JP3883081B2 - メタバナジン酸アンモニウムの製造方法 - Google Patents

メタバナジン酸アンモニウムの製造方法 Download PDF

Info

Publication number
JP3883081B2
JP3883081B2 JP07900397A JP7900397A JP3883081B2 JP 3883081 B2 JP3883081 B2 JP 3883081B2 JP 07900397 A JP07900397 A JP 07900397A JP 7900397 A JP7900397 A JP 7900397A JP 3883081 B2 JP3883081 B2 JP 3883081B2
Authority
JP
Japan
Prior art keywords
aqueous solution
ammonium metavanadate
reaction
crystallization
combustion ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07900397A
Other languages
English (en)
Other versions
JPH10251025A (ja
Inventor
俊明 赤星
章 佐久間
益孝 藤代
Original Assignee
鹿島北共同発電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鹿島北共同発電株式会社 filed Critical 鹿島北共同発電株式会社
Priority to JP07900397A priority Critical patent/JP3883081B2/ja
Publication of JPH10251025A publication Critical patent/JPH10251025A/ja
Application granted granted Critical
Publication of JP3883081B2 publication Critical patent/JP3883081B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、メタバナジン酸アンモニウムの製造方法に関するものであり、詳しくは、設備効率、エネルギー効率および生産効率が高いメタバナジン酸アンモニウムの製造方法に関するものである。
【0002】
【従来の技術】
従来、石油系燃料を使用するボイラー等の排ガス煙道中に設けられた集塵器などにより捕集された燃焼灰は、バナジウム等の金属を含有している。前記の燃焼灰の組成は、例えば、カーボンが10〜80重量%、Niが0.3〜2重量%、NH4 が0.5〜20、Feが0.3〜2、SO4 が20〜60重量%、Mgが0.1〜8重量%、Vが1〜5重量%、SiO2 が0.1〜1重量%である。
【0003】
上記の金属は、環境保護または資源の有効利用の観点から、種々の処理により回収されている。上記の金属の内、バナジウムを回収する方法としては、例えば、燃焼灰と水とを混合し、バナジウム成分を水溶液に溶解した後、反応工程においてこの水溶液中に酸化剤を供給し、アンモニア存在下にバナジウムを酸化してメタバナジン酸アンモニウムに変換し、残る固形分を瀘別して水溶液とした後、水溶液を冷却してメタバナジン酸アンモニウムを晶析させて回収する方法が知られている。
【0004】
この際、反応工程において変換されて生成するメタバナジン酸アンモニウムが多い場合は、メタバナジン酸アンモニウムが晶析する。斯かる状況を回避し、生成するメタバナジン酸アンモニウムを全て溶解するため、燃焼灰などに含有されるバナジウムを水溶液とする段階で多量の水を使用している。その結果、処理工程は、多量の水溶液を処理することになるため、大きい設備が必要となり、多量の水溶液について加熱したり、pH調整したり、冷却することが必要となるため、多量の薬剤、多量のエネルギーを必要とするばかりでなく、メタバナジン酸アンモニウムの晶析効率が低くなっている。
【0005】
【発明が解決しようとする課題】
本発明は、上記実情に鑑みなされたものであり、その目的は、バナジウム及び硫酸アンモニウムを含有する水溶液中に酸化性ガスを供給してアンモニア存在下に酸化反応を行って得られたメタバナジン酸アンモニウム含有水溶液を晶析槽に供給してメタバナジン酸アンモニウムの晶析を行う際、設備効率、エネルギー・薬剤コストおよび晶析効率が高いメタバナジン酸アンモニウムの製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、上記課題達成のため、種々検討を進めた結果、液温の上昇と共に、メタバナジン酸アンモニウムの溶解度が予想外に上昇することに想到し、本発明に達した。
【0007】
すなわち、本発明の第1の要旨は、バナジウム及び硫酸アンモニウムを含有する水溶液中に酸化性ガスを供給してアンモニア存在下に酸化反応を行う反応工程と、反応工程で得られた水溶液を晶析槽に供給してメタバナジン酸アンモニウムの晶析を行う晶析工程とを包含し、上記の反応工程においては、加圧下100℃超の高温条件下において反応を行なってメタバナジン酸アンモニウム濃度が当該水溶液温度の飽和濃度以下かつ1.2重量%以上であり、硫酸アンモニウム濃度が5〜30%である水溶液を得、そして、反応工程にて得られた水溶液を加圧・保温条件下に供給管により移送し、晶析槽に供給することを特徴とするメタバナジン酸アンモニウムの製造方法に存する。
【0008】
そして、本発明の第2の要旨は、石油系燃料を使用するボイラー等の排ガス煙道中に設けられた集塵器などにより捕集され且つ少なくとも硫酸アンモニウムとバナジウムとを含有する石油系燃焼灰を水に溶解する燃焼灰スラリーの調製工程と、燃焼灰スラリーから固形分を除去する固液分離工程と、燃焼灰スラリーから固形分を除去した水溶液に酸化性ガスを供給してアンモニア存在下に酸化反応を行う反応工程と、反応工程にて得られた水溶液を晶析槽に供給してメタバナジン酸アンモニウムの晶析を行う晶析工程とを包含し、上記の反応工程においては、加圧下100℃超の高温条件下において反応を行なってメタバナジン酸アンモニウム濃度が当該水溶液温度の飽和濃度以下かつ1.2重量%以上であり、硫酸アンモニウム濃度が5〜30重量%である水溶液を得、そして、反応工程にて得られた水溶液を加圧・保温条件下に供給管により移送し、晶析槽に供給することを特徴とするメタバナジン酸アンモニウムの製造方法に存する。
【0009】
そして、本発明の第3の要旨は、石油系燃料を使用するボイラー等の排ガス煙道中に設けられた集塵器などにより捕集され且つ少なくとも硫酸アンモニウムとバナジウムとを含有する石油系燃焼灰を水に溶解する燃焼灰スラリーの調製工程と、燃焼灰スラリーに酸化性ガスを供給してアンモニア存在下に酸化反応を行う反応工程と、メタバナジン酸アンモニウムを水溶液として含有する燃焼灰スラリーから固形分を除去する固液分離工程と、得られた水溶液を晶析槽に供給してメタバナジン酸アンモニウムの晶析を行う晶析工程とを包含し、上記の反応工程においては、加圧下100℃の高温条件下において反応を行ない、上記の固液分離工程においては、メタバナジン酸アンモニウム濃度が当該水溶液温度の飽和濃度以下かつ1.2重量%以上で、硫酸アンモニウム濃度が5〜30重量%である水溶液を得、そして、固液分離工程にて得られた水溶液を加圧・保温条件下に供給管により移送し、晶析槽に供給することを特徴とするメタバナジン酸アンモニウムの製造方法に存する。
【0010】
【発明の実施の形態】
以下、本発明を詳細に説明する。第1の要旨に係る本発明(第1の発明)においては、反応工程と晶析工程とを包含する。
【0011】
反応工程においては、バナジウム及び硫酸アンモニウムを含有する水溶液(バナジウム含有水溶液)中に酸化性ガスを供給してアンモニア存在下に酸化反応が行なわれる。
【0012】
バナジウム含有水溶液の調製は、例えば、以下の様に行うことが出来る。反応工程に供されるバナジウム含有水溶液は、後述の反応工程において得られるメタバナジン酸アンモニウム含有水溶液中のメタバナジン酸アンモニウム濃度が後述の反応温度における飽和濃度以下かつ1.2重量%以上、好ましくは1.5重量%以上(メタバナジン酸アンモニウム基準濃度)となる様に、また、バナジウム含有水溶液中の硫酸アンモニウム濃度は、5〜30重量%、好ましくは10〜15重量%の範囲(硫酸アンモニウム基準濃度)となる様に調製される。
【0013】
従って、溶解槽において、先ず、メタバナジン酸アンモニウム濃度が上記の範囲となる様に所定量の水とバナジウムを混合し、次いで、これに硫酸などの酸を加えてpHを3以下、好ましくは1〜3程度として可溶成分を溶解する。
【0014】
得られたバナジウム含有水溶液にメタバナジン酸アンモニウム濃度が上記の範囲となる様に硫酸アンモニウムを加え、更にアルカリ性物質を加えてpHを通常7以上、好ましくは7〜9、より好ましくは8〜9に調整する。アルカリ性物質としては、通常、アンモニア又はアンモニウム化合物が使用される。斯かるpH調整は、次工程の反応槽内で行ってもよいが、反応槽に供給される迄に行なわれるのが好ましい。
【0015】
pHの調整に使用するアルカリ性物質としては、バナジウム含有水溶液中のバナジウムが酸化反応によりメタバナジン酸アンモニウムに変換される際に消費されるアンモニア量より十分多いアンモニア成分がバナジウム含有水溶液中に含有されている場合は、pH調整のみを目的として苛性ソーダ等の苛性アルカリ等を使用することが出来る。しかしながら、反応系に新たな化学種を持ち込むことを避けるため、アンモニア又はアンモニア化合物のみで調整するのが好ましい。
【0016】
反応工程に使用する反応槽は、槽内を加圧条件下に維持することが出来る密閉型であり、反応槽には、通常、原料水溶液を供給する供給口、排液口、加熱・保温装置、撹拌装置、ガス供給管、内圧調節装置、および、還流冷却装置が具備される。
【0017】
ガス供給管の先端開口部は、反応溶液中に突出する様に配置される。先端開口部の構造としては、例えば、逆円錐形状を備え且つ上方に向けられた逆円錐の底部に多数の通気孔を有する構造、ドーナツ形状を備え且つ上方に位置する円環部に多数の通気孔を有する構造、および、上方に向けた末広がり構造などが挙げられる。
【0018】
反応槽内は、反応して得られるメタバナジン酸アンモニウムの溶解度を維持するため、100℃を超え、好ましくは120℃以上とされ、また、その上限は、特に制限されないが、実用的には150℃以下、好ましくは135℃以下である。斯かる高い温度に水溶液を加熱することを可能にするため、1気圧超の適切な加圧条件下に維持される。従って、上記のバナジウム含有水溶液の反応槽への供給は、加圧ポンプなどを使用して加圧条件下に行なわれる。供給されたバナジウム含有水溶液は、反応温度に調整された後、第1発明の場合と同様にして酸化反応に供される。
【0019】
酸化に使用される酸化性ガスとしては、例えば、空気、酸素、オゾンが挙げられるが、これらの中で、実用性の観点から、空気が好ましい。供給される酸化性ガスの量は、計算上はバナジウム成分1モル当たり酸素分子として3/2モルであるが、水溶液中には、通常、バナジウム以外の金属成分が溶存しているため、当該他の金属成分により酸素が消費される量を考慮して、計算量より過剰量とするのが好ましい。その際、必要により、反応により消費されるアンモニアを補い、反応液のpHを維持するため、アンモニアが併せて供給される。
【0020】
酸化反応の際、生成したメタバナジン酸アンモニウムがガス供給管の開口部表面にスケーリングし易いため、酸化性ガスの供給と併せて加熱水蒸気を供給するのが好ましい。加熱水蒸気の供給により、ガス供給管の開口部のメタバナジン酸アンモニウムの濃度を希釈し、且つ、開口部表面の温度低下を抑制することが出来、ガス供給管の開口部表面へのメタバナジン酸アンモニウムのスケーリングを防止することが出来る。また、ガス供給管の開口部の上部近傍に配置された攪拌翼へのスケーリングも防止できる。
【0021】
反応槽においては、供給された酸化性ガスにより溶存する4価のバナジウムが5価に酸化され、溶存しているアンモニウムと反応してメタバナジン酸アンモニウムが生成し、メタバナジン酸アンモニウム含有水溶液が生成される。このメタバナジン酸アンモニウム含有水溶液は、次工程の晶析工程の晶析槽に供給され、晶析される。上記の溶存しているアンモニウムは、硫酸アンモニウム及びpH調整に使用されたアンモニアに由来する。
【0022】
晶析槽には、通常、供給管の先端の供給口、抜き出し口、撹拌装置、冷却装置、晶析槽から冷却器に至る送液路、および、冷却器から晶析槽へ至る冷却スラリー帰還路が具備され、全体として晶析系を形成する。送液路には、晶析槽から晶析スラリーを冷却器へ送り出す送液装置が具備され、帰還路には、通常、分岐路が具備され、分岐路は冷却スラリーの抜き出しに使用される。
【0023】
晶析槽内の圧力条件は、反応槽の内圧と等しくする場合など大気圧に比べて加圧条件または減圧条件の何れの条件にすることも出来るが、通常、大気圧条件とされる。以下、晶析槽内を大気圧条件とする場合を例に挙げて説明する。
【0024】
反応槽において得られたメタバナジン酸アンモニウム含有水溶液は、加圧・保温条件下に供給管により移送し、供給管の先端供給口から晶析槽に供給される。供給管中の加圧・保温条件は、メタバナジン酸アンモニウムが析出しない範囲で適宜設定できるが、通常、反応槽中の条件と同一とされる。
【0025】
先端供給口は、可能な限り晶析槽の壁面から離れ且つ晶析スラリーに接触しない位置に配置されるのが好ましく、通常、晶析槽内の空間部において晶析スラリー面に対向して配置される。この際、先端供給口が壁面近くに配置される場合は、メタバナジン酸アンモニウム含有水溶液が低温の壁面と接触して晶析が起るため、結晶が壁面に積層される。
【0026】
また、先端供給口が晶析スラリーと接触する位置に配置される場合は、メタバナジン酸アンモニウム含有水溶液が供給管の先端部において低温の晶析スラリーと接触して晶析が起るため、生成する結晶が先端供給口の先端にスケーリングして先端開口部を閉塞する虞が有る。
【0027】
供給管内が加圧されているため、先端供給口には、供給管内圧と晶析槽内圧との圧力遮断構造が具備されているのが好ましい。斯かる圧力遮断構造としては、両圧力の差に応じて開口度を調節することが出来る開口度調節装置が挙げられる。斯かる装置を調節することにより、供給管内圧を維持しつつ適量のメタバナジン酸アンモニウム含有水溶液を晶析槽内に供給することが出来る。
【0028】
加圧された供給管から大気圧条件の晶析槽内にメタバナジン酸アンモニウム含有水溶液を供給する際、メタバナジン酸アンモニウム含有水溶液は、先端供給口で放圧され、その結果、温度が急降下し、圧力差が大きい場合は、温度低下が大きくなる。そのため、先端供給口付近のメタバナジン酸アンモニウム含有水溶液において晶析が生起し、先端供給口が閉塞され易くなる。従って、先端供給口に加熱装置を設け、供給されるメタバナジン酸アンモニウム含有水溶液温度またはそれ以上の温度に先端供給口の温度を維持するのが好ましい。
【0029】
晶析槽に供給されたメタバナジン酸アンモニウム含有水溶液は、晶析スラリーに混入することにより晶析温度に冷却され、含有されるメタバナジン酸アンモニウムが晶析される。晶析温度は、通常40℃以下、より好ましくは20〜30℃の温度とされる。
【0030】
晶析槽内の晶析スラリーは、その温度を晶析温度に維持するため、その一部が送液路および帰還路を経て冷却装置に循環して冷却される。この結果、晶析スラリーの温度は、高温のメタバナジン酸アンモニウム含有水溶液の供給量およびその温度と、循環冷却される晶析スラリーの循環量およびその温度低下とのバランスにより一定の平衡温度すなわち晶析温度に維持される。冷却装置として使用される冷却器としては、公知のものが使用され、例えば、冷却コイル方式冷却器、向流冷却塔、直交流冷却塔などの冷却器が挙げられる。
【0031】
メタバナジン酸アンモニウム含有水溶液の供給と並行して、その供給量と略等量の晶析スラリーが晶析系から抜き出される。スラリーの抜き出し口としては、特に制限されないが、通常、晶析槽の抜き出し口または冷却された晶析スラリーの帰還路の分岐路とされる。この結果、晶析槽内の晶析スラリーの液量は一定量に維持される。
【0032】
抜き出されたスラリーは、通常、さらに、固液分離装置に供給され、含有される結晶が分離される。分離方法としては、種々の公知方法を利用することが出来るが、例えば、先ず沈降濃縮し、その後、濾過する方法が好適である。分離したメタバナジン酸アンモニウムの結晶は、冷水で洗浄することにより高純度のメタバナジン酸アンモニウムとなる。
【0033】
前記の第2の要旨に係る本発明(第2の発明)においては、燃焼灰スラリーの調製工程と、固液分離工程と、反応工程と、晶析工程とを包含する。
【0034】
上記の燃焼灰スラリーの調製工程においては、石油系燃焼灰と水とを混合し、石油系燃焼灰中の硫酸アンモニウム及びバナジウム等の可溶性成分を水に溶解して燃焼灰スラリーを調製する。
【0035】
石油系燃焼灰は、石油系燃料を使用する各種の燃焼炉(燃焼装置)等の排ガス通路の末端に設けられた集塵器により捕集される燃焼灰である。斯かる石油系燃焼灰は、未燃カーボンを主成分とする不溶性固形分の他に、さらに、少なくとも硫酸アンモニウムとバナジウム等の可溶成分を含有する。なお、硫酸アンモニウムは、石油系燃焼灰の捕集場所である排ガス通路において、排ガス中に含まれる硫酸ガスの中和剤として、通常、アンモニアが添加されるため中和反応して生成され、含有される。
【0036】
燃焼灰スラリーを調製する際、水と石油系燃焼灰との配合比は、燃焼灰スラリーが固液分離されて得られるバナジウム含有水溶液中のバナジウムが反応工程においてメタバナジン酸アンモニウムに変換されて生成されるメタバナジン酸アンモニウム含有水溶液中のメタバナジン酸アンモニウム濃度が前述の反応温度における飽和濃度以下かつ1.2重量%以上の範囲(メタバナジン酸アンモニウム基準濃度)となる様に決定される。
【0037】
石油系燃焼灰中の可溶性成分を溶解して燃焼灰スラリーを調製する方法としては、特に限定されないが、例えば、石油系燃焼灰と水とを上記の配合比に混合し、これに硫酸などの酸を加えてpHを1〜3程度に調整して溶解される。その結果、未燃カーボンを固形分の主成分とし、かつ、バナジウムを含有する燃焼灰スラリーが得られる。
【0038】
前記の固液分離工程においては、上記のバナジウムを含有する燃焼灰スラリーが固液分離装置に供給されてその中の固形分が分離され、バナジウム含有水溶液が得られる。固液分離装置としては、特に制限されないが、加圧下100℃超の高温で行う場合は、通常、フィルタープレス等の加圧・保温条件下で使用できる公知の装置が採用される。
【0039】
固液分離装置において得られたバナジウム含有水溶液は、第1発明の場合と同様の方法で、pHを通常7以上、好ましくは7〜9、より好ましくは8〜9に調整し、且つ、その中に含有される硫酸アンモニウム濃度を5〜30重量%、好ましくは10〜15重量%の範囲(硫酸アンモニウム基準濃度)に調整する。なお、斯かるpH調整は、反応槽に供給した後に行ってもよい。
【0040】
斯かるpH調整の方法は、第1の発明の場合と同様にして行うことが出来る。また、硫酸アンモニウム濃度が硫酸アンモニウム基準濃度未満の場合は、硫酸アンモニウムを追加し、逆に、硫酸アンモニウム基準濃度を超える場合は、水を加えて希釈する。
【0041】
反応工程に使用する反応槽は、第1発明の場合と同様に、100℃超の高温かつ1気圧超の加圧条件下に維持される。そして、上記のバナジウム含有燃焼灰スラリーの反応槽への供給は、加圧ポンプなどを使用して加圧条件下に行なわれる。供給されたバナジウム含有水溶液は、反応温度に調整された後、第1発明の場合と同様にして酸化されてメタバナジン酸アンモニウム含有水溶液となる。
【0042】
上記のメタバナジン酸アンモニウム含有水溶液は、第1発明の場合と同様にして晶析工程の晶析槽に供給されて晶析され、通常、さらに、第1発明の場合と同様にして、分離装置によりメタバナジン酸アンモニウムが分離される。
【0043】
第3の要旨に斯かる本発明(第3発明)は、燃焼灰スラリーの調製工程と、反応工程と、固液分離工程と、晶析工程とを包含する。第3発明の工程は、第2発明の工程における固液分離工程と反応工程の順が逆であり、反応工程と固液分離工程の順になっている。
【0044】
上記の燃焼灰スラリーの調製工程においては、前記の第2発明における燃焼灰スラリーの調製工程と全く同じ様にして、バナジウム及び未燃カーボンが主成分である固形分を含有する燃焼灰スラリーを得ることが出来る。
【0045】
得られた燃焼灰スラリーは、通常、反応工程に供給される前に、アルカリ性物質を加えてpHが通常7以上、好ましくは7〜9、より好ましくは8〜9になる様に調整される。そして、さらに、含有される硫酸アンモニウム濃度が第2の発明と同様にして5〜30重量%、好ましくは10〜15重量%の範囲(硫酸アンモニウム基準濃度)になる様に調整される。これらの調整の操作は、第1の発明の場合と同様にして行うことが出来、また、反応工程に供給された後、反応槽の中で行うことも出来る。
【0046】
反応工程に使用される反応槽は、反応して得られるメタバナジン酸アンモニウムの溶解度を維持するため、100℃超に加熱される。そして、斯かる高い温度に水溶液を加熱することを可能にするため、1気圧超の加圧条件下に維持される。従って、上記のバナジウム含有燃焼灰スラリーの反応槽への供給は、加圧ポンプなどを使用して加圧条件下に行なわれる。供給されたバナジウム含有燃焼灰スラリーは、反応温度に調整された後、第1発明の場合と同様にして酸化反応に供される。
【0047】
上記の酸化反応は、第1発明の場合と同様にして、燃焼灰スラリー中に酸化性ガスを供給してアンモニアの存在下に行うことが出来、酸化反応により、燃焼灰スラリー中に含有されるバナジウムは、溶存しているアンモニウムと反応してバナジン酸アンモニウムに変換される。その結果、燃焼灰スラリーは、メタバナジン酸アンモニウム含有燃焼灰スラリーとなり、固液分離工程に供給される。
【0048】
固液分離工程において、メタバナジン酸アンモニウム含有燃焼灰スラリー中の固形分が分離される。固液分離に使用される固液分離装置としては、加圧下100℃超の高温で行うため、通常、フィルタープレス等の加圧・保温条件下で使用できる公知の装置が採用される。固液分離の結果、メタバナジン酸アンモニウム含有水溶液が得られる。
【0049】
上記のメタバナジン酸アンモニウム含有水溶液は、第1発明の場合と同様にして晶析工程の晶析槽に供給されて晶析され、通常、さらに、第1発明の場合と同様にして、分離装置によりメタバナジン酸アンモニウムが分離される。
【0050】
【実施例】
以下、本発明を実施例により更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。なお、以下の諸例においては、反応装置として、収容されるバナジウム含有水溶液またはスラリー中にガス供給管が突出して配置され、加熱・保温装置、内圧調節装置、冷却コンデンサー装置、供給口、排液口を備え、ガス供給管の開口部の上部近傍に撹拌翼が配置された容量20m3 の密閉型の酸化槽を使用した。そして、上記のガス供給管の先端開口部は、外径80mmのドーナツ形状を備え且つ上方に位置する円環部に内径が4mmの多数の通気穿孔を有するの構造を備えている。
【0051】
実施例1
石油系燃料を使用するボイラーの排ガス煙道中に設けられた集塵器により捕集された燃焼灰10Tonと水34m3 とを大気圧下に置かれた溶解槽にて混合し、硫酸を添加してpHを1.5に調整し、バナジウムを溶解してバナジウム含有燃焼灰スラリーを調製した。
【0052】
上記の燃焼灰スラリーを常温下でフィルタープレスに供給して未燃カーボン等の固形分を分離し、得られた水溶液にアンモニア水を投入してpHを9に調節し、バナジウム含有水溶液を得た。
【0053】
得られたバナジウム含有水溶液を反応槽の供給口から加圧ポンプにより加圧下に20m3 /hrの割合で供給し、前記ガス供給管の開口部からバナジウム含有水溶液中に50℃の空気200Nm3 /hrおよび3気圧の加熱水蒸気0.1〜0.2Ton/hrを導入しつつ、酸化反応を続け、溶液中のバナジウムをメタバナジン酸アンモニウムに変換した。調製したバナジウム含有スラリーを全て処理するために約2時間を要した。
【0054】
その間、酸化槽内は、加熱・保温装置により液温を125℃に維持し、内圧調節装置により内圧を2.0Kg/cm2 Gに維持した。また、排出口から供給量と略同量の割合でメタバナジン酸アンモニウム含有水溶液を排出して晶析槽に供給しつつ、液面を略同水位に維持した。また、内圧調節装置の弁から排出される気体中の水蒸気およびアンモニアガスは、冷却コンデンサーにより冷却し、酸化槽内に還流した。反応槽中のメタバナジン酸アンモニウム含有水溶液に含まれているメタバナジン酸アンモニウム濃度を実測したところ、約1.5重量%、また、硫酸アンモニウム濃度は、約15重量%であった。
【0055】
加圧下に125℃に保温された反応槽から排出されたメタバナジン酸アンモニウム含有水溶液は、供給管の先端に設けられ且つ圧力調節装置が具備された先端供給口を経て、大気圧下に置かれた30℃に維持された晶析槽内に噴射状に供給されて晶析温度に冷却され、その中に含有されていたメタバナジン酸アンモニウムは晶析された。晶析温度は、晶析スラリーの一部を向流冷却塔に循環して冷却し、30℃に維持した。
【0056】
晶析槽において、メタバナジン酸アンモニウム含有水溶液の供給と並行して、その量と略等量の晶析スラリーを冷却器からの帰還路の分岐路から抜き出し、晶析槽内の晶析スラリー量を略一定に維持した。晶析槽から抜き出された晶析スラリー中のメタバナジン酸アンモニウムの結晶を沈降濃縮した後、遠心分離装置を使用して濾別し、冷水で洗浄することにより、高純度のメタバナジン酸アンモニウムを得た。
【0057】
実施例2
実施例1の場合と同様にして燃焼灰スラリーを調製した。上記の燃焼灰スラリーに水を投入してpHを9に調節し、バナジウム含有水溶液を得た。
【0058】
得られたバナジウム含有燃焼灰スラリーを反応槽の供給口から加圧ポンプにより加圧下に20m3 /hrの割合で供給し、前記ガス供給管の開口部からバナジウム含有水溶液中に50℃の空気200Nm3 /hrおよび3気圧の加熱水蒸気0.1〜0.2Ton/hrを導入しつつ、酸化反応を続け、スラリー中のバナジウムをメタバナジン酸アンモニウムに変換した。
【0059】
その間、反応槽は、実施例1と同様にして加熱・保温装置により液温を125℃に維持し、内圧調節装置により内圧を2.0Kg/cm2 Gに維持した。また、加圧下に維持された反応槽の排出口から供給量と略同量の割合でメタバナジン酸アンモニウム含有燃焼灰スラリーを排出して固液分離工程へ供給した。調製したバナジウム含有スラリーを全て処理するために約2時間を要した。
【0060】
固液分離工程においては、上記の未燃カーボン等の固形分およびメタバナジン酸アンモニウムを含有する燃焼灰スラリーを加圧・保温条件下でフィルタープレスを使用して未燃カーボン等の固形分を分離し、メタバナジン酸アンモニウム含有水溶液を得た。得られたメタバナジン酸アンモニウム含有水溶液に含まれているメタバナジン酸アンモニウム濃度を実測したところ約1.5重量%であり、また、硫酸アンモニウム濃度は約15重量%であり、実施例1の場合と略同じであった。
【0061】
加圧下に125℃に維持された上記のメタバナジン酸アンモニウム含有水溶液は、実施例1と同様にして、大気圧下に置かれた30℃に維持された晶析槽内に噴射状に供給されて晶析スラリー温度に冷却され、並行して、供給量と略等量の晶析スラリーを冷却器からの帰還路の分岐路から抜き出し、晶析槽内の晶析スラリー量を略一定に維持した。実施例1の場合と同様にして、晶析槽から抜き出された晶析スラリー中のメタバナジン酸アンモニウムの結晶を沈降濃縮した後、遠心分離装置を使用して濾別し、冷水で洗浄することにより、高純度のメタバナジン酸アンモニウムを得た。
【0062】
比較例1
実施例1で使用されたのと同じバッチの燃焼灰10Tonと水130m3 とを大気圧下に置かれた溶解槽にて混合し、実施例1と同様にして硫酸を添加してpHを1.5に調整し、バナジウムを溶解してバナジウム含有燃焼灰スラリーを調製した。
【0063】
上記の燃焼灰スラリーに硫酸アンモニウムを約17トン投入した後、アンモニア水を投入してpHを9に調節し、バナジウム含有燃焼灰スラリーを得た。
【0064】
得られたバナジウム含有燃焼灰スラリーを反応槽の供給口から常圧下に20m3 /hrの割合で供給し、前記ガス供給管の開口部からバナジウム含有燃焼灰スラリー中に50℃の空気200Nm3 /hrおよび3気圧の加熱水蒸気0.1〜0.2Ton/hrを導入しつつ、酸化反応を続け、スラリー中のバナジウムをメタバナジン酸アンモニウムに変換した。
【0065】
その間、加熱・保温装置により液温を97℃に維持した。また、排出口から供給量と略同量の割合でメタバナジン酸アンモニウム含有燃焼灰スラリーを排出して固液分離装置に供給しつつ、液面を略同水位に維持した。また、槽内は大気圧条件下に置き、内圧調節装置の弁から排出される気体中の水蒸気およびアンモニアガスは、冷却コンデンサーにより冷却し、酸化槽内に還流した。反応槽中にはメタバナジン酸アンモニウムの析出は認められなかった。
【0066】
上記の未燃カーボン等の固形分およびメタバナジン酸アンモニウムを含有する燃焼灰スラリーを保温条件下でフィルタープレスに供給し、未燃カーボン等の固形分を分離し、メタバナジン酸アンモニウム含有水溶液を得た。得られたメタバナジン酸アンモニウム含有水溶液に含まれているメタバナジン酸アンモニウム濃度を実測したところ、約0.39重量%であり、また、硫酸アンモニウム濃度は、約15重量%であった。調製したバナジウム含有水溶液を全て処理するために7時間強を要した。
【0067】
上記のメタバナジン酸アンモニウム含有水溶液は、供給管の先端に設けられた圧力調節装置が具備された先端供給口を開放した状態で、大気圧下に置かれた30℃に維持された晶析槽内の晶析スラリー中に供給されて晶析温度に冷却され、晶析された。実施例1の場合と同様にして、晶析槽から抜き出された晶析スラリー中のメタバナジン酸アンモニウムの結晶を沈降濃縮した後、遠心分離装置を使用して濾別し、冷水で洗浄することにより、高純度のメタバナジン酸アンモニウムを得た。
【0068】
以上の様に、比較例1においては、反応時の硫酸アンモニウム濃度を設定値に合わせるため多量の硫酸アンモニウムを別に追加する必要があり、また、97℃の反応槽においては、生成されたメタバナジン酸アンモニウムは析出しなかったが、調製された原料の燃焼灰スラリー中のバナジウムが希薄であったため反応槽中で生成されるメタバナジン酸アンモニウム濃度が低く、多量の液量を実施例の場合と同じ反応槽を使用したため、実施例の場合に比べて著しく長時間を要した。また、処理した液量の割には晶析されるメタバナジン酸アンモニウムの量が少なく、晶析効率が低かった。
【0069】
【発明の効果】
以上、説明した第1の発明、第2の発明および第3の発明によれば、何れもバナジウムからメタバナジン酸アンモニウムを製造する方法において、高圧下に100℃を超える高温において処理されるため、水溶液またはスラリー状態において予想外の高濃度のバナジウム又はメタバナジン酸アンモニウムを含有することが出来、液量を小さくすることが出来る。その結果、従来と同じ設備を使用した場合は短時間で処理することが出来るため設備効率、薬剤使用量およびエネルギー効率および晶析効率が改善され、効率が良いメタバナジン酸アンモニウムの製造方法を提供することが出来、本発明の工業的価値は大きい。

Claims (7)

  1. バナジウム及び硫酸アンモニウムを含有する水溶液中に酸化性ガスを供給してアンモニア存在下に酸化反応を行う反応工程と、反応工程で得られた水溶液を晶析槽に供給してメタバナジン酸アンモニウムの晶析を行う晶析工程とを包含し、上記の反応工程においては、加圧下100℃超の高温条件下において反応を行なってメタバナジン酸アンモニウム濃度が当該水溶液温度の飽和濃度以下かつ1.2重量%以上であり、硫酸アンモニウム濃度が5〜30%である水溶液を得、そして、反応工程にて得られた水溶液を加圧・保温条件下に供給管により移送し、晶析槽に供給することを特徴とするメタバナジン酸アンモニウムの製造方法。
  2. 石油系燃料を使用するボイラー等の排ガス煙道中に設けられた集塵器などにより捕集され且つ少なくとも硫酸アンモニウムとバナジウムとを含有する石油系燃焼灰を水に溶解する燃焼灰スラリーの調製工程と、燃焼灰スラリーから固形分を除去する固液分離工程と、燃焼灰スラリーから固形分を除去した水溶液に酸化性ガスを供給してアンモニア存在下に酸化反応を行う反応工程と、反応工程にて得られた水溶液を晶析槽に供給してメタバナジン酸アンモニウムの晶析を行う晶析工程とを包含し、上記の反応工程においては、加圧下100℃超の高温条件下において反応を行なってメタバナジン酸アンモニウム濃度が当該水溶液温度の飽和濃度以下かつ1.2重量%以上で、硫酸アンモニウム濃度が5〜30重量%である水溶液を得、そして、反応工程にて得られた水溶液を加圧・保温条件下にに供給管により移送し、晶析槽に供給することを特徴とするメタバナジン酸アンモニウムの製造方法。
  3. 石油系燃料を使用するボイラー等の排ガス煙道中に設けられた集塵器などにより捕集され且つ少なくとも硫酸アンモニウムとバナジウムとを含有する石油系燃焼灰を水に溶解する燃焼灰スラリーの調製工程と、燃焼灰スラリーに酸化性ガスを供給してアンモニア存在下に酸化反応を行う反応工程と、メタバナジン酸アンモニウムを水溶液として含有する燃焼灰スラリーから固形分を除去する固液分離工程と、得られた水溶液を晶析槽に供給してメタバナジン酸アンモニウムの晶析を行う晶析工程とを包含し、上記の反応工程においては、加圧下100℃の高温条件下において反応を行ない、上記の固液分離工程においては、メタバナジン酸アンモニウム濃度が当該水溶液温度の飽和濃度以下かつ1.2重量%以上で、硫酸アンモニウム濃度が5〜30重量%である水溶液を得、そして、固液分離工程にて得られた水溶液を加圧・保温条件下に供給管により移送し、晶析槽に供給することを特徴とするメタバナジン酸アンモニウムの製造方法。
  4. 反応工程において得られる水溶液中のバナジン酸アンモニウム濃度がその飽和濃度以下かつ1.2重量%以上であり、硫酸アンモニウム濃度が5〜30重量%以上である請求項1〜3の何れかに記載の製造方法。
  5. 大気圧下の晶析槽内の空間部において液面に対向して配置された供給管の先端供給口から晶析槽にメタバナジン酸アンモニウム含有水溶液を放圧しつつ噴射状に供給する請求項1〜4の何れかに記載の製造方法。
  6. 供給管の先端供給口に開口度調節装置が設けられている請求項5に記載の製造方法。
  7. 供給管の先端供給口に加熱装置が設けられている請求項5に記載の製造方法。
JP07900397A 1997-03-12 1997-03-12 メタバナジン酸アンモニウムの製造方法 Expired - Fee Related JP3883081B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07900397A JP3883081B2 (ja) 1997-03-12 1997-03-12 メタバナジン酸アンモニウムの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07900397A JP3883081B2 (ja) 1997-03-12 1997-03-12 メタバナジン酸アンモニウムの製造方法

Publications (2)

Publication Number Publication Date
JPH10251025A JPH10251025A (ja) 1998-09-22
JP3883081B2 true JP3883081B2 (ja) 2007-02-21

Family

ID=13677790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07900397A Expired - Fee Related JP3883081B2 (ja) 1997-03-12 1997-03-12 メタバナジン酸アンモニウムの製造方法

Country Status (1)

Country Link
JP (1) JP3883081B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6033637A (en) * 1996-12-25 2000-03-07 Kashima-Kita, Electric Power Corporation Method for treating combustion ashes
JP4768116B2 (ja) 2000-12-15 2011-09-07 千代田化工建設株式会社 バナジウムを含有する炭素質残渣から高純度のバナジウム化合物を製造する方法
JPWO2003072275A1 (ja) * 2002-02-27 2005-06-16 鹿島北共同発電株式会社 石油系燃焼灰の湿式処理方法
CN103833078B (zh) * 2014-03-25 2015-05-20 时国海 一种提取偏钒酸铵沉钒结晶法
CN114890476B (zh) * 2022-05-25 2023-08-18 中国科学院过程工程研究所 一种从含钒酸性草酸铵溶液中分离制备偏钒酸铵的方法
CN115057474B (zh) * 2022-07-27 2023-11-14 中国科学院过程工程研究所 一种钒酸钙制备偏钒酸铵过程介质内循环的方法

Also Published As

Publication number Publication date
JPH10251025A (ja) 1998-09-22

Similar Documents

Publication Publication Date Title
WO2021083263A1 (zh) 一种萃取-反萃分离纯化提取锂的方法
CN107265483A (zh) 制备单水氢氧化锂的方法
JP3883081B2 (ja) メタバナジン酸アンモニウムの製造方法
CN105648226A (zh) 一种锑砷烟灰中锑和砷分离的方法
CN111732120A (zh) 一种高纯硝酸银的环保高效生产方法
CN111924815A (zh) 一种废旧磷酸铁锂电池正极材料的回收方法
CN102476884A (zh) 一种氨氮废水的处理方法
CN108264086B (zh) 一种含钒原料球磨钙化-铵化制备五氧化二钒的方法
CN114180625A (zh) 一种负压挥发提纯五氧化二钒的方法
JP4270694B2 (ja) 酸化鉄の製造方法および製造設備
CN211198624U (zh) 一种含镍和氟化氢铵的废渣处理***
WO2023173776A1 (zh) 一种三元前驱体母液的回收方法及回收***
EP0852220B1 (en) A wet-processing method for combustion ashes of petroleum fuels, containing ammonium sulfate and a method of utilizing ammonia components recovered by the wet-processing method
JPH10156102A (ja) 連続晶析方法
CA1140730A (en) Process for producing magnesium oxide from an aqueous magnesium sulphate solution
US7052660B2 (en) Wet-processing method for combustion ashes of petroleum fuels
CN113264549A (zh) 一种活性氧化锌制备新工艺
US1937508A (en) Process for recovering manganese values
CN207738468U (zh) 一种粗VOCl3制备高纯V2O5的***
JP2005200230A (ja) メタバナジン酸アンモニウムの製造方法
JP3665918B2 (ja) 石油系燃焼灰の処理方法
JP2005200231A (ja) メタバナジン酸アンモニウムの製造方法
JPS5850926B2 (ja) 亜硝酸カルシウム水溶液の製造法
JPS61171583A (ja) 石油系燃焼灰の処理方法
JPH10152325A (ja) メタバナジン酸アンモニウムの製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees