JP3897623B2 - Composite structure manufacturing method - Google Patents

Composite structure manufacturing method Download PDF

Info

Publication number
JP3897623B2
JP3897623B2 JP2002077991A JP2002077991A JP3897623B2 JP 3897623 B2 JP3897623 B2 JP 3897623B2 JP 2002077991 A JP2002077991 A JP 2002077991A JP 2002077991 A JP2002077991 A JP 2002077991A JP 3897623 B2 JP3897623 B2 JP 3897623B2
Authority
JP
Japan
Prior art keywords
fine particles
temperature
aerosol
composite structure
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002077991A
Other languages
Japanese (ja)
Other versions
JP2003213451A (en
Inventor
朋和 伊藤
正勝 清原
広典 鳩野
勝彦 森
篤史 吉田
香織里 山口
純 明渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002077991A priority Critical patent/JP3897623B2/en
Publication of JP2003213451A publication Critical patent/JP2003213451A/en
Application granted granted Critical
Publication of JP3897623B2 publication Critical patent/JP3897623B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、微粒子をガス中に分散させたエアロゾルを基材に吹き付け、微粒子の材料からなる構造物をセラミックス、金属、樹脂などの材料からなる基材上に形成させることによって基材と構造物からなる複合構造物を作製する複合構造物作製方法に関する。
【0002】
【従来の技術】
基材上の膜の形成方法としては数μm以上の厚膜の場合、溶射法が一般に知られているが、その他ガスデポジション法(加集誠一郎:金属 1989年1月号)が提案されている。この方法は金属やセラミックスの超微粒子をガス攪拌にてエアロゾル化し、微小なノズルを通して加速せしめ、基材表面に超微粒子の圧粉体層を形成させ、これを加熱して焼成させることにより被膜を形成する。
【0003】
前記ガスデポジション法による微粒子膜の形成装置において、ノズルの温度を制御する技術としては、特開平6−49656号公報が開示されており、ノズルの先端にノズルを加熱自在とする加熱装置を配置し、またノズルの先端に近接して基材上に堆積される超微粒子を加熱するレーザービーム加熱装置を配置することで、基材上に堆積される超微粒子を加熱された状態での噴射と、基材上に堆積中の超微粒子膜への加熱とを単独に或いは併用して行うことができ、基材上に堆積される超微粒子膜に部分的な特性を有する膜を形成することができるというものである。実施例として、BaTiO3超微粒子を使用する際には700℃に加熱されたノズルから、約550℃の超微粒子を含むガスを噴射し基材に堆積させ、更に堆積中の超微粒子に表面温度約1000℃でレーザービームを照射することにより焼成処理を同時に行えるといったものが挙げられている。
【0004】
一方、前記ガスデポジション法を改良した先行技術として微粒子ビーム堆積法あるいはエアロゾルデポジション法と呼ばれる脆性材料の膜あるいは構造物の形成方法がある。エアロゾルデポジション法とは脆性材料の微粒子をガス中に分散させたエアロゾルを搬送し、高速で基材表面に噴射して衝突させ、微粒子を破砕・変形せしめ、基材との界面にアンカー層を形成して接合させるとともに、破砕した断片粒子同士を接合させることにより、基材との密着性が良好で強度の大きい脆性材料構造物を基材上にダイレクトに形成させることができる手法であり、特開2001−247979号公報、特開2001−3180号公報に等に開示されている。該手法は、粒径が10nmから5μmの範囲にあるセラミックスなどの微粒子をガスに分散させてエアロゾルとした後、ノズルより100m/sec以上に加速せしめた微粒子を微粒子ビームとして基材に向けて噴射して構造物を形成させるものである。該手法の最大の特徴は、従来の脆性材料からなる構造物を作製する手法と比して非常に低い温度で構造物を形成させることが可能であり、最も顕著な例では室温においても緻密且つ強固な構造物が形成させることが可能である。また、高温を必要としないために微粒子の原料組成を変化させることなく構造物を形成できる。また、微粒子や基材に、イオン、原子、分子ビームや低温プラズマ等の高エネルギーを付与することによって、製膜効率の向上や作製される構造物の機械的物性の改善を行うなどの工夫がなされている。
【0005】
【発明が解決しようとする課題】
従来のガスデポジション法は、微粒子の衝突エネルギーが熱エネルギーに変換されて微粒子の結合を発生させるといったメカニズムで成り立っており、その結合を促進させるため、非常に高温を必要とした。特開平6−49656号公報開示例の様に、高温のガスを用いたり、基材上に超微粒子材料からなる堆積層を形成させ、更にその堆積層にレーザービームなどの高エネルギーを付与する必要があったが、基材が熱によってダメージを受けるため、該手法で使用することができる基材が限定されているといった課題の他、エネルギーコストが高く、生産性も悪いため、あまり好ましい手法ではなかった。
【0006】
一方で、微粒子ビーム堆積法あるいはエアロゾルデポジション法では、前述の通り、微粒子をエアロゾルとして高速で基材表面に噴射して衝突させ、その運動エネルギーを直接利用して微粒子間の結合を発生させるために高温を必要としないが、構造物の形成効率が低いため、構造物作製に長時間を要した。ここで、室温とは構造物形成における外環境の温度であり、季節による変動等を考慮すると、10〜30℃の範囲である。 高速とは100m/sec以上の速度である。また、特開2001−247979号公報に開示例の様にイオン、原子、分子ビームや低温プラズマ等の高エネルギーの原子、分子ビームを付与することで、効率を向上させることも可能であるが、構造物作製における制御因子が複雑となり、また、大掛かりな装置を必要とするため好ましくない。
【0007】
【課題を解決するための手段】
即ち、これらの問題を解決すべく、本発明では脆性材料の微粒子をガス中に分散させたエアロゾルをノズル先端から基材に吹き付けて基材上に脆性材料微粒子からなる構造物を形成するエアロゾルデポジション法による複合構造物を作製する方法であって、前記ノズル先端から噴射されるエアロゾルの温度を室温より高く例えば500℃以下に制御することを特徴とする複合構造物の作製方法を提供するものである。
【0008】
本発明によれば、エアロゾルの温度を室温以上に保つことで製膜速度は向上し、ガス温度が高くなるに従いその速度は増加する。また、従来の様にレーザー加熱装置などの大掛かりな装置は必要とせず、構造物形成速度はエアロゾルの温度のみで制御が可能である。これによって、構造物作製時間の大幅な短縮、並びに装置コストを削減できる。
【0009】
エアロゾルの温度は室温以上であれば構造物形成速度は向上するが、本発明においては500℃以下であることが望ましい。一般的に脆性材料は比較的熱膨張率が低く、500℃といった高温においても安定であるが、金属、樹脂材料等の延性材料は脆性材料に比べて熱膨張率も高く、高温で酸化などの化学反応が起こりやすい。従って、脆性材料と延性材料を接合させた複合構造物を高温に晒すことは、熱膨張の差によって両構造物間に応力が発生して構造物が変形したり、いずれかの構造物に亀裂が生じる、あるいは接合面で剥離するといった不具合を生じるため望ましくない。また、構造物形成環境に酸素などの反応性ガスが存在する場合においても同様に、高温では酸化などの化学反応が起こりやすく、延性材料基材の変質が懸念される。
【0010】
また、本発明の好ましい態様においては、使用されるガスは乾燥空気、窒素、酸素、アルゴン、ヘリウムなどであるが、これ以外の種類のガスでも良い。ガス及びエアロゾルの温度は室温以上500℃以下であれば良いが、エアロゾルデポジション法においてはそれほど高い温度を必要としないため、好ましくは基材の耐熱温度の範囲で制御すると良い。脆性材料微粒子は酸化物、窒化物、炭化物、ホウ化物、半導体などであり、その一次粒子径は0.1〜1μmが適当であるが、これ以外の種類、粒子径のものでも良い。また延性材料としては各種金属材料やプラスチック材料が挙げられ、混合微粒子は単純に脆性材料微粒子と延性材料微粒子をボールミルなどで乾式攪拌混合させて作製する。また複合微粒子は脆性材料微粒子の表面にめっきやPVD、CVD、機械的混砕によるメカノケミカル被覆、吸着、蒸気析出などの表面改質方法にて金属や有機物の層を形成したものである。これら混合、複合微粒子は主体的には脆性材料微粒子であり、本発明で挙げている作用、効果が期待されるものである。
【0011】
【発明の実施の形態】
エアロゾルデポジション法で見られる現象について、発明者らは以下の様に考察している。
セラミックスは自由電子をほとんど持たない共有結合性あるいはイオン結合性が強い原子結合状態にある。それゆえ硬度は高いが衝撃に弱い。従ってこれらの脆性材料に機械的衝撃力を印加した場合、例えば結晶同士の界面などの劈開面にそって結晶格子のずれを生じたり、あるいは破砕されたりなどする。これらの現象が起こると、ずれ面や破面にはもともと内部に存在し、別の原子と結合していた原子が剥き出しの状態となり、すなわち新生面が形成される。この新生面の原子一層の部分は、もともと安定した原子結合状態から外力により強制的に不安定な表面状態に晒される。すなわち表面エネルギーが高い状態となる。この活性面の一部が隣接した脆性材料表面や同じく隣接した脆性材料の新生面あるいは基材表面と接合して安定状態に移行して構造物が形成されるが、その多くは雰囲気中に存在する気体分子などの吸着によって不活性となってしまう。しかし、雰囲気の温度が高くなるにつれて活性面は長寿命化し、構造物の形成に寄与する確率が増す。外部からの連続した機械的衝撃力の付加は、この現象を継続的に発生させ、微粒子の変形、破砕などの繰り返しにより接合の進展、それによって形成された構造物の緻密化が行われる。このようにして脆性材料の構造物が形成される。また構造物と基材との界面には、微粒子が衝突する衝撃を受けて微細な凹凸が形成される。こうして構造物が食い込んだアンカー層が形成されることにより、構造物と基材の間に非常に大きな密着力が生み出される。
【0012】
以下に、エアロゾルデポジション法の一適用例について図に基づき説明する。(実施例)
平均粒径0.6μmのチタン酸ジルコン酸鉛(以下PZT)微粒子粉体を予め準備して、これを用いてエアロゾルデポジション法によりガラス基材上に構造物を形成させた。図1に使用したエアロゾルデポジション装置の装置図を示す。
図1では、エアロゾルデポジション装置10は、窒素ガスボンベ101が、搬送管102を介してエアロゾル発生器103に接続され、その下流側にガス加熱装置104が設置され、更に下流にはガス保温機能付き搬送管105が接続され、これは構造物作製室106内に導入されており、その先端に10mm×0.4mmの開口部を有し、図示しない保温・加熱装置を具備したノズル107が配置される。ノズル107の上方には支持台110に固定された基材109が配置され、支持台110はXYステージ111によって2次元で駆動可能である。また、支持台110には熱電対108が支持されており、支持台110を移動させることによってノズル107と基材112との間に挿入可能である。構造物作製室106は真空ポンプ112に接続されている。エアロゾル発生器103はPZT微粒子を内蔵している。
【0013】
以上の構成からなるエアロゾルデポジション装置10の作用を次に述べる。PZT微粒子を内臓したエアロゾル発生器103内に窒素ガスボンベ101より搬送管102を通じて窒素ガスを導入し、エアロゾル発生器103を作動させてPZT微粒子を含むエアロゾルを発生させる。ガス流量は6.0l/minで供給した。エアロゾルは搬送管102を通じてガス加熱装置104に導入される。エアロゾルはガス加熱装置104内で所定の温度に加熱され、保温機能付き搬送管105を介して構造物作製室106内に設置されたノズル107から基材109に向けて高速で微粒子ビームとして噴射する。また、微粒子ビームの温度は熱電対108で検知している。微粒子ビームを噴射させると同時に基材109をXYステージ111によって3分間揺動させて10mm×3mmの面積を有する複合構造物を形成させた。また、複合構造物作製装置106内は真空ポンプ112によって1kPa以下に保たれる。また、微粒子ビーム(ノズルから高速で噴射したエアロゾル)の温度は熱電対108に直接吹き付けて測定する。
【0014】
以上の構成からなる本実施例の効果を次に述べる。
図1に示した複合構造物作製装置を使用して、微粒子ビームの温度を変化させてPZTとガラス基材の複合構造物を作製した。微粒子ビームの温度は予めノズル107と基材109の間に挿入された熱電対108に微粒子ビームを吹き付けて確認し、同条件にて構造物を形成させた。構造物の硬さはダイナミック超微小硬度計(島津製作所製DUH−W201)、にて行い、試験条件は負荷除荷試験、押し込み荷重2gfで行った。
【0015】
図2に微粒子ビーム温度に対する構造物形成速度と構造物の硬度の関係を示す。図2からも明らかであるように、室温における構造物形成効率は低く、微粒子ビーム温度を200℃付近まで上昇させることで、構造物形成効率は約4倍まで向上し、室温で作製した構造物と同等若しくはそれ以上の硬度を有する構造物を得ることができた。
【0016】
本実施例においては、窒素ガスを用いたが、この他使用するガスは乾燥空気、酸素、アルゴン、ヘリウムなどでも良い。本実施例では200℃付近までの加熱を行ったが、これ以上の温度域までの加熱に必要な加熱装置やエネルギーコストなどを考慮すれば然程有意義ではなく、従って200℃程度で効率的かつ省エネルギー化を充分実現している。また、本実施例においては、PZT微粒子を用いたが、この他の酸化物、窒化物、炭化物、ホウ化物、半導体などの脆性材料微粒子や脆性材料と延性材料の複合微粒子などでも良く、本実施例では一次粒子径0.6μmの微粒子を用いたが、これ以外の粒子径のものでも良い。
【0017】
(比較例)
エアロゾルデポジション法によって形成した複合構造物の耐熱温度を調べるために、複合構造物の熱処理試験を行った。試験概要を次に記す。
平均粒径0.2μmの酸化アルミニウム微粒子粉体を予め準備して、これを用いてエアロゾルデポジション法により多種基材上に構造物を形成させた。基材にはABS、アルミニウム、ステンレス(SUS304)、真鍮(C2600)、ソーダガラス、酸化アルミニウムを用いた。尚、エアロゾルデポジション装置概要は実施例に準ずる。17mm×0.4mmの開口部を有するノズルを用い、50mm×50mmの基材の中央部に17mm×10mm、厚さ約15μmの面積の酸化アルミニウム構造物を形成させた。搬送ガスには窒素を用い、流量を6.0l/minで供給し、搬送ガス温度はABS基材を用いた場合は約40℃、それ以外は約70℃とした。熱処理試験は電気炉中で行い、昇温後、大気冷却をした後に、各温度における酸化アルミニウム構造物表面を観察した。
【0018】
各基材における複合構造物の熱処理温度と構造物の表面観察結果を表1.に示す。以下簡略化のため、エアロゾルデポジション法によって形成した酸化アルミニウム層をA層、基材をB層と称す。
【表1】

Figure 0003897623
ABS基材は70℃の熱処理でA層が破壊した。また、金属基材に関してはアルミニウム、真鍮、SUSの順にA層に亀裂が生じた。これらの破壊はいずれも冷却中に生じた。また、ガラス基材では600℃にてB層が溶融し、それに伴いA層の破壊が起こった。一方で、B層に酸化アルミニウムを採用した場合は900℃以上でも複合構造物の破壊は見られなかった。
【0019】
複合構造物の破壊の原因としては、基材の熱膨張率の差異であることが示唆される。ABSなどの樹脂基材や、アルミニウム、真鍮といった軟質の金属においては高温で熱膨張を起こしやすい。一方で、A層(酸化アルミニウム)は熱膨張係数が低く、高温においても変形しにくい。従って、基材として樹脂、金属といった延性材料を用いた場合のみ高温でB層が変形し、A層に応力が加わったため破壊が起こったと考えられる。B層が比較的熱膨張の小さいステンレスにおいては500℃といった高温においても破壊せず、B層に酸化アルミニウムを用いた複合構造物は、A層と同一物質であるがゆえに900℃においても破壊が起こらなかった。また、B層に金属を用いた場合、いずれも加熱によってB層表面の酸化が見られ、その温度はステンレス基材において最も高い600℃付近であった。
【0020】
即ち、金属、樹脂などの延性材料上に厚さ数十μmの脆性材料を形成した複合構造物においては、500℃より高い温度に晒すことは構造物の破壊が起こるため好ましくない。従って、本発明におけるエアロゾルデポジション法では、エアロゾルの温度を500℃より高くすることは、形成した構造物が亀裂、剥離などの損傷、或いは基材表面の酸化を招く恐れがあるためあまり好ましくない。
【0021】
【本発明の効果】
以上の様に、本発明に係るエアロゾル若しくは微粒子ビームの温度を制御することによって、効率的に緻密且つ高強度の構造物を形成させることが可能となり、作製時間の短縮が実現できる。また、従来の様に高温を必要としないため、多種基材に対応可能であり、省エネルギー化にも効果的である。
【図面の簡単な説明】
【図1】エアロゾルデポジション法装置概略図
【図2】微粒子ビーム温度に対する構造物形成速度と硬度の関係を示すグラフ
【符号の簡単な説明】
10…エアロゾルデポジション装置、101…ガスボンベ、102…搬送管、103…エアロゾル発生器、104…ガス加熱装置、105…保温機能付き搬送管、106…構造物作製室、107…保温・加熱機能付きノズル、108…熱電対、109…ガラス基材、110…支持台、111…XYステージ、112…真空ポンプ[0001]
BACKGROUND OF THE INVENTION
The present invention is directed to spraying an aerosol in which fine particles are dispersed in a gas onto a base material to form a structure made of the fine particle material on the base material made of a material such as ceramics, metal, resin, etc. The present invention relates to a composite structure manufacturing method for manufacturing a composite structure comprising:
[0002]
[Prior art]
As a method for forming a film on a substrate, in the case of a thick film of several μm or more, a thermal spraying method is generally known, but other gas deposition methods (Seiichiro Kashu: Metal, January 1989 issue) have been proposed. Yes. In this method, ultrafine particles of metal or ceramics are aerosolized by gas agitation, accelerated through a minute nozzle, formed into a green compact layer of ultrafine particles on the surface of the substrate, heated and fired to form a coating. Form.
[0003]
In the fine particle film forming apparatus by the gas deposition method, Japanese Patent Laid-Open No. 6-49656 is disclosed as a technique for controlling the temperature of the nozzle, and a heating device for freely heating the nozzle is disposed at the tip of the nozzle. In addition, by placing a laser beam heating device that heats the ultrafine particles deposited on the substrate in the vicinity of the tip of the nozzle, the ultrafine particles deposited on the substrate are jetted in a heated state. The heating of the ultrafine particle film being deposited on the substrate can be performed alone or in combination, and a film having partial characteristics can be formed on the ultrafine particle film deposited on the substrate. It can be done. As an example, when using BaTiO 3 ultrafine particles, a gas containing ultrafine particles of about 550 ° C. is ejected from a nozzle heated to 700 ° C. and deposited on the substrate, and the surface temperature is applied to the ultrafine particles being deposited. One example is that the firing process can be performed simultaneously by irradiating a laser beam at about 1000 ° C.
[0004]
On the other hand, as a prior art improved from the gas deposition method, there is a method of forming a film or structure of a brittle material called a fine particle beam deposition method or an aerosol deposition method. The aerosol deposition method transports an aerosol in which fine particles of brittle material are dispersed in a gas, sprays it on the surface of the substrate at high speed and collides it, crushes and deforms the particle, and forms an anchor layer at the interface with the substrate. It is a technique that allows the brittle material structure with good adhesion and large strength to be directly formed on the base material by joining the crushed fragment particles together with forming and joining, It is disclosed in Japanese Patent Laid-Open Nos. 2001-247979 and 2001-3180. In this method, fine particles such as ceramics having a particle size in the range of 10 nm to 5 μm are dispersed in a gas to form an aerosol, and then the fine particles accelerated from a nozzle to 100 m / sec or more are ejected as a fine particle beam toward a substrate. Thus, a structure is formed. The greatest feature of this method is that it is possible to form a structure at a very low temperature compared to the conventional method of manufacturing a structure made of a brittle material. A strong structure can be formed. Moreover, since a high temperature is not required, a structure can be formed without changing the raw material composition of the fine particles. In addition, by applying high energy such as ions, atoms, molecular beams, and low-temperature plasma to fine particles and base materials, it is possible to improve the film forming efficiency and improve the mechanical properties of the structure to be fabricated. Has been made.
[0005]
[Problems to be solved by the invention]
The conventional gas deposition method is based on a mechanism in which the collision energy of fine particles is converted into thermal energy to generate fine particle bonds, and a very high temperature is required to promote the bond. As disclosed in Japanese Patent Application Laid-Open No. 6-49656, it is necessary to use a high-temperature gas, or to form a deposition layer made of an ultrafine particle material on a substrate, and to apply high energy such as a laser beam to the deposition layer. However, since the base material is damaged by heat, the base material that can be used in the method is limited, and the energy cost is high and the productivity is poor. There wasn't.
[0006]
On the other hand, in the fine particle beam deposition method or aerosol deposition method, as described above, fine particles are sprayed onto the substrate surface at high speed as an aerosol to collide, and the kinetic energy is directly used to generate bonds between the fine particles. However, since the formation efficiency of the structure is low, it takes a long time to manufacture the structure. Here, the room temperature is the temperature of the external environment in the structure formation, and is in the range of 10 to 30 ° C. in consideration of seasonal variations and the like. High speed is a speed of 100 m / sec or more. In addition, it is possible to improve efficiency by applying high-energy atoms and molecular beams such as ions, atoms, molecular beams, and low-temperature plasma as disclosed in Japanese Patent Application Laid-Open No. 2001-247879. This is not preferable because the control factors in the structure fabrication are complicated and a large-scale apparatus is required.
[0007]
[Means for Solving the Problems]
That is, to solve these problems, the present invention forms a structure made of a brittle material fine particles of brittle material onto the aerosol dispersed in the gas blown from the nozzle tip to the base substrate Earozorude A method for producing a composite structure by a position method , wherein the temperature of the aerosol sprayed from the nozzle tip is controlled to be higher than room temperature, for example, 500 ° C. or less. It is.
[0008]
According to the present invention, the film forming speed is improved by maintaining the temperature of the aerosol at room temperature or higher, and the speed increases as the gas temperature increases. In addition, a large-scale device such as a laser heating device is not required as in the prior art, and the structure formation speed can be controlled only by the temperature of the aerosol. As a result, it is possible to greatly shorten the structure manufacturing time and reduce the apparatus cost.
[0009]
If the temperature of the aerosol is room temperature or higher, the structure formation rate is improved, but in the present invention, it is preferably 500 ° C. or lower. In general, brittle materials have a relatively low coefficient of thermal expansion and are stable even at high temperatures such as 500 ° C., but ductile materials such as metals and resin materials have a higher coefficient of thermal expansion than brittle materials, and can be oxidized at high temperatures. Chemical reaction is likely to occur. Therefore, when a composite structure in which a brittle material and a ductile material are joined is exposed to a high temperature, stress is generated between the two structures due to a difference in thermal expansion, and the structure is deformed or cracked in one of the structures. This is not desirable because it causes problems such as occurrence of peeling or peeling at the joint surface. Similarly, when a reactive gas such as oxygen is present in the structure forming environment, a chemical reaction such as oxidation is likely to occur at a high temperature, and there is a concern about deterioration of the ductile material substrate.
[0010]
In the preferred embodiment of the present invention, the gas used is dry air, nitrogen, oxygen, argon, helium, etc., but other types of gases may be used. The temperature of the gas and aerosol may be from room temperature to 500 ° C., but since the aerosol deposition method does not require a very high temperature, it is preferably controlled within the range of the heat resistant temperature of the substrate. The brittle material fine particles are oxides, nitrides, carbides, borides, semiconductors, and the like. The primary particle size is suitably 0.1 to 1 μm, but other types and particle sizes may be used. Examples of the ductile material include various metal materials and plastic materials, and the mixed fine particles are prepared by simply dry-mixing brittle material fine particles and ductile material fine particles with a ball mill or the like. The composite fine particles are formed by forming a metal or organic layer on the surface of the brittle material fine particles by a surface modification method such as plating, PVD, CVD, mechanochemical coating by mechanical crushing, adsorption, or vapor deposition. These mixed and composite fine particles are mainly brittle material fine particles and are expected to have the functions and effects mentioned in the present invention.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The inventors consider the phenomenon seen in the aerosol deposition method as follows.
Ceramics are in an atomic bond state having a strong covalent bond or ionic bond with few free electrons. Therefore, the hardness is high, but it is vulnerable to impact. Therefore, when a mechanical impact force is applied to these brittle materials, for example, the crystal lattice shifts along the cleaved surface such as the interface between crystals, or is crushed. When these phenomena occur, the atoms that were originally present inside the slipping surface or fracture surface and were bonded to another atom are exposed, that is, a new surface is formed. The part of the atomic layer on this new surface is exposed to an unstable surface state by an external force from an originally stable atomic bond state. That is, the surface energy is high. A part of this active surface is joined to the adjacent brittle material surface, or the newly formed surface of the adjacent brittle material or the substrate surface to shift to a stable state, and a structure is formed, most of which exists in the atmosphere. It becomes inactive by adsorption of gas molecules. However, as the temperature of the atmosphere increases, the active surface has a longer life and the probability of contributing to the formation of the structure increases. The addition of a continuous mechanical impact force from the outside causes this phenomenon to occur continuously, and the joining progresses and the structure formed thereby is densified by repeated deformation and crushing of fine particles. In this way, a structure of a brittle material is formed. In addition, fine irregularities are formed at the interface between the structure and the substrate due to the impact of the fine particles colliding. As a result of the formation of an anchor layer that has been penetrated by the structure, a very large adhesion force is produced between the structure and the substrate.
[0012]
Hereinafter, an application example of the aerosol deposition method will be described with reference to the drawings. (Example)
A lead zirconate titanate (hereinafter referred to as PZT) fine particle powder having an average particle diameter of 0.6 μm was prepared in advance, and a structure was formed on the glass substrate by an aerosol deposition method. The apparatus diagram of the aerosol deposition apparatus used in FIG. 1 is shown.
In FIG. 1, an aerosol deposition apparatus 10 includes a nitrogen gas cylinder 101 connected to an aerosol generator 103 via a transport pipe 102, a gas heating apparatus 104 installed downstream thereof, and a gas heat retaining function further downstream. A transfer pipe 105 is connected, which is introduced into the structure production chamber 106, and has a 10 mm × 0.4 mm opening at its tip, and a nozzle 107 equipped with a heat retention / heating device (not shown) is disposed. The A base material 109 fixed to a support table 110 is disposed above the nozzle 107, and the support table 110 can be driven two-dimensionally by an XY stage 111. Further, a thermocouple 108 is supported on the support table 110, and can be inserted between the nozzle 107 and the base material 112 by moving the support table 110. The structure manufacturing chamber 106 is connected to a vacuum pump 112. The aerosol generator 103 contains PZT fine particles.
[0013]
The operation of the aerosol deposition apparatus 10 having the above configuration will be described next. Nitrogen gas is introduced into the aerosol generator 103 containing the PZT fine particles from the nitrogen gas cylinder 101 through the carrier tube 102, and the aerosol generator 103 is operated to generate aerosol containing the PZT fine particles. The gas flow rate was supplied at 6.0 l / min. The aerosol is introduced into the gas heating device 104 through the transport tube 102. The aerosol is heated to a predetermined temperature in the gas heating device 104 and is ejected as a fine particle beam at high speed from the nozzle 107 installed in the structure manufacturing chamber 106 to the base material 109 via the transfer tube 105 with a heat retaining function. . Further, the temperature of the particle beam is detected by a thermocouple 108. At the same time as the fine particle beam was ejected, the base material 109 was swung by the XY stage 111 for 3 minutes to form a composite structure having an area of 10 mm × 3 mm. The inside of the composite structure manufacturing apparatus 106 is kept at 1 kPa or less by the vacuum pump 112. Further, the temperature of the fine particle beam (aerosol ejected from the nozzle at a high speed) is measured by spraying directly on the thermocouple 108.
[0014]
The effect of the present embodiment having the above configuration will be described below.
Using the composite structure manufacturing apparatus shown in FIG. 1, a composite structure of PZT and a glass substrate was manufactured by changing the temperature of the fine particle beam. The temperature of the fine particle beam was confirmed by spraying the fine particle beam onto a thermocouple 108 inserted between the nozzle 107 and the base material 109 in advance, and a structure was formed under the same conditions. The hardness of the structure was measured with a dynamic ultra-micro hardness meter (DUH-W201 manufactured by Shimadzu Corporation), and the test conditions were a load unloading test and an indentation load of 2 gf.
[0015]
FIG. 2 shows the relationship between the structure formation speed and the structure hardness with respect to the particle beam temperature. As is clear from FIG. 2, the structure formation efficiency at room temperature is low, and by increasing the particle beam temperature to around 200 ° C., the structure formation efficiency is improved up to about 4 times. A structure having a hardness equal to or higher than that can be obtained.
[0016]
In this embodiment, nitrogen gas is used, but other gases may be used, such as dry air, oxygen, argon, helium. In this example, the heating up to about 200 ° C. was performed, but it is not so meaningful in consideration of the heating device and the energy cost necessary for heating up to a temperature range higher than this, and therefore efficient at about 200 ° C. Sufficient energy saving has been realized. In this embodiment, PZT fine particles are used. However, other fine particles of oxides, nitrides, carbides, borides, semiconductors and the like, and fine particles of a brittle material and a ductile material may be used. In the example, fine particles having a primary particle size of 0.6 μm are used, but particles having other particle sizes may be used.
[0017]
(Comparative example)
In order to investigate the heat resistance temperature of the composite structure formed by the aerosol deposition method, a heat treatment test of the composite structure was performed. The outline of the test is as follows.
An aluminum oxide fine particle powder having an average particle size of 0.2 μm was prepared in advance, and a structure was formed on various substrates by the aerosol deposition method. ABS, aluminum, stainless steel (SUS304), brass (C2600), soda glass, and aluminum oxide were used for the base material. The outline of the aerosol deposition apparatus is in accordance with the embodiment. Using a nozzle having an opening of 17 mm × 0.4 mm, an aluminum oxide structure having an area of 17 mm × 10 mm and a thickness of about 15 μm was formed in the center of a 50 mm × 50 mm substrate. Nitrogen was used as the carrier gas, and the flow rate was supplied at 6.0 l / min. The carrier gas temperature was about 40 ° C. when an ABS substrate was used, and about 70 ° C. otherwise. The heat treatment test was performed in an electric furnace, and after raising the temperature and cooling the atmosphere, the surface of the aluminum oxide structure at each temperature was observed.
[0018]
Table 1 shows the heat treatment temperature of the composite structure on each substrate and the surface observation results of the structure. Shown in Hereinafter, for simplification, an aluminum oxide layer formed by an aerosol deposition method is referred to as an A layer, and a base material is referred to as a B layer.
[Table 1]
Figure 0003897623
The ABS layer was destroyed by heat treatment at 70 ° C. for the ABS base material. Moreover, regarding the metal base material, cracks occurred in the A layer in the order of aluminum, brass, and SUS. Both of these failures occurred during cooling. In the glass substrate, the B layer melted at 600 ° C., and the A layer was destroyed accordingly. On the other hand, when aluminum oxide was used for the B layer, the composite structure was not broken even at 900 ° C. or higher.
[0019]
It is suggested that the cause of the destruction of the composite structure is a difference in the coefficient of thermal expansion of the base material. Resin base materials such as ABS and soft metals such as aluminum and brass are likely to undergo thermal expansion at high temperatures. On the other hand, the A layer (aluminum oxide) has a low coefficient of thermal expansion and is not easily deformed even at high temperatures. Therefore, it is considered that the layer B was deformed at a high temperature only when a ductile material such as resin or metal was used as the base material, and stress was applied to the layer A, so that the destruction occurred. Stainless steel with a relatively small thermal expansion does not break even at high temperatures such as 500 ° C, and the composite structure using aluminum oxide for the B layer is the same material as the A layer. Did not happen. In addition, when a metal was used for the B layer, oxidation of the surface of the B layer was observed by heating, and the temperature was around 600 ° C., the highest in the stainless steel substrate.
[0020]
That is, in a composite structure in which a brittle material having a thickness of several tens of μm is formed on a ductile material such as metal or resin, exposure to a temperature higher than 500 ° C. is not preferable because the structure is destroyed. Therefore, in the aerosol deposition method of the present invention, it is not preferable that the temperature of the aerosol is higher than 500 ° C., because the formed structure may cause damage such as cracking and peeling, or oxidation of the substrate surface. .
[0021]
[Effect of the present invention]
As described above, by controlling the temperature of the aerosol or fine particle beam according to the present invention, a dense and high-strength structure can be efficiently formed, and the manufacturing time can be shortened. In addition, since a high temperature is not required as in the prior art, it can be used for a variety of substrates and is effective for energy saving.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an aerosol deposition method apparatus. FIG. 2 is a graph showing the relationship between structure formation speed and hardness with respect to the particle beam temperature.
DESCRIPTION OF SYMBOLS 10 ... Aerosol deposition apparatus, 101 ... Gas cylinder, 102 ... Conveyance pipe, 103 ... Aerosol generator, 104 ... Gas heating apparatus, 105 ... Conveyance pipe with heat retention function, 106 ... Structure preparation room, 107 ... With heat retention / heating function Nozzle, 108 ... thermocouple, 109 ... glass substrate, 110 ... support base, 111 ... XY stage, 112 ... vacuum pump

Claims (4)

脆性材料の微粒子をガス中に分散させたエアロゾルをノズル先端から基材に吹き付けて基材上に脆性材料微粒子からなる構造物を形成するエアロゾルデポジション法による複合構造物を作製する方法であって、前記ノズル先端から噴射されるエアロゾルの温度を室温より高く制御することを特徴とする複合構造物の作製方法。A method of producing a composite structure by an aerosol deposition method in which an aerosol in which fine particles of a brittle material are dispersed in a gas is sprayed onto the substrate from the tip of a nozzle to form a structure made of fine particles of the brittle material on the substrate. A method for producing a composite structure, characterized in that the temperature of aerosol sprayed from the tip of the nozzle is controlled to be higher than room temperature. 前記エアロゾル温度は、室温より高く500℃以下であることを特徴とする請求項1記載の複合構造物の作製方法。 The method for producing a composite structure according to claim 1, wherein the aerosol temperature is higher than room temperature and 500 ° C. or lower. 前記脆性微粒子には脆性材料微粒子単味または脆性材料微粒子と延性材料微粒子が混合された混合微粒子または脆性材料微粒子の表面に延性材料を被覆した複合微粒子を使用することを特徴とする請求項1または請求項2に記載の複合構造物作製方法。Claim 1 or, characterized by using the composite fine particles coated with a ductile material to brittle material fine particles plain or brittle material fine particles and ductile material mixing fine particles are mixed or brittle material surface of the fine particles in the brittle particles The method for producing a composite structure according to claim 2 . 前記脆性材料微粒子の平均一次粒子径は1μm以下であることを特徴とする請求項1乃至請求項3のいずれかに記載の複合構造物の作製方法。The method for producing a composite structure according to any one of claims 1 to 3, wherein the brittle material fine particles have an average primary particle diameter of 1 µm or less.
JP2002077991A 2001-10-11 2002-03-20 Composite structure manufacturing method Expired - Lifetime JP3897623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002077991A JP3897623B2 (en) 2001-10-11 2002-03-20 Composite structure manufacturing method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2001314448 2001-10-11
JP2001-314448 2001-10-11
JP2001-352144 2001-11-16
JP2001352144 2001-11-16
JP2002077991A JP3897623B2 (en) 2001-10-11 2002-03-20 Composite structure manufacturing method

Publications (2)

Publication Number Publication Date
JP2003213451A JP2003213451A (en) 2003-07-30
JP3897623B2 true JP3897623B2 (en) 2007-03-28

Family

ID=27670236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002077991A Expired - Lifetime JP3897623B2 (en) 2001-10-11 2002-03-20 Composite structure manufacturing method

Country Status (1)

Country Link
JP (1) JP3897623B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4329555B2 (en) * 2004-02-04 2009-09-09 Toto株式会社 Aerosol particle size measuring method, apparatus, and composite structure manufacturing apparatus including the same
EP1583163B1 (en) 2004-03-30 2012-02-15 Brother Kogyo Kabushiki Kaisha Method for manufacturing film or piezoelectric film
JP4769979B2 (en) * 2004-03-30 2011-09-07 ブラザー工業株式会社 Method for manufacturing piezoelectric film
JP2005344171A (en) * 2004-06-03 2005-12-15 Fuji Photo Film Co Ltd Raw material powder for film deposition, and film deposition method using the same
DE602006018502D1 (en) 2005-09-30 2011-01-05 Fujifilm Corp NG
JP4921091B2 (en) * 2005-09-30 2012-04-18 富士フイルム株式会社 Composite structure manufacturing method, impurity removal treatment apparatus, film forming apparatus, and composite structure
US7479464B2 (en) * 2006-10-23 2009-01-20 Applied Materials, Inc. Low temperature aerosol deposition of a plasma resistive layer
JP6661269B2 (en) * 2015-01-14 2020-03-11 サムソン エレクトロ−メカニックス カンパニーリミテッド. Structure having coating film and method of manufacturing the same
WO2019027268A1 (en) * 2017-08-04 2019-02-07 ㈜포인트엔지니어링 Piezoelectric material column and manufacturing method therefor

Also Published As

Publication number Publication date
JP2003213451A (en) 2003-07-30

Similar Documents

Publication Publication Date Title
US6808817B2 (en) Kinetically sprayed aluminum metal matrix composites for thermal management
JP3897623B2 (en) Composite structure manufacturing method
CN1837406A (en) Applying bond coat to engine components using cold spray
JP2008248390A (en) Substrate with catalytic coating
US6896933B2 (en) Method of maintaining a non-obstructed interior opening in kinetic spray nozzles
EP2568062B1 (en) Stage heater and method for producing shaft
JP7089707B2 (en) Semiconductor manufacturing equipment and display manufacturing equipment equipped with semiconductor manufacturing equipment members and semiconductor manufacturing equipment members
KR100682740B1 (en) Coating layer preparing method of semiconductor manufacturing equipment
JP2007320797A (en) Composite structure and its manufacturing method
JP2008111154A (en) Method for forming coating film
US8574687B2 (en) Method and device for depositing a non-metallic coating by means of cold-gas spraying
JP3874683B2 (en) Composite structure manufacturing method
JP2008137860A (en) Ceramics burning tool material for electronic components
JP2005279953A (en) Ceramic structure and its manufacturing method
US20070110919A1 (en) Method for producing photocatalytically active polymers
JP3716913B2 (en) Brittle material composite structure and manufacturing method thereof
JPH11236286A (en) Production of boron carbide coating
JP3850257B2 (en) Low temperature forming method for brittle material structures
JP2004002101A (en) Plasma resistant member and its manufacturing process
KR101543891B1 (en) Coating Method For Nano-structured Metallic Thin Films Using Supersonic Vacuum-Flow Deposition
WO2007105670A1 (en) Method for fabricating film-formed body by aerosol deposition
JP2007077447A (en) Composite structure, and its production method
US7179718B2 (en) Structure and method of manufacturing the same
JP3812660B2 (en) Composite structure manufacturing method and composite structure manufacturing apparatus
JPS6379970A (en) Formation of thin film having high adhesion by plasma cvd

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3897623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term