JP2001140158A - Stretchable composite nonwoven fabric and absorbing article using the same - Google Patents

Stretchable composite nonwoven fabric and absorbing article using the same

Info

Publication number
JP2001140158A
JP2001140158A JP31856999A JP31856999A JP2001140158A JP 2001140158 A JP2001140158 A JP 2001140158A JP 31856999 A JP31856999 A JP 31856999A JP 31856999 A JP31856999 A JP 31856999A JP 2001140158 A JP2001140158 A JP 2001140158A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
resin
propylene
weight
thermoplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31856999A
Other languages
Japanese (ja)
Inventor
Mitsuru Kojima
満 小島
Shigenori Fukuda
重則 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP31856999A priority Critical patent/JP2001140158A/en
Publication of JP2001140158A publication Critical patent/JP2001140158A/en
Pending legal-status Critical Current

Links

Landscapes

  • Orthopedics, Nursing, And Contraception (AREA)
  • Laminated Bodies (AREA)
  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonwoven fabric excellent in hand feeling, having high elongation recovering properties and suitable for uses as sanitary goods such as diapers, and the like, and bandages, base fabrics for cataplasm, and the like. SOLUTION: This stretchable composite nonwoven fabric is a laminated nonwoven fabric comprising a nonwoven fabric (I) in which thermoplastic conjugate fibers obtained by using a resin (B) and a resin (A) having a lower melting point than that of the resin (B) are interlaced while expressing three dimensional crimps and a nonwoven fabric (II) comprising thermoplastic fibers obtained by using a resin (A') having a lower melting point than that of the aforesaid resin (A) arranged on one side or both sides of the nonwoven fabric (I). The nonwoven fabric (I) and the nonwoven fabric (II) are partly heat combined by heat fusion of the aforesaid thermoplastic fibers obtained by using the resin (A'), and percentages of elongation recovery at 20% elongation in the longitudinal and lateral directions of the laminated nonwoven fabric are both >=90%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、伸縮性複合化不織
布及びこれを用いた吸収性物品に関する。更に詳しく
は、伸長回復性に富み、かつ風合いと成形性に優れる伸
縮性複合化不織布及びこれを用いた吸収性物品等に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an elastic composite nonwoven fabric and an absorbent article using the same. More specifically, the present invention relates to a stretchable composite nonwoven fabric which is rich in elongation recovery property and excellent in texture and moldability, and an absorbent article using the same.

【0002】[0002]

【従来の技術】長繊維を構成繊維とするスパンボンド不
織布は、短繊維を構成繊維とする短繊維不織布と比べ
て、不織布強力が高く且つ生産性に優れるため、その価
格を安価にすることができ、各種用途に用いられてい
る。中でも使い捨てオムツ等、衛生材料の表面材として
利用価値が高い。
2. Description of the Related Art Spunbonded nonwoven fabrics using long fibers as constituent fibers have higher nonwoven fabric strength and higher productivity than short fiber nonwoven fabrics containing short fibers as constituent fibers. It can be used for various purposes. Above all, it is highly useful as a surface material for sanitary materials such as disposable diapers.

【0003】しかし、これらスパンボンド不織布は高い
強力を有する反面、用いられるフィラメントが非捲縮で
あるため、短繊維不織布に比べると、嵩高性に劣り、且
つ風合いに問題があった。このため、高級感という点か
ら衛生材料の表面材等に使用される量は、短繊維不織布
に比べ、少ない状態で推移している。
[0003] However, these spunbonded nonwoven fabrics have high strength, but the filaments used are non-crimped, so that they are inferior in bulkiness and texture in comparison with short fiber nonwoven fabrics. For this reason, the amount used for the surface material of the sanitary material and the like has been less in comparison with the short-fiber nonwoven fabric in terms of high-grade feeling.

【0004】一方、嵩高性や風合いに優位とされる短繊
維不織布は、一般的に熱接着性複合繊維をカード工程や
空気流開繊工程によってウェブとした後、熱風加工や熱
圧着加工(エンボス加工)等の加熱処理によって繊維交
絡点を融着することで製作される。特に熱圧着加工は熱
風加工に比べ生産性に優れ、またコスト的にも有利であ
る。しかしながら、最近の傾向として、衛生材料の表面
材に用いられる熱圧着された短繊維不織布には、より柔
らかい風合い(触感)が要求されている。そのため、熱
処理温度を抑えた加工が施されている。しかしながら、
その結果、不織布の接着が不充分となり、不織布強力が
弱く、接着部分が損傷し易くなり、短繊維の端が不織布
表面に突出する、いわゆる毛羽立ちが起こりやすい(耐
摩耗性の低下)。また、熱圧着された短繊維不織布は、
得られる不織布の厚さ(嵩高性)がエンボス凸部の高さ
に規制されてしまい、このため充分に嵩高な不織布が得
られにくかった。
On the other hand, short-fiber nonwoven fabrics, which are considered to be superior in bulkiness and texture, are generally prepared by converting a heat-adhesive conjugate fiber into a web by a carding process or an air-flow opening process, followed by hot air processing or thermocompression processing (embossing). It is manufactured by fusing the fiber entanglement points by heat treatment such as processing. In particular, thermocompression bonding is superior in productivity to hot air processing and is advantageous in cost. However, as a recent trend, a softer texture (tactile sensation) is required for a thermocompression-bonded short fiber nonwoven fabric used for a surface material of a sanitary material. Therefore, processing is performed with the heat treatment temperature suppressed. However,
As a result, the bonding of the nonwoven fabric becomes insufficient, the strength of the nonwoven fabric is weak, the bonded portion is easily damaged, and so-called fluffing, in which the ends of the short fibers protrude from the surface of the nonwoven fabric, is likely to occur (abrasion resistance is reduced). In addition, the hot-pressed short fiber non-woven fabric is
The thickness (bulkiness) of the obtained nonwoven fabric was restricted by the height of the embossed projections, and it was difficult to obtain a sufficiently bulky nonwoven fabric.

【0005】また、従来の加熱処理によって得られた不
織布は伸長性があっても、伸縮性いわゆる伸長回復性や
嵩高性に劣るものであった。そのため、長繊維を構成繊
維とするスパンボンド不織布と短繊維を構成繊維とする
短繊維不織布の、それぞれの特長を有する不織布の検討
がなされており、特に生産性に有利であるスパンボンド
不織布において、種々の製造方法が提案されている。
[0005] In addition, the nonwoven fabric obtained by the conventional heat treatment is inferior in stretchability, so-called stretch recovery and bulkiness, even though it has stretchability. Therefore, a spunbonded nonwoven fabric having a spunbonded nonwoven fabric having a long fiber as a constituent fiber and a short fiber nonwoven fabric having a short fiber as a constituent fiber have been studied. Various manufacturing methods have been proposed.

【0006】スパンボンド不織布に嵩高性を付与する方
法として、特開平1−148862号公報に、構成繊維
である長繊維に捲縮を与える方法が提案されている。こ
れは、高分子重合体を異形の紡糸孔を持つ紡糸口金から
溶融紡糸し、次いで高速気流で延伸固化する際に、この
長繊維群の一方の側面を冷却処理することで長繊維群に
捲縮を発現させた後、この長繊維群を熱接着し、一体化
させるスパンボンド不織布の製造方法である。この効果
は、長繊維の捲縮によって長繊維間隔の体積が大きくな
って嵩高性が向上するものである。
As a method for imparting bulkiness to a spunbonded nonwoven fabric, Japanese Patent Application Laid-Open No. 1-148862 proposes a method of crimping long fibers which are constituent fibers. This is because a high-molecular polymer is melt-spun from a spinneret having an irregular spinning hole, and then stretched and solidified by a high-speed air stream. This is a method for producing a spunbonded nonwoven fabric in which, after the shrinkage is developed, the long fiber group is thermally bonded and integrated. This effect is that the volume of the long fiber interval is increased by the crimping of the long fiber, and the bulkiness is improved.

【0007】この方法で得られるスパンボンド不織布
は、非捲縮のスパンボンド不織布に比べ、嵩高で柔軟で
あるものの、開繊時に隣接する捲縮性長繊維同士が絡み
合い、開繊が不良となり、良好な地合の不織布が得られ
にくい。また、熱圧着されるため、得られた不織布はエ
ンボス凸部の高さに嵩が規制されてしまい嵩高性につい
ても充分でなかった。
The spunbonded nonwoven fabric obtained by this method is bulky and flexible as compared with a non-crimped spunbonded nonwoven fabric, but adjacent crimped filaments are entangled at the time of opening, resulting in poor opening. It is difficult to obtain a nonwoven fabric of good formation. In addition, the bulk of the obtained nonwoven fabric is regulated by the height of the embossed projections due to thermocompression bonding, and the bulkiness is not sufficient.

【0008】この欠点を補うため、熱収縮の大きい連続
長繊維ウェブの両面に熱収縮の小さい連続長繊維ウェブ
を積層後、熱圧着により一体化し、その後、更に加熱処
理して熱収縮させるスパンボンド不織布の製造方法が特
開平8−176947号公報に提案されている。
In order to make up for this drawback, a continuous filament web having a small heat shrinkage is laminated on both sides of a continuous filament web having a large heat shrinkage, integrated by thermocompression bonding, and then further subjected to a heat treatment to be thermally shrunk. A method for producing a nonwoven fabric has been proposed in Japanese Patent Application Laid-Open No. 8-176947.

【0009】この方法では連続長繊維が非捲縮であるた
め紡糸時の開繊性が良く、熱圧着後に加熱処理して収縮
させるため、不織布はエンボス凸部の高さにその嵩が規
制されないため、嵩高な不織布が得られるが、構成する
長繊維が単一成分の樹脂からなるため、加熱処理して収
縮した不織布は繊維自体が収縮する非捲縮性繊維であ
り、伸長性があっても伸長回復性に劣るという欠点があ
った。また、熱圧着して積層間の固着を行う際、熱収縮
の大きい連続長繊維が収縮しない温度で加工する必要が
あるため、加工温度範囲が狭く、また不織布間の接着強
度が充分満足できるものではなかった。
In this method, the continuous filament is non-crimped, so that the fiber is easily opened at the time of spinning, and is subjected to heat treatment after thermocompression bonding to shrink, so that the bulk of the nonwoven fabric is not restricted by the height of the embossed projections. Therefore, a bulky nonwoven fabric can be obtained, but since the constituting long fibers are made of a single-component resin, the nonwoven fabric shrunk by the heat treatment is a non-crimped fiber in which the fibers themselves shrink, and has an extensibility. Also had a drawback of poor elongation recovery. In addition, when bonding between layers by thermocompression bonding, it is necessary to process at a temperature at which continuous filaments with large heat shrinkage do not shrink, so that the processing temperature range is narrow and the adhesive strength between nonwoven fabrics can be sufficiently satisfied. Was not.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は上記課
題が解消された、伸長回復性と風合いに優れた嵩高な伸
縮性複合化不織布及びそれを用いた吸収性物品を提供す
ることにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a bulky stretch composite nonwoven fabric which is excellent in elongation recoverability and texture and which solves the above problems, and an absorbent article using the same. .

【0011】[0011]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意検討を重ねた結果、以下の構成を採用
することにより所期の目的が達成される見通しを得て、
本発明を完成するに至った。 (1) 樹脂(B)と、樹脂(B)より低い融点を有す
る樹脂(A)を用いて得られた熱可塑性複合長繊維が三
次元捲縮を発現して絡合している不織布(I)と、該不
織布(I)の片面または両面に、前記樹脂(A)より低
い融点を有する樹脂(A’)を用いて得られた熱可塑性
繊維からなる不織布(II)を配した積層不織布であっ
て、不織布(I)と不織布(II)が、樹脂(A’)を用
いて得られた前記熱可塑性繊維の熱溶融によって部分熱
接合されており、該積層不織布の縦方向及び横方向の2
0%伸長時の伸長回復率がいずれも90%以上であるこ
とを特徴とする伸縮性複合化不織布。 (2) 積層不織布の樹脂(A)と樹脂(A’)が、同
一成分系樹脂である前記(1)項記載の伸縮性複合化不
織布。 (3) 樹脂(A)、及び樹脂(A’)が、低密度ポリ
エチレン、直鎖状低密度ポリエチレン、高密度ポリエチ
レン、プロピレン系二元共重合体、及びプロピレン系三
元共重合体から選ばれた少なくとも1種のオレフィン系
樹脂である前記(1)項または前記(2)項記載の伸縮
性複合化不織布。 (4) 不織布(I)が、サイドバイサイド型、または
偏心鞘芯型の繊維断面を有する熱可塑性複合長繊維から
なる不織布である前記(1)〜(3)項のいずれか1項
記載の伸縮性複合化不織布。 (5) プロピレン系二元共重合体が、プロピレン単位
を85〜99重量%、エチレン単位を1〜15重量%含
むプロピレン/エチレン二元共重合体である前記(3)
項記載の伸縮性複合化不織布。 (6) プロピレン系二元共重合体が、プロピレン単位
を50〜99重量%、ブテン−1単位を1〜50重量%
含むプロピレン/ブテン−1二元共重合体である前記
(3)項記載の伸縮性複合化不織布。 (7) プロピレン系三元共重合体が、該三元共重合体
の重量基準で、プロピレン単位を84〜98重量%、エ
チレン単位を1〜10重量%、ブテン−1単位を1〜1
5重量%含むプロピレン/エチレン/ブテン−1三元共
重合体である前記(3)項記載の伸縮性複合化不織布。 (8) 前記(1)〜(7)項のいずれか1項記載の伸
縮性複合化不織布を用いた吸収性物品。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above-mentioned problems, and as a result, have obtained a prospect that the intended purpose will be achieved by adopting the following structure.
The present invention has been completed. (1) A nonwoven fabric (I) in which a thermoplastic composite filament obtained by using a resin (B) and a resin (A) having a lower melting point than the resin (B) expresses three-dimensional crimp and is entangled ) And a nonwoven fabric (II) composed of a thermoplastic fiber obtained by using a resin (A ′) having a lower melting point than the resin (A) on one or both surfaces of the nonwoven fabric (I). In addition, the nonwoven fabric (I) and the nonwoven fabric (II) are partially thermally bonded by the thermal fusion of the thermoplastic fiber obtained using the resin (A ′), and the laminated nonwoven fabric in the longitudinal direction and the transverse direction is 2
An elastic composite nonwoven fabric, wherein each of the elongation recovery rates at 0% elongation is 90% or more. (2) The elastic composite nonwoven fabric according to the above (1), wherein the resin (A) and the resin (A ′) of the laminated nonwoven fabric are the same component resin. (3) The resin (A) and the resin (A ′) are selected from low-density polyethylene, linear low-density polyethylene, high-density polyethylene, propylene-based binary copolymer, and propylene-based terpolymer. The stretchable composite nonwoven fabric according to the above (1) or (2), wherein the nonwoven fabric is at least one kind of olefin resin. (4) The stretchability according to any one of the above (1) to (3), wherein the nonwoven fabric (I) is a nonwoven fabric made of a thermoplastic composite filament having a side-by-side type or eccentric sheath-core type fiber cross section. Composite nonwoven fabric. (5) The above-mentioned (3), wherein the propylene-based binary copolymer is a propylene / ethylene binary copolymer containing 85 to 99% by weight of propylene units and 1 to 15% by weight of ethylene units.
10. The elastic composite nonwoven fabric according to item 7. (6) The propylene-based binary copolymer has a propylene unit content of 50 to 99% by weight and a butene-1 unit content of 1 to 50% by weight.
The stretchable composite nonwoven fabric according to the above (3), which is a propylene / butene-1 binary copolymer containing: (7) The propylene-based terpolymer is composed of 84 to 98% by weight of a propylene unit, 1 to 10% by weight of an ethylene unit, and 1 to 1% by weight of a butene-1 unit, based on the weight of the terpolymer.
The elastic composite nonwoven fabric according to the above (3), which is a propylene / ethylene / butene-1 terpolymer containing 5% by weight. (8) An absorbent article using the stretchable composite nonwoven fabric according to any one of (1) to (7).

【0012】[0012]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明の伸縮性複合化不織布は、潜在捲縮性を有する熱
高収縮性の熱可塑性複合長繊維からなる不織布(I)
と、その片面または両面に熱低収縮性の熱可塑性繊維か
らなる不織布(II)が積層され、両者を熱圧着により部
分熱接合され、積層一体化した後、更に不織布(I)の
捲縮温度で加熱処理を行うことにより、前記不織布
(I)を構成している潜在捲縮性を持つ熱可塑性複合長
繊維が立体的な三次元捲縮を発現して絡合している伸縮
性複合化不織布である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The stretchable composite nonwoven fabric of the present invention is a nonwoven fabric (I) comprising a heat-shrinkable thermoplastic composite filament having latent crimpability.
And a nonwoven fabric (II) made of a thermoplastic fiber with low heat shrinkage is laminated on one or both surfaces thereof, and the two are partially heat-bonded by thermocompression bonding, and after laminating and integrating, the crimp temperature of the nonwoven fabric (I) is further increased. By heat treatment, the thermoplastic composite continuous fiber having latent crimpability constituting the nonwoven fabric (I) exhibits a three-dimensional three-dimensional crimp and is intertwined. It is a non-woven fabric.

【0013】更に詳しくは本発明の伸縮性複合化不織布
は、樹脂(A)と樹脂(B)とで構成された熱可塑性複
合長繊維が三次元捲縮を発現して絡合している不織布
(I)と該不織布(I)の片面または両面に、前記樹脂
(A)より低い融点を有する樹脂(A’)を用いて得ら
れた熱可塑性繊維からなる不織布(II)を配した積層不
織布であって、不織布(I)と不織布(II)が、樹脂
(A’)を用いて得られた前記熱可塑性繊維の熱溶融に
よって部分熱接合されており、積層不織布の縦方向及び
横方向の20%伸長時の伸長回復率がいずれも90%以
上を有している。
More specifically, the stretchable composite nonwoven fabric of the present invention is a nonwoven fabric in which thermoplastic composite filaments composed of a resin (A) and a resin (B) exhibit three-dimensional crimp and are entangled. A laminated nonwoven fabric comprising (I) and, on one or both sides of the nonwoven fabric (I), a nonwoven fabric (II) composed of a thermoplastic fiber obtained by using a resin (A ′) having a lower melting point than the resin (A). Wherein the non-woven fabric (I) and the non-woven fabric (II) are partially thermally bonded by thermal fusion of the thermoplastic fiber obtained using the resin (A ′), Each of the elongation recovery rates at 20% elongation is 90% or more.

【0014】つまり、不織布(I)を構成している熱可
塑性複合長繊維には、潜在捲縮性を有する熱高収縮性の
複合長繊維を使用し、一方の不織布(II)を構成してい
る熱可塑性繊維には、前記複合繊維より熱低収縮性の繊
維を使用する。この不織布(I)の片面または両面に不
織布(II)を積層させて、両者を不織布(II)の熱可塑
性繊維を構成する樹脂(A’)の熱溶融によって部分熱
圧着して接合一体化している。その後、不織布(I)を
構成している熱可塑性複合長繊維に加熱処理を施すこと
により熱収縮させて捲縮を発現させる。この場合、熱可
塑性複合長繊維と熱可塑性繊維の収縮差が大きい程、立
体構造を形成し、かつ伸長回復性に優れる不織布が得ら
れる。また、熱可塑性複合長繊維に捲縮を発現させる温
度、すなわち捲縮温度には該熱可塑性複合長繊維を構成
する樹脂(A)の融点より5〜30℃低い温度が用いら
れる。この加熱処理により熱可塑性複合長繊維には三次
元捲縮が発現して見掛け長さが収縮する。つまり、不織
布(I)を構成している熱可塑性複合長繊維の熱収縮応
力により不織布(II)も引きずられて表面外観は緩やか
なウェーブ状態(場合によってはクレープ状)を有する
ようになる。この際、三次元捲縮を発現した熱可塑性複
合長繊維は、長繊維不織布で構成されているため、三次
元捲縮発現による繊維の脱落、いわゆる素抜けがなく、
また不織布強力が高くなる。
That is, as the thermoplastic conjugate continuous fiber constituting the nonwoven fabric (I), a heat-shrinkable conjugate continuous fiber having latent crimpability is used, and one nonwoven fabric (II) is formed. As the thermoplastic fiber, a fiber having a lower heat shrinkage than the conjugate fiber is used. The nonwoven fabric (II) is laminated on one or both sides of the nonwoven fabric (I), and both are partially thermocompression bonded by heat melting of the resin (A ') constituting the thermoplastic fibers of the nonwoven fabric (II) and joined and integrated. I have. Thereafter, the thermoplastic conjugate long fiber constituting the nonwoven fabric (I) is subjected to a heat treatment to be thermally shrunk to exhibit crimp. In this case, the larger the difference in shrinkage between the thermoplastic conjugate long fibers and the thermoplastic fibers, the more the non-woven fabric is formed, which has a three-dimensional structure and is excellent in elongation recovery. The temperature at which the thermoplastic composite filaments exhibit crimp, ie, the crimping temperature, is 5 to 30 ° C. lower than the melting point of the resin (A) constituting the thermoplastic composite filaments. By this heat treatment, a three-dimensional crimp develops in the thermoplastic composite filament, and the apparent length shrinks. In other words, the nonwoven fabric (II) is also dragged by the heat shrinkage stress of the thermoplastic composite filament constituting the nonwoven fabric (I), and the surface appearance has a gentle wave state (in some cases, crepe shape). At this time, the thermoplastic composite filaments that have developed three-dimensional crimps are made of a long-fiber nonwoven fabric, so that the fibers do not fall off due to the three-dimensional crimps, so-called pull-out,
Also, the strength of the nonwoven fabric increases.

【0015】本発明の伸縮性複合化不織布は嵩高な立体
構造を有するので、極めてソフトな風合いを有し、かつ
縦方向及び横方向のいずれも20%伸長時の伸長回復率
が90%以上という優れた性能を有するのである。この
伸長回復率90%以上ということは、本発明の伸縮性複
合化不織布を例えばオムツ等の吸収性物品や包帯、ハッ
プ材の基布等の二次製品として使用した場合、優れた風
合いが付与されると同時に着用者の人間工学的見地に立
って考えたとき、着用時の***移動時にも無理なく伸縮
し、追従できるため、着用者に不快感を与えることがな
い。
Since the stretchable composite nonwoven fabric of the present invention has a bulky three-dimensional structure, it has an extremely soft feel and an elongation recovery rate of 90% or more when stretched by 20% in both the vertical and horizontal directions. It has excellent performance. The elongation recovery rate of 90% or more means that when the stretchable composite nonwoven fabric of the present invention is used as a secondary product such as an absorbent article such as a diaper, a bandage, or a base fabric of a haptic material, an excellent texture is imparted. At the same time, when thinking from the ergonomic point of view of the wearer, it can be easily extended and contracted even when the body moves while wearing, so that the wearer does not feel uncomfortable.

【0016】本発明の伸縮性複合化不織布において、不
織布(I)と不織布(II)を一体化する方法として熱圧
着加工が好ましい。熱圧着加工は熱風加工に比べ、熱と
圧力による加工方法であるため、接着する樹脂(A’)
の融点より低い温度で加工できる利点がある。すなわ
ち、潜在捲縮を有する熱可塑性複合長繊維が熱圧着加工
により積層一体化される際、熱圧着時の熱により収縮作
用が発生しないため好適に用いられる。なお、通常、熱
圧着加工の条件は、樹脂(A’)の軟化点以上の熱圧着
加工温度、10〜100N/mmの線圧が適宜選択され
る。また、熱圧着する融着区域の面積は捲縮処理前の不
織布面積に対し、4〜30%の範囲が好ましく、より好
ましくは5〜25%である。融着区域の面積が4%未満
では不織布積層間の層間剥離が生ずる傾向にあり、30
%を大幅に越えると捲縮作用を阻害し、嵩高性を抑える
傾向となる。
In the stretch composite nonwoven fabric of the present invention, thermocompression bonding is preferred as a method for integrating the nonwoven fabric (I) and the nonwoven fabric (II). Thermo-compression processing is a processing method using heat and pressure compared to hot-air processing, so the resin to be bonded (A ')
There is an advantage that processing can be performed at a temperature lower than the melting point of That is, when thermoplastic composite filaments having latent crimps are laminated and integrated by thermocompression bonding, the fibers are preferably used because no shrinkage action occurs due to heat during thermocompression bonding. In addition, usually, as the conditions of the thermocompression bonding, a thermocompression bonding temperature equal to or higher than the softening point of the resin (A ′) and a linear pressure of 10 to 100 N / mm are appropriately selected. Further, the area of the fusion bonding area for thermocompression bonding is preferably in the range of 4 to 30%, more preferably 5 to 25%, based on the area of the nonwoven fabric before crimping. If the area of the fusion zone is less than 4%, delamination between nonwoven fabric laminations tends to occur, and
% Significantly exceeds the crimping action and tends to suppress bulkiness.

【0017】本発明において不織布(I)の樹脂(A)
が、不織布(II)の樹脂(A’)より融点が高い場合、
樹脂(A’)を接着成分として熱圧着により溶着するこ
とができ、不織布(I)の収縮作用を制御し、更には積
層間の部分熱接合が強固になり、層間剥離を制御でき
る。しかし、逆に樹脂(A’)の融点が樹脂(A)より
高い場合、樹脂(A’)を熱圧着する際に加熱加工の熱
により不織布(I)が収縮を起こすことや、長繊維同士
が融着または接着を起こし、結果、寸法安定性が損なわ
れ、更に捲縮処理時に熱可塑性複合繊維が充分に立体捲
縮を発現し難くなる。樹脂(A)と樹脂(A’)との組
合わせとしては、融点差を有する同一成分系樹脂が更に
積層間の剥離防止に有利である。
In the present invention, the resin (A) of the nonwoven fabric (I)
However, when the melting point is higher than the resin (A ') of the nonwoven fabric (II),
The resin (A ′) can be welded by thermocompression bonding as an adhesive component, controlling the shrinkage action of the nonwoven fabric (I), further strengthening the partial thermal bonding between the laminations, and controlling delamination. However, if the melting point of the resin (A ′) is higher than that of the resin (A), the nonwoven fabric (I) may contract due to the heat of the heat processing when the resin (A ′) is thermocompressed, Causes fusion or adhesion, and as a result, dimensional stability is impaired, and furthermore, it becomes difficult for the thermoplastic conjugate fiber to sufficiently exhibit three-dimensional crimping during crimping. As the combination of the resin (A) and the resin (A ′), resins of the same component having a difference in melting point are more advantageous for preventing separation between laminations.

【0018】本発明に用いられる樹脂(A)及び樹脂
(A’)としては、通常工業的に利用されているポリエ
チレン樹脂が好ましく用いられ、密度が0.910〜
0.925g/cm3の低密度ポリエチレン、密度が
0.926〜0.940g/cm3の直鎖状低密度ポリ
エチレン、密度が0.941〜0.980g/cm3
高密度ポリエチレンが例示できる。メルトフローレート
(MI:JIS K7210表1中の条件4に準拠して
測定した値)は2〜100g/10分の範囲が好まし
い。その中から熱可塑性複合長繊維の樹脂(A)と、こ
れより低い融点を有する樹脂(A’)とを任意で選ぶこ
とができる。なお、樹脂(A)と樹脂(A’)の融点差
は、3℃以上が好ましく、より好ましくは5℃以上であ
る。
As the resin (A) and the resin (A ') used in the present invention, polyethylene resins generally used industrially are preferably used and have a density of 0.910 to 0.910.
Low density polyethylene 0.925 g / cm 3, density of 0.926~0.940g / cm 3 linear low-density polyethylene, density can be exemplified high density polyethylene 0.941~0.980g / cm 3 . The melt flow rate (MI: a value measured according to Condition 4 in JIS K7210 Table 1) is preferably in a range of 2 to 100 g / 10 minutes. Resin (A) of thermoplastic composite long fiber and resin (A ') having a lower melting point than this can be arbitrarily selected from them. The difference between the melting points of the resin (A) and the resin (A ′) is preferably 3 ° C. or more, more preferably 5 ° C. or more.

【0019】本発明において樹脂(A)、及び樹脂
(A’)に用いられるプロピレン系二元共重合体、及び
プロピレン系三元共重合体とは、プロピレンを主成分と
し、それと少量のエチレン、ブテン−1、ヘキサン−
1、オクテン−1、若しくは4−メチルぺンテン−1等
のαオレフィンとの結晶性共重合体であって、メルトフ
ローレート(MFR:JIS K7210 表1中の条
件14に準拠して測定した値)が3〜50g/10分、
融点が120〜158℃の範囲が好適に用いられる。具
体例としては、プロピレン単位を99〜85重量%、エ
チレン単位を1〜15重量%含むプロピレンを主体とす
るプロピレン/エチレン二元共重合体、プロピレン単位
を99〜50重量%、ブテン−1単位を1〜50重量%
含むプロピレンを主体とするプロピレン/ブテン−1二
元共重合体、あるいは三元共重合体の重量基準でプロピ
レン単位を84〜98重量%、エチレン単位を1〜10
重量%、ブテン−1単位を1〜15重量%含むプロピレ
ン/エチレン/ブテン−1三元共重合体が挙げられる。
その中から樹脂(A)と、これよりも、低い融点を有す
る樹脂(A’)とを任意で選ぶことができる。前記樹脂
(A)と樹脂(A’)の融点差は3℃以上が好ましく、
より好ましくは5℃以上である。
In the present invention, the propylene-based binary copolymer and propylene-based terpolymer used for the resin (A) and the resin (A ') are mainly composed of propylene and a small amount of ethylene, Butene-1, hexane-
A crystalline copolymer with an α-olefin such as 1, octene-1, or 4-methylpentene-1, and has a melt flow rate (MFR: JIS K7210, a value measured according to condition 14 in Table 1). ) Is 3 to 50 g / 10 minutes,
A melting point in the range of 120 to 158 ° C is preferably used. Specific examples thereof include a propylene / ethylene binary copolymer mainly composed of propylene containing 99 to 85% by weight of a propylene unit and 1 to 15% by weight of an ethylene unit, 99 to 50% by weight of a propylene unit, and 1 unit of butene. 1 to 50% by weight
Propylene / butene-1 binary copolymer containing propylene as a main component, or 84 to 98% by weight of propylene unit and 1 to 10% of ethylene unit based on the weight of terpolymer.
And a propylene / ethylene / butene-1 terpolymer containing 1 to 15% by weight of butene-1 unit.
Resin (A) and resin (A ′) having a lower melting point than this can be arbitrarily selected from them. The melting point difference between the resin (A) and the resin (A ′) is preferably 3 ° C. or more,
It is more preferably at least 5 ° C.

【0020】本発明に用いられる熱可塑性複合長繊維を
構成する樹脂(B)は前記樹脂(A)より、少なくとも
10℃以上高い融点を有する熱可塑性樹脂を任意で選ぶ
ことができる。好ましくはホモポリプロピレン、若しく
はプロピレンを主成分とし、それと少量のエチレン、ブ
テン−1、ヘキサン−1、オクテン−1、若しくは4−
メチルぺンテン−1等のαオレフィンとの結晶性共重合
体であって、MFRが2〜150g/10分、融点が1
30〜158℃のものが有用である。
As the resin (B) constituting the thermoplastic conjugate long fibers used in the present invention, a thermoplastic resin having a melting point higher by at least 10 ° C. than that of the resin (A) can be arbitrarily selected. Preferably, the main component is homopolypropylene or propylene, and a small amount of ethylene, butene-1, hexane-1, octene-1, or 4-
A crystalline copolymer with an α-olefin such as methylpentene-1 having an MFR of 2 to 150 g / 10 min and a melting point of 1
Those at 30 to 158 ° C are useful.

【0021】本発明に用いられる熱可塑性複合長繊維は
潜在捲縮性の長繊維であり、スパンボンド法により好適
に製造されうる。潜在捲縮を持つ熱可塑性複合長繊維と
しては、具体的には、熱収縮率の異なる樹脂(A)と樹
脂(B)からなる熱可塑性複合長繊維が挙げられる。該
複合長繊維の構造は、融点が10℃以上異なる2種の熱
可塑性樹脂をサイドバイサイド型、または、樹脂(A)
を鞘成分とする偏心鞘芯型に配した複合長繊維であり、
樹脂(A)の融点以下、特に樹脂(A)の融点より5〜
30℃低い温度範囲内の温度で加熱処理(捲縮処理)を
行うことにより、立体的な三次元捲縮を発現させること
ができる。本発明では、前記温度範囲を捲縮温度とし
た。
The thermoplastic conjugate long fibers used in the present invention are latently crimped long fibers, and can be suitably produced by a spun bond method. Specific examples of the thermoplastic conjugate long fibers having latent crimp include thermoplastic conjugate long fibers composed of a resin (A) and a resin (B) having different heat shrinkage rates. The structure of the composite long fiber is obtained by combining two types of thermoplastic resins having melting points different by 10 ° C. or more in a side-by-side type or a resin (A).
Is a composite long fiber arranged in an eccentric sheath core type having a sheath component,
The melting point of the resin (A) is lower than the melting point of the resin (A).
By performing the heat treatment (crimping treatment) at a temperature within a temperature range lower by 30 ° C., a three-dimensional three-dimensional crimp can be developed. In the present invention, the above temperature range is defined as a crimp temperature.

【0022】本発明において不織布(I)の熱可塑性複
合長繊維を得るには、前述の樹脂(A)、樹脂(B)を
サイドバイサイド型、偏心鞘芯型の断面となる紡糸口金
を用い、公知のスパンボンド法により製造することがで
きる。この際、サイドバイサイド型の紡糸口金の場合、
樹脂(A)及び樹脂(B)の押出温度(紡糸温度)を変
更することで、樹脂(A)及び樹脂(B)の紡糸メルト
フローレートを調整して、樹脂(A)と樹脂(B)との
繊維断面の捲率を設定する。複合長繊維を構成する樹脂
(A)及び樹脂(B)の比率は、その重量比が、樹脂
(A)/樹脂(B)=20/80〜80/20重量%の
範囲が好ましく、より好ましくは40/60〜60/4
0重量%である。樹脂(A)が20%未満では捲縮処理
を行った際、立体捲縮が発現し難く、伸張回復性が乏し
くなる。また、樹脂(A)が80%を超すと、熱圧着時
に収縮が起こり、寸法安定性が低下する傾向になる。熱
可塑性複合長繊維の繊度は、0.55〜11dtexの
範囲が好ましく、より好ましくは0.55〜6dtex
である。不織布(I)の目付は5〜40g/m2の範囲
が好ましく、より好ましくは8〜30g/m2である。
単糸繊度が0.55dtex未満では、紡糸時に安定し
た可紡性が得られ難く、さらには均一な地合を得ること
が困難となる。一方、11dtexを超えると不織布の
肌触りが著しく悪くなる傾向になる。また、目付が5g
/m2未満では充分な不織布強力を得られず、40g/
2を超えると不織布強力は充分であるものの、肌触り
が悪くなる傾向になる。
In the present invention, in order to obtain the thermoplastic conjugate long fibers of the non-woven fabric (I), the resin (A) and the resin (B) are prepared by using a spinneret having a cross section of a side-by-side type or an eccentric sheath-core type. Can be manufactured by the spun bond method. At this time, in the case of a side-by-side spinneret,
By changing the extrusion temperature (spinning temperature) of the resin (A) and the resin (B), the spinning melt flow rate of the resin (A) and the resin (B) is adjusted, and the resin (A) and the resin (B) are adjusted. Set the winding rate of the fiber cross section. The weight ratio of the resin (A) and the resin (B) constituting the composite long fiber is preferably in the range of resin (A) / resin (B) = 20/80 to 80/20% by weight, more preferably. Is 40 / 60-60 / 4
0% by weight. If the resin (A) is less than 20%, when crimping is performed, three-dimensional crimping is difficult to occur, and the stretch recovery is poor. When the resin (A) exceeds 80%, shrinkage occurs during thermocompression bonding, and the dimensional stability tends to decrease. The fineness of the thermoplastic composite filament is preferably in the range of 0.55 to 11 dtex, more preferably 0.55 to 6 dtex.
It is. Basis weight of the nonwoven fabric (I) is preferably in the range of 5 to 40 g / m 2, more preferably from 8~30g / m 2.
If the single yarn fineness is less than 0.55 dtex, it is difficult to obtain stable spinnability at the time of spinning, and it is difficult to obtain a uniform formation. On the other hand, when it exceeds 11 dtex, the touch of the nonwoven fabric tends to be significantly deteriorated. Also, the basis weight is 5g
/ M 2 , a sufficient strength of the nonwoven fabric cannot be obtained.
Although it exceeds m 2 nonwoven powerful is sufficient, it tends to feel deteriorates.

【0023】本発明に用いられる不織布(II)を構成す
る熱可塑性繊維としては、樹脂(A)の融点未満の融点
を有している樹脂(A’)を用いて得られた熱可塑性繊
維であれば、どのような繊維構成であっても構わない。
例えば、短繊維や長繊維であってもよく、また、繊維の
樹脂構成は単一繊維や複合繊維でもよい。繊維構成が複
合繊維の場合、前述の熱可塑性複合長繊維と同様の樹脂
構成でもよい。さらに樹脂(A’)が、樹脂(A)と同
一成分系樹脂であれば不織布(I)と不織布(II)との
不織布積層間の固着がより強くなり非常に好ましい。ま
た、不織布(II)の目付は、積層する不織布(I)との
目付比(不織布(II)の目付/不織布(I)の目付)
で、0.2〜4となることが好ましい。特に好ましくは
0.3〜3である。目付比が4を越えると捲縮を発現さ
せるために、加熱処理を行った際、不織布(II)によ
り、不織布(I)の立体捲縮が発現し難くなる。
The thermoplastic fiber constituting the nonwoven fabric (II) used in the present invention is a thermoplastic fiber obtained by using a resin (A ') having a melting point lower than that of the resin (A). Any fiber configuration may be used.
For example, short fibers or long fibers may be used, and the resin composition of the fibers may be single fibers or composite fibers. When the fiber structure is a conjugate fiber, the resin structure may be the same as the thermoplastic conjugate long fiber described above. Further, if the resin (A ′) is the same component resin as the resin (A), the adhesion between the nonwoven fabric laminates of the nonwoven fabric (I) and the nonwoven fabric (II) becomes stronger, which is very preferable. The basis weight of the nonwoven fabric (II) is the basis weight of the nonwoven fabric (I) to be laminated (the basis weight of the nonwoven fabric (II) / the basis weight of the nonwoven fabric (I)).
Is preferably 0.2 to 4. Particularly preferably, it is 0.3 to 3. If the basis weight exceeds 4, in order to develop crimping, non-woven fabric (II) makes it difficult to develop three-dimensional crimping of nonwoven fabric (I) when heat treatment is performed.

【0024】本発明で用いられる樹脂(A)、樹脂
(A’)、及び樹脂(B)の熱可塑性樹脂には、本効果
を妨げない範囲内でさらに酸化防止剤、光安定剤、紫外
線吸収剤、中和剤、造核剤、エポキシ安定剤、滑材、抗
菌剤、難燃剤、帯電防止剤、顔料、可塑剤、及び親水剤
等を適宜必要に応じて添加しても良い。
The thermoplastic resins (A), (A ') and (B) used in the present invention further include an antioxidant, a light stabilizer and an ultraviolet absorber as long as the effects are not impaired. An agent, a neutralizing agent, a nucleating agent, an epoxy stabilizer, a lubricant, an antibacterial agent, a flame retardant, an antistatic agent, a pigment, a plasticizer, a hydrophilic agent, and the like may be appropriately added as necessary.

【0025】本発明の伸縮性複合化不織布は嵩高で風合
いに優れ、更に高い伸長回復性を有していて、オムツ等
の衛生材料及び包帯、ハップ材基布等の用途に好適な不
織布を提供できる。また、その他ワイパー、ワイビング
クロスとしても用いることができる。このとき、不織布
(I)側を表面材として用いることで風合いが良好とな
り好ましい。
The stretchable composite nonwoven fabric of the present invention is bulky, has excellent texture, and has a high elongation recovery property, and provides a nonwoven fabric suitable for sanitary materials such as diapers, bandages, haptic base fabrics and the like. it can. In addition, it can be used as a wiper and a wiping cloth. At this time, it is preferable to use the nonwoven fabric (I) side as a surface material because the texture is good.

【0026】[0026]

【実施例】以下、本発明を実施例及び比較例によって詳
細に説明するが、本発明はこれによってなんら限定され
るものではない。なお実施例、比較例における用語と物
性の測定方法は以下の通りである。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. The terms used in the examples and comparative examples and methods for measuring physical properties are as follows.

【0027】(1)メルトフローレート MFR(g/10分):JIS K7210の表1の条
件14に準拠して測定。 MI (g/10分):JIS K7210の表1の条
件4に準拠して測定。 樹脂、樹脂等の熱可塑性樹脂のメルトフローレートだけ
でなく、紡糸により熱履歴を受けた前記熱可塑性樹脂の
メルトフローレートの測定も、上記方法により行う。な
お、プロピレンを主成分とする重合体は前記MFRの条
件で測定を行い、ポリエチレン系樹脂は前記MIの条件
で測定を行う。
(1) Melt flow rate MFR (g / 10 min): Measured according to condition 14 of Table 1 of JIS K7210. MI (g / 10 min): Measured according to condition 4 in Table 1 of JIS K7210. The above method is used to measure not only the melt flow rate of a thermoplastic resin such as a resin and a resin, but also the melt flow rate of the thermoplastic resin that has undergone heat history by spinning. The measurement of the polymer containing propylene as a main component is performed under the above MFR conditions, and the measurement of the polyethylene resin is performed under the above MI conditions.

【0028】(2)熱可塑性樹脂の融点 MP(℃):JIS K7122に準拠して測定。(2) Melting point of thermoplastic resin MP (° C.): Measured according to JIS K7122.

【0029】(3)不織布の寸法安定率(寸法安定性) 熱圧着される前のウェブ(繊維の集合体)の幅(A1)
と熱圧着後の不織布の幅(A2)とから次式により算出
した。 寸法安定率(%)={(A1−A2)/A1}×100 なお上記式で求められた寸法安定率の数値は小さいほど
寸法安定性に優れていることを示している。熱圧着は表
1記載の熱圧着温度条件で行った。
(3) Dimensional stability of nonwoven fabric (dimensional stability) Width (A1) of web (aggregate of fibers) before thermocompression bonding
And the width (A2) of the nonwoven fabric after thermocompression bonding was calculated by the following equation. Dimensional stability ratio (%) = {(A1−A2) / A1} × 100 The smaller the numerical value of the dimensional stability ratio obtained by the above equation, the better the dimensional stability. The thermocompression bonding was performed under the thermocompression temperature conditions shown in Table 1.

【0030】(4)不織布風合い 5人のパネラーによる官能試験を行い、全員がソフトで
あると判断した場合を優、3名以上がソフトであると判
断した場合を良、3名以上がソフト感に欠けると判断し
た場合を不可と評価し、優を○、良を△、不可を×で示
した。
(4) Texture of non-woven fabric A sensory test was conducted by five panelists. If all were judged to be soft, it was excellent. Three or more were judged to be soft. In the case where it was judged that the sample was lacking, the result was evaluated as “impossible”.

【0031】(5)伸長回復率:JIS L1096に
準拠して測定 テンシロン引張試験器を用いて、幅5cm、長さ20c
mの試験片をつかみ間隔10cm、試長10cm、引張
速度10cm/分の条件で12cmまで引張した後に、
その状態で1分間経過させ、次に同じ速度で元の位置ま
で戻して荷重を解除し、3分間放置後の長さL(cm)
を測定し、次式により伸長回復率を算出した。 伸長回復率(%)={(12−L)/2}×100
(5) Elongation recovery rate: Measured according to JIS L1096. Using a Tensilon tensile tester, width 5 cm, length 20 c
After gripping a test piece of m and pulling it up to 12 cm at a spacing of 10 cm, a test length of 10 cm, and a pulling speed of 10 cm / min,
Allow 1 minute to pass in that state, then return to the original position at the same speed to release the load, and leave for 3 minutes to leave the length L (cm)
Was measured, and the elongation recovery rate was calculated by the following equation. Elongation recovery rate (%) = {(12−L) / 2} × 100

【0032】(6)捲率の測定 熱可塑性複合長繊維がサイドバイサイド型の繊維断面を
有する場合、走査型電子顕微鏡を用いて、該複合長繊維
の表面写真を撮影し、その断面写真の画像から該複合長
繊維断面の円周に対して、樹脂(A)が被覆している比
率を算出した((単位:%)
(6) Measurement of winding ratio When the thermoplastic composite filament has a side-by-side fiber cross section, a surface photograph of the composite filament is taken using a scanning electron microscope, and an image of the cross section photograph is taken. The ratio of resin (A) to the circumference of the cross section of the composite long fiber was calculated ((unit:%)).

【0033】実施例1〜3 樹脂(B)として、MFRが10の結晶性ポリプロピレ
ン(ホモポリマー)を、樹脂(A)として、MFRが1
5、三元共重合体の重量基準でエチレン単位を3重量
%、ブテン−1単位を5重量%、プロピレン単位を92
重量%含むプロピレン/エチレン/ブテン−1三元共重
合体を用いて、公知のスパンボンド法でサイドバイサイ
ド型の紡糸口金を用い、紡糸口金から吐出した複合繊維
群をエアーサッカーに導入して牽引延伸し、樹脂(A)
の捲率が50%、2dtexの複合長繊維を得、続い
て、エアーサッカーより排出された前記長繊維群を、帯
電装置により同電荷を付与せしめ帯電させた後、反射板
に衝突させて開繊し、開繊した長繊維群を裏面に吸引装
置を設けた無端ネット状コンベア上に、長繊維ウェブと
して捕集し、これを不織布(I)に用いた。同様にスパ
ンボンド法で同心鞘芯型の紡糸口金を用い、芯成分の樹
脂として、MFRが10の結晶性ポリプロピレン(ホモ
ポリマー)を、鞘成分の樹脂(A’)として、MFRが
16、エチレン単位を5重量%、プロピレン単位を95
重量%含む二元共重合体を用いて、2dtexの複合長
繊維を得、これをウェブとして捕集し、不織布(II)に
用いた。不織布(I)を下層に不織布(II)を上層にく
るように積層したもの(実施例1)、不織布(I)を上
層に不織布(II)を下層にくるように積層したもの(実
施例2)、不織布(I)を中層に不織布(II)を上下層
にくるように積層したもの(実施例3)を表1記載の各
々の熱圧着温度に設定した、線圧20N/mm、面積率
10%のエンボス機で熱圧着処理し、その後、表1記載
の各々の捲縮温度を付与して本発明の伸縮性複合化不織
布を得た。いずれも寸法安定性、風合い、伸長回復性に
優れたものであった。
Examples 1 to 3 A crystalline polypropylene (homopolymer) having an MFR of 10 was used as the resin (B), and an MFR of 1 was used as the resin (A).
5, based on the weight of the terpolymer, 3% by weight of ethylene unit, 5% by weight of butene-1 unit and 92% by weight of propylene unit.
Using a propylene / ethylene / butene-1 terpolymer containing 1% by weight and a side-by-side spinneret by a known spunbonding method, a group of composite fibers discharged from the spinneret is introduced into air soccer and drawn and drawn. And resin (A)
After obtaining a composite filament having a winding rate of 50% and 2 dtex, the same group of filaments discharged from the air sucker is charged with the same electric charge by a charging device, and then collides with a reflector to be opened. The laid and opened long fiber group was collected as a long fiber web on an endless net-shaped conveyor provided with a suction device on the back surface, and used as the nonwoven fabric (I). Similarly, a concentric sheath-core spinneret is used by a spun bond method, and a crystalline polypropylene (homopolymer) having an MFR of 10 is used as a resin of a core component, an MFR of 16 is used as a resin of a sheath component (A ′), and ethylene is used. 5% by weight unit, 95 propylene units
Using a binary copolymer containing 2% by weight, a 2dtex composite filament was obtained, collected as a web, and used for the nonwoven fabric (II). Non-woven fabric (I) laminated on the lower layer with non-woven fabric (II) on the upper layer (Example 1), non-woven fabric (I) on the upper layer with non-woven fabric (II) laminated on the lower layer (Example 2) ), A non-woven fabric (I) laminated in a middle layer and a non-woven fabric (II) laminated in upper and lower layers (Example 3) were set to the respective thermocompression bonding temperatures shown in Table 1, linear pressure 20 N / mm, area ratio A thermocompression bonding treatment was performed using a 10% embossing machine, and thereafter, the respective crimping temperatures shown in Table 1 were applied to obtain a stretchable composite nonwoven fabric of the present invention. All were excellent in dimensional stability, texture, and elongation recovery.

【0034】実施例4 樹脂(B)として、MFRが15で、エチレン単位を2
重量%、プロピレン単位を98重量%含むプロピレン/
エチレン二元共重合体を、樹脂(A)として、MFRが
15、三元共重合体の重量基準でエチレン単位を3重量
%、ブテン−1単位を5重量%、プロピレン単位を92
重量%含むプロピレン/エチレン/ブテン−1三元共重
合体を用い、実施例1と同様なスパンボンド法で偏心鞘
芯型の紡糸口金を用いて紡糸を行い、2dtexの複合
長繊維を得、これを不織布(I)に用いた。次に芯成分
の樹脂として、MFRが10の結晶性ポリプロピレン
(ホモポリマー)を、鞘成分の樹脂(A’)として、密
度が0.959、MIが13の高密度ポリエチレンを用
いて、実施例1と同様なスパンボンド法で同心鞘芯型の
紡糸口金を用いて紡糸を行い、2dtexの複合長繊維
を得、これを不織布(II)に用いた。不織布(I)が下
層にくるように、不織布(II)が上層にくるように積層
したものを実施例1と同様の処理を行い、本発明の伸縮
性複合化不織布を得た。表1に見られるように寸法安定
性、風合い、伸長回復性に優れるものであった。
Example 4 The resin (B) had an MFR of 15, and contained 2 ethylene units.
% By weight, propylene containing 98% by weight of propylene units /
The ethylene binary copolymer is defined as a resin (A) and has an MFR of 15, an ethylene unit of 3% by weight, a butene-1 unit of 5% by weight, and a propylene unit of 92 based on the weight of the terpolymer.
Using a propylene / ethylene / butene-1 terpolymer containing 1% by weight and spinning using an eccentric sheath-core spinneret by the same spunbonding method as in Example 1, a 2dtex composite filament was obtained. This was used for nonwoven fabric (I). Next, a crystalline polypropylene (homopolymer) having an MFR of 10 was used as a core component resin, and a high-density polyethylene having a density of 0.959 and an MI of 13 was used as a sheath component resin (A ′). Spinning was performed using a concentric sheath-core spinneret in the same spunbonding method as in Example 1 to obtain a 2dtex composite filament, which was used for the nonwoven fabric (II). The same non-woven fabric (I) as the lower layer and the non-woven fabric (II) as the upper layer were laminated and subjected to the same treatment as in Example 1 to obtain an elastic composite nonwoven fabric of the present invention. As shown in Table 1, it was excellent in dimensional stability, texture, and elongation recovery.

【0035】実施例5 樹脂(B)として、MFRが15、エチレン単位を2重
量%、プロピレン単位を98重量%含むプロピレン/エ
チレン二元共重合体を、樹脂(A)として、密度が0.
959、MIが13の高密度ポリエチレンを使用して実
施例1と同様なスパンボンド法でサイドバイサイド型の
紡糸口金を用いて紡糸を行い、樹脂(A)の捲率が45
%、2dtexの複合長繊維を得、これを不織布(I)
に用いた。次に樹脂(A’)として、密度が0.93
5、MIが20の直鎖状低密度ポリエチレンを単一成分
として使用し、実施例1と同様なスパンボンド法で2d
texの長繊維を得、これを不織布(II)に用いた。不
織布(I)を下層に、不織布(II)を上層にくるように
積層したものを実施例1と同様な処理を行い、本発明の
伸縮性複合化不織布を得た。表1に見られるように寸法
安定性、風合い、伸長回復性に優れるものであった。
Example 5 A propylene / ethylene binary copolymer having an MFR of 15, an ethylene unit of 2% by weight and a propylene unit of 98% by weight was used as the resin (B).
Using a high-density polyethylene having a MI of 959 and an MI of 13, spinning was performed using a side-by-side spinneret in the same spunbonding method as in Example 1, and the resin (A) had a turn ratio of 45.
%, 2dtex conjugate filaments, which are nonwoven fabric (I)
It was used for. Next, as the resin (A ′), the density was 0.93.
5, using a linear low-density polyethylene having an MI of 20 as a single component, and using the same spunbonding method as in Example 1 to obtain 2d
A long fiber of tex was obtained and used for the nonwoven fabric (II). The nonwoven fabric (I) was laminated on the lower layer and the nonwoven fabric (II) was laminated on the upper layer, and the same treatment as in Example 1 was performed to obtain a stretchable composite nonwoven fabric of the present invention. As shown in Table 1, it was excellent in dimensional stability, texture, and elongation recovery.

【0036】実施例6 樹脂(B)として、MFRが15、エチレン単位を2重
量%、プロピレン単位を98重量%含むプロピレン/エ
チレン二元共重合体を、樹脂(A)として、密度が0.
935、MIが20の直鎖状低密度ポリエチレンを使用
して、実施例1と同様なスパンボンド法でサイドバイサ
イド型の紡糸口金を用いて紡糸を行い、樹脂(A)の捲
率が45%、2dtexの複合長繊維を得、これを不織
布(I)に用いた。次に芯成分の樹脂として、MFRが
10の結晶性ポリプロピレン(ホモポリマー)を、鞘成
分の樹脂(A’)として、密度が0.918、MIが2
4の低密度ポリエチレンを使用して実施例1と同様なス
パンボンド法で同心鞘芯型の紡糸口金を用いて紡糸を行
い、2dtexの複合長繊維を得、これを不織布(II)
に用いた。不織布(I)を上層に、不織布(II)を下層
にくるように積層したものを実施例1と同様な処理を行
い、本発明の伸縮性複合化不織布を得た。表1に見られ
るように寸法安定性、風合い、伸長回復性に優れるもの
であった。さらに該不織布を大人用オムツの表面材とし
て使用したところ、風合い、不織布強力等に優れ、吸収
性物品として非常に良好なものであった。
Example 6 A propylene / ethylene binary copolymer having an MFR of 15, an ethylene unit of 2% by weight, and a propylene unit of 98% by weight was used as the resin (B).
935, using a linear low-density polyethylene having an MI of 20 and spinning using a side-by-side type spinneret by the same spunbonding method as in Example 1, and the resin (A) has a winding rate of 45%. A 2dtex composite filament was obtained and used for the nonwoven fabric (I). Next, a crystalline polypropylene (homopolymer) having an MFR of 10 was used as a resin of the core component, and a resin having a density of 0.918 and MI of 2 was used as a resin (A ′) of the sheath component.
Using the low-density polyethylene of No. 4, spinning was performed using a concentric sheath-core spinneret in the same spunbonding method as in Example 1 to obtain a 2dtex composite filament, and this was nonwoven fabric (II).
It was used for. The nonwoven fabric (I) was laminated on the upper layer and the nonwoven fabric (II) was laminated on the lower layer, and the same treatment as in Example 1 was performed to obtain a stretchable composite nonwoven fabric of the present invention. As shown in Table 1, it was excellent in dimensional stability, texture, and elongation recovery. Further, when the nonwoven fabric was used as a surface material of an adult diaper, it was excellent in texture, strength of the nonwoven fabric, and the like, and was very good as an absorbent article.

【0037】比較例1 熱可塑性樹脂として、MFRが15、三元共重合体の重
量基準でエチレン単位を4重量%、ブテン−1単位を2
重量%、プロピレン単位を94重量%含むプロピレン/
エチレン/ブテン−1三元共重合体を単一成分として使
用し、実施例1と同様なスパンボンド法で紡糸を行い2
dtexの長繊維を得、これを不織布(I)に用いた。
次に樹脂(A’)として、密度が0.959、MIが1
3の高密度ポリエチレンを単一成分として使用して実施
例1と同様なスパンボンド法で紡糸を行い、2dtex
の長繊維を得、これを不織布(II)に用いた。不織布
(I)を中層に、不織布(II)を上下層にくるように積
層したものを実施例1と同様な処理を行い、積層不織布
を得た。該積層不織布は熱接着処理時の寸法安定性にも
やや劣り、捲縮温度を不織布(I)を構成する繊維の融
点以上にしなければ熱収縮が起こらなかった。その際、
不織布(II)の樹脂(A’)が溶着してしまい、得られ
た不織布は風合いが悪く、また繊維が非捲縮性であるた
め伸長回復性に劣り、衛材用途等の使用に不向きなもの
であった。
COMPARATIVE EXAMPLE 1 As a thermoplastic resin, MFR was 15, ethylene unit was 4% by weight and butene-1 unit was 2% by weight based on the weight of terpolymer.
% By weight, propylene containing 94% by weight of propylene units /
Using an ethylene / butene-1 terpolymer as a single component, spinning was carried out by the same spunbonding method as in Example 1, and
A dtex long fiber was obtained and used for the nonwoven fabric (I).
Next, as the resin (A ′), the density is 0.959 and the MI is 1
Using the high-density polyethylene of No. 3 as a single component, spinning was carried out by the same spunbonding method as in Example 1, and 2dtex was used.
Was obtained and used for the nonwoven fabric (II). The nonwoven fabric (I) was laminated on the middle layer and the nonwoven fabric (II) was laminated on the upper and lower layers, and the same treatment as in Example 1 was performed to obtain a laminated nonwoven fabric. The laminated nonwoven fabric was slightly inferior in dimensional stability at the time of the heat bonding treatment, and heat shrinkage did not occur unless the crimping temperature was higher than the melting point of the fibers constituting the nonwoven fabric (I). that time,
The resin (A ') of the non-woven fabric (II) is welded, and the obtained non-woven fabric has a poor texture. Further, since the fibers are non-crimped, they have poor elongation and recovery properties, and are not suitable for use in sanitary materials. Was something.

【0038】比較例2 樹脂(B)として、MFRが15、エチレン単位を2重
量%、プロピレン単位を98重量%含むプロピレン/エ
チレン二元共重合体を、樹脂(A)として、密度が0.
935、MIが20の直鎖状低密度ポリエチレンを使用
して実施例1と同様なスパンボンド法でサイドバイサイ
ド型の紡糸口金を用いて紡糸を行い、樹脂(A)の捲率
が50%、2dtexの複合長繊維を得、これを不織布
(I)として用いた。次に芯成分の樹脂として、MFR
が10の結晶性ポリプロピレン(ホモポリマー)を、鞘
成分の樹脂(A’)として、密度が0.959、MIが
13の高密度ポリエチレンを使用して実施例1と同様な
スパンボンド法で同心鞘芯型の紡糸口金を用いて紡糸を
行い、2dtexの複合長繊維を得、これを不織布(I
I)として用いた。不織布(I)を上層に、不織布(I
I)を下層にくるように積層したものを実施例1と同様
な処理を行い、積層不織布を得た。この積層不織布は寸
法安定性にやや劣り、熱圧着温度を不織布(I)の収縮
作用を起こさない温度に設定したため、熱接着が不充分
なため、不織布強力が低く、また伸長時に繊維が素抜
け、伸長回復率が大きく劣っていた。
Comparative Example 2 A propylene / ethylene binary copolymer having an MFR of 15, an ethylene unit of 2% by weight, and a propylene unit of 98% by weight was used as the resin (B).
935, spinning was performed using a linear low-density polyethylene having an MI of 20 and a side-by-side type spinneret in the same spunbonding method as in Example 1, and the resin (A) had a winding rate of 50% and 2 dtex. Was obtained as a nonwoven fabric (I). Next, as a core component resin, MFR
Using a high-density polyethylene having a density of 0.959 and an MI of 13 as a resin (A ′) as a sheath component using a crystalline polypropylene (homopolymer) having a concentricity of 10 as in Example 1. Spinning is performed using a sheath-core type spinneret to obtain a 2dtex conjugate filament, which is nonwoven fabric (I
Used as I). Non-woven fabric (I)
The laminate obtained by laminating I) was subjected to the same treatment as in Example 1 to obtain a laminated nonwoven fabric. This laminated non-woven fabric has somewhat poor dimensional stability, and the thermocompression bonding temperature is set at a temperature that does not cause the shrinkage of the non-woven fabric (I). However, the elongation recovery rate was significantly inferior.

【0039】比較例3 樹脂(B)として、MFRが10の結晶性ポリプロピレ
ン(ホモポリマー)を、樹脂(A)として、MFRが1
5、エチレン単位を5重量%、プロピレン単位を95重
量%含むプロピレン/エチレン二元共重合体を使用して
実施例1と同様なスパンボンド法でサイドバイサイド型
の紡糸口金を用いて紡糸を行い、2dtexの複合長繊
維を得、これを不織布(I)に用いた。次に芯成分の樹
脂として、MFRが10の結晶性ポリプロピレン(ホモ
ポリマー)を、鞘成分の樹脂(A’)として、MFRが
15、三元共重合体の重量基準でエチレン単位を3重量
%、ブテン−1単位を5重量%、プロピレン単位を92
重量%含むプロピレン/エチレン/ブテン−1三元共重
合体を用い、実施例1と同様なスパンボンド法で同心鞘
芯型の紡糸口金を用いて紡糸を行い、樹脂(A)の捲率
が60%、2dtexの複合長繊維を得、これを不織布
(II)に用いた。不織布(I)を下層に、不織布(II)
を上層になるように積層したものを実施例1と同様な処
理を行い、積層不織布を得た。この積層不織布は不織布
(II)の樹脂(A’)の融点が、不織布(I)の樹脂
(A)の融点より高いため、熱圧着処理時に不織布
(I)の収縮が起こり、風合いが悪く、寸法安定性及び
地合に問題があった。また、熱圧着時の収縮作用で捲縮
処理時の捲縮が緩和され、充分な捲縮が発現せず、伸長
回復性に劣るものであった。
Comparative Example 3 A crystalline polypropylene (homopolymer) having an MFR of 10 was used as the resin (B), and an MFR of 1 was used as the resin (A).
5, using a propylene / ethylene binary copolymer containing 5% by weight of ethylene units and 95% by weight of propylene units and spinning using a side-by-side spinneret by a spunbonding method similar to that in Example 1, A 2dtex composite filament was obtained and used for the nonwoven fabric (I). Next, a crystalline polypropylene (homopolymer) having an MFR of 10 is used as a resin of the core component, and an ethylene unit is 3% by weight based on the weight of the terpolymer, having a MFR of 15 and a resin (A ') of the sheath component. 5% by weight of butene-1 unit and 92 parts of propylene unit.
Using a propylene / ethylene / butene-1 terpolymer containing 1% by weight and spinning using a concentric sheath-core spinneret by the same spunbonding method as in Example 1, the resin (A) has a winding rate of A composite continuous fiber of 60% and 2 dtex was obtained and used for the nonwoven fabric (II). Nonwoven fabric (I) as lower layer, nonwoven fabric (II)
Were laminated in the same manner as in Example 1 to obtain a laminated nonwoven fabric. In this laminated nonwoven fabric, the melting point of the resin (A ') of the nonwoven fabric (II) is higher than the melting point of the resin (A) of the nonwoven fabric (I). There were problems with dimensional stability and formation. In addition, crimping during crimping was alleviated due to the shrinkage action during thermocompression bonding, and sufficient crimping was not exhibited, resulting in poor elongation recovery.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【発明の効果】本発明の伸縮性複合化不織布は、不織布
(I)が三次元捲縮の構造をとることから、不織布は弾
性と伸縮性に優れ、更に良好な風合いを有する。加えて
寸法安定性に優れ、かつ実用上充分な不織布強力を有す
る。
According to the stretch composite nonwoven fabric of the present invention, since the nonwoven fabric (I) has a three-dimensional crimped structure, the nonwoven fabric has excellent elasticity and stretchability, and further has a good texture. In addition, it has excellent dimensional stability and practically sufficient nonwoven fabric strength.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) D04H 3/16 D04H 3/16 // A61F 13/511 D01F 8/06 13/49 A41B 13/02 E D01F 8/06 Fターム(参考) 3B029 BB02 BB07 4C098 AA09 CE06 DD10 DD23 DD25 4F100 AK05A AK05B AK06A AK06B AK07A AK07B AK63A AK63B AK64A AK64B AK66A AK66B AK67A AK67B AL01A AL01B BA16 BA26 BA32 DG04A DG15A DG15B DG17A DG20A EC03 GB72 JA04A JA04B JB16A JB16B JK08 YY00 4L041 AA07 BA02 BA05 BA09 BA22 BA60 BD03 BD11 BD20 CA36 CA37 CA38 CA42 CA43 CA45 DD01 DD03 DD10 DD15 4L047 AA14 AA27 AB03 AB09 BA09 BB09 CA05 CA15 CB01 CB09 CB10 CC03 CC04 CC05 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) D04H 3/16 D04H 3/16 // A61F 13/511 D01F 8/06 13/49 A41B 13/02 E D01F 8/06 F-term (reference) 3B029 BB02 BB07 4C098 AA09 CE06 DD10 DD23 DD25 4F100 AK05A AK05B AK06A AK06B AK07A AK07B AK63A AK63B AK64A AK64B AK66A AK66B AK67A AK67B AL01A AL01B BA16 BA26 BA32 DG04A DG15A DG15B DG17A DG20A EC03 GB72 JA04A JA04B JB16A JB16B JK08 YY00 4L041 AA07 BA02 BA05 BA09 BA22 BA60 BD03 BD11 BD20 CA36 CA37 CA38 CA42 CA43 CA45 DD01 DD03 DD10 DD15 4L047 AA14 AA27 AB03 AB09 BA09 BB09 CA05 CA15 CB01 CB09 CB10 CC03 CC04 CC05

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 樹脂(B)と、樹脂(B)より低い融点
を有する樹脂(A)を用いて得られた熱可塑性複合長繊
維が三次元捲縮を発現して絡合している不織布(I)
と、該不織布(I)の片面または両面に、前記樹脂
(A)より低い融点を有する樹脂(A’)を用いて得ら
れた熱可塑性繊維からなる不織布(II)を配した積層不
織布であって、不織布(I)と不織布(II)が、樹脂
(A’)を用いて得られた前記熱可塑性繊維の熱溶融に
よって部分熱接合されており、該積層不織布の縦方向及
び横方向の20%伸長時の伸長回復率がいずれも90%
以上であることを特徴とする伸縮性複合化不織布。
1. A nonwoven fabric in which a resin (B) and a thermoplastic composite filament obtained by using a resin (A) having a melting point lower than that of the resin (B) exhibit a three-dimensional crimp and are entangled. (I)
And a nonwoven fabric (II) composed of a thermoplastic fiber obtained by using a resin (A ′) having a lower melting point than the resin (A) on one or both surfaces of the nonwoven fabric (I). The non-woven fabric (I) and the non-woven fabric (II) are partially thermally bonded by the thermal fusion of the thermoplastic fiber obtained by using the resin (A ′), and the laminated non-woven fabric has a length of 20 mm in a longitudinal direction and a transverse direction. 90% elongation recovery rate at% elongation
A stretch composite nonwoven fabric characterized by the above.
【請求項2】 積層不織布の樹脂(A)と樹脂(A’)
が、同一成分系樹脂である請求項1記載の伸縮性複合化
不織布。
2. The resin (A) and the resin (A ′) of the laminated nonwoven fabric
The stretchable composite nonwoven fabric according to claim 1, wherein the components are the same component resin.
【請求項3】 樹脂(A)、及び樹脂(A’)が、低密
度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポ
リエチレン、プロピレン系二元共重合体、及びプロピレ
ン系三元共重合体から選ばれた少なくとも1種のオレフ
ィン系樹脂である請求項1または請求項2記載の伸縮性
複合化不織布。
3. The resin (A) and the resin (A ′) are made of low-density polyethylene, linear low-density polyethylene, high-density polyethylene, propylene-based terpolymer, and propylene-based terpolymer. The stretch composite nonwoven fabric according to claim 1, wherein the stretch composite nonwoven fabric is at least one selected from olefin resins.
【請求項4】 不織布(I)が、サイドバイサイド型、
または偏心鞘芯型の繊維断面を有する熱可塑性複合長繊
維からなる不織布である請求項1〜3のいずれか1項記
載の伸縮性複合化不織布。
4. The nonwoven fabric (I) is of a side-by-side type,
The stretch composite nonwoven fabric according to any one of claims 1 to 3, wherein the nonwoven fabric is a nonwoven fabric made of a thermoplastic composite long fiber having an eccentric sheath-core fiber cross section.
【請求項5】 プロピレン系二元共重合体が、プロピレ
ン単位を85〜99重量%、エチレン単位を1〜15重
量%含むプロピレン/エチレン二元共重合体である請求
項3記載の伸縮性複合化不織布。
5. The stretchable composite according to claim 3, wherein the propylene-based binary copolymer is a propylene / ethylene binary copolymer containing 85 to 99% by weight of propylene units and 1 to 15% by weight of ethylene units. Non-woven fabric.
【請求項6】 プロピレン系二元共重合体が、プロピレ
ン単位を50〜99重量%、ブテン−1単位を1〜50
重量%含むプロピレン/ブテン−1二元共重合体である
請求項3記載の伸縮性複合化不織布。
6. A propylene-based binary copolymer comprising 50 to 99% by weight of a propylene unit and 1 to 50% by weight of a butene-1 unit.
The stretchable composite nonwoven fabric according to claim 3, which is a propylene / butene-1 binary copolymer containing 1% by weight.
【請求項7】 プロピレン系三元共重合体が、該三元共
重合体の重量基準で、プロピレン単位を84〜98重量
%、エチレン単位を1〜10重量%、ブテン−1単位を
1〜15重量%含むプロピレン/エチレン/ブテン−1
三元共重合体である請求項3記載の伸縮性複合化不織
布。
7. A propylene-based terpolymer comprising 84 to 98% by weight of a propylene unit, 1 to 10% by weight of an ethylene unit and 1 to 10% by weight of a butene-1 unit, based on the weight of the terpolymer. Propylene / ethylene / butene-1 containing 15% by weight
The stretchable composite nonwoven fabric according to claim 3, which is a terpolymer.
【請求項8】 請求項1〜7のいずれか1項記載の伸縮
性複合化不織布を用いた吸収性物品。
8. An absorbent article using the stretchable composite nonwoven fabric according to any one of claims 1 to 7.
JP31856999A 1999-11-09 1999-11-09 Stretchable composite nonwoven fabric and absorbing article using the same Pending JP2001140158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31856999A JP2001140158A (en) 1999-11-09 1999-11-09 Stretchable composite nonwoven fabric and absorbing article using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31856999A JP2001140158A (en) 1999-11-09 1999-11-09 Stretchable composite nonwoven fabric and absorbing article using the same

Publications (1)

Publication Number Publication Date
JP2001140158A true JP2001140158A (en) 2001-05-22

Family

ID=18100608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31856999A Pending JP2001140158A (en) 1999-11-09 1999-11-09 Stretchable composite nonwoven fabric and absorbing article using the same

Country Status (1)

Country Link
JP (1) JP2001140158A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187228A (en) * 2000-10-12 2002-07-02 Kao Corp Three dimensional sheet material
WO2002061192A1 (en) * 2001-01-29 2002-08-08 Mitsui Chemicals, Inc. Non-woven fabrics of wind-shrink fiber and laminates thereof
JP2003235896A (en) * 2002-02-15 2003-08-26 Daio Paper Corp Absorptive article having nonwoven fabric and method of manufacturing the same
JP2003247155A (en) * 2002-02-25 2003-09-05 Kao Corp Three-dimensional sheet material
WO2005021850A1 (en) * 2003-08-28 2005-03-10 Daiwabo Co., Ltd. Potential crimping composite fiber and method for production thereof, and fiber aggregate, and nonwoven fabric
WO2008041384A1 (en) * 2006-10-03 2008-04-10 Daiwabo Co., Ltd. Crimping composite fiber and fibrous mass comprising the same
US7404813B2 (en) 2002-12-11 2008-07-29 Kimberly-Clark Worldwide, Inc. Undergarment having crotch member with unattached end portion
WO2008123310A1 (en) 2007-03-28 2008-10-16 Kao Corporation Method of producing wearing article
US7534928B2 (en) 2001-08-10 2009-05-19 Kao Corporation Topsheet for absorbent article
US7569264B2 (en) 2001-12-28 2009-08-04 Kao Corporation Topsheet for absorbent article
CN103756127A (en) * 2013-11-27 2014-04-30 芜湖跃飞新型吸音材料股份有限公司 LLDPE modified isotatic polypropylene non-woven fabric and preparation method thereof
JP2015165061A (en) * 2012-08-08 2015-09-17 ダイワボウホールディングス株式会社 Nonwoven fabric, sheet for absorbent article and absorbent article using the same
WO2016143834A1 (en) * 2015-03-09 2016-09-15 三井化学株式会社 Nonwoven fabric laminate, stretchable nonwoven fabric laminate, fiber article, absorbent article, and sanitary mask
JP2017222970A (en) * 2016-06-14 2017-12-21 王子ホールディングス株式会社 Nonwoven fabric, and absorbent article
JP2017222972A (en) * 2016-06-14 2017-12-21 王子ホールディングス株式会社 Composite fiber
JP2019090155A (en) * 2015-02-04 2019-06-13 ライフェンホイザー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシャフト・マシイネンファブリーク Method for producing laminate and laminate
US10920349B2 (en) 2015-03-09 2021-02-16 Mitsui Chemicals, Inc. Multilayer nonwoven fabric, stretchable multilayer nonwoven fabric, fiber product, absorbent article, and sanitary mask
CN113348277A (en) * 2019-01-25 2021-09-03 三井化学株式会社 Spun-bonded nonwoven fabric, method for producing spun-bonded nonwoven fabric, and embossing roll
WO2023234224A1 (en) * 2022-06-03 2023-12-07 エム・エーライフマテリアルズ株式会社 Nonwoven fabric laminate

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7303808B2 (en) 2000-10-12 2007-12-04 Kao Corporation Bulky sheet material having three-dimensional protrusions
JP2002187228A (en) * 2000-10-12 2002-07-02 Kao Corp Three dimensional sheet material
WO2002061192A1 (en) * 2001-01-29 2002-08-08 Mitsui Chemicals, Inc. Non-woven fabrics of wind-shrink fiber and laminates thereof
US7534928B2 (en) 2001-08-10 2009-05-19 Kao Corporation Topsheet for absorbent article
US7569264B2 (en) 2001-12-28 2009-08-04 Kao Corporation Topsheet for absorbent article
JP2003235896A (en) * 2002-02-15 2003-08-26 Daio Paper Corp Absorptive article having nonwoven fabric and method of manufacturing the same
JP2003247155A (en) * 2002-02-25 2003-09-05 Kao Corp Three-dimensional sheet material
US7942992B2 (en) 2002-02-25 2011-05-17 Kao Corporation Bulky sheet material having three-dimensional protrusions
US7404813B2 (en) 2002-12-11 2008-07-29 Kimberly-Clark Worldwide, Inc. Undergarment having crotch member with unattached end portion
US7670677B2 (en) 2003-08-28 2010-03-02 Daiwabo Holdings Co., Ltd. Latently crimpable conjugate fiber and production method of the same, and fiber assembly, and nonwoven
WO2005021850A1 (en) * 2003-08-28 2005-03-10 Daiwabo Co., Ltd. Potential crimping composite fiber and method for production thereof, and fiber aggregate, and nonwoven fabric
CN100436667C (en) * 2003-08-28 2008-11-26 大和纺织株式会社 Potential crimping composite fiber and method for production thereof, and fiber aggregate, and nonwoven fabric
US8268444B2 (en) 2006-10-03 2012-09-18 Daiwabo Holdings Co., Ltd. Crimping composite fiber and fibrous mass comprising the same
WO2008041384A1 (en) * 2006-10-03 2008-04-10 Daiwabo Co., Ltd. Crimping composite fiber and fibrous mass comprising the same
WO2008123310A1 (en) 2007-03-28 2008-10-16 Kao Corporation Method of producing wearing article
JP2017029752A (en) * 2012-08-08 2017-02-09 ダイワボウホールディングス株式会社 Nonwoven fabric, absorbent article sheet, and absorbent article using the same
JP2015165061A (en) * 2012-08-08 2015-09-17 ダイワボウホールディングス株式会社 Nonwoven fabric, sheet for absorbent article and absorbent article using the same
CN103756127A (en) * 2013-11-27 2014-04-30 芜湖跃飞新型吸音材料股份有限公司 LLDPE modified isotatic polypropylene non-woven fabric and preparation method thereof
JP2019090155A (en) * 2015-02-04 2019-06-13 ライフェンホイザー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシャフト・マシイネンファブリーク Method for producing laminate and laminate
JPWO2016143834A1 (en) * 2015-03-09 2017-08-10 三井化学株式会社 Nonwoven fabric laminate, stretchable nonwoven fabric laminate, textile product, absorbent article and sanitary mask
WO2016143834A1 (en) * 2015-03-09 2016-09-15 三井化学株式会社 Nonwoven fabric laminate, stretchable nonwoven fabric laminate, fiber article, absorbent article, and sanitary mask
US10842682B2 (en) 2015-03-09 2020-11-24 Mitsui Chemicals, Inc. Nonwoven fabric layered body, stretchable nonwoven fabric layered body, fiber product, absorbent article, and sanitary mask
US10920349B2 (en) 2015-03-09 2021-02-16 Mitsui Chemicals, Inc. Multilayer nonwoven fabric, stretchable multilayer nonwoven fabric, fiber product, absorbent article, and sanitary mask
JP2017222970A (en) * 2016-06-14 2017-12-21 王子ホールディングス株式会社 Nonwoven fabric, and absorbent article
JP2017222972A (en) * 2016-06-14 2017-12-21 王子ホールディングス株式会社 Composite fiber
CN113348277A (en) * 2019-01-25 2021-09-03 三井化学株式会社 Spun-bonded nonwoven fabric, method for producing spun-bonded nonwoven fabric, and embossing roll
CN113348277B (en) * 2019-01-25 2023-08-01 三井化学株式会社 Spun-bonded nonwoven fabric, method for producing spun-bonded nonwoven fabric, and embossing roll
WO2023234224A1 (en) * 2022-06-03 2023-12-07 エム・エーライフマテリアルズ株式会社 Nonwoven fabric laminate

Similar Documents

Publication Publication Date Title
JP2001140158A (en) Stretchable composite nonwoven fabric and absorbing article using the same
JP4068171B2 (en) Laminated nonwoven fabric and method for producing the same
JP3955650B2 (en) Laminated nonwoven fabric and method for producing the same
JP3995697B2 (en) Latent crimped conjugate fiber, method for producing the same, fiber assembly, and nonwoven fabric
KR101108638B1 (en) Fiber bundle and web
WO1998010130A1 (en) Laminated nonwoven fabric and method of manufacturing same
JP2001502388A (en) Thermal adhesive composite fiber and nonwoven fabric using the same
JP4468208B2 (en) Latent crimped conjugate fiber, method for producing the same, fiber assembly, and nonwoven fabric
JPH09291454A (en) Stretchable elastic nonwoven fabric
JP3736014B2 (en) Laminated nonwoven fabric
JP5884733B2 (en) Laminated nonwoven fabric and its products
JPH10259522A (en) Thermally adhesive conjugated fiber, nonwoven fabric by using the same and absorbable material
JP4587410B2 (en) Composite nonwoven fabric, method for producing the same, absorbent article using the nonwoven fabric, and wiping cloth
JPH1086256A (en) Composite nonwoven fabric and absorbent article using the same
JP2008144321A (en) Nonwoven fabric
JP3102451B2 (en) Three-layer nonwoven fabric and method for producing the same
JP4352575B2 (en) Thermoplastic composite nonwoven fabric and fiber product using the same
JP3124017B2 (en) Thermal adhesive fibers and nonwovens
JPH02182963A (en) Heat-shrinkable filament nonwoven sheet and production thereof
JP4774900B2 (en) Elastic nonwoven fabric and article using the same
JPH10110372A (en) Bulky long-fiber non-woven fabric and absorptive product using the same
JP3102450B2 (en) Three-layer nonwoven fabric and method for producing the same
JP3126510B2 (en) Super absorbent nonwoven material
US7452834B2 (en) Fibrous sheet
JPH09105060A (en) Laminated nonwoven fabric and its production