JP3891885B2 - Working vehicle - Google Patents

Working vehicle Download PDF

Info

Publication number
JP3891885B2
JP3891885B2 JP2002164315A JP2002164315A JP3891885B2 JP 3891885 B2 JP3891885 B2 JP 3891885B2 JP 2002164315 A JP2002164315 A JP 2002164315A JP 2002164315 A JP2002164315 A JP 2002164315A JP 3891885 B2 JP3891885 B2 JP 3891885B2
Authority
JP
Japan
Prior art keywords
shaft
continuously variable
transmission
variable transmission
planetary gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002164315A
Other languages
Japanese (ja)
Other versions
JP2004011714A (en
Inventor
真一 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITSUBISHI NOUKI KABUSHIKI KAISHA
Original Assignee
MITSUBISHI NOUKI KABUSHIKI KAISHA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITSUBISHI NOUKI KABUSHIKI KAISHA filed Critical MITSUBISHI NOUKI KABUSHIKI KAISHA
Priority to JP2002164315A priority Critical patent/JP3891885B2/en
Publication of JP2004011714A publication Critical patent/JP2004011714A/en
Application granted granted Critical
Publication of JP3891885B2 publication Critical patent/JP3891885B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Motor Power Transmission Devices (AREA)
  • General Details Of Gearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、油圧・機械式無段変速機構(HMT)を備えるトラクタ等の作業用走行車の技術分野に属するものである。
【0002】
【従来の技術】
近年、トラクタ等の作業用走行車においては、機械式変速機構に比べて変速時の操作性に優れ、静油圧式無段変速機構(HST)に比べてエネルギー効率に優れる油圧・機械式無段変速機構(HMT)を搭載したものが知られている。この種の油圧・機械式無段変速機構は、静油圧式無段変速機構と遊星ギヤ機構とを組み合せて入力動力を無段変速するにあたり、入力動力を静油圧式無段変速機構の入力側で分割する入力分割型と、入力動力を静油圧式無段変速機構の出力側で分割する出力分割型との2形式があり、さらに、遊星ギヤ機構の各構成要素に対する入力軸および静油圧式無段変速機構の結合パターンにより、各形式がそれぞれ6タイプに分類される。
【0003】
上記油圧・機械式無段変速機構は、タイプによって特性や配置が異なることから、搭載する作業用走行車の走行動力特性、作業動力特性、配置等を考慮した上で、油圧・機械式無段変速機構のタイプを選択する必要があり、特に、トラクタにおいては、トランスミッションケースの上方にステップ(フロア)を形成し、また、トランスミッションケースの下端位置で最低地上高が決るため、上面がフラットで、かつ、上下方向にコンパクトなトランスミッションケースを構成することが要請される。
【0004】
【発明が解決しようとする課題】
しかしながら、上記油圧・機械式無段変速機構を備える従来の作業用走行車では、例えば特開2001−315538号公報で開示される如く、静油圧式無段変速機構のポンプ部および遊星ギヤ機構を入力軸(PTO伝動軸)上に配置しているため、トランスミッションケースの上面に、遊星ギヤ機構を覆う凸部が必要になり、その結果、フラットなステップを形成しにくくなる許りでなく、トランスミッションケースが上下方向に大型化し、最低地上高が低くなる等の不都合がある。
【0005】
【課題を解決するための手段】
本発明は、上記の如き実情に鑑みこれらの課題を解決することを目的として創作されたものであって、トランスミッションケース内に、静油圧式無段変速機構と遊星ギヤ機構との組み合せで走行変速を行う油圧・機械式無段変速機構を構成すると共に、該油圧・機械式無段変速機構の出力回転を前輪および後輪に伝動する作業用走行車において、前記トランスミッションケース内の上側に、前記油圧・機械式無段変速機構に回転動力を入力する入力軸を配置、前記トランスミッションケース内の下側に、前記油圧・機械式無段変速機構の出力回転を前輪に伝動する前輪伝動軸を配置し、さらに、前記入力軸と前輪伝動軸との間に、前記遊星ギヤ機構を配置して、前記油圧・機械式無段変速機構は、前記入力軸の回転動力を、前記静油圧式無段変速機構のポンプ部および前記遊星ギヤ機構のサンギヤに入力し、前記静油圧式無段変速機構のモータ出力軸から出力される回転動力を、前記遊星ギヤ機構のリングギヤに入力し、さらに、前記遊星ギヤ機構で合成された回転動力を、前記遊星ギヤ機構のキャリアから出力するにあたり、モータ出力軸を入力軸と前輪伝動軸との中間位置に配すると共に、前記入力軸の回転動力をサンギヤに入力するカウンタギヤと、前記モータ出力軸の出力回転をリングギアに入力する迂回伝動軸とを、上下に位置する入力軸とモータ出力軸とのあいだで左右に並ばせて、前記入力軸、モータ出力軸、カウンタギア及び迂回伝動軸を正面視菱形に配置したことを特徴とする作業用走行車である。
つまり、トランスミッションケース内に油圧・機械式無段変速機構を構成するものでありながら、遊星ギヤ機構が入力軸(PTO伝動軸)よりも下側に配置されるため、上面がフラットで、かつ、コンパクトなトランスミッションケースを構成することが可能になり、その結果、トランスミッションケースの上方に形成されるステップに凸部が生じたり、最低地上高が低くなる等の不都合を回避することができる。また、油圧・機械式無段変速機構の形式が出力分割型になるため、トラクタ等の作業用走行車が作業時に主に使用する低速域のエネルギー効率を向上させることができる許りでなく、エネルギー損失となる動力循環を、作業時に殆ど使用しない領域(超低速前進域および後進域)で生じさせることができる。また、遊星ギヤ機構の結合パターンを上記のようにすれば、速度比を減速型とし、変速領域を比較的狭くすることができるため、低速領域を主に使用するトラクタ等の作業用走行車においては、精度の高い変速操作を行うことが可能になる。しかも入力動力およびモータ出力を上記のパターンで遊星ギヤ機構に伝動するものでありながら、伝動部品の配置効率を高めてトランスミッションを小型化することができる。
【0006】
【発明の実施の形態】
次に、本発明の実施の形態の一つを図面に基づいて説明する。図面において、1はトラクタの走行機体であって、該走行機体1は、走行動力および作業動力を発生するエンジン(図示せず)と、エンジン動力を変速するトランスミッション2と、該トランスミッション2から出力される走行動力で回転駆動する前輪3および後輪4と、トランスミッション2から出力される作業動力で動作される作業部5と、該作業部5を昇降自在に支持する昇降リンク機構6とを備えている。
【0007】
トランスミッション2は、トランスミッションケース7内に、エンジン動力を入力する入力軸列(入力軸)8と、主変速機構として機能する油圧・機械式無段変速機構(HMT)9と、副変速機構として機能する摩擦クラッチ式変速機構10と、後輪動力をリヤアクスルケース(図示せず)に伝動する後輪伝動軸11と、該後輪伝動軸11から取り出した前輪動力を断続する2駆・4駆切換機構12と、機体旋回時に前輪動力を増速する前輪増速用変速機構13と、前輪動力をフロントアクスルケース(図示せず)に伝動する前輪伝動軸14と、入力軸列8から取り出した作業動力を断続するPTOクラッチ機構15と、作業動力の正転・逆転を切換えるPTO逆転機構16と、作業動力を変速するPTO変速機構17と、作業動力を出力するPTO軸18とを備える。トランスミッションケース7は、油圧・機械式無段変速機構9等を内装する前部ミッションケース19と、PTOクラッチ機構15等を内装するセンターミッションケース20と、摩擦クラッチ式変速機構10等を内装する後部ミッションケース21とを結合して構成される。
【0008】
油圧・機械式無段変速機構9は、静油圧式無段変速機構(HST)24と遊星ギヤ機構25とを組み合せて構成される。静油圧式無段変速機構24は、斜板角度に応じて吐出量が変化するポンプ部(可変容量油圧ポンプ)26と、該ポンプ部26の吐出油で回転駆動するモータ部(固定容量油圧モータ)27とを組み合せたもので、ポンプ部26に入力される動力を無段階的に変速し、モータ部27から出力する。静油圧式無段変速機構24の変速操作は、ポンプ部26の斜板に連繋されるトラニオン軸(図示せず)によって行われる。上記ポンプ部26とモータ部27は、上下に重なるように配置され、縦型の静油圧式無段変速機構24を構成している。ポンプ部26にエンジン動力を入力する入力軸列8は、静油圧式無段変速機構24の上部を前後に貫通し、その後端部は、PTOクラッチ機構15に結合される。ここで、入力軸列8は、ポンプ部26のポンプ軸26aを含む複数の直列軸で構成され、トランスミッションケース7内の上側に配置される。また、静油圧式無段変速機構24の下部後面には、モータ出力軸27aが後方に向けて突設されており、ここからモータ部27のモータ動力が出力される。
【0009】
遊星ギヤ機構25は、同心上に回転支持されたサンギヤ28、リングギヤ29およびキャリア30を備える。キャリア30は、複数のプラネタリギヤ31を支持しており、これらのプラネタリギヤ31が、サンギヤ28とリングギヤ29との間に介在し、両ギヤ28、29に同時噛合する。本実施形態の油圧・機械式無段変速機構9は、入力軸列8の回転動力を、静油圧式無段変速機構24のポンプ部26および遊星ギヤ機構25のサンギヤ28に入力すると共に、静油圧式無段変速機構24のモータ部27から出力される回転動力を、遊星ギヤ機構25のリングギヤ29に入力し、遊星ギヤ機構25で合成された回転動力を、遊星ギヤ機構25のキャリア30から出力するように構成される。これにより、油圧・機械式無段変速機構9は、その形式が出力分割型、タイプが減速タイプ(機械入力をサンギヤ、油圧入力をリングギヤ、出力をキャリアにする結合パターン)となり、図8に示す動作特性を示す。
【0010】
つまり、トラクタにおいては、大きい牽引力を要求する低速作業(ローダー、プラウ耕、サブソイラによる心土破砕作業等)がときに必要となるため、油圧・機械式無段変速機構9の形式は、低速域で油圧パワーが小さな比を占めてエネルギー効率が良く、また、エネルギーロスに繋がる動力循環が、作業時に使用しない前進超低速域と後進域で生じる出力分割型が適している。また、トラクタにおいては、自動車のように低速から高速に至る幅広い変速比を必要とせず、低速作業を主体とした比較的幅の狭い変速比で足りることから、出力分割型の6タイプのうち、変速比が減速型となる上記のタイプを採用している。
【0011】
また、トラクタにおいては、居住性の面で操作部32のステップ(床面)33が可及的にフラットであることが要求されると共に、作業性の面で最低地上高が高いことが要求される。そして、ステップ33は、トランスミッションケース7の上方に形成され、最低地上高を規定するトランスミッションケース7の下面は、前輪伝動軸14の存在により決定される。従って、油圧・機械式無段変速機構9を内装するトランスミッションケース7としては、ケース上面が上方に突出せず、ケース下面の位置が高く、しかも、上下方向にコンパクトなものであることが望まれる。
【0012】
そこで、トランスミッション2においては、トランスミッションケース7内の上側位置(O1)に、静油圧式無段変速機構24の上部(ポンプ部26)にエンジン動力を入力する入力軸列8を配置し、また、静油圧式無段変速機構24のモータ出力軸27aを、入力軸列8(O1)と前輪伝動軸14(O2)との中間位置(O3)に配置し、また、モータ出力軸27aと同心上に遊星ギヤ機構25を配置し、また、入力軸列8の動力を、入力動力伝動経路34を介して遊星ギヤ機構25のサンギヤ28に伝動し、さらに、モータ出力軸27aの動力を、モータ動力伝動経路35を介して遊星ギヤ機構25のリングギヤ29に伝動することにより、遊星ギヤ機構25、入力動力伝動経路34およびモータ動力伝動経路35を、入力軸列8と前輪伝動軸14との間に配置する。これにより、トランスミッションケース7内に油圧・機械式無段変速機構9を構成するものでありながら、トランスミッションケース7の上方への突出を抑えてフラットなステップ33を構成でき、また、十分な最低地上高を確保できるコンパクトなトランスミッションケース7を構成することが可能になる。
【0013】
また、上記トランスミッション2においては、前述した変速特性を得るために、入力軸列8の回転動力を、同方向の回転動力として遊星ギヤ機構25のサンギヤ28に入力すると共に、正転時に入力軸列8と同方向に回転するモータ出力軸27aの回転動力を、同方向の回転動力として遊星ギヤ機構25のリングギヤ29に入力することが要求される。そこで、本実施形態では、モータ出力軸27aと遊星ギヤ機構25とを同軸上(O3)に配置した上で、入力軸列8の回転動力を、カウンタギヤ36を含む入力動力伝動経路34を介してサンギヤ28に入力し、モータ出力軸27aの回転動力を、迂回伝動軸37を含むモータ動力伝動経路35を介してリングギヤ29に入力する。そして、入力軸列8上の伝動ギヤ38と、中間軸39で回転自在に支持されたカウンタギヤ36と、サンギヤ28を支持するサンギヤ軸40とにより構成される入力動力伝動経路34には、カウンタギヤ36が含まれるので、入力軸列8上の伝動ギヤ38を小径にし、トランスミッションケース7の上方突出量をさらに抑制することが可能になる。また、モータ動力伝動経路35は、モータ出力軸27a上の伝動ギヤ41と、迂回伝動軸37上の二つの伝動ギヤ42、43と、リングギヤ29に設けられる伝動ギヤ44とにより構成されるが、迂回伝動軸37は、前記カウンタギヤ36(中間軸39)と左右に位置をずらして配置できるので、本実施形態の如く、入力軸列8とサンギヤ軸40(モータ出力軸27a)との間に、迂回伝動軸37(O4)とカウンタギヤ36(O5)が左右に並ぶ正面視菱形の配置構成を採用できる。これにより、トランスミッションケース7内の配置効率が高まり、トランスミッションケース7のさらなるコンパクト化が可能になる。
【0014】
尚、本実施形態のトランスミッション2は、油圧・機械式無段変速機構9を搭載しないギヤ変速式または静油圧無段変速式のトランスミッションとの間で可及的に部品を共通化するように構成されている。例えば、油圧・機械式無段変速機構9を内装する前部ミッションケース19を除き、センターミッションケース20および後部ミッションケース21は、基本的にギヤ変速式または静油圧無段変速式のトランスミッションと共通化でき、また、これらに組み込まれる機構や部品も、ギヤ比等の設定を除いて共通化することができる。そして、従来のギヤ変速式または静油圧無段変速式のトランスミッションでは、センターミッションケース20に入力される動力の回転方向が統一されており、しかも、その回転方向が、前記トランスミッション2における回転方向と同じであるため、部品の共通化する観点から、極めて好都合となる。
【0015】
叙述の如く構成されたものにおいて、トラクタの走行機体1は、トランスミッションケース7内に、静油圧式無段変速機構24と遊星ギヤ機構25との組み合せで走行変速を行う油圧・機械式無段変速機構9を構成すると共に、該油圧・機械式無段変速機構9の出力回転を前輪3および後輪4に伝動するにあたり、トランスミッションケース7内の上側に、油圧・機械式無段変速機構9に回転動力を入力する入力軸列8を配置すると共に、トランスミッションケース7内の下側に、油圧・機械式無段変速機構9の出力回転を前輪3に伝動する前輪伝動軸14を配置し、さらに、入力軸列8と前輪伝動軸14との間に、遊星ギヤ機構25を配置する。これにより、トランスミッションケース7内に油圧・機械式無段変速機構9を構成するものでありながら、遊星ギヤ機構25が入力軸列8よりも下側に配置されるため、上面がフラットで、かつ、コンパクトなトランスミッションケース7を構成することが可能になり、その結果、トランスミッションケース7の上方に形成されるステップ33に凸部が生じたり、最低地上高が低くなる等の不都合を回避することができる。
【0016】
また、油圧・機械式無段変速機構9は、入力軸列8の回転動力を、静油圧式無段変速機構24のポンプ部26および遊星ギヤ機構25のサンギヤ28に入力すると共に、静油圧式無段変速機構24のモータ部27から出力される回転動力を、遊星ギヤ機構25のリングギヤ29に入力し、さらに、遊星ギヤ機構25で合成された回転動力を、遊星ギヤ機構25のキャリア30から出力する。これにより、油圧・機械式無段変速機構9の形式が出力分割型になるため、トラクタが作業時に主に使用する低速域のエネルギー効率を向上させることができる許りでなく、エネルギー損失となる動力循環を、作業時に殆ど使用しない領域(超低速前進域および後進域)で生じさせることができる。また、遊星ギヤ機構25の結合パターンを上記のようにすれば、速度比を減速型とし、変速領域を比較的狭くすることができるため、低速領域を主に使用するトラクタにおいては、精度の高い変速操作を行うことが可能になる。
【0017】
また、入力軸列8の回転動力を、同方向の回転動力としてサンギヤ28に入力すると共に、正転時に入力軸列8と同方向に回転するモータ部27の出力回転を、同方向の回転動力としてリングギヤ29に入力するにあたり、入力軸列8の回転動力を、カウンタギヤ36を介してサンギヤ28に入力し、モータ部27の出力回転を、迂回伝動軸37を介してリングギヤ29に入力するため、伝動部品の配置の自由度が高まる許りでなく、配置効率を高めてトランスミッションケース7を小型化することができる。
【図面の簡単な説明】
【図1】トラクタの側面図である。
【図2】トランスミッションの側断面図である。
【図3】油圧・機械式無段変速機構を示すトランスミッションの要部側断面図である。
【図4】トランスミッションケースの正面図である。
【図5】トランスミッションケースのA−A断面図である。
【図6】トランスミッションケースのB−B断面図である。
【図7】トランスミッションケースのC−C断面図である。
【図8】油圧・機械式無段変速機構(出力分割型)の特性を示すグラフである。
【符号の説明】
1 走行機体
2 トランスミッション
3 前輪
4 後輪
5 作業部
7 トランスミッションケース
8 入力軸列
9 油圧・機械式無段変速機構
14 前輪伝動軸
19 前部ミッションケース
20 センターミッションケース
21 後部ミッションケース
24 静油圧式無段変速機構
25 遊星ギヤ機構
26 ポンプ部
27 モータ部
27a モータ出力軸
28 サンギヤ
29 リングギヤ
30 キャリア
31 プラネタリギヤ
33 ステップ
36 カウンタギヤ
37 迂回伝動軸
[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the technical field of a working vehicle such as a tractor having a hydraulic / mechanical continuously variable transmission mechanism (HMT).
[0002]
[Prior art]
2. Description of the Related Art In recent years, working vehicles such as tractors have excellent operability during shifting compared to mechanical transmission mechanisms, and are hydraulic and mechanical continuously variable that are more energy efficient than hydrostatic continuously variable transmission mechanisms (HST). One equipped with a transmission mechanism (HMT) is known. This type of hydraulic / mechanical continuously variable transmission mechanism is a combination of a hydrostatic continuously variable transmission mechanism and a planetary gear mechanism for continuously variable input power. There are two types, an input division type that divides the input power at the output side of the hydrostatic continuously variable transmission mechanism, and an input shaft and hydrostatic type for each component of the planetary gear mechanism. Each type is classified into 6 types according to the coupling pattern of the continuously variable transmission mechanism.
[0003]
Since the above hydraulic / mechanical continuously variable transmission mechanism has different characteristics and arrangements depending on the type, the hydraulic / mechanical continuously variable transmission mechanism is considered in consideration of the driving power characteristics, working power characteristics, arrangement, etc. of the work vehicle to be mounted. It is necessary to select the type of speed change mechanism. In particular, in the tractor, a step (floor) is formed above the transmission case, and since the minimum ground clearance is determined at the lower end position of the transmission case, the upper surface is flat, In addition, it is required to configure a transmission case that is compact in the vertical direction.
[0004]
[Problems to be solved by the invention]
However, in a conventional working vehicle equipped with the above hydraulic / mechanical continuously variable transmission mechanism, for example, as disclosed in Japanese Patent Application Laid-Open No. 2001-315538, a pump unit and a planetary gear mechanism of a hydrostatic continuously variable transmission mechanism are provided. Since it is arranged on the input shaft (PTO transmission shaft), a convex part covering the planetary gear mechanism is required on the upper surface of the transmission case, and as a result, it is difficult to form a flat step. There are inconveniences such as the case becoming larger in the vertical direction and lowering the minimum ground clearance.
[0005]
[Means for Solving the Problems]
The present invention has been made in order to solve these problems in view of the above-described circumstances, and a traveling speed change is made by combining a hydrostatic continuously variable transmission mechanism and a planetary gear mechanism in a transmission case. A hydraulic / mechanical continuously variable transmission mechanism that performs the operation, and in a working vehicle that transmits the output rotation of the hydraulic / mechanical continuously variable transmission mechanism to the front wheels and the rear wheels, on the upper side in the transmission case, An input shaft for inputting rotational power to the hydraulic / mechanical continuously variable transmission mechanism is arranged, and a front wheel transmission shaft for transmitting the output rotation of the hydraulic / mechanical continuously variable transmission mechanism to the front wheels is provided below the transmission case. Further, the planetary gear mechanism is disposed between the input shaft and the front wheel transmission shaft, and the hydraulic / mechanical continuously variable transmission mechanism transmits the rotational power of the input shaft to the hydrostatic Pump unit of the transmission mechanism and input to the sun gear of the planetary gear mechanism, the rotational power outputted from the motor output shaft of the hydrostatic continuously variable transmission mechanism, and input to the ring gear of the planetary gear mechanism, furthermore, In outputting the rotational power synthesized by the planetary gear mechanism from the carrier of the planetary gear mechanism, the motor output shaft is arranged at an intermediate position between the input shaft and the front wheel transmission shaft, and the rotational power of the input shaft is transmitted to the sun gear. and the counter gear to enter into, and a bypass transmission shaft for inputting the output rotation of the motor output shaft to the ring gear, so lined up from side to side between the input shaft and the motor output shaft positioned vertically, the input A working vehicle characterized in that a shaft, a motor output shaft, a counter gear, and a bypass transmission shaft are arranged in a rhombus in front view .
In other words, since the planetary gear mechanism is disposed below the input shaft (PTO transmission shaft) while constituting a hydraulic / mechanical continuously variable transmission mechanism in the transmission case, the upper surface is flat, and As a result, it is possible to configure a compact transmission case, and as a result, it is possible to avoid inconveniences such as occurrence of a convex portion in a step formed above the transmission case and a reduction in the minimum ground clearance. In addition, since the hydraulic / mechanical continuously variable transmission mechanism is an output split type, it is not allowed to improve the energy efficiency of the low speed range that is mainly used by working vehicles such as tractors during work, Power circulation that results in energy loss can be generated in regions that are rarely used during work (ultra-low-speed forward region and reverse region). If the planetary gear mechanism coupling pattern is as described above, the speed ratio can be reduced and the speed change range can be made relatively narrow. Therefore, in a working vehicle such as a tractor that mainly uses the low speed range. Makes it possible to perform highly accurate gear shifting operations. Moreover, while the input power and the motor output are transmitted to the planetary gear mechanism in the above pattern, the transmission efficiency can be increased and the transmission can be downsized.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Next, one embodiment of the present invention will be described with reference to the drawings. In the drawings, reference numeral 1 denotes a traveling machine body of a tractor. The traveling machine body 1 is output from an engine (not shown) that generates traveling power and work power, a transmission 2 that changes engine power, and the transmission 2. A front wheel 3 and a rear wheel 4 that are rotationally driven by traveling power, a working unit 5 that is operated by working power output from the transmission 2, and a lifting link mechanism 6 that supports the working unit 5 so as to be movable up and down. Yes.
[0007]
The transmission 2 has an input shaft train (input shaft) 8 for inputting engine power, a hydraulic / mechanical continuously variable transmission mechanism (HMT) 9 functioning as a main transmission mechanism, and a sub-transmission mechanism. A friction clutch-type transmission mechanism 10 that performs transmission, a rear wheel transmission shaft 11 that transmits rear wheel power to a rear axle case (not shown), and two-wheel drive / four-wheel drive switching that intermittently transmits front wheel power extracted from the rear wheel transmission shaft 11. A mechanism 12, a front wheel speed increasing transmission mechanism 13 for increasing the front wheel power when the vehicle turns, a front wheel transmission shaft 14 for transmitting the front wheel power to a front axle case (not shown), and work taken out from the input shaft train 8 A PTO clutch mechanism 15 that interrupts power, a PTO reverse mechanism 16 that switches forward / reverse of the working power, a PTO transmission mechanism 17 that shifts the working power, and outputs the working power And a PTO shaft 18. The transmission case 7 includes a front transmission case 19 having a hydraulic / mechanical continuously variable transmission mechanism 9 and the like, a center transmission case 20 having a PTO clutch mechanism 15 and the like, and a rear portion having a friction clutch transmission mechanism 10 and the like. The transmission case 21 is combined.
[0008]
The hydraulic / mechanical continuously variable transmission mechanism 9 is configured by combining a hydrostatic continuously variable transmission mechanism (HST) 24 and a planetary gear mechanism 25. The hydrostatic continuously variable transmission mechanism 24 includes a pump part (variable capacity hydraulic pump) 26 whose discharge amount changes according to the swash plate angle, and a motor part (fixed capacity hydraulic motor) that is rotationally driven by the discharge oil of the pump part 26 ) 27, and the power input to the pump unit 26 is steplessly shifted and output from the motor unit 27. The speed change operation of the hydrostatic continuously variable transmission mechanism 24 is performed by a trunnion shaft (not shown) connected to the swash plate of the pump unit 26. The pump part 26 and the motor part 27 are arranged so as to overlap each other, and constitute a vertical hydrostatic continuously variable transmission mechanism 24. The input shaft train 8 for inputting engine power to the pump unit 26 penetrates the upper part of the hydrostatic continuously variable transmission mechanism 24 back and forth, and the rear end part thereof is coupled to the PTO clutch mechanism 15. Here, the input shaft row 8 includes a plurality of serial shafts including the pump shaft 26 a of the pump unit 26, and is disposed on the upper side in the transmission case 7. Further, a motor output shaft 27a projects rearward from the lower rear surface of the hydrostatic continuously variable transmission mechanism 24, from which motor power of the motor unit 27 is output.
[0009]
The planetary gear mechanism 25 includes a sun gear 28, a ring gear 29, and a carrier 30 that are rotatably supported concentrically. The carrier 30 supports a plurality of planetary gears 31, and these planetary gears 31 are interposed between the sun gear 28 and the ring gear 29 and simultaneously mesh with both the gears 28 and 29. The hydraulic / mechanical continuously variable transmission mechanism 9 according to the present embodiment inputs the rotational power of the input shaft train 8 to the pump unit 26 of the hydrostatic continuously variable transmission mechanism 24 and the sun gear 28 of the planetary gear mechanism 25, and The rotational power output from the motor unit 27 of the hydraulic continuously variable transmission mechanism 24 is input to the ring gear 29 of the planetary gear mechanism 25, and the rotational power synthesized by the planetary gear mechanism 25 is supplied from the carrier 30 of the planetary gear mechanism 25. Configured to output. As a result, the hydraulic / mechanical continuously variable transmission mechanism 9 has an output split type, a type that is a reduction type (a coupling pattern in which the mechanical input is a sun gear, the hydraulic input is a ring gear, and the output is a carrier), and is shown in FIG. Operating characteristics are shown.
[0010]
In other words, the tractor sometimes requires low speed work (loader, plow plowing, subsoil crushing work, etc.) that requires a large traction force. In this case, the output power split type is suitable, in which the hydraulic power occupies a small ratio and has high energy efficiency, and the power circulation that leads to energy loss occurs in the forward ultra-low speed range and the reverse range that are not used during work. In addition, the tractor does not require a wide speed ratio from low speed to high speed like an automobile, and a relatively narrow speed ratio mainly for low speed work is sufficient. The above-mentioned type in which the gear ratio is a deceleration type is adopted.
[0011]
Further, in the tractor, the step (floor surface) 33 of the operation unit 32 is required to be as flat as possible in terms of comfortability, and the minimum ground clearance is required in terms of workability. The Step 33 is formed above the transmission case 7, and the lower surface of the transmission case 7 that defines the minimum ground clearance is determined by the presence of the front wheel transmission shaft 14. Accordingly, it is desirable that the transmission case 7 having the hydraulic / mechanical continuously variable transmission mechanism 9 is such that the upper surface of the case does not protrude upward, the position of the lower surface of the case is high, and that the case is compact in the vertical direction. .
[0012]
Therefore, in the transmission 2, the input shaft train 8 for inputting engine power to the upper portion (pump portion 26) of the hydrostatic continuously variable transmission mechanism 24 is arranged at the upper position (O1) in the transmission case 7, The motor output shaft 27a of the hydrostatic continuously variable transmission mechanism 24 is disposed at an intermediate position (O3) between the input shaft train 8 (O1) and the front wheel transmission shaft 14 (O2), and is concentric with the motor output shaft 27a. The planetary gear mechanism 25 is disposed on the planetary gear mechanism 25, the power of the input shaft train 8 is transmitted to the sun gear 28 of the planetary gear mechanism 25 via the input power transmission path 34, and the power of the motor output shaft 27a is transmitted to the motor power. By transmitting to the ring gear 29 of the planetary gear mechanism 25 via the transmission path 35, the planetary gear mechanism 25, the input power transmission path 34, and the motor power transmission path 35 are connected to the input shaft train 8 and the front wheels. Disposed between the shaft 14. As a result, although the hydraulic / mechanical continuously variable transmission mechanism 9 is configured in the transmission case 7, it is possible to configure the flat step 33 by suppressing the upward projection of the transmission case 7, and a sufficient minimum ground surface. It is possible to configure a compact transmission case 7 that can ensure a high height.
[0013]
In the transmission 2, the rotational power of the input shaft train 8 is input to the sun gear 28 of the planetary gear mechanism 25 as rotational power in the same direction in order to obtain the above-described speed change characteristics. 8 is required to be input to the ring gear 29 of the planetary gear mechanism 25 as rotational power in the same direction. Therefore, in this embodiment, the motor output shaft 27a and the planetary gear mechanism 25 are arranged coaxially (O3), and the rotational power of the input shaft train 8 is transmitted via the input power transmission path 34 including the counter gear 36. Then, the rotational power of the motor output shaft 27 a is input to the ring gear 29 via the motor power transmission path 35 including the detour transmission shaft 37. An input power transmission path 34 including a transmission gear 38 on the input shaft train 8, a counter gear 36 rotatably supported by the intermediate shaft 39, and a sun gear shaft 40 that supports the sun gear 28 includes a counter. Since the gear 36 is included, it is possible to make the transmission gear 38 on the input shaft row 8 have a small diameter and further suppress the upward protrusion amount of the transmission case 7. The motor power transmission path 35 includes a transmission gear 41 on the motor output shaft 27a, two transmission gears 42 and 43 on the detour transmission shaft 37, and a transmission gear 44 provided on the ring gear 29. Since the detour transmission shaft 37 can be arranged with the counter gear 36 (intermediate shaft 39) shifted to the left and right, as in this embodiment , the detour transmission shaft 37 is placed between the input shaft train 8 and the sun gear shaft 40 (motor output shaft 27a). Further, it is possible to employ a rhombus arrangement configuration in which the bypass transmission shaft 37 (O4) and the counter gear 36 (O5) are arranged on the left and right. Thereby, the arrangement efficiency in the transmission case 7 increases, and the transmission case 7 can be further downsized.
[0014]
The transmission 2 of the present embodiment is configured to share parts as much as possible with a gear transmission or a hydrostatic continuously variable transmission that does not include the hydraulic / mechanical continuously variable transmission mechanism 9. Has been. For example, except for the front mission case 19 in which the hydraulic / mechanical continuously variable transmission mechanism 9 is housed, the center mission case 20 and the rear mission case 21 are basically the same as those of a gear transmission type or a hydrostatic continuously variable transmission type. In addition, the mechanisms and components incorporated in them can be made common except for setting of gear ratio and the like. In the conventional gear transmission or hydrostatic continuously variable transmission, the rotation direction of the power input to the center mission case 20 is unified, and the rotation direction is the same as the rotation direction in the transmission 2. Since they are the same, it is very convenient from the viewpoint of common parts.
[0015]
In the structure constructed as described, the tractor traveling machine body 1 includes a hydraulic / mechanical continuously variable transmission that performs a traveling shift by a combination of a hydrostatic continuously variable transmission mechanism 24 and a planetary gear mechanism 25 in a transmission case 7. In addition to constituting the mechanism 9 and transmitting the output rotation of the hydraulic / mechanical continuously variable transmission mechanism 9 to the front wheels 3 and the rear wheels 4, the hydraulic / mechanical continuously variable transmission mechanism 9 is disposed above the transmission case 7. An input shaft train 8 for inputting rotational power is disposed, and a front wheel transmission shaft 14 for transmitting the output rotation of the hydraulic / mechanical continuously variable transmission mechanism 9 to the front wheels 3 is disposed on the lower side in the transmission case 7. A planetary gear mechanism 25 is disposed between the input shaft train 8 and the front wheel transmission shaft 14. Thereby, the planetary gear mechanism 25 is disposed below the input shaft train 8 while constituting the hydraulic / mechanical continuously variable transmission mechanism 9 in the transmission case 7, so that the upper surface is flat and As a result, it is possible to configure a compact transmission case 7, and as a result, it is possible to avoid inconveniences such as a projecting portion at the step 33 formed above the transmission case 7 and a lower ground clearance. it can.
[0016]
In addition, the hydraulic / mechanical continuously variable transmission mechanism 9 inputs the rotational power of the input shaft train 8 to the pump unit 26 of the hydrostatic continuously variable transmission mechanism 24 and the sun gear 28 of the planetary gear mechanism 25, and is also hydrostatic. The rotational power output from the motor unit 27 of the continuously variable transmission mechanism 24 is input to the ring gear 29 of the planetary gear mechanism 25, and the rotational power synthesized by the planetary gear mechanism 25 is further transmitted from the carrier 30 of the planetary gear mechanism 25. Output. As a result, the type of the hydraulic / mechanical continuously variable transmission mechanism 9 becomes an output split type, so that it is possible to improve the energy efficiency of the low speed region that the tractor mainly uses at the time of work, and energy loss occurs. Power circulation can occur in areas that are rarely used during work (ultra-low speed advance area and reverse area). Further, if the coupling pattern of the planetary gear mechanism 25 is as described above, the speed ratio can be reduced and the speed change area can be made relatively narrow. Therefore, a tractor that mainly uses the low speed area has high accuracy. It becomes possible to perform a speed change operation.
[0017]
In addition, the rotational power of the input shaft train 8 is input to the sun gear 28 as rotational power in the same direction, and the output rotation of the motor unit 27 that rotates in the same direction as the input shaft train 8 during forward rotation is converted into rotational power in the same direction. In order to input to the ring gear 29, the rotational power of the input shaft train 8 is input to the sun gear 28 via the counter gear 36, and the output rotation of the motor unit 27 is input to the ring gear 29 via the bypass transmission shaft 37. In addition to allowing the degree of freedom of arrangement of the transmission parts to be increased, it is possible to increase the arrangement efficiency and reduce the size of the transmission case 7.
[Brief description of the drawings]
FIG. 1 is a side view of a tractor.
FIG. 2 is a side sectional view of a transmission.
FIG. 3 is a sectional side view of a main part of a transmission showing a hydraulic / mechanical continuously variable transmission mechanism.
FIG. 4 is a front view of a transmission case.
FIG. 5 is a cross-sectional view taken along line AA of the transmission case.
FIG. 6 is a cross-sectional view of the transmission case taken along the line BB.
FIG. 7 is a cross-sectional view taken along the line CC of the transmission case.
FIG. 8 is a graph showing characteristics of a hydraulic / mechanical continuously variable transmission mechanism (output division type).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Traveling machine body 2 Transmission 3 Front wheel 4 Rear wheel 5 Working part 7 Transmission case 8 Input shaft train 9 Hydraulic and mechanical continuously variable transmission mechanism 14 Front wheel transmission shaft 19 Front transmission case 20 Center transmission case 21 Rear transmission case 24 Hydrostatic type Continuously variable transmission mechanism 25 Planetary gear mechanism 26 Pump part 27 Motor part 27a Motor output shaft 28 Sun gear 29 Ring gear 30 Carrier 31 Planetary gear 33 Step 36 Counter gear 37 Detour transmission shaft

Claims (1)

トランスミッションケース内に、静油圧式無段変速機構と遊星ギヤ機構との組み合せで走行変速を行う油圧・機械式無段変速機構を構成すると共に、該油圧・機械式無段変速機構の出力回転を前輪および後輪に伝動する作業用走行車において、前記トランスミッションケース内の上側に、前記油圧・機械式無段変速機構に回転動力を入力する入力軸を配置、前記トランスミッションケース内の下側に、前記油圧・機械式無段変速機構の出力回転を前輪に伝動する前輪伝動軸を配置し、さらに、前記入力軸と前輪伝動軸との間に、前記遊星ギヤ機構を配置して、前記油圧・機械式無段変速機構は、前記入力軸の回転動力を、前記静油圧式無段変速機構のポンプ部および前記遊星ギヤ機構のサンギヤに入力し、前記静油圧式無段変速機構のモータ出力軸から出力される回転動力を、前記遊星ギヤ機構のリングギヤに入力し、さらに、前記遊星ギヤ機構で合成された回転動力を、前記遊星ギヤ機構のキャリアから出力するにあたり、モータ出力軸を入力軸と前輪伝動軸との中間位置に配すると共に、前記入力軸の回転動力をサンギヤに入力するカウンタギヤと、前記モータ出力軸の出力回転をリングギアに入力する迂回伝動軸とを、上下に位置する入力軸とモータ出力軸とのあいだで左右に並ばせて、前記入力軸、モータ出力軸、カウンタギア及び迂回伝動軸を正面視菱形に配置したことを特徴とする作業用走行車。In the transmission case, a hydraulic / mechanical continuously variable transmission mechanism that performs a traveling shift by a combination of a hydrostatic continuously variable transmission mechanism and a planetary gear mechanism is configured, and the output rotation of the hydraulic / mechanical continuously variable transmission mechanism is In a working vehicle that transmits power to front wheels and rear wheels, an input shaft for inputting rotational power to the hydraulic / mechanical continuously variable transmission mechanism is disposed on the upper side in the transmission case, and on the lower side in the transmission case. A front wheel transmission shaft that transmits output rotation of the hydraulic / mechanical continuously variable transmission mechanism to a front wheel, and further, the planetary gear mechanism is disposed between the input shaft and the front wheel transmission shaft, mechanical stepless speed change mechanism, the rotational power of the input shaft, and input to the sun gear of the pump unit and the planetary gear mechanism of the hydrostatic continuously variable transmission mechanism, motor of the hydrostatic continuously variable transmission mechanism The rotational power outputted from the output shaft, and input to the ring gear of the planetary gear mechanism, further, the rotational power combined by the planetary gear mechanism, when output from the carrier of said planetary gear mechanism, the motor output shaft together disposed in an intermediate position between the input shaft and the front wheel transmission shaft, and the counter gear while inputting the rotational torque of the input shaft to the sun gear, and a bypass transmission shaft for inputting the output rotation of the motor output shaft to the ring gear The working shaft is characterized in that the input shaft, the motor output shaft, the counter gear and the detour transmission shaft are arranged in a rhombus when viewed from the front , arranged side by side between the input shaft and the motor output shaft positioned above and below. Traveling car.
JP2002164315A 2002-06-05 2002-06-05 Working vehicle Expired - Fee Related JP3891885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002164315A JP3891885B2 (en) 2002-06-05 2002-06-05 Working vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002164315A JP3891885B2 (en) 2002-06-05 2002-06-05 Working vehicle

Publications (2)

Publication Number Publication Date
JP2004011714A JP2004011714A (en) 2004-01-15
JP3891885B2 true JP3891885B2 (en) 2007-03-14

Family

ID=30432490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002164315A Expired - Fee Related JP3891885B2 (en) 2002-06-05 2002-06-05 Working vehicle

Country Status (1)

Country Link
JP (1) JP3891885B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010883A1 (en) * 2005-07-19 2007-01-25 Yanmar Co., Ltd. Transmission
JP2007024222A (en) * 2005-07-19 2007-02-01 Yanmar Co Ltd Transmission
JP5027521B2 (en) * 2007-02-05 2012-09-19 株式会社クボタ Variable speed transmission
KR101143062B1 (en) * 2007-02-05 2012-05-11 가부시끼 가이샤 구보다 Speed change power transmission device
JP5341839B2 (en) * 2010-08-19 2013-11-13 株式会社クボタ Tractor transmission
CN107339393B (en) * 2017-05-23 2023-08-22 浙江云洲科技有限公司 Mechanical/stepless speed change dual-purpose gearbox of crawler tractor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653628U (en) * 1979-10-01 1981-05-11
DE4443267A1 (en) * 1994-12-05 1996-06-13 Claas Ohg Powershift transmission with 5-shaft epicyclic gear
JP3562965B2 (en) * 1998-07-02 2004-09-08 株式会社クボタ Hydraulic and mechanical continuously variable transmission
JP4117071B2 (en) * 1998-10-27 2008-07-09 ヤンマー株式会社 Hydraulic-mechanical transmission
JP4162359B2 (en) * 2000-05-09 2008-10-08 株式会社Ihiシバウラ Hydraulic and mechanical continuously variable transmission
JP2001317611A (en) * 2000-05-10 2001-11-16 Ishikawajima Shibaura Mach Co Ltd Hydro-mechanical continuously variable transmission
JP4220663B2 (en) * 2000-09-26 2009-02-04 株式会社Ihiシバウラ Hydraulic and mechanical continuously variable transmission

Also Published As

Publication number Publication date
JP2004011714A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
CN110520651B (en) Speed-changing transmission device of tractor and tractor
US8657713B2 (en) Power train for work vehicle
US11261951B2 (en) Shift power transmission apparatus of a tractor and tractor
KR101383135B1 (en) Transmission
JP2016203767A (en) Transmission device provided on tractor
JP4157658B2 (en) Hydraulic-mechanical transmission
JP3891885B2 (en) Working vehicle
JP4162359B2 (en) Hydraulic and mechanical continuously variable transmission
JP6076189B2 (en) Wheel loader
JP4261944B2 (en) Hydraulic and mechanical continuously variable transmission
JP3562962B2 (en) Hydraulic and mechanical continuously variable transmission
JP2000018367A (en) Hydro-mechanical continuously variable transmission
JP4605567B2 (en) Hydraulic-mechanical continuously variable transmission
JP2004251399A (en) Continuously variable transmission for work vehicle
JP3897780B2 (en) Work vehicle
JP2001108061A (en) Traveling speed control device
JP5030155B2 (en) Work vehicle
JP2000016102A (en) Hydraulic/mechanical type continuously variable transmission device
JP3663805B2 (en) Tractor sub-control valve mounting device
US11994201B2 (en) Power transmission device for work vehicle
JP3686602B2 (en) Work vehicle
JP4184491B2 (en) Work vehicle with crawler type traveling device
JP2023005474A (en) Power transmission device for work vehicle
JP2000062655A (en) Small-sized passenger agricultural working vehicle
JP2004011713A (en) Running vehicle for working

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees