエチレン/ポリエステル系複合繊維(PE/PET)[特公平3−21648号公報]、プロピレン系共重合体から成る鞘成分にポリプロピレンから成る芯成分が複合された繊維(co−PP/PP)[特公昭55−26203号公報]を挙げる事が出来る。
これらの中で、特にPE/PPは鞘側を構成する樹脂と芯側を構成する樹脂の融点差が大きく、加工温度幅が広い。加えて、その風合いとサラサラとした触感が好まれ、PE/PPで作製した不織布は、紙おむつや生理用品に多く使われている。
【0004】
熱接着性複合繊維を用いて不織布を作製する場合、一般に不織布の風合い(触感)は強力と相反する傾向にある。従来、衛生材料用途の不織布は、十分な強力を有し、かつ、生産速度を極力速くする必要があるため、比較的高い温度での熱処理によって生産される事が多かった。しかし、最近の傾向として衛生材料の表面材用途の不織布には、より柔らかい風合い(触感)が求められるようになってきている。このため、PE/PPによって作製される不織布についても、柔らかい風合い(触感)を得るために低い熱処理温度で実施される事が多くなってきており、その結果、不織布強力が低くなるという難点が生じている。
このため衛生材料用途として、高い強力と柔らかな風合い(触感)の相反する要求を、両方とも満足させる不織布を得る事が可能な、PE/PPの熱接着性複合繊維の出現が望まれている。
【0005】
また、表面材としての不織布の要求性能としては、例えば、使い捨ておむつ、生理用ナプキンに使用する場合、乳児の排出物や尿による黄色の着色、女性の経血による赤色の着色は使用感に多大な影響を及ぼすため、これらの着色を見え難くする機能であるカバーリング性が、近年の表面材には必要不可欠とされている。このため、従来の不織布に於けるカバーリング性を向上させる方法としては、構成繊維にTiO2等の顔料を含有して白度を向上させる方法があるが、TiO2等の含有量が多すぎると、白度は向上するが繊維の紡糸性、不織布への加工性が悪化し、また、長繊維から短繊維への切断が困難になり、製造コストが増大する。また、隠蔽性を向上させるために坪量を増加させる方法も提案されているが、該方法では、軽量化、コンパクト化、低コスト化に問題がある。
【0006】
【発明が解決しようとする課題】
本発明の目的は低温・高速の熱処理によっても高強度で風合いのソフトな不織布となり、ヒートシール性が高く、かつ、隠蔽性にも優れる不織布を提供することにあり、そのための手段として特定の樹脂の組み合わせからなる異形断面を有する複合繊維を用いることである。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、以下の構成を採用することにより、所期の目的が達成される見通しを得て、本発明を完成するに至った。
(1) 結晶性ポリプロピレンまたはプロピレン系の共重合体から選ばれた少なくとも1種の高融点樹脂のA成分と、これより低融点で密度が0.910〜0.970g/cm3であるポリエチレン系の低融点樹脂のB成分とから形成された熱接着性複合繊維であって、熱接着性複合繊維を構成するA、B成分は、複合重量比がA成分/B成分=20/80〜80/20重量%であり、該複合繊維の断面は高融点樹脂のA成分が中央部から外側に向かってストランドが放射状に伸びる分岐部を形成し、かつ低融点樹脂のB成分が該A成分の分岐部と接続して接続部を形成し、高融点樹脂と接続する低融点樹脂の接触割合が、該低融点樹脂の全周長の10〜50%である異形構造であることを特徴とする熱接着性複合繊維。
(2) プロピレン系の共重合体成分が、プロピレン85〜99重量%と、エチレン1〜15重量%の二元系共重合体樹脂である(1)に記載の熱接着性複合繊維。
(3) プロピレン系の共重合体成分が、プロピレン50〜99重量%と、ブテン−1 1〜50重量%の二元系共重合体樹脂である(1)に記載の熱接着性複合繊維。
(4) プロピレン系の共重合体成分が、プロピレン84〜98重量%、エチレン1〜10重量%、ブテン−1 1〜15重量%の三元系共重合体樹脂である(1)に記載の熱接着性複合繊維。
) (1)〜()のいずれかに記載の熱接着性複合繊維の繊維交差点が熱接合された短繊維不織布。
) (1)〜()のいずれかに記載の熱接着性複合繊維の繊維交差点が熱接合された長繊維不織布。
) ()または()のいずれかに記載の不織布を少なくとも一部に用いた吸収性物品。
【0008】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明で複合繊維の高融点樹脂のA成分に使用する結晶性ポリプロピレンとはホモポリプロピレン、若しくはプロピレンを主成分とし、それと少量のエチレン、ブテンー1、ヘキセンー1、オクテンー1若しくは4ーメチルペンテンー1等のαーオレフィンとの結晶性共重合体であって、メルトフローレート(以下MFR、230℃、2.16kg)が2〜150、融点が158℃以上のものが好ましい。このような重合体はチーグラー・ナッタ系触媒を用いるプロピレンの重合方法等の公知の方法によって得られる。
また、本発明で複合繊維の高融点樹脂のA成分に用いるプロピレン系の共重合体とはプロピレンを主成分とし、それと少量のエチレン、ブテンー1、ヘキセンー1、オクテンー1、若しくは4ーメチルペンテンー1等のαーオレフィンとの結晶性共重合体であって、MFRが3〜50、融点は120℃〜158℃であり、好ましい具体例としては、プロピレン99〜85重量%とエチレン1〜15重量%とからなるプロピレンを主体とするプロピレン・エチレンの二元共重合体、プロピレン99〜50重量%とブテン−1 1〜50重量%とからなるプロピレンを主体とするプロピレン・ブテンの二元共重合体、あるいはプロピレン84〜98重量%、エチレン1〜10重量%、およびブテン−1 1〜15重量%からなるプロピレン・エチレン・ブテンー1の三元共重合体であり、このような共重合体はチーグラ・ナッタ触媒を用いたオレフィンの共重合方法等の公知の方法により得ることができる。
【0009】
本発明で複合繊維の低融点樹脂のB成分に用いるポリエチレンは通常工業的に利用されているポリエチレンであり、密度が0.910〜0.925g/cm3の低密度ポリエチレン、同じく0.926〜0.940g/cm3の中密度ポリエチレン、同じく0.941〜0.970g/cm3の高密度ポリエチレンであり、好ましくは密度が0.915〜0.935g/cm3の直鎖状低密度或いは中密度ポリエチレンである。メルトインデックス(以下MI、190℃、2.16kg)は2〜100の範囲が好ましい。その中から複合繊維の高融点樹脂のA成分との組合せにより、高融点樹脂のA成分より、融点が15℃以上低いポリエチレンを任意で選ぶことができる。
【0010】
本発明の熱接着性複合繊維の断面は、高融点樹脂のA成分が中央部から外側に向かって複数のストランドが放射状に伸びる分岐部を形成し、かつ低融点樹脂のB成分がA成分の分岐部と接続して接続部を形成した異形断面構造である。
また、熱接着性複合繊維は、それを構成する低融点樹脂成分の一部が製造工程で剥離すると、熱接着された繊維交差点の数が減少し、その結果接着性が低下し好ましくない。特に本発明の複合繊維は特定の異形断面構造を有するため余計に剥離が起こりやすく、このため複合繊維を構成するA、B両樹脂の接続部の形状が重要となる。つまり、構成するA、Bの樹脂は分岐部であるA成分の先端が好ましくはB成分の周長の10%以上、より好ましくは15%以上に接触し、接続部を形成することが好ましい。つまり、複合繊維に外力が加わっても分割しないことが必要である。本発明の熱接着性複合繊維の断面の一例を図1〜図4に示す。ただし、以下に説明する繊維断面に限定されるものではない。
【0011】
図1に示した熱接着性複合繊維(a1)は高融点樹脂のA成分1が中央部から外側に向かって3本のストランドが放射状に伸びる分岐部を形成し、かつ低融点樹脂のB成分2が該分岐部の各ストランドの長手方向先端に接続して接続部を形成し、A及びB成分の紡糸時における樹脂のMFR(以下、紡糸MFR)を同値とした場合の複合繊維である。
【0012】
図2に示した熱接着性複合繊維(a2)は高融点樹脂のA成分1が中央部から外側に向かって4本のストランドが放射状に伸びる分岐部を形成し、かつ低融点樹脂のB成分2が該分岐部の各ストランドの長手方向先端に接続して接続部を形成し、A及びB成分の紡糸MFRを同値とした場合の複合繊維である。
【0013】
図3に示した熱接着性複合繊維(a3)は高融点樹脂のA成分1が中央部から外側に向かって4本のストランドが放射状に伸びる分岐部を形成し、かつ低融点樹脂のB成分2が該分岐部の各ストランドのほぼ先端部近傍に各ストランド毎にストランドの長手方向とは交差する方向にストランドを隔ててほぼ反対方向に接続して2つの接続部とからなり、A及びB成分の紡糸MFRを同値とした場合の複合繊維である。そしてこの場合、接続部の一方が分岐部のストランドのほぼ先端部近傍の位置に接続しており、もう一方がストランドの先端部よりやや根元寄りの位置に接続している。もちろん両方の接続部がストランドのほぼ同じ位置からストランドを隔ててほぼ反対方向に接続してもよい。
【0014】
図4に示した熱接着性複合繊維(a4)は高融点樹脂のA成分1が中央部から外側に向かって4本のストランドが放射状に伸びる分岐部を形成し、かつ低融点樹脂のB成分2が該分岐部の各ストランドのほぼ先端部近傍に各ストランド毎にストランドの長手方向とは交差する方向にストランドを隔ててほぼ反対方向に接続して2つの接続部とからなり、A及びB成分の紡糸MFRを同値にした場合の複合繊維である。
【0015】
本発明の熱接着性複合繊維は、前述の図1〜図4に例示したように、特殊な異形断面構造を有している。即ち、高融点樹脂のA成分が外側に向かって細いストランド状に突出して分岐状の骨格を形成し、そのA成分の分岐部に低融点樹脂のB成分が一部接合して接続部を形成している。つまり、B成分は、前記A成分との一部接合部を除き大部分の表面は露出している。
このような、形態構造の複合繊維が熱処理を受けると、低融点樹脂のB成分は、大部分の露出面から熱伝達を受けるのでB成分が軟化状態から融着に至るまでの熱伝達が極めて容易になる。
特に図5に示すような、通常の鞘芯型やその他の丸断面に比較して低融点樹脂(B成分)の体積に対する露出表面積の割合が著しく大きいので、表面露出部からの熱伝達が速く融着が均一になる。つまり、低温接着性に優れるようになるのである。
この傾向はB成分の接続部の表面露出度が大きいほど顕著である。従って、A成分とB成分の接続部に対するB成分の全周長の接触割合が50%以下であることが低温接着性の面では好ましく、より好ましくは30%以下である。
【0016】
本発明でいう低温接着性に優れるということは、図5に示すような通常の丸断面の複合繊維に比較して、本発明の熱接着性繊維は3〜4℃以下の低温での熱接着が十分可能となり、かつ、繊維接合点が融着接合ムラを生じることなく、均一な融着接合が行われることを意味する。
この結果、本発明の熱接着性複合繊維を用いて低温熱処理して得られた不織布は、繊維間の空隙が多く残存し、極めてソフト感を有する。しかも、繊維同士は繊維接点で確実に熱融着されるので不織布は繊維集合体としての結合力を向上させ、高い強力を有するようになる。
これに対し図5の如く、一般の丸断面構造の芯鞘複合繊維では鞘成分全体を十分に溶融させるためには、本発明の複合繊維の場合に比較し、より高温を要する。このような条件下で熱処理が行われると、熱融着による強力は向上するが、反面芯成分も融着温度に近づくため繊維全体を融着させるようになる。
この結果、必然的に嵩高が失われ、不織布の風合い(ソフトの触感)が損なわれるのである。
【0017】
また、本発明の熱接着性複合繊維は、中央部から外側に向かって放射状に伸びるストランドが分岐した多葉型構造を有するので、入射光が散乱した反射光が視野に見えるようになる。
したがって、本発明の熱接着性複合繊維を不織布、織編物などの布帛としたとき該布帛の下方の色が見えにくい、いわゆる透け防止効果を発揮する。つまり隠蔽性に優れるのである。
【0018】
本発明の熱接着性複合繊維を得るには、短繊維の場合、前述の樹脂A、B成分を上述の繊維断面に代表される紡糸口金プレートを用い、公知の複合紡糸法により紡糸をする。この際、A及びB成分の押出温度を変更することで紡糸MFRを調整して分岐部と接続部の接触割合を設定する。その後、延伸し、捲縮を付与する。複合繊維を構成するA、B成分は、複合重量比がA成分/B成分=20/80〜80/20重量%の範囲が好ましい。B成分が20%未満では、得られる繊維の熱接着性が低下し、これを用いた不織布も十分な引張強度および低温接着性を得ることが難しくなる。また、B成分が80%を超すと、繊維の熱接着性は十分であるが、繊維の熱収縮率が高くなり、不織布を得る際の寸法安定性が低下する傾向がある。複合繊維の繊度は0.5〜10.0d/fで、かつ、捲縮数が約3〜60山/25mmのものがカード通過性がよく、好ましい。
一方、長繊維の代表としては、前述の樹脂A、B成分を上述の繊維断面に代表される紡糸口金プレートを用い、公知のスパンボンド法により製造することができる。この際、A及びB成分の押出温度を変更することで紡糸MFRを調整して分岐部と接続部の接触割合を設定する。複合繊維を構成するA、B成分は、複合重量比が、A成分/B成分=20/80〜80/20重量%の範囲が好ましい。B成分が20%未満では、得られる繊維の熱接着性が低下し、これを用いた不織布も十分な引張強度および低温接着性を得ることが難しくなる。また、B成分が80%を超すと、繊維の熱接着性は十分であるが、繊維の熱収縮率が高くなり、不織布を得る際の寸法安定性が低下する傾向がある。複合繊維の繊度は0.5〜10.0d/fのものが、好ましい。又、必要に応じて、捲縮を与えることもできる。
【0019】
本発明の短繊維不織布は、前述複合繊維をカード機を用いて所望の目付のウェブとし、ニードルパンチ法、サクションドライヤー法、あるいは熱ロール法により不織布とする公知の方法で得ることができる。
一方、長繊維不織布の代表としては、スパンボンド法により不織布とする公知の方法で得ることができる。このような不織布は、紙おむつあるいは生理用ナプキンの表面材等の分野に有用である。この不織布を紙おむつや生理用ナプキン等に使用する場合には、単糸繊度は0.5〜10.0d/f、不織布の目付けは8〜50g/m2のものが好ましく、より好ましくは10〜30g/m2である。単糸が0.5d/f未満では、紡糸時の安定した可紡性が得られ難く、ついては均質なウェブを得ることが困難となり、10.0d/fを超すと不織布の目が粗くなり、これを表面材として使用すれば肌触りに難のあるものとなるので好ましくない。また、目付けが10g/m2未満では薄すぎて十分な不織布強力が得られず、50g/m2を超すと好ましい不織布強力が得られるものの肌触りが悪くコスト高になることから実用的でない。
【0020】
【実施例】
以下実施例により本発明を具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。
尚、以下に述べる実施例中における各種の物性値は以下の方法で測定したものである。
【0021】
・接触割合
不織布の断面を電子顕微鏡写真で撮影し、熱圧着処理された以外の繊維を観察し、一視野当り10本を選択する。異形断面の分岐部である高融点樹脂のA成分に接続している低融点樹脂のB成分が接している部分の断面の周長が、同一断面上の該低融点樹脂B成分の断面の全周長との割合であり、分岐数に応じ、その平均を1本当たりの接触割合とし、10本分の平均を表1に結果を示す。
接触割合(%)=AP/BT×100
P:高融点樹脂A成分に低融点樹脂B成分が接触している部分の周長
T:同一断面上の該低融点樹脂B成分の全周長
【0022】
・断面形状維持特性:(短繊維)
延伸後の単糸50本を採取、繊維断面を光学顕微鏡写真で撮影し、一視野に当たり異形断面の高融点樹脂のA成分と低融点樹脂のB成分との接続部形状が90%以上維持されていれば優、80%以上維持されていれば良、80%以下であれば不可と評価し、優を○、良を△、不可を×で示した。表1に結果を示す。
・断面形状維持特性:(長繊維)
不織布の断面を光学顕微鏡写真で撮影し、熱圧着処理された以外の繊維を観察し、一視野に当り異形断面の高融点樹脂のA成分と低融点樹脂のB成分との接続部形状が90%以上維持されていれば優、80%以上維持されていれば良、80%以下であれば不可と評価し、優を○、良を△、不可を×で示した。表1に結果を示す。
【0023】
・隠蔽性(ウェブの白色度)
ウェブ10gを採取、色差計(SMカラーコンピューター、スガ試験機(株))にて測定、数値が大きい程、隠蔽性が高い。表1に結果を示す。
・隠蔽性(不織布の明暗差)
不織布強力において作成した不織布を用い、該不織布の背後に白タイルと黒タイルを置いて色差計にて明度を測定し、明暗差(△L)を下記式より算出、明暗差の小さいもの程、隠蔽性が高い。表1に結果を示す。
明暗差(△L)=L* W−L* B
* W:白タイルに不織布を重ねた時の明度
* B:黒タイルに不織布を重ねた時の明度
【0024】
・不織布強力:
不織布の機械の流れ方向(MD)を長さ方向とし、機械の流れ方向に直角な方向(CD)を幅方向として、長さ15cm、幅5cmの試料片を作製し、引張り試験機を用い、つかみ間隔10cm、引張り速度10cm/minで引張り強力を測定した。
・不織布風合:
5人のパネラーによる官能試験を行い、全員がソフトであると判断した場合を優、3名以上がソフトであると判断した場合を良、3名以上がソフト感に欠けると判断した場合を不可と評価し、優を○、良を△、不可を×で示した。
【0025】
・ヒートシール性:
上記、不織布強力の測定に用いる不織布から、不織布の機械の流れ方向(MD)を長さ方向とし、機械の流れ方向に直角な方向(CD)を幅方向として、長さ7.5cm、幅2.5cmの試料片を切り出し、同種の不織布同士の先端部分を長さ1cmだけ重ね合わせ、3kg/cm2の加圧下で1秒間、所定の温度で熱圧着させ、引張り試験機を用い、つかみ間隔10cm、引張り速度10cm/minでヒートシール部の剥離強力を測定する。
【0026】
実施例1、比較例1
密度が0.959、MIが13の高密度ポリエチレンをB成分とし、MFRが10の結晶性ポリプロピレン(ホモポリマー)をA成分として、図1に示した繊維断面を与える紡糸口金を用い、接触割合を20%目標に設定したもの(実施例1)、および図5(比較例1)に示した繊維断面を与える紡糸口金を用いて複合紡糸装置により、複合重量比40/60(B成分/A成分)、単糸繊度が4d/fの未延伸糸を得た。その後、95℃の熱ロールにて2.4倍に延伸し、スタッファボックスで機械捲縮を付与し、90℃で乾燥した後、切断処理して2d×38mmの複合繊維を得た。この複合繊維を用いて、温度116℃(実施例1)、120℃(比較例1)に加熱された凸部面積24%のエンボスロールとフラットな金属ロールからなる熱圧着装置を用い、線圧20kg/cm、速度6m/minの条件でカード法ウェブを熱処理し、目付け約20g/m2の不織布とした。さらに、この不織布を大人用おむつの表面材として使用したところ、実施例1については、白度、肌触り(ソフト感)で優れ、かつ、不織布強力、ヒートシール性にも優れていたが、比較例1については、白度が劣り、かつ、不織布強力、ヒートシール性が実施例1より劣り、吸収性物品への適否の差異は明確であった。
【0027】
実施例2〜3
密度が0.918、MIが24の直鎖状低密度ポリエチレンをB成分として、エチレン3重量%、ブテン−1 5重量%、及びプロピレン92重量%からなり、MFRが15である三元共重合体をA成分として、図3(実施例2)および図4(実施例3)に示した繊維断面を与える紡糸口金を用い、接触割合を25%目標に設定し、実施例1と同様な方法にて2d×38mmの複合繊維を得た。この複合繊維を用いて、温度116℃に加熱された凸部面積24%のエンボスロールとフラットな金属ロールからなる熱圧着装置を用い、線圧20kg/cm、速度6m/minの条件でカード法ウェブを熱処理し、目付け約20g/m2の不織布とした。
【0028】
実施例4
密度が0.959、MIが13の高密度ポリエチレンをB成分とし、MFRが10の結晶性ポリプロピレン(ホモポリマー)をA成分として、図1に示した繊維断面を与える紡糸口金を用い、接触割合を低めに設定し、実施例1と同様な方法にて2d×38mmの複合繊維を得た。尚、実施例4は実施例1と同様の繊維断面を与える紡糸口金を使用し、低融点樹脂の接触割合が、該低融点樹脂の全周長の12%となった例であるが、低温加工性の向上はそれ程見られないが、その他の特性では優れるものであった。
【0029】
比較例2
密度が0.918、MIが24の直鎖状ポリエチレンをB成分として、IV値0.49のポリエチレンテフタレートをA成分として、図2に示した繊維断面を与える紡糸口金を用い、接触割合を30%目標に設定し、実施例1と同様な方法にて2d×38mmの複合繊維を得た。この複合繊維は、延伸後A/B成分が剥離分割し、評価の対象とならなかった。
【0030】
実施例5、比較例3
密度が0.935、MIが20の直鎖状中密度ポリエチレンをB成分として、ブテン−1 5重量%とプロピレン95重量%とからなり、MFRが15である二元共重合体をA成分として、図1に示した繊維断面を与える紡糸口金を用い、接触割合を20%目標に設定したもの(実施例5)、および図5(比較例3)に示した所定の繊維断面口金を用い、紡糸口金から吐出した複合繊維群をエアーサッカーに導入して牽引延伸し、複合長繊維を得、続いて、エアーサッカーより排出された前記長繊維群を、帯電装置により同電荷を付与せしめ帯電させた後、反射板に衝突させて開繊し、開繊した長繊維群を裏面に吸引装置を設けた無端ネット状コンベヤー上に、長繊維ウェブとして捕集する。捕集した長繊維ウェブは、無端コンベヤーに載せられたまま搬送され、温度112℃に加熱された凸部面積24%のエンボスロールとフラットな金属ロールからなる熱圧着装置を用い、線圧20kg/cm、速度30m/minの条件で熱処理し、目付け約20g/m2の不織布とした。さらに、この不織布を大人用おむつの表面材として使用したところ、実施例5については、白度、肌触り(ソフト感)で優れ、かつ、不織布強力、ヒートシール性にも優れていたが、比較例3については、白度が劣り、かつ、不織布強力、ヒートシール性が実施例4より劣り、吸収性物品への適否の差異は明確であった。
【0031】
《不織布強力、不織布風合、不織布の明暗差およびヒートシール性》
断面形状維持特性において、良(△)以上のサンプルについて評価。短繊維不織布は各繊維をローラーカード機にて20m/minの速度でカーディングし、それぞれ目付け約20g/m2のウエブとした。続いて同一速度で接着面積率24%のエンボスロールを用いて所定温度にて不織布に加工した。それぞれの物性結果を表1に示す。
一方、長繊維不織布は、スパンボンド法にて製造した。目付け約20g/m2のウェブを接着面積率24%のエンボスロールを用いて所定温度にて不織布に加工した。それぞれの物性結果を表1に示す。
【0032】
【表1】

Figure 0003900680
表1において、pp−1はホモポリプロピレンを、PO−1はプロピレン/ブテンー1二元系共重合体を、PO−2はプロピレン/エチレン/ブテンー1三元系共重合体を、PEはポリエチレンを、PETはポリエチレンテレフタレートをそれぞれ表わす。
【0033】
【発明の効果】
本発明の異形断面を有する熱接着性複合繊維は、低温で、かつ、短時間の熱処理により不織布強力の大きな不織布が作成できる。また、この熱接着性複合繊維を使用した不織布は、風合いがソフトである。しかも、隠蔽性にも優れている。このような不織布は、紙おむつ及び生理用ナプキンの表面材等の分野に有用である。
【図面の簡単な説明】
【図1】、本発明の熱接着性複合繊維の繊維断面図の例示である。
【図2】本発明の熱接着性複合繊維の繊維断面図の例示である。
【図3】本発明の熱接着性複合繊維の繊維断面図の例示である。
【図4】本発明の熱接着性複合繊維の繊維断面図の例示である。
【図5】比較例の熱接着性複合繊維の断面図である。
【符号の説明】
1 高融点樹脂部(A成分)
2 低融点樹脂部(B成分)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat-adhesive conjugate fiber having an irregular cross section, a nonwoven fabric using the same, and an absorbent article. More specifically, the present invention relates to a heat-adhesive conjugate fiber having a low-profile polyolefin cross section having a low heat treatment temperature in the non-woven fabric forming process and excellent in concealability, and a non-woven fabric and an absorbent article using the same.
[0002]
[Prior art]
Nonwoven fabrics using heat-adhesive conjugate fibers with a low melting point resin as the sheath component and a high melting point resin as the core component are preferred for their characteristics such as texture (tactile sensation) and strength of the nonwoven fabric. Used as a material. In the case of such a non-woven fabric, in the case of a short fiber, after the heat-adhesive conjugate fiber is usually made into a web by a card process or an air flow opening process, the sheath component is melted by heat treatment or pressure treatment, and the fiber entanglement point is set. Made by fusing.
On the other hand, as a typical long fiber, it can be easily produced by a spunbond method. Usually, a long fiber group discharged from a spinneret is introduced into an air soccer or the like, pulled and stretched, opened and collected on a collection conveyor to obtain a web, and then a sheath component is melted by pressure treatment, Created by fusing fiber entanglement points.
Methods for fusing fiber entanglement points can be broadly classified into a thermocompression bonding method using a heated embossing roll or the like and a hot air bonding method using a suction band dryer or a suction drum dryer. Nonwoven fabrics produced by the respective methods are referred to as point bond nonwoven fabrics and through-air nonwoven fabrics, and are properly used depending on the application.
[0003]
Examples of such heat-adhesive (sheath / core) composite fibers include polyethylene / polypropylene composite fibers (hereinafter abbreviated as PE / PP) [Japanese Patent Publication No. 52-37097], polyethylene. / Polyester composite fiber (PE / PET) [Japanese Patent Publication No. 3-21648], Fiber in which a core component made of polypropylene is combined with a sheath component made of a propylene copolymer (co-PP / PP) No. 55-26203].
Among these, in particular, PE / PP has a large melting point difference between the resin constituting the sheath side and the resin constituting the core side, and has a wide processing temperature range. In addition, its texture and smooth feel are preferred, and nonwoven fabrics made of PE / PP are often used in disposable diapers and sanitary products.
[0004]
When producing a nonwoven fabric using heat-adhesive conjugate fibers, the texture (tactile feel) of the nonwoven fabric generally tends to conflict with strength. Conventionally, non-woven fabrics for hygiene materials have sufficient strength and are required to be produced as fast as possible, so that they are often produced by heat treatment at a relatively high temperature. However, as a recent trend, a softer texture (tactile sensation) has been demanded for non-woven fabrics used for surface materials of sanitary materials. For this reason, the nonwoven fabric produced by PE / PP is also often implemented at a low heat treatment temperature in order to obtain a soft texture (tactile sensation). As a result, there arises a problem that the strength of the nonwoven fabric is lowered. ing.
For this reason, the emergence of PE / PP heat-adhesive conjugate fibers that can obtain nonwoven fabrics that satisfy both the requirements of high strength and soft texture (tactile sensation) as hygienic materials is desired. .
[0005]
As the required performance of the nonwoven fabric as the surface material, for example, when used for disposable diapers and sanitary napkins, yellow coloring due to infant discharge and urine, and red coloring due to women's menstrual blood greatly affect the feeling of use. Therefore, the covering property, which is a function of making these colorings difficult to see, is indispensable for recent surface materials. For this reason, as a method for improving the covering property in the conventional nonwoven fabric, the constituent fiber is TiO 2.2There is a method of improving the whiteness by containing a pigment such as TiO 22If the content is too large, the whiteness is improved, but the fiber spinnability and processability to a nonwoven fabric are deteriorated, and it becomes difficult to cut from long fibers to short fibers, resulting in an increase in production cost. In addition, a method for increasing the basis weight has been proposed in order to improve concealment, but this method has problems in terms of weight reduction, compactness, and cost reduction.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a nonwoven fabric having a high strength and soft texture even by heat treatment at low temperature and high speed, providing a nonwoven fabric having high heat sealability and excellent concealment, and a specific resin as a means therefor This is to use a composite fiber having a modified cross section composed of a combination of the following.
[0007]
[Means for Solving the Problems]
  As a result of intensive studies to solve the above-mentioned problems, the present inventors have obtained the prospect that the intended purpose will be achieved by adopting the following configuration, and have completed the present invention.
(1) A component of at least one high melting point resin selected from crystalline polypropylene or a propylene-based copolymer, and a lower melting point and a density of 0.910 to 0.970 g / cmThreeA heat-adhesive conjugate fiber formed from a B component of a polyethylene-based low melting point resin,A and B components constituting the heat-adhesive conjugate fiber have a composite weight ratio of A component / B component = 20/80 to 80/20% by weight,The cross-section of the composite fiber is formed by connecting the A component of the high melting point resin with a branch portion in which the strands extend radially from the center to the outside, and the B component of the low melting point resin connected to the branch portion of the A component. Forming partThe contact ratio of the low melting point resin connected to the high melting point resin is 10 to 50% of the entire circumference of the low melting point resin.A heat-adhesive conjugate fiber characterized by an irregular structure.
(2) The heat-adhesive conjugate fiber according to (1), wherein the propylene copolymer component is a binary copolymer resin of 85 to 99% by weight of propylene and 1 to 15% by weight of ethylene.
(3) The heat-adhesive conjugate fiber according to (1), wherein the propylene-based copolymer component is a binary copolymer resin of 50 to 99% by weight of propylene and 1 to 50% by weight of butene-1.
(4) The propylene copolymer component is a ternary copolymer resin of 84 to 98% by weight of propylene, 1 to 10% by weight of ethylene, and 1 to 15% by weight of butene-1 according to (1). Thermal adhesive composite fiber.
(5(1) to (4The short fiber nonwoven fabric in which the fiber intersection of the heat-adhesive conjugate fiber according to any one of the above is thermally bonded.
(6(1) to (4The long-fiber non-woven fabric in which the fiber intersections of the heat-adhesive conjugate fiber according to any one of 2) are thermally bonded.
(7()5) Or (6An absorbent article using at least a part of the nonwoven fabric according to any one of the above.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
In the present invention, the crystalline polypropylene used for the component A of the high melting point resin of the composite fiber is mainly composed of homopolypropylene or propylene, and a small amount of ethylene, butene-1, hexene-1, octene-1 or 4-methylpentene-1. A crystalline copolymer with an α-olefin such as a melt flow rate (hereinafter referred to as MFR, 230 ° C., 2.16 kg) of 2 to 150 and a melting point of 158 ° C. or higher is preferable. Such a polymer can be obtained by a known method such as a propylene polymerization method using a Ziegler-Natta catalyst.
In the present invention, the propylene copolymer used for the component A of the high melting point resin of the composite fiber is mainly composed of propylene and a small amount of ethylene, butene-1, hexene-1, octene-1, or 4-methylpentene. A crystalline copolymer with an α-olefin such as 1 having an MFR of 3 to 50 and a melting point of 120 ° C to 158 ° C. Preferred specific examples include 99 to 85% by weight of propylene and 1 to 15% of ethylene. % Propylene / ethylene binary copolymer consisting mainly of propylene, and propylene / butene binary copolymer consisting mainly of propylene consisting of 99 to 50% by weight of propylene and 1 to 50% by weight of butene-11. Propylene / Ethylene comprising 84 to 98% by weight of propylene, 1 to 10% by weight of ethylene, and 1 to 15% by weight of butene-1 · Butene and a terpolymer of 1, such a copolymer can be obtained by methods known copolymerization method and the like of olefins using Ziegler-Natta catalysts.
[0009]
The polyethylene used for the B component of the low melting point resin of the composite fiber in the present invention is a polyethylene that is usually used industrially, and has a density of 0.910 to 0.925 g / cm.ThreeLow density polyethylene, also from 0.926 to 0.940 g / cmThreeMedium density polyethylene, also 0.941-0.970 g / cmThreeHigh density polyethylene, preferably a density of 0.915 to 0.935 g / cmThreeLinear low density or medium density polyethylene. The melt index (hereinafter MI, 190 ° C., 2.16 kg) is preferably in the range of 2-100. Among them, polyethylene having a melting point lower by 15 ° C. or more than the A component of the high melting point resin can be arbitrarily selected depending on the combination with the A component of the high melting point resin of the composite fiber.
[0010]
The cross section of the heat-adhesive conjugate fiber of the present invention is such that the A component of the high melting point resin forms a branched portion in which a plurality of strands extend radially from the center to the outside, and the B component of the low melting point resin is the A component. This is a modified cross-sectional structure in which a connecting portion is formed by connecting to a branch portion.
Further, when a part of the low melting point resin component constituting the heat-adhesive conjugate fiber is peeled off in the production process, the number of fiber-crossing points that are heat-adhered is decreased, and as a result, the adhesiveness is lowered. In particular, since the conjugate fiber of the present invention has a specific irregular cross-sectional structure, it is more likely to be peeled off. For this reason, the shape of the connecting portion of both the A and B resins constituting the conjugate fiber is important. That is, it is preferable that the constituent A and B resins form a connecting portion by making the tip of the A component as a branching portion preferably contact 10% or more, more preferably 15% or more of the circumference of the B component. That is, it is necessary that the composite fiber is not divided even when an external force is applied. An example of a cross section of the heat-adhesive conjugate fiber of the present invention is shown in FIGS. However, it is not limited to the fiber cross section described below.
[0011]
In the heat-adhesive conjugate fiber (a1) shown in FIG. 1, the A component 1 of the high melting point resin forms a branched portion in which three strands extend radially from the center to the outside, and the B component of the low melting point resin. Reference numeral 2 denotes a composite fiber in which a connecting portion is formed by connecting to the longitudinal end of each strand of the branch portion, and the MFR of the resin (hereinafter, spun MFR) at the time of spinning of the A and B components is the same value.
[0012]
In the heat-adhesive conjugate fiber (a2) shown in FIG. 2, the A component 1 of the high melting point resin forms a branched portion in which four strands extend radially from the center to the outside, and the B component of the low melting point resin. Reference numeral 2 denotes a composite fiber in a case where a connecting portion is formed by connecting to the longitudinal end of each strand of the branch portion, and the spinning MFR of the A and B components is set to the same value.
[0013]
In the heat-adhesive conjugate fiber (a3) shown in FIG. 3, the A component 1 of the high melting point resin forms a branched portion in which four strands extend radially from the center to the outside, and the B component of the low melting point resin. 2 is composed of two connecting portions that are connected in the opposite direction across the strand in the direction intersecting the longitudinal direction of the strand for each strand in the vicinity of the front end portion of each strand of the branch portion, and A and B This is a composite fiber when the component spinning MFR is the same. In this case, one of the connecting portions is connected to a position in the vicinity of the front end of the strand of the branching portion, and the other is connected to a position slightly closer to the root than the front end of the strand. Of course, both connecting portions may be connected in approximately opposite directions across the strand from approximately the same position of the strand.
[0014]
In the heat-adhesive conjugate fiber (a4) shown in FIG. 4, the A component 1 of the high melting point resin forms a branched portion in which four strands extend radially from the center to the outside, and the B component of the low melting point resin. 2 is composed of two connecting portions that are connected in the opposite direction across the strand in the direction intersecting the longitudinal direction of the strand for each strand in the vicinity of the front end portion of each strand of the branch portion, and A and B This is a composite fiber when the component spinning MFRs are set to the same value.
[0015]
The heat-adhesive conjugate fiber of the present invention has a special modified cross-sectional structure as illustrated in FIGS. That is, the A component of the high melting point resin protrudes in the form of a thin strand toward the outside to form a branched skeleton, and the B component of the low melting point resin partially joins the branched portion of the A component to form a connection portion. is doing. That is, most of the surface of the B component is exposed except for a part of the junction with the A component.
When such a composite fiber having a morphological structure is subjected to heat treatment, the B component of the low melting point resin receives heat transfer from most of the exposed surface, so that the heat transfer from the softened state to the fusion is extremely high. It becomes easy.
In particular, the ratio of the exposed surface area to the volume of the low melting point resin (component B) is remarkably large as compared with a normal sheath core type or other round cross section as shown in FIG. Fusion is uniform. That is, it becomes excellent in low temperature adhesiveness.
This tendency becomes more conspicuous as the surface exposure degree of the B component connection portion increases. Therefore, the contact ratio of the entire circumference of the B component with respect to the connection portion between the A component and the B component is preferably 50% or less in terms of low-temperature adhesiveness, and more preferably 30% or less.
[0016]
The excellent low-temperature adhesiveness referred to in the present invention means that the heat-adhesive fiber of the present invention has a thermal bond at a low temperature of 3 to 4 ° C. or lower as compared to a normal round-section composite fiber as shown in FIG. Can be sufficiently achieved, and uniform fusion bonding can be performed without causing fusion bonding unevenness at the fiber bonding point.
As a result, the nonwoven fabric obtained by low-temperature heat treatment using the thermoadhesive conjugate fiber of the present invention has a lot of voids between the fibers and has a very soft feeling. In addition, since the fibers are reliably heat-sealed at the fiber contacts, the nonwoven fabric improves the bonding strength as a fiber assembly and has high strength.
On the other hand, as shown in FIG. 5, a core-sheath composite fiber having a general round cross-sectional structure requires a higher temperature than the composite fiber of the present invention in order to sufficiently melt the entire sheath component. When heat treatment is performed under such conditions, the strength by heat fusion is improved, but the core component also approaches the fusion temperature, so that the entire fiber is fused.
As a result, the bulk is inevitably lost, and the texture (soft touch) of the nonwoven fabric is impaired.
[0017]
Moreover, since the thermoadhesive conjugate fiber of the present invention has a multileaf structure in which strands extending radially outward from the center portion are branched, reflected light in which incident light is scattered can be seen in the field of view.
Therefore, when the heat-adhesive conjugate fiber of the present invention is used as a fabric such as a nonwoven fabric or a woven or knitted fabric, a so-called see-through preventing effect is exhibited in which the color below the fabric is difficult to see. That is, it is excellent in concealment.
[0018]
In order to obtain the heat-adhesive conjugate fiber of the present invention, in the case of short fibers, the above-described resins A and B are spun by a known composite spinning method using a spinneret plate represented by the above-mentioned fiber cross section. At this time, the spinning MFR is adjusted by changing the extrusion temperatures of the A and B components to set the contact ratio between the branching portion and the connecting portion. Thereafter, it is stretched to give crimps. The A and B components constituting the composite fiber preferably have a composite weight ratio in the range of A component / B component = 20/80 to 80/20% by weight. When the component B is less than 20%, the thermal adhesiveness of the resulting fiber is lowered, and it is difficult for a nonwoven fabric using the fiber to obtain sufficient tensile strength and low-temperature adhesiveness. On the other hand, if the B component exceeds 80%, the thermal adhesiveness of the fibers is sufficient, but the thermal shrinkage of the fibers increases, and the dimensional stability when obtaining a nonwoven fabric tends to be lowered. It is preferable that the fineness of the composite fiber is 0.5 to 10.0 d / f and the number of crimps is about 3 to 60/25 mm because of good card passage.
On the other hand, as a representative of long fibers, the above-mentioned resins A and B can be produced by a known spunbond method using a spinneret plate represented by the above-mentioned fiber cross section. At this time, the spinning MFR is adjusted by changing the extrusion temperatures of the A and B components to set the contact ratio between the branching portion and the connecting portion. The A and B components constituting the composite fiber preferably have a composite weight ratio in the range of A component / B component = 20/80 to 80/20% by weight. When the component B is less than 20%, the thermal adhesiveness of the resulting fiber is lowered, and it is difficult for a nonwoven fabric using the fiber to obtain sufficient tensile strength and low-temperature adhesiveness. On the other hand, if the B component exceeds 80%, the thermal adhesiveness of the fibers is sufficient, but the thermal shrinkage of the fibers increases, and the dimensional stability when obtaining a nonwoven fabric tends to be lowered. The fineness of the composite fiber is preferably 0.5 to 10.0 d / f. Further, crimping can be given as necessary.
[0019]
The short fiber nonwoven fabric of the present invention can be obtained by a known method in which the above-mentioned composite fiber is made into a web having a desired basis weight using a card machine and is made into a nonwoven fabric by a needle punch method, a suction dryer method, or a hot roll method.
On the other hand, as a representative of the long fiber nonwoven fabric, it can be obtained by a known method for forming a nonwoven fabric by a spunbond method. Such a nonwoven fabric is useful in the field of a surface material of a paper diaper or a sanitary napkin. When this nonwoven fabric is used for paper diapers, sanitary napkins, etc., the single yarn fineness is 0.5 to 10.0 d / f, and the basis weight of the nonwoven fabric is 8 to 50 g / m.2Are preferred, more preferably 10-30 g / m2It is. If the single yarn is less than 0.5 d / f, it is difficult to obtain a stable spinnability at the time of spinning, and it is difficult to obtain a homogeneous web, and if it exceeds 10.0 d / f, the nonwoven fabric becomes rough, If this is used as a surface material, it becomes difficult to touch, which is not preferable. In addition, the basis weight is 10 g / m2If it is less than 50 g / m, it is too thin and sufficient nonwoven fabric strength cannot be obtained.2However, it is impractical because the nonwoven fabric has a preferable non-woven fabric strength but is uncomfortable and expensive.
[0020]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
In addition, the various physical-property values in the Example described below are measured with the following method.
[0021]
・ Contact ratio
A cross section of the nonwoven fabric is photographed with an electron micrograph, and fibers other than those subjected to thermocompression treatment are observed, and 10 fibers are selected per field of view. The peripheral length of the cross section of the portion where the B component of the low melting point resin connected to the A component of the high melting point resin, which is a branch portion of the irregular cross section, is in contact with the entire cross section of the low melting point resin B component on the same cross section. It is a ratio with the circumference, and the average is the contact ratio per one according to the number of branches, and the average of 10 is shown in Table 1.
Contact ratio (%) = AP/ BT× 100
AP: Perimeter of the portion where the low melting point resin B component is in contact with the high melting point resin A component
BT: Overall circumference of the low melting point resin B component on the same cross section
[0022]
-Cross-sectional shape maintenance characteristics: (short fiber)
50 stretched single yarns were sampled, the fiber cross section was photographed with an optical micrograph, and the shape of the connecting portion between the A component of the high melting point resin and the B component of the low melting point resin having a deformed cross section per field of view was maintained at 90% or more. It was evaluated as excellent, if it was maintained at 80% or more, good if it was 80% or less, and was determined to be unsatisfactory. Table 1 shows the results.
-Cross-sectional shape maintenance characteristics: (long fiber)
The cross section of the nonwoven fabric is photographed with an optical micrograph, the fibers other than those subjected to thermocompression treatment are observed, and the shape of the connecting portion between the A component of the high melting point resin and the B component of the low melting point resin having a deformed cross section per field is 90. % Was maintained as good, 80% or higher as good, and 80% or lower as unacceptable. Excellent was indicated by ○, good by Δ, and improper by ×. Table 1 shows the results.
[0023]
・ Concealment (web whiteness)
10 g of web was sampled and measured with a color difference meter (SM color computer, Suga Test Instruments Co., Ltd.). The greater the numerical value, the higher the concealability. Table 1 shows the results.
・ Concealment (non-woven fabric contrast)
Using a non-woven fabric created in the non-woven fabric strength, place a white tile and a black tile behind the non-woven fabric, measure the brightness with a color difference meter, calculate the light / dark difference (ΔL) from the following formula, the smaller the light / dark difference, High concealment. Table 1 shows the results.
Light / dark difference (△ L) = L* W-L* B
L* W: Lightness when non-woven fabric is layered on white tile
L* B: Brightness when non-woven fabric is stacked on black tile
[0024]
・ Nonwoven fabric strong:
A non-woven fabric machine flow direction (MD) is the length direction, a direction perpendicular to the machine flow direction (CD) is the width direction, a sample piece having a length of 15 cm and a width of 5 cm is prepared using a tensile tester, Tensile strength was measured at a grip interval of 10 cm and a pulling speed of 10 cm / min.
・ Nonwoven fabric texture:
Perform sensory test with 5 panelists and judge that everyone is soft. If 3 or more are judged soft, accept if 3 or more lack softness. It was evaluated as “Excellent”, “Excellent”, “Good” Δ, and “No”.
[0025]
・ Heat sealability:
From the nonwoven fabric used for measuring the strength of the nonwoven fabric, the machine direction of the nonwoven fabric (MD) is the length direction, the direction perpendicular to the machine flow direction (CD) is the width direction, and the length is 7.5 cm and the width 2 Cut out a 5 cm sample piece and stack the tip of the same kind of non-woven fabric by a length of 1 cm, 3 kg / cm2The film is subjected to thermocompression bonding at a predetermined temperature for 1 second under the pressure of, and the peel strength of the heat seal part is measured using a tensile tester at a grip interval of 10 cm and a pulling speed of 10 cm / min.
[0026]
Example 1 and Comparative Example 1
A high-density polyethylene having a density of 0.959 and MI of 13 is used as the B component, and a crystalline polypropylene (homopolymer) having an MFR of 10 is used as the A component. Is set to a target of 20% (Example 1), and a composite spinning apparatus using a spinneret that gives a fiber cross section shown in FIG. 5 (Comparative Example 1) is used to produce a composite weight ratio of 40/60 (B component / A Component), an undrawn yarn having a single yarn fineness of 4 d / f was obtained. Thereafter, the film was stretched 2.4 times with a 95 ° C. hot roll, mechanically crimped with a stuffer box, dried at 90 ° C., and then cut to obtain a 2d × 38 mm composite fiber. Using this composite fiber, a linear pressure was applied using a thermocompression bonding device composed of an embossing roll having a convex area of 24% and a flat metal roll heated to a temperature of 116 ° C. (Example 1) and 120 ° C. (Comparative Example 1). The curd method web is heat-treated under the conditions of 20 kg / cm and speed of 6 m / min, and the basis weight is about 20 g / m.2The nonwoven fabric was made. Furthermore, when this nonwoven fabric was used as a surface material for diapers for adults, Example 1 was excellent in whiteness and touch (soft feeling), strong in nonwoven fabric, and excellent in heat sealability. About 1, the whiteness was inferior, and the nonwoven fabric strength and heat sealability were inferior to Example 1, and the difference of the suitability to an absorbent article was clear.
[0027]
Examples 2-3
A ternary copolymer having an MFR of 15 consisting of a linear low-density polyethylene having a density of 0.918 and MI of 24, consisting of 3% by weight of ethylene, 15% by weight of butene-1 and 92% by weight of propylene. The same method as in Example 1, using the spinneret that gives the fiber cross section shown in FIG. 3 (Example 2) and FIG. 4 (Example 3), with the coalescence as the A component, and setting the contact ratio to a target of 25%. To obtain a 2d × 38 mm composite fiber. Using this composite fiber, a card method using a thermocompression bonding apparatus comprising an embossing roll having a convex area of 24% heated to a temperature of 116 ° C. and a flat metal roll under the conditions of a linear pressure of 20 kg / cm and a speed of 6 m / min. The web is heat treated to a weight of about 20 g / m2The nonwoven fabric was made.
[0028]
Example 4
A high-density polyethylene having a density of 0.959 and MI of 13 is used as the B component, and a crystalline polypropylene (homopolymer) having an MFR of 10 is used as the A component. Was set low, and a 2d × 38 mm composite fiber was obtained in the same manner as in Example 1. In Example 4, a spinneret that gives the same fiber cross section as in Example 1 was used, and the contact ratio of the low-melting point resin was 12% of the entire circumference of the low-melting point resin. Although the improvement of workability is not so much, other characteristics are excellent.
[0029]
Comparative Example 2
A linear polyethylene having a density of 0.918 and MI of 24 is used as a B component, a polyethylene terephthalate having an IV value of 0.49 is used as an A component, and a spinneret that gives the fiber cross section shown in FIG. The target was set to 30%, and a 2d × 38 mm composite fiber was obtained in the same manner as in Example 1. This composite fiber was not subject to evaluation because the A / B component was separated after being stretched.
[0030]
Example 5, Comparative Example 3
A linear medium density polyethylene having a density of 0.935 and MI of 20 is used as B component, and a binary copolymer consisting of 15% by weight of butene-1 and 95% by weight of propylene and having an MFR of 15 is used as A component. 1 using the spinneret that gives the fiber cross section shown in FIG. 1 and using the predetermined fiber cross-section base shown in FIG. 5 (Comparative Example 3) and the contact ratio set to 20% target (Example 5), The composite fiber group discharged from the spinneret is introduced into the air soccer ball and pulled and drawn to obtain a composite long fiber, and then the long fiber group discharged from the air soccer ball is charged by applying the same charge with a charging device. After that, the fibers are opened by colliding with the reflecting plate, and the opened long fiber group is collected as a long fiber web on an endless net-like conveyor provided with a suction device on the back surface. The collected long fiber web is transported while being placed on an endless conveyor and is heated to a temperature of 112 ° C., using a thermocompression bonding device composed of an embossing roll having a convex area of 24% and a flat metal roll, and a linear pressure of 20 kg / heat treatment under conditions of cm and speed of 30 m / min, with a weight per unit of about 20 g / m2The nonwoven fabric was made. Furthermore, when this nonwoven fabric was used as a surface material for diapers for adults, Example 5 was excellent in whiteness and touch (soft feeling), and also excellent in nonwoven fabric strength and heat sealability. Regarding No. 3, the whiteness was inferior, the strength of the nonwoven fabric and the heat sealability were inferior to those of Example 4, and the difference in suitability for absorbent articles was clear.
[0031]
<< Strong nonwoven fabric, nonwoven fabric texture, contrast and heat sealability of nonwoven fabric >>
Evaluated for samples with good (Δ) or better in cross-sectional shape maintenance characteristics Short fiber nonwoven fabric is carded with a roller card machine at a speed of 20 m / min, and each basis weight is about 20 g / m.2The web. Subsequently, it was processed into a nonwoven fabric at a predetermined temperature using an embossing roll having an adhesion area ratio of 24% at the same speed. The respective physical property results are shown in Table 1.
On the other hand, the long fiber nonwoven fabric was manufactured by the spunbond method. Approximately 20g / m2The web was processed into a non-woven fabric at a predetermined temperature using an embossing roll having an adhesion area ratio of 24%. The respective physical property results are shown in Table 1.
[0032]
[Table 1]
Figure 0003900680
In Table 1, pp-1 is homopolypropylene, PO-1 is propylene / butene-1 binary copolymer, PO-2 is propylene / ethylene / butene-1 terpolymer, and PE is polyethylene. PET stands for polyethylene terephthalate.
[0033]
【The invention's effect】
The heat-adhesive conjugate fiber having a modified cross section of the present invention can produce a nonwoven fabric with a strong nonwoven fabric by low-temperature and short-time heat treatment. In addition, the nonwoven fabric using the heat-adhesive conjugate fiber has a soft texture. Moreover, it has excellent concealment properties. Such a nonwoven fabric is useful in fields such as paper diapers and surface materials for sanitary napkins.
[Brief description of the drawings]
FIG. 1 is an illustration of a fiber cross-sectional view of a thermoadhesive conjugate fiber of the present invention.
FIG. 2 is an illustration of a fiber cross-sectional view of the thermoadhesive conjugate fiber of the present invention.
FIG. 3 is an illustration of a fiber cross-sectional view of the thermoadhesive conjugate fiber of the present invention.
FIG. 4 is an illustration of a fiber cross-sectional view of the thermoadhesive conjugate fiber of the present invention.
FIG. 5 is a cross-sectional view of a heat-adhesive conjugate fiber of a comparative example.
[Explanation of symbols]
1 High melting point resin part (component A)
2 Low melting point resin part (component B)

Claims (7)

結晶性ポリプロピレンまたはプロピレン系の共重合体から選ばれた少なくとも1種の高融点樹脂のA成分と、これより低融点で密度が0.910〜0.970g/cm3であるポリエチレン系の低融点樹脂のB成分とから形成された熱接着性複合繊維であって、熱接着性複合繊維を構成するA、B成分は、複合重量比がA成分/B成分=20/80〜80/20重量%であり、該複合繊維の断面は高融点樹脂のA成分が中央部から外側に向かってストランドが放射状に伸びる分岐部を形成し、かつ低融点樹脂のB成分が該A成分の分岐部と接続して接続部を形成し、高融点樹脂と接続する低融点樹脂の接触割合が、該低融点樹脂の全周長の10〜50%である異形構造であることを特徴とする熱接着性複合繊維。A component of at least one high-melting resin selected from crystalline polypropylene or a propylene-based copolymer, and a low melting point of polyethylene having a lower melting point and a density of 0.910 to 0.970 g / cm 3 A heat-adhesive conjugate fiber formed from the B component of the resin, and the components A and B constituting the heat-adhesive conjugate fiber have a composite weight ratio of A component / B component = 20/80 to 80/20 weight. The cross-section of the composite fiber is such that the A component of the high melting point resin forms a branched portion in which the strands extend radially from the center to the outside, and the B component of the low melting point resin is the branched portion of the A component. Thermal adhesiveness characterized by having a deformed structure in which the contact ratio of the low melting point resin that is connected to form a connection portion and is connected to the high melting point resin is 10 to 50% of the entire circumference of the low melting point resin Composite fiber. プロピレン系の共重合体成分が、プロピレン85〜99重量%と、エチレン1〜15重量%の二元系共重合体樹脂である請求項1に記載の熱接着性複合繊維。The heat-adhesive conjugate fiber according to claim 1, wherein the propylene copolymer component is a binary copolymer resin of 85 to 99% by weight of propylene and 1 to 15% by weight of ethylene. プロピレン系の共重合体成分が、プロピレン50〜99重量%と、ブテン−1 1〜50重量%の二元系共重合体樹脂である請求項1に記載の熱接着性複合繊維。The heat-adhesive conjugate fiber according to claim 1, wherein the propylene-based copolymer component is a binary copolymer resin of propylene of 50 to 99% by weight and butene-1 of 1 to 50% by weight. プロピレン系の共重合体成分が、プロピレン84〜98重量%、エチレン1〜10重量%、ブテン−1 1〜15重量%の三元系共重合体樹脂である請求項1に記載の熱接着性複合繊維。The thermal adhesiveness according to claim 1, wherein the propylene copolymer component is a ternary copolymer resin of 84 to 98% by weight of propylene, 1 to 10% by weight of ethylene, and 1 to 15% by weight of butene-1. Composite fiber. 請求項1〜のいずれかに記載の熱接着性複合繊維の繊維交差点が熱接合された短繊維不織布。The short fiber nonwoven fabric by which the fiber intersection of the heat bondable composite fiber in any one of Claims 1-4 was heat-joined. 請求項1〜のいずれか1項に記載の熱接着性複合繊維の繊維交差点が熱接合された長繊維不織布。The long fiber nonwoven fabric by which the fiber intersection of the heat bondable conjugate fiber of any one of Claims 1-4 was heat-joined. 請求項またはのいずれか1項に記載の不織布を少なくとも一部に用いた吸収性物品。The absorbent article which used the nonwoven fabric of any one of Claim 5 or 6 for at least one part.
JP15377198A 1998-05-19 1998-05-19 Thermal adhesive composite fiber, non-woven fabric and absorbent article using the same Expired - Fee Related JP3900680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15377198A JP3900680B2 (en) 1998-05-19 1998-05-19 Thermal adhesive composite fiber, non-woven fabric and absorbent article using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15377198A JP3900680B2 (en) 1998-05-19 1998-05-19 Thermal adhesive composite fiber, non-woven fabric and absorbent article using the same

Publications (2)

Publication Number Publication Date
JPH11323663A JPH11323663A (en) 1999-11-26
JP3900680B2 true JP3900680B2 (en) 2007-04-04

Family

ID=15569787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15377198A Expired - Fee Related JP3900680B2 (en) 1998-05-19 1998-05-19 Thermal adhesive composite fiber, non-woven fabric and absorbent article using the same

Country Status (1)

Country Link
JP (1) JP3900680B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4665364B2 (en) * 2001-09-05 2011-04-06 チッソ株式会社 Heat-fusible composite fiber, and fiber molded body and fiber product using the same
AU2003289457A1 (en) 2002-12-24 2004-07-22 Kao Corporation Hot-melt conjugate fiber
JP5280629B2 (en) * 2006-12-27 2013-09-04 ユニ・チャーム株式会社 Absorbent articles
JP5854458B2 (en) * 2011-09-30 2016-02-09 ユニチカ株式会社 Method for producing polyester long fiber nonwoven fabric
KR101759104B1 (en) 2014-12-26 2017-07-31 도레이케미칼 주식회사 Fiber for clean material, clean materials containing the same and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3261728B2 (en) * 1992-02-18 2002-03-04 チッソ株式会社 Thermal adhesive fiber sheet
JPH0874128A (en) * 1994-07-04 1996-03-19 Chisso Corp Heat-fusible conjugated fiber and nonwoven fabric using the same
JP3097019B2 (en) * 1995-08-07 2000-10-10 チッソ株式会社 Heat-fusible composite fiber and nonwoven fabric using the fiber
JP4068171B2 (en) * 1995-11-21 2008-03-26 チッソ株式会社 Laminated nonwoven fabric and method for producing the same
DE19781925C2 (en) * 1996-08-27 2001-11-08 Chisso Corp Nonwoven fabric and absorbent article using the same
JPH1086256A (en) * 1996-09-13 1998-04-07 Chisso Corp Composite nonwoven fabric and absorbent article using the same
JP3741180B2 (en) * 1997-01-20 2006-02-01 チッソ株式会社 Thermal adhesive composite fiber, nonwoven fabric and absorbent article using the same

Also Published As

Publication number Publication date
JPH11323663A (en) 1999-11-26

Similar Documents

Publication Publication Date Title
KR100453609B1 (en) Heat-fusible conjugate fiber and a nonwoven fabric made therefrom
JP3741180B2 (en) Thermal adhesive composite fiber, nonwoven fabric and absorbent article using the same
EP0691427B1 (en) Hot-melt-adhesive conjugate fibers and a non-woven fabric using the fibers
JP5289459B2 (en) Crimped composite fiber and nonwoven fabric made of the fiber
JP5484564B2 (en) Crimped composite fiber and nonwoven fabric made of the fiber
JP3216813B2 (en) Long fiber nonwoven fabric and absorbent article using the same
JP2001502388A (en) Thermal adhesive composite fiber and nonwoven fabric using the same
JP2001140158A (en) Stretchable composite nonwoven fabric and absorbing article using the same
US5798305A (en) Hot-melt-adhesive conjugate fibers and a non-woven fabric using the fibers
JP4505987B2 (en) Thermal adhesive composite fiber, method for producing the same, and fiber molded body using the same
JP6899453B2 (en) Composite long fiber non-woven fabric using eccentric sheath core type composite fiber on at least one side
JP3900680B2 (en) Thermal adhesive composite fiber, non-woven fabric and absorbent article using the same
JP4433567B2 (en) Latent crimpable conjugate fiber and nonwoven fabric using the same
JP4441987B2 (en) Polyethylene composite fiber and non-woven fabric using the same
JP4352575B2 (en) Thermoplastic composite nonwoven fabric and fiber product using the same
JP4581185B2 (en) Non-woven fabric and fiber product using the same
WO2022004505A1 (en) Surface material for sanitary material and production method therefor
JP4026241B2 (en) Heat-fusible conjugate fiber, nonwoven fabric and absorbent article using the nonwoven fabric
JP2001200463A (en) Nonwoven fabric and fiber article using the same
JP3821256B2 (en) Long fiber nonwoven fabric, method for producing the same, and absorbent article
JP3567892B2 (en) Thermo-adhesive conjugate fiber, non-woven fabric and molded article using the same
JPH11241266A (en) Hook-and-loop fastener female material and its production
JP3528792B2 (en) Thermal adhesive conjugate fiber, method for producing the same, and fiber molded body using the same
JP2002138359A (en) Polyethylene-based conjugate filament nonwoven fabric
JP2001248049A (en) Nonwoven fabric and soft goods using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees