JP3895914B2 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP3895914B2
JP3895914B2 JP2000287839A JP2000287839A JP3895914B2 JP 3895914 B2 JP3895914 B2 JP 3895914B2 JP 2000287839 A JP2000287839 A JP 2000287839A JP 2000287839 A JP2000287839 A JP 2000287839A JP 3895914 B2 JP3895914 B2 JP 3895914B2
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
battery
lithium secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000287839A
Other languages
Japanese (ja)
Other versions
JP2002100355A (en
Inventor
拓也 砂川
竜司 大下
伸 藤谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000287839A priority Critical patent/JP3895914B2/en
Publication of JP2002100355A publication Critical patent/JP2002100355A/en
Application granted granted Critical
Publication of JP3895914B2 publication Critical patent/JP3895914B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明が属する技術分野】
本発明は、リチウム二次電池に係わり、詳しくは、負荷特性が良いリチウム二次電池を提供することを目的とした、正極活物質の改良に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来汎用されているLiCoO2 及びLiNiO2 よりも比容量が大きいMoO3 (三酸化モリブデン)が、リチウム二次電池の正極活物質として、提案されている(T. Tsumura, Solid State Ionic, Vol. 104, P183-189 (1997)参照)。
【0003】
しかしながら、MoO3 を正極活物質とするリチウム二次電池は、負荷特性が良くない。MoO3 の電子伝導性がLiCoO2 及びLiNiO2 のそれらに比べて低いことが、その原因の一つと考えられる。
【0004】
したがって、本発明は、MoO3 を正極活物質とするリチウム二次電池に比べて負荷特性が良いリチウム二次電池を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明に係るリチウム二次電池(本発明電池)は、正極と、負極と、非水電解質とを備え、前記正極が、組成式:Mo1-x-y Mn x y z 〔式中、0.54≦x+y ≦0.78;0.02≦y/(x+y )≦0.23;2.6≦z≦3.2;MはAl、Mg及びTiよりなる群から選ばれた少なくとも一種の元素である。〕で表される複合酸化物又は当該複合酸化物にリチウムを含有せしめて成るリチウム含有複合酸化物を活物質として有する。
【0006】
Moの所定量をMnで置換したMo1-p Mnp y は、MoO3 に比べて、電子伝導性が良い。Moの所定量をMn及びMで置換した本発明で使用する複合酸化物は、さらに電子伝導性が良い。MoO3 相の結晶格子中のMoの一部がMn及び特定の元素Mで置換され、電子状態が電気の良導体であるMoO2 のそれに近くなるためと考えられる。
【0007】
MoのMn及びMによる総置換量x+yは0.54〜0.78に限定され、総置換量x+yに対するMによる置換量yの比y/(x+y )は0.02〜0.23に限定される。x+y及びy/(x+y )が上記したそれぞれの範囲を外れた場合は、電子伝導性が低下する。zが2.6〜3.2に限定されるのは、Moの置換元素であるMn及びMの種類、並びに、複合酸化物を合成する際の焼成温度及び焼成雰囲気により酸化レベルは変動するものの、yがこの範囲を外れることはないからである。
【0008】
上記の複合酸化物又はこれにリチウムを含有せしめて成るリチウム含有複合酸化物を正極活物質として有する本発明電池の負極活物質の具体例としては、リチウムイオンを電気化学的に吸蔵及び放出することが可能な物質及びリチウム金属が挙げられる。リチウムイオンを電気化学的に吸蔵及び放出することが可能な物質としては、黒鉛、コークス、有機物焼成体等の炭素材料、及び、リチウム−アルミニウム合金、リチウム−マグネシウム合金、リチウム−インジウム合金、リチウム−アルミニウム−マンガン合金等のリチウム合金が例示される。なお、炭素材料を使用する場合において、リチウム含有複合酸化物を正極活物質として使用するときは、炭素材料又は炭素材料にリチウムを含有せしめて成るリチウム含有炭素材料を負極活物質として使用し、一方リチウムを含有しない複合酸化物を正極活物質として使用する場合は、リチウム含有炭素材料を負極活物質として使用する。
【0009】
非水電解質は、溶媒及び溶質が充放電時及び保存時の電圧で分解しない限り、特に限定されない。非水電解質の溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状炭酸エステルと、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等の鎖状炭酸エステルとの混合溶媒、及び、環状炭酸エステルと、1,2−ジエトキシエタン、1,2−ジメトキシエタン等のエーテル系溶媒との混合溶媒が例示される。非水電解質の溶質としては、LiPF6 、LiBF4 、LiCF3 SO3 、LiN(CF3 SO2 2 、LiN(C2 5 SO2 2 、LiN(CF3 SO2 )(C4 9 SO2 )、LiC(CF3 SO2 3 及びLiC(C2 5 SO2 3 が例示される。これらのリチウム塩は一種単独を使用してもよく、必要に応じて、2種以上を併用してもよい。非水電解質として、ポリエチレンオキシド、ポリアクリロニトリル等の高分子に非水電解液を含浸せしめてなるゲル状電解質、又は、LiI、Li3 N等の無機固体電解質を使用してもよい。
【0010】
本発明電池は、MoO3 に比べて電子伝導性が良い特定の複合酸化物又はリチウム含有複合酸化物を正極活物質として有するので、MoO3 を正極活物質とするリチウム二次電池に比べて負荷特性が良い。
【0011】
【実施例】
本発明を実施例に基づいてさらに詳細に説明するが、本発明は下記実施例に何ら限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能なものである。
【0012】
(実験1)
本発明電池及び比較電池を作製し、負荷特性を比較した。
【0013】
(実施例1)
〔正極の作製〕
モリブデンカルボニル(Mo(CO)6 )と酢酸マンガンと硫酸マグネシウムとを、乳鉢中でMoとMnとMgとの原子比40:50:10で混合し、直径17mmの円盤状に加圧成型した後、酸素気流中にて、700°Cで12時間焼成し、粉砕して、組成式:Mo0.40Mn0.50Mg0.103.0 で表される正極活物質としての複合酸化物粉末を作製した。
【0014】
上記複合酸化物粉末と、導電剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデンとを、重量比90:6:4で混合して正極合剤を調製し、この正極合剤を2トン/cm2 の圧力で直径20mmの円盤状に加圧成型し、250°Cで2時間真空下にて加熱処理して、正極を作製した。
【0015】
〔負極の作製〕
リチウム金属板を直径20mmの円盤状に打ち抜いて、負極を作製した。
【0016】
〔非水電解質の調製〕
エチレンカーボネートとジメチルカーボネートとの体積比1:1の混合溶媒にLiPF6 を1モル/リットル溶かして、非水電解質を調製した。
【0017】
〔リチウム二次電池の作製〕
上記の正極、負極及び非水電解質を使用して、扁平形のリチウム二次電池A1(本発明電池)を作製した。セパレータには、イオン透過性のポリプロピレンフィルムを使用した。図1は、作製したリチウム二次電池A1の断面図であり、図示のリチウム二次電池A1は、正極1、負極2、これらを離間するセパレータ3、正極缶4、負極缶5、正極集電体6、負極集電体7、ポリプロピレン製の絶縁パッキング8などからなる。正極1及び負極2は、非水電解質を含浸したセパレータ3を介して対向して正極缶4及び負極缶5が形成する電池缶内に収容されており、正極1は正極集電体6を介して正極缶4に、負極2は負極集電体7を介して負極缶5に、それぞれ接続され、電池缶内に生じた化学エネルギーを電気エネルギーとして外部へ取り出し得るようになっている。
【0018】
(実施例2)
正極活物質として、組成式:Mo0.40Mn0.50Al0.103.0 で表される複合酸化物粉末を使用して、正極活物質のみが本発明電池A1と異なるリチウム二次電池A2(本発明電池)を作製した。
【0019】
(実施例3)
正極活物質として、組成式:Mo0.40Mn0.50Ti0.103.0 で表される複合酸化物粉末を使用して、正極活物質のみが本発明電池A1と異なるリチウム二次電池A3(本発明電池)を作製した。
【0020】
(比較例1)
正極活物質として、MoO3 粉末を使用して、正極活物質のみが本発明電池A1と異なるリチウム二次電池X(比較電池)を作製した。
【0021】
〈各電池の負荷特性〉
各電池を、25°Cにて、0.4mAで1.5Vまで放電し、0.4mAで3.5Vまで充電した後、0.4mAで1.5Vまで放電して、放電容量C1を求めた。続けて、各電池を、0.4mAで3.5Vまで充電した後、2.0mAで1.5Vまで放電して、放電容量C2を求め、放電容量C1に対する放電容量C2の比の値(C2/C1)を算出した。この比の値が大きいほど、電池の負荷特性が良い。結果を表1に示す。
【0022】
【表1】

Figure 0003895914
【0023】
表1に示すように、本発明電池A1〜A3は、比較電池Xに比べて、負荷特性が良い。
【0024】
(実験2)
MoのMn及びMによる総置換量x+yと負荷特性の関係を調べた。
【0025】
正極活物質として、表2に示す組成式で表される複合酸化物粉末を使用して、正極活物質のみが本発明電池A1と異なるリチウム二次電池B1〜B8を作製した。電池B4〜B6は本発明電池であり、他は比較電池である。Moの総置換量に対するMoのMによる置換量の比y/(x+y)は、全て、0.17である。
【0026】
各電池について、実験1で行ったものと同じ条件の電池試験を行い、負荷特性を調べた。結果を表2に示す。表2には、本発明電池A1の結果も表1より転記して示してある。
【0027】
【表2】
Figure 0003895914
【0028】
表2より、MoのMn及びMgによる総置換量x+yが0.54〜0.78の場合に、負荷特性が良いリチウム二次電池が得られることが分かる。Moの置換元素Mとして、Al又はTiを使用する場合も、総置換量x+yが0.54〜0.78の場合に、負荷特性が良いリチウム二次電池が得られることを確認した。
【0029】
(実験3)
Moの総置換量に対するMoのMによる置換量の比y/(x+y)と負荷特性の関係を調べた。
【0030】
正極活物質として、表3に示す組成式で表される複合酸化物粉末を使用して、正極活物質のみが本発明電池A1と異なるリチウム二次電池C1〜C4を作製した。電池C2及びC3は本発明電池であり、他は比較電池である。MoのMn及びMgによる総置換量x+yは、全て、0.60である。
【0031】
各電池について、実験1で行ったものと同じ条件の電池試験を行い、負荷特性を調べた。結果を表3に示す。表3には、本発明電池A1の結果も表1より転記して示してある。
【0032】
【表3】
Figure 0003895914
【0033】
表3より、Moの総置換量に対するMoのMによる置換量の比y/(x+y)が0.02〜0.23の場合に、負荷特性が良いリチウム二次電池が得られることが分かる。Moの置換元素Mとして、Al又はTiを使用する場合も、y/(x+y)が0.02〜0.23の場合に、負荷特性が良いリチウム二次電池が得られることを確認した。
【0034】
上記の実施例では、本発明を扁平形のリチウム二次電池に適用する場合を例に挙げて説明したが、本発明は、電池の形状に制限は無く、円筒形等の種々の形状のリチウム二次電池に適用可能である。
【0035】
【発明の効果】
MoO3 を活物質とするリチウム二次電池に比べて負荷特性の良いリチウム二次電池が提供される。
【図面の簡単な説明】
【図1】実施例で作製した扁平形のリチウム二次電池の断面図である。
【符号の説明】
A1 リチウム二次電池
1 正極
2 負極
3 セパレータ
4 正極缶
5 負極缶
6 正極集電体
7 負極集電体
8 絶縁パッキング[0001]
[Technical field to which the invention belongs]
The present invention relates to a lithium secondary battery, and more particularly, to an improvement in a positive electrode active material for the purpose of providing a lithium secondary battery with good load characteristics.
[0002]
[Prior art and problems to be solved by the invention]
MoO 3 (molybdenum trioxide), which has a larger specific capacity than LiCoO 2 and LiNiO 2 that have been widely used in the past, has been proposed as a positive electrode active material for lithium secondary batteries (T. Tsumura, Solid State Ionic, Vol. 104, P183-189 (1997)).
[0003]
However, a lithium secondary battery using MoO 3 as a positive electrode active material has poor load characteristics. One of the causes is considered that the electronic conductivity of MoO 3 is lower than those of LiCoO 2 and LiNiO 2 .
[0004]
Accordingly, an object of the present invention is to provide a lithium secondary battery having better load characteristics than a lithium secondary battery using MoO 3 as a positive electrode active material.
[0005]
[Means for Solving the Problems]
The lithium secondary battery according to the present invention (present battery) includes a positive electrode, a negative electrode and a nonaqueous electrolyte, wherein the positive electrode, the composition formula: Mo 1-xy Mn x M y O z wherein 0 .54 ≦ x + y ≦ 0.78; 0.02 ≦ y / (x + y) ≦ 0.23; 2.6 ≦ z ≦ 3.2; M is at least one selected from the group consisting of Al, Mg and Ti It is an element. ] Or a lithium-containing composite oxide obtained by containing lithium in the composite oxide as an active material.
[0006]
Mo 1-p Mn p O y obtained by substituting a predetermined amount of Mo with Mn has better electronic conductivity than MoO 3 . The composite oxide used in the present invention in which a predetermined amount of Mo is substituted with Mn and M has better electronic conductivity. It is considered that a part of Mo in the crystal lattice of the MoO 3 phase is substituted with Mn and a specific element M, and the electronic state becomes close to that of MoO 2 which is a good electrical conductor.
[0007]
The total substitution amount x + y of Mo by Mn and M is limited to 0.54 to 0.78, and the ratio y / (x + y) of the substitution amount y by M to the total substitution amount x + y is limited to 0.02 to 0.23. The When x + y and y / (x + y) are out of the above ranges, the electron conductivity decreases. Although z is limited to 2.6 to 3.2, the oxidation level varies depending on the types of Mn and M, which are substitution elements of Mo, and the firing temperature and firing atmosphere when synthesizing the composite oxide. , Y never deviates from this range.
[0008]
As a specific example of the negative electrode active material of the battery of the present invention having the above-mentioned composite oxide or a lithium-containing composite oxide containing lithium as a positive electrode active material, lithium ions are electrochemically occluded and released. And lithium metal. Examples of substances capable of electrochemically occluding and releasing lithium ions include graphite, coke, carbon materials such as organic fired bodies, lithium-aluminum alloys, lithium-magnesium alloys, lithium-indium alloys, lithium- A lithium alloy such as an aluminum-manganese alloy is exemplified. In the case of using a carbon material, when a lithium-containing composite oxide is used as a positive electrode active material, a lithium-containing carbon material obtained by adding lithium to a carbon material or a carbon material is used as a negative electrode active material. When a composite oxide not containing lithium is used as the positive electrode active material, a lithium-containing carbon material is used as the negative electrode active material.
[0009]
The non-aqueous electrolyte is not particularly limited as long as the solvent and solute are not decomposed by the voltage during charge / discharge and storage. As a non-aqueous electrolyte solvent, a mixed solvent of a cyclic carbonate such as ethylene carbonate, propylene carbonate, butylene carbonate, and a chain carbonate such as dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate, and a cyclic carbonate, Examples thereof include mixed solvents with ether solvents such as 1,2-diethoxyethane and 1,2-dimethoxyethane. Solutes of the nonaqueous electrolyte include LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 and LiC (C 2 F 5 SO 2 ) 3 are exemplified. These lithium salts may be used individually by 1 type, and may use 2 or more types together as needed. As the non-aqueous electrolyte, a gel electrolyte obtained by impregnating a polymer such as polyethylene oxide or polyacrylonitrile with a non-aqueous electrolyte, or an inorganic solid electrolyte such as LiI or Li 3 N may be used.
[0010]
The present invention battery, since it has as the positive electrode active material electronic conductivity is good specific complex oxide or a lithium-containing composite oxide compared to MoO 3, loaded as compared with the lithium secondary battery using MoO 3 as the positive electrode active material Good characteristics.
[0011]
【Example】
The present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples, and can be appropriately modified and implemented without departing from the scope of the present invention. .
[0012]
(Experiment 1)
The battery of the present invention and the comparative battery were produced and the load characteristics were compared.
[0013]
Example 1
[Production of positive electrode]
After molybdenum carbonyl (Mo (CO) 6 ), manganese acetate, and magnesium sulfate are mixed in a mortar at an atomic ratio of Mo, Mn, and Mg of 40:50:10 and pressed into a disk shape having a diameter of 17 mm. Then, it was fired at 700 ° C. for 12 hours in an oxygen stream and pulverized to produce a composite oxide powder as a positive electrode active material represented by a composition formula: Mo 0.40 Mn 0.50 Mg 0.10 O 3.0 .
[0014]
The composite oxide powder, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder are mixed at a weight ratio of 90: 6: 4 to prepare a positive electrode mixture. A positive electrode was produced by pressure-molding into a disk shape with a diameter of 20 mm at a pressure of ton / cm 2 and heat-treating under vacuum at 250 ° C. for 2 hours.
[0015]
(Production of negative electrode)
A lithium metal plate was punched into a disk shape having a diameter of 20 mm to produce a negative electrode.
[0016]
(Preparation of non-aqueous electrolyte)
A nonaqueous electrolyte was prepared by dissolving 1 mol / liter of LiPF 6 in a mixed solvent of ethylene carbonate and dimethyl carbonate in a volume ratio of 1: 1.
[0017]
[Production of lithium secondary battery]
Using the above positive electrode, negative electrode and nonaqueous electrolyte, a flat lithium secondary battery A1 (invention battery) was produced. An ion-permeable polypropylene film was used for the separator. FIG. 1 is a cross-sectional view of a manufactured lithium secondary battery A1. The illustrated lithium secondary battery A1 includes a positive electrode 1, a negative electrode 2, a separator 3 separating them, a positive electrode can 4, a negative electrode can 5, and a positive electrode current collector. The body 6, the negative electrode current collector 7, polypropylene insulating packing 8, and the like. The positive electrode 1 and the negative electrode 2 are accommodated in a battery can formed by the positive electrode can 4 and the negative electrode can 5 so as to face each other via a separator 3 impregnated with a non-aqueous electrolyte, and the positive electrode 1 is interposed via a positive electrode current collector 6. Thus, the positive electrode can 4 and the negative electrode 2 are connected to the negative electrode can 5 via the negative electrode current collector 7, respectively, so that chemical energy generated in the battery can can be taken out as electric energy to the outside.
[0018]
(Example 2)
As the positive electrode active material, a lithium secondary battery A2 (invention battery) in which only the positive electrode active material is different from the present invention battery A1 using a composite oxide powder represented by the composition formula: Mo 0.40 Mn 0.50 Al 0.10 O 3.0 Was made.
[0019]
(Example 3)
As the positive electrode active material, a lithium secondary battery A3 (invention battery) in which only the positive electrode active material is different from the present invention battery A1 using a composite oxide powder represented by the composition formula: Mo 0.40 Mn 0.50 Ti 0.10 O 3.0 Was made.
[0020]
(Comparative Example 1)
Using a MoO 3 powder as the positive electrode active material, a lithium secondary battery X (comparative battery) in which only the positive electrode active material was different from the battery A1 of the present invention was produced.
[0021]
<Load characteristics of each battery>
Each battery was discharged to 1.5 V at 0.4 mA at 25 ° C., charged to 3.5 V at 0.4 mA, and then discharged to 1.5 V at 0.4 mA to obtain the discharge capacity C1. It was. Subsequently, after charging each battery to 3.5 V at 0.4 mA, the battery was discharged to 1.5 V at 2.0 mA to obtain the discharge capacity C2, and the value of the ratio of the discharge capacity C2 to the discharge capacity C1 (C2 / C1) was calculated. The larger the ratio value, the better the load characteristics of the battery. The results are shown in Table 1.
[0022]
[Table 1]
Figure 0003895914
[0023]
As shown in Table 1, the batteries A1 to A3 of the present invention have better load characteristics than the comparative battery X.
[0024]
(Experiment 2)
The relationship between the total substitution amount x + y of Mo by Mn and M and load characteristics was examined.
[0025]
Using the composite oxide powder represented by the composition formula shown in Table 2 as the positive electrode active material, lithium secondary batteries B1 to B8 that differ from the present invention battery A1 only in the positive electrode active material were produced. Batteries B4 to B6 are the batteries of the present invention, and others are comparative batteries. The ratios y / (x + y) of the substitution amount of Mo by Mo with respect to the total substitution amount of Mo are all 0.17.
[0026]
For each battery, a battery test under the same conditions as in Experiment 1 was performed to examine load characteristics. The results are shown in Table 2. In Table 2, the results of the battery A1 of the present invention are also transferred from Table 1.
[0027]
[Table 2]
Figure 0003895914
[0028]
Table 2 shows that a lithium secondary battery with good load characteristics can be obtained when the total substitution amount x + y of Mo by Mn and Mg is 0.54 to 0.78. Even when Al or Ti was used as the substitution element M for Mo, it was confirmed that a lithium secondary battery with good load characteristics was obtained when the total substitution amount x + y was 0.54 to 0.78.
[0029]
(Experiment 3)
The relationship between the ratio y / (x + y) of the substitution amount of Mo by Mo to the total substitution amount of Mo and the load characteristics was examined.
[0030]
Using the composite oxide powder represented by the composition formula shown in Table 3 as the positive electrode active material, lithium secondary batteries C1 to C4 that differ from the present invention battery A1 only in the positive electrode active material were produced. The batteries C2 and C3 are the batteries of the present invention, and the others are comparative batteries. The total substitution amount x + y of Mo by Mn and Mg is all 0.60.
[0031]
For each battery, a battery test under the same conditions as in Experiment 1 was performed to examine load characteristics. The results are shown in Table 3. In Table 3, the result of the battery A1 of the present invention is also transferred from Table 1.
[0032]
[Table 3]
Figure 0003895914
[0033]
From Table 3, it can be seen that when the ratio y / (x + y) of the substitution amount of Mo by Mo to the total substitution amount of Mo is 0.02 to 0.23, a lithium secondary battery with good load characteristics can be obtained. When Al or Ti was used as the substitution element M for Mo, it was confirmed that a lithium secondary battery with good load characteristics was obtained when y / (x + y) was 0.02 to 0.23.
[0034]
In the above embodiment, the case where the present invention is applied to a flat lithium secondary battery has been described as an example. However, the present invention is not limited to the shape of the battery, and lithium having various shapes such as a cylindrical shape. Applicable to secondary batteries.
[0035]
【The invention's effect】
A lithium secondary battery having better load characteristics than a lithium secondary battery using MoO 3 as an active material is provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a flat lithium secondary battery manufactured in an example.
[Explanation of symbols]
A1 Lithium secondary battery 1 Positive electrode 2 Negative electrode 3 Separator 4 Positive electrode can 5 Negative electrode can 6 Positive electrode current collector 7 Negative electrode current collector 8 Insulation packing

Claims (2)

正極と、負極と、非水電解質とを備えるリチウム二次電池において、前記正極が、組成式:Mo1-x-y Mn x y z 〔式中、0.54≦x+y ≦0.78;0.02≦y/(x+y )≦0.23;2.6≦z≦3.2;MはAl、Mg及びTiよりなる群から選ばれた少なくとも一種の元素である。〕で表される複合酸化物又は当該複合酸化物にリチウムを含有せしめて成るリチウム含有複合酸化物を活物質として有することを特徴とするリチウム二次電池。A positive electrode, a negative electrode, a lithium secondary battery and a nonaqueous electrolyte, wherein the positive electrode, the composition formula: Mo 1-xy Mn x M y O z wherein, 0.54 ≦ x + y ≦ 0.78 ; 0 0.02 ≦ y / (x + y) ≦ 0.23; 2.6 ≦ z ≦ 3.2; M is at least one element selected from the group consisting of Al, Mg, and Ti. Or a lithium-containing composite oxide obtained by containing lithium in the composite oxide as an active material. 前記負極が、リチウム金属、リチウム合金又は炭素材料を活物質として有する請求項1記載のリチウム二次電池。The lithium secondary battery according to claim 1, wherein the negative electrode has lithium metal, a lithium alloy, or a carbon material as an active material.
JP2000287839A 2000-09-22 2000-09-22 Lithium secondary battery Expired - Fee Related JP3895914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000287839A JP3895914B2 (en) 2000-09-22 2000-09-22 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000287839A JP3895914B2 (en) 2000-09-22 2000-09-22 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2002100355A JP2002100355A (en) 2002-04-05
JP3895914B2 true JP3895914B2 (en) 2007-03-22

Family

ID=18771520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000287839A Expired - Fee Related JP3895914B2 (en) 2000-09-22 2000-09-22 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3895914B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099522A (en) * 2007-09-25 2009-05-07 Sanyo Electric Co Ltd Active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same

Also Published As

Publication number Publication date
JP2002100355A (en) 2002-04-05

Similar Documents

Publication Publication Date Title
JP3625680B2 (en) Lithium secondary battery
JP5972513B2 (en) Cathode and lithium battery using the same
KR101430616B1 (en) Cathode and lithium battery using the same
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
EP1022797A1 (en) Polymer electrolyte battery and polymer electrolyte
JP2000235856A (en) Lithium secondary battery
JPH1092429A (en) Manufacture of non-aqueous solvent secondary battery and non-aqueous solvent secondary battery
JP3768046B2 (en) Lithium secondary battery
JPH09147863A (en) Nonaqueous electrolyte battery
JP3625679B2 (en) Lithium secondary battery
JPH07272756A (en) Nonaqueous electrolytic secondary battery
JP2007134274A (en) Electrode material, electrode, and lithium ion battery
US6391496B1 (en) Lithium secondary battery with orthorhombic molybdenum and niobium oxide electrodes
JP2002117845A (en) Lithium iron complex oxide for lithium secondary battery positive electrode active material
JPH08171936A (en) Lithium secondary battery
US6383685B1 (en) Lithium secondary battery
JP2000277108A (en) Lithium secondary battery
JP3268924B2 (en) Non-aqueous electrolyte battery
US20220123295A1 (en) Method of manufacturing positive electrode active material for lithium ion secondary battery
JP2002025626A (en) Aging method for lithium secondary battery
US6383684B1 (en) Lithium secondary battery comprising tungsten-containing oxide of monoclinic crystal structure
JP2002110251A (en) Lithium ion secondary battery
JP3619702B2 (en) Lithium secondary battery
JP3895914B2 (en) Lithium secondary battery
JP3615416B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees