JP3882338B2 - Manufacturing method of fireproof building material made of fiber reinforced plastic - Google Patents

Manufacturing method of fireproof building material made of fiber reinforced plastic Download PDF

Info

Publication number
JP3882338B2
JP3882338B2 JP13894498A JP13894498A JP3882338B2 JP 3882338 B2 JP3882338 B2 JP 3882338B2 JP 13894498 A JP13894498 A JP 13894498A JP 13894498 A JP13894498 A JP 13894498A JP 3882338 B2 JP3882338 B2 JP 3882338B2
Authority
JP
Japan
Prior art keywords
fiber
resin
inorganic
reinforced plastic
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13894498A
Other languages
Japanese (ja)
Other versions
JPH11320735A (en
Inventor
豊和 水口
壮一 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP13894498A priority Critical patent/JP3882338B2/en
Publication of JPH11320735A publication Critical patent/JPH11320735A/en
Application granted granted Critical
Publication of JP3882338B2 publication Critical patent/JP3882338B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、耐火性能の優れた繊維強化プラスチック製耐火建築部材の製造方法に関するものである。
【0002】
【従来の技術】
従来、炭素繊維はそのすぐれた力学的性質、特にすぐれた強度および弾性率を利用した複合材料の補強繊維として工業的に広く利用され建築構造物、土木材料などにも利用されつつある。
【0003】
一般的に炭素繊維は、エポキシ樹脂に代表される熱硬化性樹脂の強化繊維として利用されているが、エポキシ樹脂をマトリックスとする炭素繊維強化プラスチックは耐火性が悪い。建築物の構造材として使用するには、建築基準法に定められた消火設備や敷地面積の規制、建設地域の規制がある。このため、上記規制場所では建築部材の防火性能、耐火性能を高めるため多種の耐火塗料を塗布する手段がとられている。例えば、火災時の加熱による建築構造部材の温度上昇を遅延させるため加熱により不燃性ガスを発生しながら発泡し、多孔質炭化層を有する発泡型耐火塗料がある。特開昭52−103817号公報では建築物の内装を構成する天井または壁等の基材と内装材との間に発泡性防火物質層を介在させることを特徴とする建築物内装の防火方法が開示されている。また、特開平9−53374号公報には、非中空のFRP成形部材本体の表面に発泡型耐火塗料を塗布して耐火塗膜を形成した耐火FRP部材が開示されている。
【0004】
しかしながら、これらの耐火塗料は200℃以上の温度で徐々に発泡を開始するため、FRP部材の表面に通常の方法で発泡性防火物質や耐火塗料を直接塗布しただけでは、火災時の熱で耐火塗料が発泡する前に、FRP部材の温度が急上昇し、軟化して形態を保持できなくなる問題がある。また、天井基材や壁基材に貼り付けたFRPと内装材との間に発泡性防火物質を塗布した場合でも火災時、内装材の燃焼で、天井および壁基材に貼り付けたFRP材の温度が350℃に達し、該FRP材は形態保持ができなくなる。すなわち発泡性防火物質だけではFRP部材にとっては、耐火断熱効果が小さいという欠点がある。
【0005】
【発明が解決しようとする課題】
本発明は、かかる従来技術の問題点に鑑み、JIS A1304に規定される30分の耐火試験に合格する耐火性および断熱性を大きく向上した優れた繊維強化プラスチック(以下、単にFRPという)材およびその製造方法を提供せんとするものである。
【0006】
【課題を解決するための手段】
本発明は、かかる課題を解決するために、次のような手段を採用するものである
【0007】
すなわち、本発明の繊維強化プラスチック製耐火建築部材の製造方法は、型枠の上に、一方向に引き揃えられた繊維束および織物構造を有する繊維の少なくとも1種を積層し、その上に無機質発泡体または無機質マットを積層した後、フィルムで全体を覆い、しかる後、該フィルム内を一方から真空にし、もう一方から常温硬化型樹脂または熱硬化型樹脂を注入して、成形することを特徴とするものであり、また、常温硬化型樹脂または熱硬化型樹脂を塗布したフィルムの上に一方向に引き揃えられた繊維束および織物構造を有する繊維の少なくとも1種を積層し、次いで、その上に同じ樹脂を塗布したフィルムを被せた後、加熱ローラで押さえながら樹脂を含浸させて、プリプレグ化した後、該プリプレグを2層以上積層した後、その積層体の上部に無機質発泡体または無機質マットを積層し、その上に常温硬化型樹脂または熱硬化型樹脂を塗布した後、カバーフィルムで全体を覆い、該フィルム内を真空にした後、オートクレーブ成形することを特徴とするものである。
【0008】
【発明の実施の形態】
本発明は、前記課題、すなわち、JIS A1304に規定される30分の耐火試験に合格する耐火性および断熱性を大きく向上した優れた繊維強化プラスチック(以下、単にFRPという)材について、鋭意検討し、FRP材の少なくとも片面に無機質発泡体または無機質マットを積層してみたところ、以外にもかかる課題を一挙に解決することを究明したものである。特に本発明のFRP製耐火建築部材は、JIS A1304に規定される30分の耐火試験に合格するところに重要な意味が存するものである。以下、かかる耐火性を有するFRP材とその付与方法について説明する。
【0009】
本発明のFRP材は、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ウレタン樹脂、メラミン樹脂の常温硬化型樹脂または熱硬化型樹脂をマトリックス樹脂とする複合材であり、なかでもフェノール樹脂が安価で、かつ難燃性にすぐれており、好ましく使用される。
【0010】
また、かかるFRPの補強繊維としては、好ましくは無機繊維が使用され、たとえば、ガラス繊維、チラノ繊維、炭素繊維、シリコンカーバイト繊維、シリコンナイトライド繊維、ボロン繊維、アルミナ繊維、鉱物繊維等を使用いることができる。これらの繊維はコスト、性能を配慮して単独または複合で使用することができる。
【0011】
本発明は、かかるFRP材の少なくとも片面に無機質発泡体または無機質マットを積層、配置したものである。かかる無機質発泡体または無機質マットとしては、嵩比重が、好ましくは0.1〜0.9、さらに好ましくは0.2〜0.5であるものが使用される。かかる嵩比重が0.1より小さいと成形時、発泡体の形態保持性が悪く成形圧力でフォームが潰れることになる。逆に嵩比重が0.9より大きいと重量が増加し取り扱い性が悪く、コストも高くなる。
【0012】
かかる無機質発泡体または無機質マットとしては、セラミック、ケイ酸カルシウム、アスベスト、炭酸マグネシウム、炭酸カルシウム、ガラス繊維、グラファイト等のシート状物、マット状物、パネル体および発泡体が挙げられる。中でも炭酸カルシウム、ケイ酸カルシウム、ガラス発泡体またはマットは防火性能がよく好ましく使用される。
【0013】
かかる無機質発泡体または無機質マットの厚さは、0.5〜50cmが好ましく、1〜10cmがより好ましい。すなわち、無機質発泡体または無機質マットの厚さが0.5cmより薄いと断熱性が低下し、FRPが加熱され機械的強度が低下し、形態保持できなくなる。また、50cmより厚すぎると重量が増加し、取り扱いにくくなる他部材の価格も高くなるためコスト的にマイナスになる。
【0014】
なお、本発明において、耐火性能を向上させるため、かかる無機質発泡体または無機質マットの各表面に無機質材を積層するのが好ましい。かかる積層としては、接着、貼り付け加工、融着、縫着など固定することができるものであれば何でもよいが、好ましくは接着、貼り付け加工するのがよい。かかる加工を施すことにより、該FRPは、熱源から断熱保護され、さらに、その上に無機質発泡体または無機質マットにより、さらに断熱保護されるので、該FRP材は強度の低下、軟化、燃焼することもなく安定し、形態保持することができる。
【0015】
かかる無機質材としては、たとえば、石膏、セメント、モルタル、セラミック、ケイ酸カルシウム、アスベスト、炭酸マグネシウム、炭酸カルシウム、ガラス繊維、グラファイト等のシート状物またはパネル体を使用することができる。中でも石膏、セメント、モルタル、アスベスト等のパネル体が安価で耐火性能がよいので好ましく使用される。これら無機質パネル体の中に断熱性の向上、軽量化、強度向上のために、さらに天然繊維、無機繊維、合成繊維、有機繊維、再生繊維等を添加することができる。中でも無機繊維であるガラス繊維や天然のパルプ、石綿、炭素繊維等は耐火性がよくより好ましい。
【0016】
かかる無機質材としては、好ましくは厚みが2〜100mmで、比重が1〜5であるものを使用すると、すなわち、該無機質材は、防火材以外に断熱性と耐衝撃性も要求されるので、2mm以上の厚みを有するものが好ましく使用される。厚みが2mmより小さいと耐衝撃性が小さく、かつ断熱性が小さくなる傾向があり、また、厚みが100mmより大きくなると、建築部材としての重量が大きくなりすぎて、取り扱いにくくなり、コスト的にもマイナスとなる。
【0017】
次ぎに、該無機質材としては、比重が1〜5であるものが使用されるが、比重が1より小さいものであると、機械的強度が低下し、部材全体の強度が低下するし、逆に比重が5より大きいと、部材の重量が大きくなりすぎて、FRPを使用するメリット、つまり軽量化のメリットが小さくなる。
【0018】
また、本発明においては、FRP材の表面に無機質発泡体または無機質マットを積層、配置するものであるが、さらに耐火性に優れたものであれば何を積層してもよい、たとえばフェノールフォーム材など有機質の準不燃発泡材を積層することもできる。いずれにしても最終的には、さらに、その表面に無機質材を積層すればよい。
【0019】
本発明のFRP耐火建築部材は、JIS A1304に規定される30分の耐火試験に合格する材料であり、天井、壁、床、柱、屋根、梁、庇、ドア等の建築部材として好適に用いることができる。中でも軽量、高弾性率、錆びない、形状、寸法、成形の自由度などの特徴を生かせる天井材、屋根材、壁材、床材としての用途が好ましい。
【0020】
天井材、屋根材、壁材、床材などはFRP材の表面に嵩比重が0.1〜0.9の無機質発泡体または無機質マットを積層し、その無機質発泡体またはマットの表面に厚みが2〜100mmで比重1〜5の無機質材を積層して、フェノール樹脂で一体成形したものは、断熱効果が大きく耐火性が良いため、FRPの性能を十分生かせる耐火建築部材が提供できる。また、このFRP耐火部材は船舶、車両構体、航空機等の壁材、床材天井材にも使用可能である。
【0021】
本発明のFRP製耐火建築部材の製造方法について、以下、説明する。すなわち、ひとつ方法は、型枠の上に、一方向に引き揃えられた繊維束および織物構造を有する繊維の少なくとも1種を積層し、その上に無機質発泡体または無機質マットを積層した後、フィルムで全体を覆い、しかる後、該フィルム内を一方から真空にし、もう一方から常温硬化型樹脂または熱硬化型樹脂を注入して、成形する方法であり、今ひとつは、常温硬化型樹脂または熱硬化型樹脂を塗布したフィルムの上に一方向に引き揃えられた繊維束および織物構造を有する繊維の少なくとも1種を積層し、次いで、その上に同じ樹脂を塗布したフィルムを被せた後、加熱ローラで押さえながら樹脂を含浸させて、プリプレグ化した後、該プリプレグを2層以上積層した後、その積層体の上部に無機質発泡体または無機質マットを積層し、その上に常温硬化型樹脂または熱硬化型樹脂を塗布した後、カバーフィルムで全体を覆い、該フィルム内を真空にした後、オートクレーブ成形する方法である。
【0022】
かかる二つの方法において、使用する材料である無機質発泡体または無機質マット、および、無機質材、さらには、常温硬化型樹脂または熱硬化型樹脂などは、いずれも条件は、おなじものを使用する。すなわち、無機質発泡体または無機質マットとしては、嵩比重が0.1〜0.9のものを、また、無機質材としては、厚みが2〜100mmで比重が1〜5のものを使用し、常温硬化型樹脂または熱硬化型樹脂としては、25℃での粘度が、好ましくは0.1〜20ポイズより好ましくは1〜10ポイズのものを使用するものである。
【0023】
ここで使用する強化繊維としては、一方向に引き揃えられた繊維束および織物構造を有する繊維の少なくとも1種であり、すなわち、これらの単独または組み合わせの形で用いることができる。また、FRP製耐火建築部材を成形する際の基材全体を覆ったフィルム内は真空にする必要がある。すなわち、真空度が0.1MPa以上になるようにシールする。真空漏れがあると成形されるFRP中に泡が入り物性の低いFRPができる。フィルム内に注入する樹脂は常温硬化型または熱硬化型のいずれでもよいが、中でも常温硬化型の樹脂が、コスト的に安価で、硬化炉が不要で成形物の大きさにも自由度があり取り扱いやすいので好ましく使用される。特に常温硬化型フェノール樹脂がより好ましく使用される。
【0024】
かかる常温硬化型樹脂または熱硬化型樹脂の25℃での粘度が、0.1ポイズより小さいと樹脂が一気に通過するパスが固定され全体的に含浸斑となる。また20ポイズより大きいと樹脂が基材の中を通過しにくく時間がかかるほか、通過しない部分が発生して含浸斑になる。
【0025】
また、もう一つの製造方法としては、オートクレーブ成形することに特徴を有するが、そのために特定なフィルムで被覆して、プリプレグ化する工程が必須である。すなわち、常温硬化型樹脂または熱硬化型樹脂を塗布したフィルムの上に、補強用無機繊維を積層し、次いで同じ樹脂を塗布したフィルムを被せて被覆し、加熱ローラで押さえながら樹脂を含浸させプリプレグ化する。このプリプレグを積層した後、あるいは、該プリプレグを切断し、それを積層して、積層体を形成した後、その積層体の上部に無機質発泡体または無機質マットを積層し、その上に常温硬化型樹脂または熱硬化型樹脂を塗布し、さらに無機質材を積層した後、カバーフィルムで覆い、フィルム内を真空度0.1MPa以上の真空にした後、オートクレーブ(圧力釜)内に入れ圧力0.3MPa、温度130℃で1時間かけて成形するものである。
【0026】
この方法は、プリプレグ化するため樹脂量を希望通りに調整できることから、高Vfの成形物ができ、成形物の強度が向上し、樹脂量も少なくて済むため低コストになる。フィルムに塗布する樹脂は、常温硬化型でも熱硬化型樹脂でもいずれでもよいが、好ましくはポットライフが長く、長期保管が可能な熱硬化型樹脂が好ましく使用される。
【0027】
本発明の繊維強化プラスチック製耐火建築部材およびその製造方法について図を以て説明する。図1、図2は、本発明の繊維強化プラスチック製耐火建築部材の構造の一例を示すもので、繊維強化プラスチック3の上に無機質発泡体2を樹脂で接着させ、さらにその上に無機質材を接着させている構造例である。
【0028】
図3は、繊維強化プラスチック製耐火建築部材の製造方法の一例を示す概略図であり、型枠7の上に織物シート4を配置し、その上に無機質発泡体2を積層し、その上に無機質材1を積層し、その積層物の周囲には、無機質発泡体を圧力で潰れないよう保護するための補強板12が設置されその補強材の内側には樹脂拡散媒体6が配置されている。織物シート4の上端部には、樹脂注入口8を設置し、反対側の型枠の上には、真空吸引口9を配置し、全体をカバーフィルム10で覆い、端部は型枠全周囲に取り付けたシリコン系シール材11に貼り付ける。カバーフィルム内は、真空吸引口から真空ポンプで真空度0.1MPa以上を継続維持しながら、樹脂注入口から25℃での粘度が0.1〜20ポイズの常温硬化型フェノール樹脂を注入し、樹脂が全体に行き渡った後、樹脂注入のみ停止し、常温で樹脂を硬化させ成形するものである。
【0029】
図4は、本発明の繊維強化プラスチツク製耐火建築部材のもう一つの製造方法を示し、型枠7の上に、熱硬化型フェノール樹脂含浸織物プリプレグ5を10層積層し、その上に無機質発泡体2を積層し、その上に熱硬化型フェノール樹脂を塗布して、無機質材1を積層する。その積層物の周囲には、無機質発泡体を圧力で潰れないよう保護するための補強板12が設置され、型枠の端部には、真空吸引口9を配置し、全体をカバーフィルム10で覆い、端部は型枠全周囲に取り付けたシリコン系シール材11に貼り付ける。成形準備が終了後、オートクレーブ(圧力釜)内に入れ、カバーフィルム内を真空吸引口から真空ポンプで真空度0.1MPa以上を継続維持しながら、釜内圧を0.3MPa、温度80℃で3時間と130℃で2時間かけて硬化させ、成形するものである。
【0030】
【実施例】
以下、本発明を実施例により具製体的に説明する。
【0031】
実施例1
単繊維本数が12000本の撚りの無い扁平状アクリル系炭素繊維を機織り機を用いて織物シートに加工した。型枠の上に織物シートを10層積層し、該織物シート積層物の上に厚み30mm、密度70kg/m3 の炭酸カルシウム発泡体を積層し、その上に成形用樹脂を注入させるための溝加工した厚みが10mm、比重が1.2の軽量石膏ボードを積層した。全積層物の周囲には真空による発泡体の潰れを防止するための補強板を取り付けた。全体をカバーフィルムで覆い端部はシリコン系シール材でシールした。真空ポンプを用いて真空吸引口からカバーフィルム内を真空度0.1MPa以上にし、25℃雰囲気中の樹脂粘度が0.1〜20ポイズの常温硬化型フェノール樹脂を樹脂注入口から織物シート上に注入し拡散、含浸後、軽量石膏ボードと炭酸カルシウム発泡体の接着面へ樹脂拡散媒体を介して注入し、常温で24時間かけて硬化させ一辺が1200mm、厚みが45mmのFRP製耐火建築部材を得た。このFRP製耐火建築部材は、建築基準法に従った耐火試験(JIS A1304)条件で30分の耐火試験を実施した。試験炉は間口1000mmの小型試験炉を用いた。熱源としてプロパンガスバーナを用い試験体の無機質材側から加熱し、試験体(FRP)の裏面温度を測定した。30分経過時の試験体の表面温度は840℃で、FRPの裏面温度は141℃と断熱効果は大きかった。結果を表1に示す。
【0032】
実施例2
実施例1と同様の織物シートを熱硬化型フェノール樹脂が塗布されたフィルムの上に1層乗せ、その上に同様の樹脂が塗布されたフィルムを被せて加熱ローラで押しながら樹脂を繊維に含浸させプリプレグ化した。型枠の上にフェノール樹脂を含浸した織物プリプレグを10層積層し、その上に厚みが30mmの炭酸カルシウム発泡体を積層した。炭酸カルシウム発泡体の上にフェノール樹脂を塗布し、厚みが10mm、比重が1.2の軽量石膏ボードを積層した。全体をカバーフィルムで覆い端部は型枠全周囲に取り付けたシリコン系シール材に貼り付ける。型枠に取り付けた積層体は、オートクレーブ内に設置し、真空吸引口から真空ポンプを用いてカバーフィルム内の真空度を0.1MPa以上に継続維持しながら釜内圧力0.3MPa、温度80℃で3時間と130℃で2時間かけて加圧成形し、一辺が1200mm、厚みが45mmのFRP試験体を得た。FRP試験体は実施例1と同様の耐火試験を実施した。30分経過時の試験体の表面温度は840℃で、FRPの裏面温度は145℃と断熱効果は大きかった。結果を表1に示す。
【0033】
実施例3
炭酸カルシウム発泡体の替わりにガラス発泡体を用いた以外は実施例1と同様の樹脂、構成および方法で成形し、一辺が1200mm、厚みが30mmのFRP試験体を得た。FRP試験体は実施例1と同様の方法で耐火試験を実施した。試験体は30分経過時の表面温度が840℃で、FRPの裏面温度は149℃と断熱効果は大きかった。結果を表1に示す。
【0034】
実施例4
炭酸カルシウム発泡体の替わりにガラスマットを用いて周囲を補強板で囲い成形時のマットの潰れを防止した以外は実施例1と同様の樹脂、構成および方法で成形し、一辺が1200mm、厚みが30mmのFRP試験体を得た。
【0035】
FRP試験体は実施例1と同様の方法で耐火試験を実施した。30分経過時の試験体の表面温度は840℃でFRPの裏面温度は135℃と断熱効果は大きかった。結果を表1に示す。
【0036】
比較例1
実施例1と同様の織物シートを10層積層した。その上に樹脂拡散媒体を置いて全体をフィルムで覆い、織物シートの片方から真空ポンプを用いてフィルム内を真空度750mmHgにした。樹脂拡散媒体の一方から樹脂粘度5ポイズのフェノール樹脂を注入し、常温で硬化させ一辺が1200mm、厚みが5mmのFRP試験体を得た。このFRP試験体は実施例1と同様の条件で30分耐火試験を実施した。30分経過時の試験体の表面温度は840℃で、FRPの裏面温度は635℃と高く断熱効果は小さく耐火試験合格レベル(30分後の裏面温度が260℃を越えないこと)には達しない値であった。結果を表1に示す。
【0037】
比較例2
実施例1と同様の織物シートを10層積層し、その上に厚み30mm、密度40kg/m3 のフェノール発泡体を積層し、全体をフィルムで覆い、一方から真空ポンプを用いてフィルム内を真空度750mmHgにした。もう一方から樹脂粘度5ポイズのフェノール樹脂を注入し、常温で硬化させ一辺が1200mm、厚みが35mmのFRP試験体を得た。FRP試験体は実施例1と同様の条件で30分耐火試験を実施した。30分経過時の試験体の表面温度は840℃で、FRPの裏面温度は474℃と高く、加熱されたフェノール発泡体の表面は加熱減量しており断熱効果は小さく耐火試験は不合格であった。結果を表1に示す。
【0038】
【表1】

Figure 0003882338
【0039】
【発明の効果】
本発明によれば、JIS A1304に規定される30分の耐火試験に合格する優れた耐火性および断熱性が大きく向上した、軽量建築部材を提供することができる。特に本発明の建築部材は、外壁材、天井材、屋根材などに好適に使用することができる。
【図面の簡単な説明】
【図1】 本発明における繊維強化プラスチック製耐火建築部材の構造の一例を示す断面図である。
【図2】 本発明における繊維強化プラスチック製耐火建築部材の構造の他の一例を示す断面図である。
【図3】 本発明の繊維強化プラスチック製耐火建築部材の製造方法の一例を示す概略図である。
【図4】 本発明の繊維強化プラスチック製耐火建築部材の製造方法の他の一例を示す概略図である。
【符号の説明】
1:無機質材
2:無機質発泡体
3:FRP
4:織物シート
5:織物プリプレグ
6:樹脂拡散媒体
7:型枠
8:樹脂注入口
9:真空吸引口
10:カバーフィルム
11:シール材
12:補強板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a manufacturing method of the superior fiber reinforced plastic refractory building member of the fire resistance.
[0002]
[Prior art]
Conventionally, carbon fiber is widely used industrially as a reinforcing fiber for composite materials utilizing its excellent mechanical properties, particularly excellent strength and elastic modulus, and is also being used for building structures and civil engineering materials.
[0003]
In general, carbon fibers are used as reinforcing fibers for thermosetting resins typified by epoxy resins, but carbon fiber reinforced plastics using epoxy resins as a matrix have poor fire resistance. To use it as a structural material for buildings, there are fire extinguishing equipment, site area regulations, and construction area regulations stipulated in the Building Standards Law. For this reason, means for applying various kinds of fire-resistant paints are taken at the above-mentioned restricted places in order to improve the fire-proof performance and fire-proof performance of building members. For example, there is a foam-type fireproof paint having a porous carbonized layer that foams while generating a non-combustible gas by heating in order to delay the temperature rise of the building structural member due to heating during a fire. Japanese Patent Application Laid-Open No. 52-103817 discloses a fireproofing method for a building interior characterized by interposing a foamable fireproof material layer between a base material such as a ceiling or a wall constituting the interior of the building and the interior material. It is disclosed. Japanese Laid-Open Patent Publication No. 9-53374 discloses a fire-resistant FRP member in which a foam-type fire-resistant paint is applied to the surface of a non-hollow FRP molded member body to form a fire-resistant coating film.
[0004]
However, since these fire resistant paints gradually start to foam at a temperature of 200 ° C. or higher, simply applying a foaming fire-proofing material or fire-resistant paint directly to the surface of the FRP member by the usual method makes it fire resistant by the heat of the fire. Before the paint foams, there is a problem that the temperature of the FRP member rises rapidly and becomes soft and cannot keep its shape. In addition, even when a foaming fireproof material is applied between the FRP attached to the ceiling base material or wall base material and the interior material, the FRP material attached to the ceiling and wall base material due to combustion of the interior material in the event of a fire When the temperature of the FRP material reaches 350 ° C., the shape of the FRP material cannot be maintained. That is, there is a drawback that the fire-resistant and heat-insulating effect is small for the FRP member only with the foaming fireproof material.
[0005]
[Problems to be solved by the invention]
In view of the problems of the prior art, the present invention is an excellent fiber reinforced plastic (hereinafter simply referred to as FRP) material that has greatly improved fire resistance and heat insulation that pass the 30-minute fire resistance test specified in JIS A1304. It is intended to provide a manufacturing method thereof.
[0006]
[Means for Solving the Problems]
The present invention employs the following means in order to solve such problems .
[0007]
That is, in the method for producing a fire-resistant building member made of fiber-reinforced plastic according to the present invention, at least one kind of fiber bundle and fiber having a woven structure arranged in one direction is laminated on a formwork, and an inorganic material is formed thereon. After laminating a foam or inorganic mat, cover the whole with a film, and after that, the inside of the film is evacuated from one side, and a room temperature curable resin or a thermosetting resin is injected from the other side and molded. In addition, at least one kind of fiber bundle and fiber having a woven structure aligned in one direction is laminated on a film coated with a room temperature curable resin or a thermosetting resin, After covering with a film coated with the same resin on top, impregnating the resin while holding it with a heating roller to form a prepreg, and then laminating two or more layers of the prepreg, the lamination Laminate an inorganic foam or inorganic mat on the top of the substrate, apply a room temperature curable resin or a thermosetting resin on it, cover the whole with a cover film, evacuate the film, and then autoclave mold It is characterized by.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention has intensively studied the above-mentioned problem, that is, an excellent fiber reinforced plastic (hereinafter simply referred to as “FRP”) material having greatly improved fire resistance and heat insulation properties that pass the 30-minute fire resistance test specified in JIS A1304. As a result of laminating an inorganic foam or an inorganic mat on at least one surface of the FRP material, it has been found that other problems can be solved at once. In particular, the FRP fireproof building member of the present invention has an important meaning in that it passes the 30-minute fireproof test specified in JIS A1304. Hereinafter, the FRP material having such fire resistance and a method for applying the FRP material will be described.
[0009]
The FRP material of the present invention is a composite material using a room temperature curable resin or a thermosetting resin of a phenol resin, an epoxy resin, an unsaturated polyester resin, a urethane resin, and a melamine resin as a matrix resin. And is excellent in flame retardancy and is preferably used.
[0010]
In addition, as the FRP reinforcing fibers, inorganic fibers are preferably used. For example, glass fibers, Tyranno fibers, carbon fibers, silicon carbide fibers, silicon nitride fibers, boron fibers, alumina fibers, mineral fibers, etc. are used. Can be. These fibers can be used alone or in combination in consideration of cost and performance.
[0011]
In the present invention, an inorganic foam or an inorganic mat is laminated and arranged on at least one surface of the FRP material. As such an inorganic foam or inorganic mat, those having a bulk specific gravity of preferably 0.1 to 0.9, more preferably 0.2 to 0.5 are used. When the bulk specific gravity is smaller than 0.1, the foam has poor shape retention at the time of molding, and the foam is crushed by the molding pressure. On the other hand, if the bulk specific gravity is greater than 0.9, the weight increases, handling becomes poor, and the cost increases.
[0012]
Examples of the inorganic foam or inorganic mat include ceramics, calcium silicate, asbestos, magnesium carbonate, calcium carbonate, glass fibers, sheet materials such as graphite, mat materials, panel bodies, and foam materials. Of these, calcium carbonate, calcium silicate, glass foam or mat are preferably used because of their good fireproof performance.
[0013]
The thickness of the inorganic foam or inorganic mat is preferably 0.5 to 50 cm, and more preferably 1 to 10 cm. That is, if the thickness of the inorganic foam or the inorganic mat is thinner than 0.5 cm, the heat insulating property is lowered, the FRP is heated, the mechanical strength is lowered, and the shape cannot be maintained. On the other hand, if it is thicker than 50 cm, the weight increases, and the price of other members that are difficult to handle increases.
[0014]
In the present invention, in order to improve fire resistance, it is preferable to laminate an inorganic material on each surface of the inorganic foam or inorganic mat. Such a lamination may be anything as long as it can be fixed, such as adhesion, affixing, fusion, sewing, etc., but preferably it is adhering and affixing. By applying such processing, the FRP is thermally insulated from a heat source, and further is further thermally insulated by an inorganic foam or an inorganic mat, so that the FRP material is reduced in strength, softened, and burned. It is stable and can maintain its form.
[0015]
As such an inorganic material, for example, a sheet or panel body such as gypsum, cement, mortar, ceramic, calcium silicate, asbestos, magnesium carbonate, calcium carbonate, glass fiber, and graphite can be used. Among them, panel bodies such as gypsum, cement, mortar, and asbestos are preferably used because they are inexpensive and have good fire resistance. Natural fibers, inorganic fibers, synthetic fibers, organic fibers, regenerated fibers, and the like can be further added to these inorganic panel bodies in order to improve heat insulation, reduce weight, and improve strength. Among them, glass fiber, natural pulp, asbestos, carbon fiber, and the like, which are inorganic fibers, have better fire resistance and are more preferable.
[0016]
Such an inorganic material preferably has a thickness of 2 to 100 mm and a specific gravity of 1 to 5, that is, the inorganic material is required to have heat insulation and impact resistance in addition to the fireproof material. Those having a thickness of 2 mm or more are preferably used. If the thickness is smaller than 2 mm, the impact resistance tends to be small and the heat insulation tends to be small. If the thickness is larger than 100 mm, the weight of the building member becomes too large, making it difficult to handle, and cost. Negative.
[0017]
Next, as the inorganic material, those having a specific gravity of 1 to 5 are used. However, if the specific gravity is smaller than 1, the mechanical strength is lowered, the strength of the entire member is lowered, and conversely If the specific gravity is larger than 5, the weight of the member becomes too large, and the merit of using FRP, that is, the merit of weight reduction becomes small.
[0018]
Further, in the present invention, an inorganic foam or an inorganic mat is laminated and arranged on the surface of the FRP material, and any material may be laminated as long as it has excellent fire resistance. For example, a phenol foam material Organic semi-incombustible foams can also be laminated. In any case, finally, an inorganic material may be laminated on the surface.
[0019]
The FRP fireproof building member of the present invention is a material that passes the 30-minute fireproof test specified in JIS A1304, and is suitably used as a building member for ceilings, walls, floors, columns, roofs, beams, fences, doors, and the like. be able to. Among them, the use as a ceiling material, a roof material, a wall material, and a floor material that can make use of characteristics such as light weight, high elastic modulus, rust resistance, shape, size, and freedom of molding is preferable.
[0020]
For ceiling materials, roofing materials, wall materials, flooring materials, etc., an inorganic foam or an inorganic mat having a bulk specific gravity of 0.1 to 0.9 is laminated on the surface of the FRP material, and the surface of the inorganic foam or mat has a thickness. What laminated | stacked the inorganic material of 2-100 mm and specific gravity 1-5, and was integrally molded with the phenol resin has a large heat insulation effect and good fire resistance, Therefore The fire-resistant building member which can fully utilize the performance of FRP can be provided. Moreover, this FRP fireproof member can be used also for wall materials, flooring materials, and ceiling materials for ships, vehicle structures, aircrafts, and the like.
[0021]
The method for manufacturing the FRP fireproof building member of the present invention will be described below. That is, in one method, at least one kind of fiber bundle and fiber having a woven structure aligned in one direction is laminated on a mold, and an inorganic foam or an inorganic mat is laminated thereon, and then a film Then, the film is evacuated from one side, and then the room temperature curable resin or thermosetting resin is injected from the other side and molded. The other is room temperature curable resin or thermosetting. After laminating at least one fiber bundle and fiber having a woven structure aligned in one direction on a film coated with a mold resin, and then covering the film coated with the same resin thereon, a heating roller The resin is impregnated while being pressed to form a prepreg, and then two or more layers of the prepreg are laminated. Then, an inorganic foam or an inorganic mat is laminated on the laminated body, After applying the cold-setting resin or thermosetting resin on to cover the whole cover film, after the inside of the film in a vacuum, a method of autoclave molding.
[0022]
In these two methods, the same materials are used for the inorganic foam or inorganic mat, the inorganic material, the room temperature curable resin, the thermosetting resin, and the like. That is, the inorganic foam or the inorganic mat has a bulk specific gravity of 0.1 to 0.9, and the inorganic material has a thickness of 2 to 100 mm and a specific gravity of 1 to 5, As the curable resin or thermosetting resin, one having a viscosity at 25 ° C. of preferably 0.1 to 20 poise, more preferably 1 to 10 poise is used.
[0023]
The reinforcing fiber used here is at least one kind of fiber bundle and fiber having a woven structure aligned in one direction, that is, they can be used alone or in combination. Moreover, it is necessary to make the inside of the film which covered the whole base material at the time of shape | molding the FRP fireproof building member into a vacuum. That is, sealing is performed so that the degree of vacuum is 0.1 MPa or more. If there is a vacuum leak, FRP with low physical properties can be formed by bubbles in the molded FRP. The resin to be injected into the film may be either room temperature curable resin or thermosetting resin, but room temperature curable resin is cheap in cost, does not require a curing furnace, and has a degree of freedom in the size of the molded product. Since it is easy to handle, it is preferably used. In particular, a room temperature curable phenol resin is more preferably used.
[0024]
If the room temperature curable resin or thermosetting resin has a viscosity at 25 ° C. of less than 0.1 poise, the path through which the resin passes at a stretch is fixed and the entire surface becomes impregnated spots. On the other hand, if it is larger than 20 poise, it is difficult for the resin to pass through the base material, and it takes time.
[0025]
Another manufacturing method is characterized by autoclave molding, but for this purpose, a step of coating with a specific film and forming a prepreg is essential. In other words, a reinforcing inorganic fiber is laminated on a film coated with a room temperature curable resin or a thermosetting resin, and then covered with a film coated with the same resin, and the prepreg is impregnated with the resin while being pressed with a heating roller. Turn into. After laminating this prepreg, or cutting the prepreg and laminating it to form a laminate, laminating an inorganic foam or inorganic mat on top of the laminate, and then room temperature curing type After applying a resin or thermosetting resin and further laminating an inorganic material, it is covered with a cover film, the inside of the film is evacuated to a vacuum of 0.1 MPa or more, and then placed in an autoclave (pressure cooker) and a pressure of 0.3 MPa And molding at a temperature of 130 ° C. for 1 hour.
[0026]
In this method, since the amount of the resin can be adjusted as desired because the prepreg is formed, a molded product having a high Vf can be obtained, the strength of the molded product can be improved, and the amount of the resin can be reduced. The resin applied to the film may be either a room temperature curable resin or a thermosetting resin, but a thermosetting resin that preferably has a long pot life and can be stored for a long time is preferably used.
[0027]
The fiber-reinforced plastic fireproof building member of the present invention and the manufacturing method thereof will be described with reference to the drawings. FIG. 1 and FIG. 2 show an example of the structure of a fiber reinforced plastic fireproof building member of the present invention. An inorganic foam 2 is bonded on a fiber reinforced plastic 3 with a resin, and an inorganic material is further provided thereon. This is an example of a bonded structure.
[0028]
FIG. 3 is a schematic view showing an example of a method for producing a fiber-reinforced plastic fireproof building member, in which a woven fabric sheet 4 is arranged on a mold 7, an inorganic foam 2 is laminated thereon, and a top thereof. The inorganic material 1 is laminated, a reinforcing plate 12 for protecting the inorganic foam from being crushed by pressure is installed around the laminated material, and a resin diffusion medium 6 is arranged inside the reinforcing material. . A resin injection port 8 is installed at the upper end of the fabric sheet 4, a vacuum suction port 9 is disposed on the opposite mold, and the whole is covered with a cover film 10, and the end is the entire periphery of the mold Affixed to the silicon-based sealing material 11 attached to. Inside the cover film, while continuously maintaining a vacuum degree of 0.1 MPa or more with a vacuum pump from the vacuum suction port, a room temperature curing type phenol resin having a viscosity at 25 ° C. of 0.1 to 20 poise is injected from the resin injection port, After the resin has spread throughout, only the resin injection is stopped, and the resin is cured and molded at room temperature.
[0029]
FIG. 4 shows another method for manufacturing a fiber-reinforced plastic fireproof building member according to the present invention, in which 10 layers of thermosetting phenol resin-impregnated woven fabric prepreg 5 are laminated on a mold 7, and an inorganic foam is formed thereon. The body 2 is laminated, a thermosetting phenol resin is applied thereon, and the inorganic material 1 is laminated. Around the laminate, a reinforcing plate 12 for protecting the inorganic foam from being crushed by pressure is installed, and a vacuum suction port 9 is arranged at the end of the mold, and the whole is covered with the cover film 10. The cover and the end are affixed to the silicon-based sealing material 11 attached around the entire formwork. After the preparation for molding is completed, it is placed in an autoclave (pressure kettle) and the inside of the cover film is maintained at a pressure inside the kettle of 0.3 MPa at a temperature of 80 ° C. while maintaining a vacuum degree of 0.1 MPa or more from a vacuum suction port with a vacuum pump It is cured for 2 hours at 130 ° C. for a period of time and molded.
[0030]
【Example】
Hereinafter, the present invention will be described in detail by examples.
[0031]
Example 1
A flat acrylic carbon fiber having 12,000 single fibers and having no twist was processed into a woven fabric sheet using a weaving machine. A groove for laminating 10 layers of a woven sheet on a formwork, laminating a calcium carbonate foam having a thickness of 30 mm and a density of 70 kg / m 3 on the woven sheet laminate, and injecting a molding resin thereon. A lightweight gypsum board having a processed thickness of 10 mm and a specific gravity of 1.2 was laminated. A reinforcing plate was attached around the entire laminate to prevent the foam from being crushed by vacuum. The whole was covered with a cover film, and the end was sealed with a silicon-based sealing material. Using a vacuum pump, the inside of the cover film is made 0.1 MPa or more from the vacuum suction port, and a room temperature curable phenolic resin having a resin viscosity of 0.1 to 20 poise in an atmosphere at 25 ° C. is placed on the fabric sheet from the resin injection port. After injecting, diffusing and impregnating, an FRP fireproof building member having a side of 1200 mm and a thickness of 45 mm is injected through a resin diffusion medium into the adhesive surface of the lightweight gypsum board and calcium carbonate foam through a resin diffusion medium and cured for 24 hours at room temperature. Obtained. This FRP fireproof building member was subjected to a fireproof test for 30 minutes under the fireproof test (JIS A1304) conditions in accordance with the Building Standard Law. A small test furnace having a frontage of 1000 mm was used as the test furnace. A propane gas burner was used as a heat source and heated from the inorganic material side of the test body, and the back surface temperature of the test body (FRP) was measured. The surface temperature of the test body after 30 minutes was 840 ° C., and the back surface temperature of FRP was 141 ° C., so the heat insulation effect was large. The results are shown in Table 1.
[0032]
Example 2
A fabric sheet similar to that in Example 1 is placed on a film coated with a thermosetting phenolic resin, and a film coated with the same resin is placed thereon, and the resin is impregnated into the fiber while being pressed with a heating roller. To make a prepreg. Ten layers of a woven fabric prepreg impregnated with a phenol resin were laminated on a mold, and a calcium carbonate foam having a thickness of 30 mm was laminated thereon. A phenolic resin was applied on the calcium carbonate foam, and a lightweight gypsum board having a thickness of 10 mm and a specific gravity of 1.2 was laminated. The whole is covered with a cover film, and the end is attached to a silicon-based sealing material attached around the entire formwork. The laminate attached to the mold is placed in an autoclave, and the pressure in the kettle is 0.3 MPa and the temperature is 80 ° C. while maintaining the degree of vacuum in the cover film at 0.1 MPa or higher using a vacuum pump from the vacuum suction port. Was pressed for 3 hours at 130 ° C. for 2 hours to obtain an FRP test piece having a side of 1200 mm and a thickness of 45 mm. The FRP specimen was subjected to the same fire resistance test as in Example 1. The surface temperature of the test body after 30 minutes was 840 ° C., and the back surface temperature of FRP was 145 ° C., so the heat insulation effect was large. The results are shown in Table 1.
[0033]
Example 3
Except that a glass foam was used instead of the calcium carbonate foam, the same resin, configuration and method as in Example 1 were used to obtain an FRP test body having a side of 1200 mm and a thickness of 30 mm. The FRP test body was subjected to a fire resistance test in the same manner as in Example 1. The surface temperature of the test body after 30 minutes was 840 ° C., and the back surface temperature of FRP was 149 ° C., so the heat insulation effect was large. The results are shown in Table 1.
[0034]
Example 4
A glass mat is used in place of the calcium carbonate foam, and the periphery is covered with a reinforcing plate and the mat is molded by the same resin, configuration and method as in Example 1 except that the mat is prevented from being crushed. A 30 mm FRP specimen was obtained.
[0035]
The FRP test body was subjected to a fire resistance test in the same manner as in Example 1. The surface temperature of the test body after 30 minutes was 840 ° C., and the back surface temperature of FRP was 135 ° C., so the heat insulation effect was large. The results are shown in Table 1.
[0036]
Comparative Example 1
Ten layers of the same fabric sheet as Example 1 were laminated. A resin diffusion medium was placed thereon and the whole was covered with a film, and the degree of vacuum was 750 mmHg from one side of the woven sheet using a vacuum pump. A phenol resin having a resin viscosity of 5 poise was injected from one of the resin diffusion media and cured at room temperature to obtain an FRP test specimen having a side of 1200 mm and a thickness of 5 mm. This FRP specimen was subjected to a fire resistance test for 30 minutes under the same conditions as in Example 1. The surface temperature of the specimen after 30 minutes is 840 ° C, the backside temperature of FRP is 635 ° C, the heat insulation effect is small and the fire resistance test pass level (the backside temperature after 30 minutes should not exceed 260 ° C) The value was not. The results are shown in Table 1.
[0037]
Comparative Example 2
Ten layers of the same woven fabric sheet as in Example 1 are laminated, and a phenol foam having a thickness of 30 mm and a density of 40 kg / m 3 is laminated thereon, and the whole is covered with a film, and the inside of the film is vacuumed from one side using a vacuum pump. The degree was set to 750 mmHg. A phenol resin having a resin viscosity of 5 poise was injected from the other side and cured at room temperature to obtain an FRP test body having a side of 1200 mm and a thickness of 35 mm. The FRP specimen was subjected to a fire resistance test for 30 minutes under the same conditions as in Example 1. The surface temperature of the test body after 30 minutes was 840 ° C., the back surface temperature of the FRP was as high as 474 ° C., the surface of the heated phenol foam was reduced in heat, the heat insulation effect was small, and the fire resistance test failed. It was. The results are shown in Table 1.
[0038]
[Table 1]
Figure 0003882338
[0039]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the lightweight building member which the outstanding fire resistance and heat insulation which pass the 30-minute fire resistance test prescribed | regulated to JISA1304 improved greatly can be provided. In particular, the building member of the present invention can be suitably used for outer wall materials, ceiling materials, roof materials, and the like.
[Brief description of the drawings]
1 is a cross-sectional view showing an example of the structure of a fiber reinforced plastic refractory building elements in the present invention.
FIG. 2 is a cross-sectional view showing another example of the structure of a fiber-reinforced plastic fireproof building member according to the present invention.
FIG. 3 is a schematic view showing an example of a method for producing a fiber-reinforced plastic fireproof building member of the present invention.
FIG. 4 is a schematic view showing another example of the method for producing a fiber-reinforced plastic fireproof building member of the present invention.
[Explanation of symbols]
1: Inorganic material 2: Inorganic foam 3: FRP
4: Fabric sheet 5: Fabric prepreg 6: Resin diffusion medium 7: Mold frame 8: Resin injection port 9: Vacuum suction port 10: Cover film 11: Sealing material 12: Reinforcing plate

Claims (7)

型枠の上に、一方向に引き揃えられた繊維束および織物構造を有する繊維の少なくとも1種を積層し、その上に無機質発泡体または無機質マットを積層した後、フィルムで全体を覆い、しかる後、該フィルム内を一方から真空にし、もう一方から常温硬化型樹脂または熱硬化型樹脂を注入して、成形することを特徴とする繊維強化プラスチック製耐火建築部材の製造方法。On the formwork, at least one kind of fiber bundles arranged in one direction and fibers having a woven structure is laminated, and an inorganic foam or an inorganic mat is laminated thereon, and then the whole is covered with a film. after, the vacuum in the film from one and the other from the injection of cold-setting resin or thermosetting resin, method for producing a fiber-reinforced plastic made fireproof building elements, characterized in that the molding. 常温硬化型樹脂または熱硬化型樹脂を塗布したフィルムの上に一方向に引き揃えられた繊維束および織物構造を有する繊維の少なくとも1種を積層し、次いで、その上に同じ樹脂を塗布したフィルムを被せた後、加熱ローラで押さえながら樹脂を含浸させて、プリプレグ化した後、該プリプレグを2層以上積層した後、その積層体の上部に無機質発泡体または無機質マットを積層し、その上に常温硬化型樹脂または熱硬化型樹脂を塗布した後、カバーフィルムで全体を覆い、該フィルム内を真空にした後、オートクレーブ成形することを特徴とする繊維強化プラスチック製耐火建築部材の製造方法。A film obtained by laminating at least one fiber bundle and fiber having a woven structure aligned in one direction on a film coated with a room temperature curable resin or a thermosetting resin, and then coating the same resin thereon. After being covered, the resin is impregnated while being pressed with a heating roller, and after prepreging, two or more layers of the prepreg are laminated, and then an inorganic foam or an inorganic mat is laminated on top of the laminated body. A method for producing a fire-resistant building member made of fiber reinforced plastic, comprising applying a room temperature curable resin or a thermosetting resin, then covering the whole with a cover film, evacuating the film, and then autoclave molding. 該無機質発泡体または無機質マットを積層した後、さらに無機質材を積層することを特徴とする請求項または記載の繊維強化プラスチック製耐火建築部材の製造方法。After stacking the inorganic foam or inorganic matting process according to claim 1 or 2 fiber-reinforced plastic made fireproof building member, wherein the further laminated inorganic material. 該無機質材が、厚みが2〜100mmで、比重が1〜5であるものであることを特徴とする請求項記載の繊維強化プラスチック製耐火建築部材の製造方法。The inorganic material, the thickness was 2 to 100 mm, the manufacturing method of the fiber-reinforced plastic made fireproof building elements according to claim 3, wherein the specific gravity is not less 1-5. 該常温硬化型樹脂または熱硬化型樹脂が、25℃での粘度が0.1〜20ポイズであるものである請求項または記載の繊維強化プラスチック製耐火建築部材の製造方法。The normally temperature-curable resin or a thermosetting resin is, the production method according to claim 1 or 2 fiber-reinforced plastic made fireproof building element according a viscosity at 25 ° C. are those from 0.1 to 20 poise. 該プリプレグを2層以上に積層する方法が、該プリプレグを切断し、その切断したプリプレグを積層する方法である請求項記載の繊維強化プラスチック製耐火建築部材の製造方法。The method for producing a fiber-reinforced plastic fireproof building member according to claim 2 , wherein the method of laminating the prepreg into two or more layers is a method of cutting the prepreg and laminating the cut prepreg. 該無機質発泡体または無機質マットが、嵩比重が0.1〜0.9であるものである請求項または記載の繊維強化プラスチック製耐火建築部材の製造方法。The method for producing a fiber-reinforced plastic fireproof building member according to claim 1 or 2, wherein the inorganic foam or the inorganic mat has a bulk specific gravity of 0.1 to 0.9.
JP13894498A 1998-05-20 1998-05-20 Manufacturing method of fireproof building material made of fiber reinforced plastic Expired - Fee Related JP3882338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13894498A JP3882338B2 (en) 1998-05-20 1998-05-20 Manufacturing method of fireproof building material made of fiber reinforced plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13894498A JP3882338B2 (en) 1998-05-20 1998-05-20 Manufacturing method of fireproof building material made of fiber reinforced plastic

Publications (2)

Publication Number Publication Date
JPH11320735A JPH11320735A (en) 1999-11-24
JP3882338B2 true JP3882338B2 (en) 2007-02-14

Family

ID=15233811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13894498A Expired - Fee Related JP3882338B2 (en) 1998-05-20 1998-05-20 Manufacturing method of fireproof building material made of fiber reinforced plastic

Country Status (1)

Country Link
JP (1) JP3882338B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003056089A (en) * 2001-08-20 2003-02-26 Comany Inc Connecting member for heat insulating noncombustible panel
JP5139692B2 (en) * 2006-07-03 2013-02-06 株式会社豊夢 Manufacturing method for building components
JP6730347B2 (en) * 2018-03-13 2020-07-29 株式会社Subaru Fiber width adjusting device, fiber width adjusting method, and composite material molding method
JP7358830B2 (en) * 2019-08-09 2023-10-11 凸版印刷株式会社 Method for manufacturing fire-resistant building materials and fire-resistant building materials
CN113914624A (en) * 2021-11-23 2022-01-11 中国二十冶集团有限公司 Construction method of refractory concrete joint surface of diversion trench

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51717U (en) * 1974-06-18 1976-01-06
JPS5839441A (en) * 1981-09-03 1983-03-08 ダウ化工株式会社 Composite heat insulating board
JP3362737B2 (en) * 1991-05-13 2003-01-07 東レ株式会社 Reinforcement method of cement-based structure
JPH05836U (en) * 1991-06-18 1993-01-08 株式会社クボタ Architectural interior board
JPH1199588A (en) * 1997-09-26 1999-04-13 Ibiden Co Ltd Fire resistant composite floor material

Also Published As

Publication number Publication date
JPH11320735A (en) 1999-11-24

Similar Documents

Publication Publication Date Title
US8753473B2 (en) Composite structural elements and method of making same
EP0144340B1 (en) Acoustical structure and method of manufacturing it
EP1022400A1 (en) Composite refractory building material, method of manufacturing the same, gypsum board, and resin composition
US9587393B2 (en) Method for producing sandwich construction elements
JP3882338B2 (en) Manufacturing method of fireproof building material made of fiber reinforced plastic
JP3664280B2 (en) Fireproof panel
JP5525296B2 (en) Wooden fire door
JPH11254567A (en) Fiber-reinforced resin structural member, manufacture thereof, and roofing material or wall material using the member
JP2000263668A (en) Sandwiched panel made of frp and its manufacture
JPH11198264A (en) Fiber reinforced plastic fire-resistant member and its manufacture
JP2838982B2 (en) Fireproof panel
JP3448628B2 (en) Exterior wall panels and exterior wall structures
JP2000117870A (en) Fire-resistant member made of fiber-reinforced plastic and manufacture thereof
JP4090130B2 (en) Composite panel
KR100377631B1 (en) Noncombustible Composite Structure Panel and The Manufacturing Method using Glass Fiber Tissue Reinforcement and Phenolic Matrix Resin
JPH071637A (en) Fire resistive composite plate
JP2000096737A (en) Fireproof member and its manufacture
JPH0820086A (en) Heat insulating panel and production thereof
KR102253856B1 (en) concrete structure reinforcing panel and method for reinforcing concrete structure thereof
JP3664281B2 (en) Fireproof panel
JPH10325208A (en) Composite panel
JP2022126907A (en) Coating structure and forming method thereof
JPH0345804Y2 (en)
JPH072195Y2 (en) Semi-incombustible laminated board
JP2000289143A (en) Refractory panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061106

LAPS Cancellation because of no payment of annual fees