JP3890409B2 - Aggregates of nanofibrous boric acid and method for producing the same - Google Patents

Aggregates of nanofibrous boric acid and method for producing the same Download PDF

Info

Publication number
JP3890409B2
JP3890409B2 JP2002380789A JP2002380789A JP3890409B2 JP 3890409 B2 JP3890409 B2 JP 3890409B2 JP 2002380789 A JP2002380789 A JP 2002380789A JP 2002380789 A JP2002380789 A JP 2002380789A JP 3890409 B2 JP3890409 B2 JP 3890409B2
Authority
JP
Japan
Prior art keywords
boric acid
nanofibrous
aggregate
producing
trimethyl borate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002380789A
Other languages
Japanese (ja)
Other versions
JP2004210578A (en
Inventor
義雄 板東
チェンチュン・タン
デミトリー・ゴルバーグ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2002380789A priority Critical patent/JP3890409B2/en
Publication of JP2004210578A publication Critical patent/JP2004210578A/en
Application granted granted Critical
Publication of JP3890409B2 publication Critical patent/JP3890409B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この出願の発明は、ナノファイバー状ホウ酸の集合体とその製造方法に関するものである。さらに詳しくは、この出願の発明は、変容しにくく、比較的安定なナノファイバー状ホウ酸の集合体とこれを簡便に得ることのできる製造方法に関するものである。
【0002】
【従来の技術】
炭素ナノチューブが発見されて以来、多くの一次元ナノスケール物質が合成されている。ナノチューブ構造の物質としては窒化ホウ素(BN)等、ナノロッド又はナノワイヤー構造の物質としては酸化マグネシウム(MgO)、窒化ガリウム(GaN)等が合成されている。
【0003】
ところで、ホウ素とその化合物は、強磁性体、超伝導材料、高強度材料、触媒、生物化学等の広範な分野に適用可能な優れた特性を有し、無機化学及び材料の開発においては重要な位置を占める物質である。その一つとしてのホウ酸は、たとえば滑剤(たとえば、非特許文献1参照)、抗菌剤(たとえば、非特許文献2参照)、癌細胞を選択的に破壊又は弱体化させることのできる医薬(たとえば、非特許文献3参照)等に広く応用されている。また、ホウ酸とその誘導体は、すべての動物組織に必要な構成成分であり、このことからホウ酸の潜在的価値が注目されている。
【0004】
【非特許文献1】
ジャーナル・オブ・マテリアルズ・リサーチ(J. Mater. Res.),1999年,第14巻,p.3455
【非特許文献2】
アンナーレン・デア・ヘミー(Ann. Chem.),1994年,第3巻,p.283
【非特許文献3】
ジャーナル・オブ・ファーマシューティカル・アンド・バイオメディカル・アナリシス(J. Pharmaceut. Biomed.),1998年,第17巻,p.427
【0005】
【発明が解決しようとする課題】
しかしながら、ホウ酸とその誘導体に関し、変容しなく、安定した形態を有するナノスケール状の物質はこれまでに提供されていない。
【0006】
この出願の発明は、このような事情に鑑みてなされたものであり、変容しにくく、比較的安定なナノファイバー状ホウ酸の集合体とこれを簡便に得ることのできる製造方法を提供することを課題としている。
【0007】
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するものとして、第1には、直径がナノメートルサイズのファイバー状の正ホウ酸(B(OH))が凝集して網状形態を有していることを特徴とするナノファイバー状ホウ酸の集合体を提供する。
【0008】
この出願の発明は、第2には、ホウ素酸化物(B23)とメタノール(MeOH)を反応させてエステル化させ、ホウ酸トリメチルを生成させた後、室温でホウ酸トリメチルの蒸気に蒸留水を噴霧し、加水分解させてホウ酸のウィスカーを生成させ、次いでそのウィスカーに希塩酸水溶液を噴霧することを特徴とするナノファイバー状ホウ酸の集合体の製造方法を提供する。
【0009】
以下、実施例を示しつつ、この出願の発明のナノファイバー状ホウ酸の集合体とその製造方法についてさらに詳しく説明する。
【0010】
【発明の実施の形態】
この出願の発明のナノファイバー状ホウ酸の集合体は、直径が数nm〜数十nmの範囲にあるファイバー状の正ホウ酸(B(OH)3)が凝集して網状形態を有するものである。集合体を構成するナノファイバー状ホウ酸は、極性の水素結合を持つため、強い相互作用を有する。したがって、形態保持力を有しており、比較的安定な物質である。
【0011】
ナノファイバー状ホウ酸の集合体は、この出願の発明では、ホウ素酸化物(B23)とメタノール(MeOH)を反応させてエステル化させ、ホウ酸トリメチルを生成させた後、室温でホウ酸トリメチルの蒸気に蒸留水を噴霧し、加水分解させてホウ酸のウィスカーを生成させ、次いでそのウィスカーに希塩酸水溶液を噴霧することにより得られる。ナノファイバー状ホウ酸の集合体は、噴霧する希塩酸水溶液のpHを制御することにより、ミクロ導管、樹木状運動筋肉抹消、筋肉組織にそれぞれ類似した三種類の網状形態を有する。この場合の希塩酸水溶液のpHは、2.5〜4.5の範囲が好ましい。これにより、ホウ酸トリメチルの過度の加水分解が抑制される。
【0012】
【実施例】
ホウ素酸化物(B23)1モルとメタノール(MeOH)5.7モルを反応させてエステル化させ、ホウ酸トリメチル(B(OME)3)を生成させた。このホウ酸トリメチルを蓋を取り付けていない反応容器に入れ、室温27℃、湿度50%の条件でホウ酸トリメチルの揮発蒸気に蒸留水を噴霧し、加水分解させ、ホウ酸のウィスカーを得た。そして、このウィスカーに0.05モルの希塩酸水溶液を噴霧した。その結果、図1に示したようなマッシュルーム状の集合体が生成した。X線回折の結果、生成物は正ホウ酸(B(OH)3)であることが確認された。走査型電子顕微鏡を用いた観察により、生成物は、直径数nm〜数十nmの範囲にあるファイバー状であることが確認された。得られたこのナノファイバー状ホウ酸は、極性の水素結合を持っているため、強い相互作用があり、したがって、形態保持力を有し、比較的安定な物質である。
【0013】
ナノファイバー状ホウ酸の集合体は、噴霧する希塩酸水溶液のpHにより大別して三種類の網状形態を有する。一つは、図2(a)に示したミクロ導管に類似した形態であり、これは、希塩酸水溶液のpHが2.8程度で得られた。もう一つは、図2(b)に示した樹木状運動筋肉抹消に類似した形態であり、希塩酸水溶液のpHが3.2程度で得られた。残る一つは、図2(c)に示した筋肉組織に類似した形態であり、希塩酸水溶液のpHが3.4程度で得られた。
【0014】
なお、容器内のホウ酸トリメチルには、少量の塩化アルミニウム(AlCl3)を添加することにより容器内の加水分解が抑制された。
【0015】
もちろん、この出願の発明は、以上の実施形態及び実施例によって限定されるものではない。細部については様々な態様が可能であることはいうまでもない。
【0016】
【発明の効果】
以上詳しく説明した通り、この出願の発明によって、変容しにくく、安定なナノファイバー状ホウ酸の集合体とこれを簡便に得ることのできる製造方法が提供される。
【図面の簡単な説明】
【図1】 実施例で得られたマッシュルーム状の集合体を示した写真である。
【図2】 (a)(b)(c)は、それぞれ、ナノファイバー状ホウ酸の集合体の網状形態を示した透過型電子顕微鏡(TEM)像である。
[0001]
BACKGROUND OF THE INVENTION
The invention of this application relates to an assembly of nanofibrous boric acid and a method for producing the same. More specifically, the invention of this application relates to a nanofiber-like boric acid aggregate that is difficult to transform and is relatively stable, and a production method that can easily obtain this.
[0002]
[Prior art]
Since the discovery of carbon nanotubes, many one-dimensional nanoscale materials have been synthesized. Boron nitride (BN) or the like is synthesized as the nanotube structure material, and magnesium oxide (MgO), gallium nitride (GaN) or the like is synthesized as the nanorod or nanowire structure material.
[0003]
By the way, boron and its compounds have excellent characteristics applicable to a wide range of fields such as ferromagnets, superconducting materials, high-strength materials, catalysts and biochemistry, and are important in the development of inorganic chemistry and materials. A material that occupies a position. Boric acid as one of them is, for example, a lubricant (see, for example, Non-patent Document 1), an antibacterial agent (see, for example, Non-Patent Document 2), and a medicine that can selectively destroy or weaken cancer cells (for example, , See Non-Patent Document 3). In addition, boric acid and its derivatives are necessary constituents for all animal tissues, and thus the potential value of boric acid has attracted attention.
[0004]
[Non-Patent Document 1]
Journal of Materials Research (J. Mater. Res.), 1999, Vol. 14, p. 3455
[Non-Patent Document 2]
Annan der Hemy (Ann. Chem.), 1994, Volume 3, p. 283
[Non-Patent Document 3]
Journal of Pharmaceutical and Biomedical Analysis (J. Pharmaceut. Biomed.), 1998, Vol. 17, p. 427
[0005]
[Problems to be solved by the invention]
However, no nanoscale substances having a stable form with respect to boric acid and its derivatives have been provided so far.
[0006]
The invention of this application has been made in view of such circumstances, and provides a nanofiber-like boric acid aggregate that is difficult to be transformed and is relatively stable, and a production method that can easily obtain this. Is an issue.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the invention of this application first has a net-like form in which fiber-like normal boric acid (B (OH) 3 ) having a diameter of nanometer size is aggregated. An aggregate of nanofibrous boric acid is provided.
[0008]
Secondly, the invention of this application is to react boron oxide (B 2 O 3 ) with methanol (MeOH) to produce trimethyl borate, which is then converted into trimethyl borate vapor at room temperature. There is provided a method for producing an aggregate of nanofibrous boric acid, characterized by spraying distilled water and hydrolyzing it to produce boric acid whiskers, and then spraying the whisker with a dilute aqueous hydrochloric acid solution.
[0009]
Hereinafter, the nanofiber boric acid aggregate of the invention of this application and the production method thereof will be described in more detail with reference to Examples.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The aggregate of nanofibrous boric acid of the invention of this application has a network form in which fibrous normal boric acid (B (OH) 3 ) having a diameter in the range of several nanometers to several tens of nanometers aggregates. is there. The nanofibrous boric acid constituting the aggregate has a strong interaction because it has a polar hydrogen bond. Therefore, it has a form retention force and is a relatively stable substance.
[0011]
In the invention of this application, the nanofiber boric acid aggregate is formed by reacting boron oxide (B 2 O 3 ) with methanol (MeOH) to produce trimethyl borate, and then at room temperature. It is obtained by spraying distilled water onto the vapor of trimethyl acid, hydrolyzing it to produce boric acid whiskers, and then spraying the whisker with a dilute aqueous hydrochloric acid solution. The aggregate of nanofibrous boric acid has three types of reticulated forms similar to microconduit, dendritic exercise muscle extermination, and muscle tissue, respectively, by controlling the pH of the dilute hydrochloric acid aqueous solution to be sprayed. In this case, the pH of the dilute hydrochloric acid aqueous solution is preferably in the range of 2.5 to 4.5. Thereby, excessive hydrolysis of trimethyl borate is suppressed.
[0012]
【Example】
1 mol of boron oxide (B 2 O 3 ) and 5.7 mol of methanol (MeOH) were reacted to produce trimethyl borate (B (OME) 3 ). The trimethyl borate was put in a reaction vessel without a lid, and distilled water was sprayed on the volatile vapor of trimethyl borate under conditions of room temperature 27 ° C. and humidity 50% to hydrolyze to obtain boric acid whiskers. Then, 0.05 mol of dilute hydrochloric acid aqueous solution was sprayed on the whiskers. As a result, a mushroom-like aggregate as shown in FIG. 1 was generated. As a result of X-ray diffraction, it was confirmed that the product was normal boric acid (B (OH) 3 ). Observation using a scanning electron microscope confirmed that the product was in the form of a fiber having a diameter in the range of several nanometers to several tens of nanometers. Since the obtained nanofibrous boric acid has a polar hydrogen bond, it has a strong interaction, and thus has a shape retention force and is a relatively stable substance.
[0013]
The aggregate of nanofibrous boric acid is roughly classified into three types according to the pH of the dilute hydrochloric acid aqueous solution to be sprayed. One is a form similar to the microconduit shown in FIG. 2A, which was obtained when the pH of the dilute hydrochloric acid aqueous solution was about 2.8. The other was a form similar to the dendritic motor muscle extinction shown in FIG. 2 (b), and the pH of the dilute hydrochloric acid aqueous solution was obtained at about 3.2. The remaining one has a form similar to the muscle tissue shown in FIG. 2 (c), and the pH of the diluted hydrochloric acid aqueous solution was obtained at about 3.4.
[0014]
In addition, hydrolysis in the container was suppressed by adding a small amount of aluminum chloride (AlCl 3 ) to trimethyl borate in the container.
[0015]
Of course, the invention of this application is not limited by the above embodiments and examples. Needless to say, various details are possible.
[0016]
【The invention's effect】
As described above in detail, the invention of this application provides a stable nanofiber-like boric acid aggregate which is difficult to be transformed and a production method capable of easily obtaining this.
[Brief description of the drawings]
FIG. 1 is a photograph showing a mushroom-like assembly obtained in an example.
FIGS. 2A, 2B, and 2C are transmission electron microscope (TEM) images each showing a network form of an aggregate of nanofiber boric acid.

Claims (2)

直径がナノメートルサイズのファイバー状の正ホウ酸(B(OH))が凝集して網状形態を有していることを特徴とするナノファイバー状ホウ酸の集合体。An aggregate of nanofibrous boric acid, characterized in that a fibrous normal boric acid (B (OH) 3 ) having a diameter of nanometer size aggregates to have a network form. ホウ素酸化物(B23)とメタノール(MeOH)を反応させてエステル化させ、ホウ酸トリメチルを生成させた後、室温でホウ酸トリメチルの蒸気に蒸留水を噴霧し、加水分解させてホウ酸のウィスカーを生成させ、次いでそのウィスカーに希塩酸水溶液を噴霧することを特徴とするナノファイバー状ホウ酸の集合体の製造方法。Boron oxide (B 2 O 3 ) and methanol (MeOH) are reacted for esterification to form trimethyl borate, and then distilled water is sprayed onto the vapor of trimethyl borate at room temperature to hydrolyze the boron. A method for producing an aggregate of nanofibrous boric acid, characterized in that an acid whisker is generated and then a dilute hydrochloric acid aqueous solution is sprayed onto the whisker.
JP2002380789A 2002-12-27 2002-12-27 Aggregates of nanofibrous boric acid and method for producing the same Expired - Lifetime JP3890409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002380789A JP3890409B2 (en) 2002-12-27 2002-12-27 Aggregates of nanofibrous boric acid and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002380789A JP3890409B2 (en) 2002-12-27 2002-12-27 Aggregates of nanofibrous boric acid and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004210578A JP2004210578A (en) 2004-07-29
JP3890409B2 true JP3890409B2 (en) 2007-03-07

Family

ID=32816915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002380789A Expired - Lifetime JP3890409B2 (en) 2002-12-27 2002-12-27 Aggregates of nanofibrous boric acid and method for producing the same

Country Status (1)

Country Link
JP (1) JP3890409B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7531892B2 (en) * 2003-12-11 2009-05-12 Yale University Superconducting boron nanostructures
CN103130235B (en) * 2013-03-22 2015-03-04 天津大学 Method for preparing boron-10 acid through boron trifluoride-10 one-step method

Also Published As

Publication number Publication date
JP2004210578A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
Zayyoun et al. The effect of pH on the synthesis of stable Cu 2 O/CuO nanoparticles by sol–gel method in a glycolic medium
Zhang et al. A mild and efficient biomimetic synthesis of rodlike hydroxyapatite particles with a high aspect ratio using polyvinylpyrrolidone as capping agent
Liu et al. A simple route to hydroxyapatite nanofibers
Lun et al. Enhancing dispersion of halloysite nanotubes via chemical modification
Sailaja Prasannakumaran Nair et al. Green synthesized luminescent carbon nanodots for the sensing application of Fe3+ ions
WO2012163078A1 (en) Near-infrared silver sulfide quantum dot, preparation method therefor and biological application thereof
Lu et al. Preparation of plate-like nano α-Al2O3 using nano-aluminum seeds by wet-chemical methods
Salarian et al. Template-directed hydrothermal synthesis of dandelion-like hydroxyapatite in the presence of cetyltrimethylammonium bromide and polyethylene glycol
Xia et al. Small molecule-assisted exfoliation of layered zirconium phosphate nanoplatelets by ionic liquids
JP3890409B2 (en) Aggregates of nanofibrous boric acid and method for producing the same
CN102874820A (en) Method for preparing cellular silicon dioxide nanotubes
Barman Review on biocompatibility of ZnO nano particles
Li et al. Controllable growth of ZnO nanowhiskers by a simple solution route
Wu et al. Template route to chemically engineering cavities at nanoscale: a case study of Zn (OH) 2 template
Bahari et al. Nanostructured features and antimicrobial properties of Fe3O4/ZnO Nanocomposites
Baby et al. Enhanced luminescence of silver nanoparticles decorated on hydrothermally synthesized exfoliated MoS2 nanosheets
US20200231459A1 (en) Compositions of metal oxide semiconductor nanomaterials
Qian et al. Controlled synthesis of light rare-earth hydroxide nanorods via a simple solution route
Fricke et al. Miniemulsion-based process for controlling the size and shape of zinc oxide nanoparticles
Arumugam et al. Biodegradable dendrimer functionalized carbon nanotube-hybrids for biomedical applications
Jin et al. Nano-ZnO/ZnO–HAPw prepared via sol–gel method and antibacterial activities of inorganic agents on six bacteria associated with oral infections
Li et al. A novel hydrothermal route to the synthesis of xonotlite nanofibers and investigation on their bioactivity
Wszelaka-Rylik Thermodynamics of β-cyclodextrin–ephedrine inclusion complex formation and covering of nanometric calcite with these substances
Evdokimova et al. Preparation of hybrid nanocomposites based on nanoscale cellulose and magnetic nanoparticles with photocatalytic properties
He et al. Nanoscale control of silks for regular hydroxyapatite formation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

R150 Certificate of patent or registration of utility model

Ref document number: 3890409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term