JP3895053B2 - Production method of dihalomethylsilanes - Google Patents

Production method of dihalomethylsilanes Download PDF

Info

Publication number
JP3895053B2
JP3895053B2 JP21585998A JP21585998A JP3895053B2 JP 3895053 B2 JP3895053 B2 JP 3895053B2 JP 21585998 A JP21585998 A JP 21585998A JP 21585998 A JP21585998 A JP 21585998A JP 3895053 B2 JP3895053 B2 JP 3895053B2
Authority
JP
Japan
Prior art keywords
group
compound
present
reaction
halogenated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21585998A
Other languages
Japanese (ja)
Other versions
JP2000044580A (en
Inventor
和彦 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP21585998A priority Critical patent/JP3895053B2/en
Publication of JP2000044580A publication Critical patent/JP2000044580A/en
Application granted granted Critical
Publication of JP3895053B2 publication Critical patent/JP3895053B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、ジハロメチルシラン類の、新規な製造方法に関する。
【0002】
【従来の技術】
従来、ジヨードメチルトリメチルシラン(MeSiCHI)は、ジヨードメタンあるいはヨードホルムから得られることは知られているが、いずれも極低温(−90℃)を必要とし、工業的には問題であった。
例えば、次式の反応式で示される方法が知られている。
【0003】
【化1】

Figure 0003895053
【0004】
この方法は、ヨードホルムに−85℃でグリニャール試薬を反応させて、ジヨードメチルマグネシウムクロリドとし、これに−85℃でクロロトリメチルシランを反応させて、目的のジヨードメチルトリメチルシラン(MeSiCHI)を約77%の収率で得るというものである(Seyferth, D., et al., J. Organomet. Chem., 1970, 24, 647)。
また、次式で示される方法も知られている。
【0005】
【化2】
Figure 0003895053
【0006】
この方法もクロロトリメチルシランを−90℃で反応させるという点においては前記の方法と同じであるが、出発原料としてジヨードメタンを用いる点で異なっている。即ち、ジヨードメタンに−90℃でナトリウムヘキサメチルジシラジドを作用させて、ジヨードメチルナトリウムとし、これに−90℃でクロロトリメチルシランを反応させて目的のジヨードメチルトリメチルシラン(MeSiCHI)を収率約67%で得るという方法である(Charreau, P., Bull. Chem. Soc. Fr., 1990, 127, 275)。
【0007】
ジヨードメタン誘導体はシクロプロパン環を合成するシモンズ−スミス(Simmons-Smith) 反応の原料として有用であるばかりでなく、本発明のジヨードメチルトリメチルシランはさらにシリル基を有しており、アルデヒド類と反応してビニル位にシリル基が置換した、アルケニルシランの合成原料としても有用な化合物である。これらのシクロプロパン誘導体やアルケニルシランは、各種の医薬、農薬などの生理活性物質や、各種の工業材料の合成中間体として有用なものである。
【0008】
【発明が解決しようとする課題】
本発明のジヨードメチルトリメチルシラン(MeSiCHI)は、−85℃から−90℃という極めて低温で、かつ、反応性の高い強塩基を用いて金属化し、それをクロロトリメチルシランで捕捉して製造されていたが、工業的な方法は知られておらず、わずかに実験的に製造されていたに過ぎない。
本発明は、ジヨードメチルトリメチルシラン(MeSiCHI)などのシリル化ジハロメチル基を有する化合物を簡便且つ工業的に製造することができる方法を提供するものである。
【0009】
【課題を解決するための手段】
本発明は、トリハロメチル基を有する化合物とハロゲン化シランとをマンガンの存在下に反応させてシリル化ジハロメチル基を有する化合物を製造する方法に関する。本発明のトリハロメチル基を有する化合物としては、好ましくはハロホルム、より好ましくはヨードホルムが挙げられる。また、本発明のハロゲン化シランとしては、好ましくはハロゲン化トリアルキルシラン、より好ましくはクロロトリメチルシランが挙げられる。
【0010】
したがって、より詳細には本発明は、ヨードホルム(CHI)とクロロトリメチルシラン(MeSiCl)とを、マンガン金属の存在下に反応させてなるジヨードメチルトリメチルシラン(MeSiCHI)の製造方法に関する。
【0011】
本発明のトリハロメチル基を有する化合物は、トリハロメチル基に反応に関与するハロゲン原子を1個有し、分子中に本発明の反応を阻害することのある官能基を有さないものであれば特に制限はなく、好ましいトリハロメチル基を有する化合物としては、次の一般式(I)で示される化合物を挙げることができる。
【0012】
R−CX (I)
(式中、Rは水素原子又は有機残基を示し、Xは同一又はそれぞれ異なってもよいハロゲン原子を示す。)
【0013】
前記一般式(I)における有機残基Rとしては、炭素数1〜30、好ましくは1〜20、より好ましくは1〜15の直鎖状又は分枝状のアルキル基、炭素数4〜30、好ましくは5〜20、より好ましくは6〜10の単環、多環又は縮合環式のシクロアルキル基、炭素数6〜30、好ましくは6〜20、より好ましくは6〜10の単環、多環又は縮合環式のアリール基、環中に少なくとも1個以上の窒素原子、酸素原子又は硫黄原子を有し、1個の環の大きさが5〜20員、好ましく5〜10員、より好ましく5〜7員であって、前記したシクロアルキル基又はアリール基と縮合していてもよい飽和又は不飽和の単環、多環又は縮合環式の複素環式基、前記したアルキル基に前記したアリール基、シクロアルキル基又は複素環式基が置換したアラルキル基、シクロアルキルアルキル基又は複素環式基置換アルキル基などが挙げられる。
【0014】
これらのアルキル基、シクロアルキル基、アリール基、複素環式基、アラルキル基、シクロアルキルアルキル基又は複素環式基置換アルキル基は、本発明の反応を阻害しない1個又は2個以上の置換基を有してもよく、これらの置換基としては前記したアルキル基などのほかに、ケト基、低級アシル基、低級アルコキシ基、ハロゲンなどが挙げられる。
【0015】
前記一般式(I)のRの有機残基の例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、t−ブチル基、n−ヘキシル基、n−オクチル基、n−ノニル基、n−デシル基などのアルキル基、シクロヘキシル基、シクロペンチル基などのシクロアルキル基、フェニル基、ナフチル基などのアリール基、チエニル基、フラニル基などの複素環基、ベンジル基、フェネチル基などのアラルキル基等が挙げられる。
【0016】
前記一般式(I)のRは、前記の有機残基であってもよいが、好ましくは水素原子である。
【0017】
また、前記一般式(I)のXは、フッ素、塩素、臭素、ヨウ素などのハロゲン原子であり、3個のハロゲン原子は同一であっても、それぞれ異なっていてもよいが、好ましくは同一のハロゲン原子であり、より好ましくは3個のヨウ素原子である。
【0018】
本発明のハロゲン化シランとしては、反応性のハロゲン−ケイ素結合を有する化合物であれば反応に供することもできるが、シランの残りの3個の基が前記した有機残基を有するものが好ましく、より好ましくは、アルキル基、アリール基などの炭化水素基である。ハロゲン化シランの残りの3個の基は同一のものであっても、異なるものであってもよい。好ましいハロゲン化シランとしてはハロゲン化トリ炭化水素シランが挙げられ、より具体的には、例えば、クロロトリメチルシラン、クロロトリエチルシランなどのハロゲン化トリアルキルシラン、クロロフェニルジメチルシラン、クロロジフェニルメチルシランなどのハロゲン化アリールジアルキシシラン、ハロゲン化アルキルジアリールシラン、ハロゲン化トリアリールシランなどが挙げられる。また、ハロゲン化シランのハロゲンとしては、前記したハロゲンでよいが、塩素が好ましい。
【0019】
本発明の方法においては、溶媒を使用するのが好ましく、溶媒としてはテトラヒドロフラン(THF)、ジオキサン、ジメトキシエタン(DME)、エーテルなどのエーテル系、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMA)などのアミド系の溶媒の1種又は2種以上を組み合わせて用いるのが好ましい。本発明の方法におけるさらに好ましい溶媒としては、テトラヒドロフラン(THF)、ジメトキシエタン(DME)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMA)の1種以上を挙げることができる。
【0020】
本発明の方法における反応温度は、特に制限はないが、好ましくは−20℃〜溶媒の沸点温度、より好ましくは0℃〜室温である。
【0021】
本発明の方法は、マンガン、好ましくは金属マンガンの存在下に、トリハロメチル基を有する化合物とハロゲン化シランとを、好ましくは溶媒の存在下に、これらを混合して反応させることができる。
本発明の方法は、マンガン誘導体、好ましくは金属マンガンの存在下に反応させることにより行うことができるが、反応系にさらにヨウ化ナトリウムなどのアルカリ金属ハロゲン化物を存在させることもできる。本発明の方法において使用されるハロゲン化アルカリ金属としては、ナトリウムのハロゲン化物が好ましく、具体的にはヨウ化ナトリウムなどが挙げられる。
【0022】
本発明の好ましい態様を前記の一般式(I)を用いて化学反応式で示すと次の反応式(1)のようになる。
R−CX + Z−Si−X’ → R−CX−Si−Z (1)
(式中、R及びXは前記のものを示し、X’はハロゲン原子を示し、Zはシランの置換基を示す。)
【0023】
さらに、本発明のより好ましい態様をより具体的な化学反応式で示すと次の反応式(2)のようになる。
CHI+ MeSiCl → MeSiCHI (2)
(式中、Meはメチル基を示す。)
【0024】
本発明の方法で製造されたシリル化ジハロメチル基を有する化合物、より具体的にはジヨードメチルトリメチルシランは、これを反応系から単離して次の反応に使用してもよいが、これを単離することなくそのまま次の反応に使用することもできる。
【0025】
【実施例】
次に実施例を挙げて本発明の方法をより具体的に説明するが、本発明の方法はこれらの実施例に限定されるものではない。
【0026】
実施例1(ジヨードメチルトリメチルシランの合成)
アルゴン雰囲気下、金属マンガン(0.33g,6.0mmol)のTHF(4mL)懸濁液に、クロロトリメチルシラン(0.76mL,6.0mmol)を加え、25℃で30分間撹拌した。0℃にして、ヨードホルム(0.80g,2.0mmol)のTHF(6mL)溶液を滴下した。1時間攪拌したのち、反応混合物を、セライトでろ過し、水(25mL)に注ぎ、ジエチルエーテル(3x25mL)で抽出した。有機層を分離した後、チオ硫酸ナトリウムと食塩水で洗い、無水硫酸マグネシウムで乾燥した。濃縮ののち、ジヨードメチルトリメチルシランを0.18g(収率26%)得た。
ジヨードメチルトリメチルシラン(Diiodomethyltrimethylsilane):
bp.49−50℃(0.7Torr);
IR(neat):2953,2895,1260,1250,1061,840,758,709,696cm−1
H−NMR(CDCl):δ 0.25(s,9H),4.44(s,1H).
【0027】
実施例2(ジヨードメチルトリメチルシランの合成)
アルゴン雰囲気下、金属マンガン(0.33g,6.0mmol)、ヨウ化ナトリウム(89mg,0.6mmol)のジメトキシエタン(4mL)懸濁液に、クロロトリメチルシラン(0.76mL,6.0mmol)を加え、25℃で30分間撹拌した。25℃の水浴にして、ヨードホルム(0.80g,2.0mmol)のジメトキシエタン(6mL)溶液を滴下した。1時間攪拌したのち、反応混合物を、セライトでろ過し、水(25mL)に注ぎ、ジエチルエーテル(3x25mL)で抽出した。有機層を分離した後、チオ硫酸ナトリウムと食塩水で洗い、無水硫酸マグネシウムで乾燥した。濃縮ののち、ジヨードメチルトリメチルシランを0.40g(収率59%)得た。
【0028】
【発明の効果】
本発明の方法により合成中間体として工業的にも重要なジハロメチルシリル基を有する化合物、特にジヨードメチルトリメチルシランを、簡便かつ安全な方法で製造することができる。本発明はこれらの化合物の工業的な製造方法を提供するものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel method for producing dihalomethylsilanes.
[0002]
[Prior art]
Conventionally, it has been known that diiodomethyltrimethylsilane (Me 3 SiCHI 2 ) can be obtained from diiodomethane or iodoform, but both require extremely low temperatures (−90 ° C.) and are industrially problematic. .
For example, a method represented by the following reaction formula is known.
[0003]
[Chemical 1]
Figure 0003895053
[0004]
In this method, a Grignard reagent is reacted with iodoform at −85 ° C. to form diiodomethylmagnesium chloride, and this is reacted with chlorotrimethylsilane at −85 ° C. to obtain the desired diiodomethyltrimethylsilane (Me 3 SiCHI 2). ) In a yield of about 77% (Seyferth, D., et al., J. Organomet. Chem., 1970, 24, 647).
A method represented by the following equation is also known.
[0005]
[Chemical 2]
Figure 0003895053
[0006]
This method is the same as the above method in that chlorotrimethylsilane is reacted at -90 ° C, but differs in that diiodomethane is used as a starting material. That is, sodium hexamethyldisilazide is allowed to act on diiodomethane at −90 ° C. to form diiodomethyl sodium, which is reacted with chlorotrimethylsilane at −90 ° C. to obtain the desired diiodomethyltrimethylsilane (Me 3 SiCHI 2). ) In a yield of about 67% (Charreau, P., Bull. Chem. Soc. Fr., 1990, 127, 275).
[0007]
The diiodomethane derivative is not only useful as a raw material for the Simmons-Smith reaction for synthesizing a cyclopropane ring, but the diiodomethyltrimethylsilane of the present invention further has a silyl group and reacts with aldehydes. Thus, it is a compound useful as a raw material for synthesizing alkenyl silanes in which a silyl group is substituted at the vinyl position. These cyclopropane derivatives and alkenylsilanes are useful as synthetic intermediates for physiologically active substances such as various drugs and agricultural chemicals and various industrial materials.
[0008]
[Problems to be solved by the invention]
The diiodomethyltrimethylsilane (Me 3 SiCHI 2 ) of the present invention is metallized with a strong base having a very low temperature of −85 ° C. to −90 ° C. and is captured by chlorotrimethylsilane. However, industrial methods are not known, and they were only slightly experimentally produced.
The present invention provides a method by which a compound having a silylated dihalomethyl group such as diiodomethyltrimethylsilane (Me 3 SiCHI 2 ) can be easily and industrially produced.
[0009]
[Means for Solving the Problems]
The present invention relates to a method for producing a compound having a silylated dihalomethyl group by reacting a compound having a trihalomethyl group with a halogenated silane in the presence of manganese. The compound having a trihalomethyl group of the present invention is preferably haloform, more preferably iodoform. In addition, the halogenated silane of the present invention is preferably a halogenated trialkylsilane, more preferably chlorotrimethylsilane.
[0010]
Therefore, in more detail, the present invention relates to production of diiodomethyltrimethylsilane (Me 3 SiCHI 2 ) obtained by reacting iodoform (CHI 3 ) and chlorotrimethylsilane (Me 3 SiCl) in the presence of manganese metal. Regarding the method.
[0011]
The compound having a trihalomethyl group of the present invention has one halogen atom involved in the reaction in the trihalomethyl group and does not have a functional group that may inhibit the reaction of the present invention in the molecule. There is no restriction | limiting in particular, As a compound which has a preferable trihalomethyl group, the compound shown with the following general formula (I) can be mentioned.
[0012]
R-CX 3 (I)
(In the formula, R represents a hydrogen atom or an organic residue, and X represents the same or different halogen atoms.)
[0013]
As the organic residue R in the general formula (I), a linear or branched alkyl group having 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms, more preferably 1 to 15 carbon atoms, 4 to 30 carbon atoms, Preferably it is 5-20, more preferably 6-10, a monocyclic, polycyclic or condensed cycloalkyl group, 6-30 carbons, preferably 6-20, more preferably 6-10 monocyclic, polycyclic. A ring or condensed cyclic aryl group, having at least one nitrogen atom, oxygen atom or sulfur atom in the ring, and the size of one ring is 5 to 20 members, preferably 5 to 10 members, more preferably 5 to 7-membered, saturated or unsaturated monocyclic, polycyclic or condensed heterocyclic group which may be condensed with the cycloalkyl group or aryl group, and the alkyl group described above. Substituted by aryl, cycloalkyl or heterocyclic groups Aralkyl groups, such as cycloalkylalkyl group or heterocyclic group-substituted alkyl group.
[0014]
These alkyl group, cycloalkyl group, aryl group, heterocyclic group, aralkyl group, cycloalkylalkyl group or heterocyclic group-substituted alkyl group is one or more substituents that do not inhibit the reaction of the present invention. These substituents include a keto group, a lower acyl group, a lower alkoxy group, a halogen and the like in addition to the alkyl group described above.
[0015]
Examples of the organic residue of R in the general formula (I) include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, n-hexyl group, and n-octyl group. Alkyl groups such as n-nonyl group and n-decyl group, cycloalkyl groups such as cyclohexyl group and cyclopentyl group, aryl groups such as phenyl group and naphthyl group, heterocyclic groups such as thienyl group and furanyl group, benzyl group, Examples include aralkyl groups such as a phenethyl group.
[0016]
R in the general formula (I) may be the organic residue, but is preferably a hydrogen atom.
[0017]
X in the general formula (I) is a halogen atom such as fluorine, chlorine, bromine or iodine, and the three halogen atoms may be the same or different, but preferably the same A halogen atom, more preferably three iodine atoms.
[0018]
As the halogenated silane of the present invention, any compound having a reactive halogen-silicon bond can be used for the reaction, but preferably the remaining three groups of silane have the organic residues described above. More preferred are hydrocarbon groups such as alkyl groups and aryl groups. The remaining three groups of the halogenated silane may be the same or different. Preferred halogenated silanes include halogenated trihydrocarbon silanes, and more specifically, halogenated trialkylsilanes such as chlorotrimethylsilane and chlorotriethylsilane, halogens such as chlorophenyldimethylsilane and chlorodiphenylmethylsilane. And aryldialkoxysilanes, halogenated alkyldiarylsilanes, and halogenated triarylsilanes. Further, the halogen of the halogenated silane may be the aforementioned halogen, but chlorine is preferred.
[0019]
In the method of the present invention, it is preferable to use a solvent. Examples of the solvent include tetrahydrofuran (THF), dioxane, dimethoxyethane (DME), ethers such as ether, dimethylformamide (DMF), dimethylacetamide (DMA), and the like. It is preferable to use one or more amide solvents in combination. As a more preferable solvent in the method of the present invention, one or more of tetrahydrofuran (THF), dimethoxyethane (DME), dimethylformamide (DMF), and dimethylacetamide (DMA) can be mentioned.
[0020]
Although there is no restriction | limiting in particular in the reaction temperature in the method of this invention, Preferably it is -20 degreeC-boiling point temperature of a solvent, More preferably, it is 0 degreeC-room temperature.
[0021]
In the method of the present invention, a compound having a trihalomethyl group and a halogenated silane can be mixed and reacted in the presence of manganese, preferably metal manganese, preferably in the presence of a solvent.
The method of the present invention can be carried out by reacting in the presence of a manganese derivative, preferably metal manganese, but an alkali metal halide such as sodium iodide can also be present in the reaction system. As the alkali metal halide used in the method of the present invention, a halide of sodium is preferable, and specific examples thereof include sodium iodide.
[0022]
A preferred embodiment of the present invention is represented by the following chemical reaction formula (1) using the above general formula (I).
R—CX 3 + Z 3 —Si—X ′ → R—CX 2 —Si—Z 3 (1)
(In the formula, R and X are as defined above, X ′ is a halogen atom, and Z is a substituent of silane.)
[0023]
Furthermore, when a more preferable embodiment of the present invention is shown by a more specific chemical reaction formula, the following reaction formula (2) is obtained.
CHI 3 + Me 3 SiCl → Me 3 SiCHI 2 (2)
(In the formula, Me represents a methyl group.)
[0024]
The compound having a silylated dihalomethyl group produced by the method of the present invention, more specifically diiodomethyltrimethylsilane, may be isolated from the reaction system and used in the next reaction. It can also be used for the next reaction without separation.
[0025]
【Example】
Next, the method of the present invention will be described more specifically with reference to examples. However, the method of the present invention is not limited to these examples.
[0026]
Example 1 (Synthesis of diiodomethyltrimethylsilane)
Under an argon atmosphere, chlorotrimethylsilane (0.76 mL, 6.0 mmol) was added to a suspension of metal manganese (0.33 g, 6.0 mmol) in THF (4 mL), and the mixture was stirred at 25 ° C. for 30 minutes. At 0 ° C., a solution of iodoform (0.80 g, 2.0 mmol) in THF (6 mL) was added dropwise. After stirring for 1 hour, the reaction mixture was filtered through celite, poured into water (25 mL) and extracted with diethyl ether (3 × 25 mL). The organic layer was separated, washed with sodium thiosulfate and brine, and dried over anhydrous magnesium sulfate. After concentration, 0.18 g (yield 26%) of diiodomethyltrimethylsilane was obtained.
Diiodomethyltrimethylsilane:
bp. 49-50 ° C. (0.7 Torr);
IR (neat): 2953, 2895, 1260, 1250, 1061, 840, 758, 709, 696 cm −1 ;
1 H-NMR (CDCl 3 ): δ 0.25 (s, 9H), 4.44 (s, 1H).
[0027]
Example 2 (Synthesis of diiodomethyltrimethylsilane)
Chlorotrimethylsilane (0.76 mL, 6.0 mmol) was added to a suspension of metal manganese (0.33 g, 6.0 mmol) and sodium iodide (89 mg, 0.6 mmol) in dimethoxyethane (4 mL) under an argon atmosphere. In addition, the mixture was stirred at 25 ° C. for 30 minutes. In a 25 ° C. water bath, a solution of iodoform (0.80 g, 2.0 mmol) in dimethoxyethane (6 mL) was added dropwise. After stirring for 1 hour, the reaction mixture was filtered through celite, poured into water (25 mL) and extracted with diethyl ether (3 × 25 mL). The organic layer was separated, washed with sodium thiosulfate and brine, and dried over anhydrous magnesium sulfate. After concentration, 0.40 g (59% yield) of diiodomethyltrimethylsilane was obtained.
[0028]
【The invention's effect】
By the method of the present invention, a compound having a dihalomethylsilyl group that is industrially important as a synthetic intermediate, particularly diiodomethyltrimethylsilane, can be produced in a simple and safe manner. The present invention provides an industrial process for producing these compounds.

Claims (7)

トリハロメチル基を有する化合物とハロゲン化シランとをマンガンの存在下に反応させてシリル化ジハロメチル基を有する化合物を製造する方法。A method for producing a compound having a silylated dihalomethyl group by reacting a compound having a trihalomethyl group with a halogenated silane in the presence of manganese. トリハロメチル基を有する化合物がハロホルムであり、ハロゲン化シランがハロゲン化トリ炭化水素シランである請求項1に記載の方法。The method according to claim 1, wherein the compound having a trihalomethyl group is haloform, and the halogenated silane is a halogenated trihydrocarbon silane. トリハロメチル基を有する化合物がヨードホルムであり、ハロゲン化シランがクロロトリメチルシランである請求項1又は2に記載の方法。The method according to claim 1 or 2, wherein the compound having a trihalomethyl group is iodoform, and the halogenated silane is chlorotrimethylsilane. 反応温度が0℃〜室温である請求項1〜3のいずれかに記載の方法。The method according to any one of claims 1 to 3, wherein the reaction temperature is 0 ° C to room temperature. 反応がさらにアルカリ金属ハロゲン化物の存在下に行われる請求項1〜4のいずれかに記載の方法。The process according to any one of claims 1 to 4, wherein the reaction is further carried out in the presence of an alkali metal halide. アルカリ金属ハロゲン化物が、ヨウ化ナトリウムである請求項5に記載の製造方法。The production method according to claim 5, wherein the alkali metal halide is sodium iodide. 反応溶媒が、エーテル系又はアミド系溶媒の1種以上である請求項1〜6のいずれかに記載の製造方法。The production method according to any one of claims 1 to 6, wherein the reaction solvent is at least one of an ether solvent or an amide solvent.
JP21585998A 1998-07-30 1998-07-30 Production method of dihalomethylsilanes Expired - Fee Related JP3895053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21585998A JP3895053B2 (en) 1998-07-30 1998-07-30 Production method of dihalomethylsilanes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21585998A JP3895053B2 (en) 1998-07-30 1998-07-30 Production method of dihalomethylsilanes

Publications (2)

Publication Number Publication Date
JP2000044580A JP2000044580A (en) 2000-02-15
JP3895053B2 true JP3895053B2 (en) 2007-03-22

Family

ID=16679465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21585998A Expired - Fee Related JP3895053B2 (en) 1998-07-30 1998-07-30 Production method of dihalomethylsilanes

Country Status (1)

Country Link
JP (1) JP3895053B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10384944B2 (en) 2016-05-19 2019-08-20 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Preparation of Si—H containing iodosilanes via halide exchange reaction
SG11201709441TA (en) * 2016-05-19 2018-05-30 Air Liquide Preparation of si-h containing iodosilanes via halide exchange reaction
KR102577557B1 (en) * 2018-05-01 2023-09-11 밀리켄 앤드 캄파니 Method for producing halosilane compounds

Also Published As

Publication number Publication date
JP2000044580A (en) 2000-02-15

Similar Documents

Publication Publication Date Title
JP5173775B2 (en) Synthesis of 3,6-dialkyl-5,6-dihydro-4-hydroxy-2H-pyran-2-one
JP2003521546A (en) Synthesis of 3,6-dialkyl-5,6-dihydro-4-hydroxy-pyran-2-one
JP5115729B2 (en) Organosilicon compound containing acetoacetate group protected with trialkylsilyl group and process for producing the same
JPH0435478B2 (en)
HU219466B (en) Process for preparing 2,2-difluoro-ketene-silyl-acetals
JP3895053B2 (en) Production method of dihalomethylsilanes
JPH0786115B2 (en) Method for producing halogenated silane containing tertiary hydrocarbon group
JP2992314B2 (en) Method for removing allyl group
JPS6222790A (en) Production of tertiary hydrocarbonsilyl compound
EP0414904B1 (en) Preparation of enol silyl ether compounds
KR100886347B1 (en) Process for stereoselective preparation of 4-BMA using a chiral auxiliary
US6498264B2 (en) Silyl (meth)acrylates having bulky substituent group and preparation thereof
JP2705967B2 (en) 1-aza-2-silacyclobutane compound and method for producing the same
JP4055433B2 (en) Silyl (meth) acrylate compound having bulky substituent and method for producing the same
Tamao et al. Silafunctional Compounds in Organic Synthesis. XXXVII. Metalated (Allyl) Aminosilanes: Regioselective Coupling with Alkyl Halides to (E)-1-Alkenylsilanes with a Functional Group on Silicon
JP2799619B2 (en) Method for producing N, 0-bis (t-butyldimethylsilyl) trifluoroacetamide
JP2002012597A (en) Organic silicon compound
JP2907046B2 (en) Hydrocarbonation of chlorosilanes
JP2001114767A (en) Production of pyrimidine compound and production of its intermediate
JP4159660B2 (en) Preparation of alkenyl halides and alkenylsilanes from aldehydes
JP3592534B2 (en) Organic silicon compounds
JP2020196693A (en) Organosilane compounds having bulky substituent and method of preparation thereof
JP2649705B2 (en) Preparation of intermediates for the synthesis of carbapenem antibiotics
SU717058A1 (en) Method of preparing alkoxysilanes
JP2652248B2 (en) Process for producing alkoxynitrile compounds

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees