JP3879792B2 - Distribution system ground fault detection device and power distribution equipment using the ground fault detection device - Google Patents

Distribution system ground fault detection device and power distribution equipment using the ground fault detection device Download PDF

Info

Publication number
JP3879792B2
JP3879792B2 JP01536598A JP1536598A JP3879792B2 JP 3879792 B2 JP3879792 B2 JP 3879792B2 JP 01536598 A JP01536598 A JP 01536598A JP 1536598 A JP1536598 A JP 1536598A JP 3879792 B2 JP3879792 B2 JP 3879792B2
Authority
JP
Japan
Prior art keywords
phase
fundamental wave
alternating current
ground fault
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01536598A
Other languages
Japanese (ja)
Other versions
JPH11215688A (en
Inventor
一朗 炭谷
伸祐 黒田
隆 橋本
淳 遠藤
忠士 栗山
正博 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Daihen Corp
Original Assignee
Tokyo Electric Power Co Inc
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Daihen Corp filed Critical Tokyo Electric Power Co Inc
Priority to JP01536598A priority Critical patent/JP3879792B2/en
Publication of JPH11215688A publication Critical patent/JPH11215688A/en
Application granted granted Critical
Publication of JP3879792B2 publication Critical patent/JP3879792B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、受配電設備で高圧配電線の地絡事故を検出するために用いる地絡検出装置、及び該地絡検出装置を用いた受配電設備に関するものである。
【0002】
【従来の技術】
配電系統においては、電源変電所から引き出された複数の高圧配電線にネットワーク受配電設備や常用予備受配電設備などの様々な受配電設備が接続されている。また最近では、配電系統に、自家発電設備や太陽光発電設備などの分散型電源が接続されるため、該分散型電源を配電系統と連系させることが必要になっている。
【0003】
配電系統において、いずれかの高圧配電線で地絡事故が発生した場合には、電源変電所の変圧器と事故が生じた高圧配電線との間に設けられた遮断器に遮断動作を行なわせて、地絡事故が生じた高圧配電線を電源変電所の変圧器から切り離すようにしている。
【0004】
地絡事故が生じた場合には、事故が生じた高圧配電線を直ちに無電圧状態として、その事故の復旧作業を行う必要がある。ところが、配電系統にネットワーク受配電設備が設けられている場合には、複数の高圧配電線の間がネットワーク受配電設備内の回路を通して相互に接続されるため、事故が発生した高圧配電線を電源変電所の変圧器から切り離しても、他の健全な高圧配電線からネットワーク変圧器を通して、事故が発生した高圧配電線に逆電力の潮流が起る。
【0005】
ネットワーク受配電設備では、事故が生じた配電線につながるネットワーク変圧器(受電用変圧器)の励磁電流と事故が生じた配電線の対地静電容量を通して流れる充電電流との合成電流から逆電力の潮流が生じたことを、各ネットワーク変圧器の低圧側で検出するネットワーク継電器を各ネットワーク変圧器に対して設けて、該ネットワーク継電器により所定の位相、及びしきい値以上の逆電力の潮流が検出されたときに、ネットワーク変圧器の低圧側に設けられたプロテクタ遮断器を開くことにより、直ちにその回線を事故が生じた高圧配電線から切り離して逆電力の潮流を遮断するようにしている。
【0006】
【発明が解決しようとする課題】
ネットワーク受配電設備や常用予備受配電設備などの各種の受配電設備が設けられている配電系統に分散型電源が連系している場合には、系統の負荷バランス状態や分散型電源の発電状態等の系統条件によって電力の潮流状況が複雑に変わり、地絡事故の発生がない定常状態でも、ネットワーク受配電設備のネットワーク母線側からネットワーク変圧器を通して高圧配電線側に逆電力の潮流が起ることがある。このような定常時の逆電力の潮流に応答してネットワーク受配電設備内の遮断器が遮断動作を行なうことは避ける必要があるため、系統に分散型電源が連系している場合等の、逆電力の潮流が発生し易い系統条件の下では、ネットワーク受配電設備内で逆電力の潮流を検出している継電器のしきい値を高く設定して、該受配電設備内のプロテクタ遮断器の遮断動作に抑制をかける必要がある。
【0007】
ところが、高圧配電線側で地絡事故が発生して変電所側の遮断器が開いたときに、ネットワーク変圧器の励磁電流と高圧配電線の対地静電容量を通して流れる充電電流との合成電流は極めて小さいため、各ネットワーク受配電設備内の逆電力検出用の継電器のしきい値を高く設定すると、高圧配電線で地絡事故が発生したときに生じる逆電力の潮流を検出できなくなり、事故が生じた高圧配電線につながるネットワーク受配電設備内の回線を高圧配電線から切り離すことができなくなる。その結果、他の健全な高圧配電線から事故が生じた高圧配電線に給電され続けることになり、事故の復旧のための点検、修理作業等を行なうことができなくなる。
【0008】
上記のような事態を避けるためには、ネットワーク受配電設備内に高圧配電線の地絡事故を検出する地絡検出装置を設けて、該地絡検出装置が地絡を検出した時に直ちにネットワーク変圧器に直列に接続されているプロテクタ遮断器を開いて、事故が生じた高圧配電線につながるネットワーク受配電設備内の回線を該高圧配電線から切り離すことができるようにしておく必要がある。
【0009】
配電系統で従来から用いられている地絡検出装置は、零相変流器を用いて地絡事故発生時に流れる零相分を検出するようにしたものが多く、該地絡検出装置によりネットワーク受配電設備内で高圧配電線の地絡事故を検出するためには、ネットワーク変圧器の高圧側の回路に地絡検出装置を接続する必要がある。
【0010】
ところが、ネットワーク変圧器の高圧側の回路には高い電圧が印加されているため、この回路に零相変流器などの検出器を取り付けることは好ましくない。またネットワーク受配電設備では、ネットワーク変圧器と高圧配電線との間の構成をできるだけ簡素にしたいとの要請があるため、ネットワーク変圧器の高圧側の回路に余計な装置を接続することは避ける必要がある。
【0011】
そこで、高圧配電線側で生じた地絡事故を、ネットワーク変圧器の低圧側の回路で検出できるようにするのが望ましいが、高圧配電線側で地絡事故が生じた際に流れる零相電流は絶縁変圧器からなるネットワーク変圧器を通らないため、従来の地絡検出装置をネットワーク変圧器の低圧側の回路に接続しても高圧配電線側の地絡事故を検出することはできない。
【0012】
高圧配電線に高圧側が接続された受電用変圧器を備えたネットワーク受配電設備以外の受配電設備、例えば、低圧側に分散型電源を連系している受配電設備でも、同様の理由により、従来の地絡検出装置を用いて受電用変圧器の低圧側の回路で高圧配電線側の回路の地絡事故を検出することはできない。
【0013】
本発明の目的は、配電系統に設けられている受電用変圧器の低圧側の回路で高圧配電線側の地絡事故を検出することができるようにした配電系統の地絡検出装置を提供することにある。
【0014】
本発明の他の目的は、高圧配電線の地絡事故が生じたときにその事故を受電用変圧器の低圧側の回路で検出することにより受電用変圧器の高圧側の回路と低圧側の回路とを切り離して、事故が生じた高圧配電線への給電を停止するようにした受配電設備を提供することにある。
【0015】
【課題を解決するための手段】
本発明は、電源変電所から引き出された複数の高圧配電線にそれぞれ絶縁変圧器からなる受電用変圧器を備えた受配電設備が接続されている配電系統の高圧配電線で地絡事故が生じたことを検出する地絡検出装置に係わるもので、受電用変圧器の低圧側の回路を流れる3相交流電流を検出する3相交流検出部と、3相交流検出部により検出された3相交流電流の基本波の逆相分を検出する基本波逆相分検出部と、該基本波逆相分検出部により検出された逆相分から地絡事故の発生の有無を判定する地絡判定部とを備えたことを特徴とする。
【0016】
電源変電所から複数の高圧配電線が引き出されている配電系統において、いずれかの高圧配電線で地絡事故が生じると、変電所の遮断器が動作して事故が生じた高圧配電線を変電所の変圧器から切り離す。このとき、例えば他の健全な高圧配電線側から事故が生じた高圧配電線につながる受電用変圧器の低圧側に給電されるようになっていると、該受電用変圧器の低圧コイルに励磁電流が流れるとともに、該受電用変圧器を通して地絡事故が生じた高圧配電線側に、該高圧配電線の対地静電容量を充電する充電電流が流れる。地絡が生じた高圧配電線に流れる充電電流は不平衡3相交流電流となり、該不平衡3相電流に含まれる成分のうち、正相分と逆相分は受電用変圧器を低圧側から高圧側に通過するため、事故が生じた高圧配電線につながる受電用変圧器の低圧側の回路で逆相分電流の顕著な変化が生じる。
【0017】
従って、上記のように、受配電設備に設けられた絶縁変圧器の低圧側の回路を流れる3相交流電流から基本波の逆相分を検出するようにすると、検出された逆相分電流を予め定めた判定基準と比較することにより、受配電設備の各変圧器がつながる高圧配電線で地絡事故が生じたか否かを検出することができる。
【0018】
上記逆相分から地絡事故の有無を判定するには、例えば、一定の時間毎に逆相分を検出するようにしておいて、各検出時刻において検出された逆相分と前回検出された逆相分との差をとることにより逆相分の変化量を検出し、検出された逆相分の変化量が所定の判定基準値以上になったときに地絡事故が発生したと判定するようにすればよい。
【0019】
また随時検出される逆相分に対して所定の判定基準を定めておいて、随時検出される逆相分が判定基準以上になったときに地絡事故が発生したと判定するようにしてもよい。
【0020】
上記のように、本発明によれば、配電系統に設けられている各受電用変圧器の低圧側の回路でその回路がつながる高圧配電線で地絡事故が発生したことを検出することができるため、受電用変圧器と高圧配電線との間の回路の構成を簡素にするという要請に応えつつ、各受配電設備で高圧配電線の地絡事故を検出して、事故が生じた高圧配電線につながる回線を該高圧配電線から切り離すなどの措置を講じることができる。
【0021】
上記基本波逆相分検出部は、例えば、3相交流検出部により検出された3相交流電流を3軸静止座標系におけるベクトル量として扱って該3軸静止座標系の3相交流電流を2軸が互いに直交する2軸静止座標系における2相交流電流に変換する3相/2相変換部と、2軸静止座標系を2相交流電流の基本波正相分の相回転方向または基本波逆相分の相回転方向に回転する第1の2軸回転座標系に変換することにより2相交流電流の基本波正相分及び基本波逆相分の一方を直流電流に変換し、他方を基本波周波数の2倍の周波数の交流電流に変換する第1の回転座標変換部と、第1の回転座標変換部の出力から2相交流電流の基本波正相分を除去して基本波逆相分を抽出するフィルタ手段と、第1の2軸回転座標系を該第1の2軸回転座標系と逆方向に回転する第2の2軸回転座標系に変換することにより、フィルタ手段により抽出された2相交流電流の基本波逆相分を2軸静止座標系における2相交流電流の基本波逆相分に逆変換する第2の回転座標変換部とを備えることにより構成できる。この場合、第2の回転座標変換部から得られる2相交流電流の基本波逆相分を基本波逆相分検出部の検出出力として用いるようにしてもよく、該2相交流電流の基本波逆相分を2相/3相変換することにより得た3相交流電流の基本波逆相分を基本波逆相分検出部の検出出力として用いるようにしてもよい。
【0022】
上記3相/2相変換部と、第1の回転座標変換部と、フィルタ手段と、第2の回転座標変換部と、地絡判定部とは、コンピュータと、該コンピュータに実行させる所定のプログラムとにより実現することができる。
【0023】
本発明において、3相不平衡電流の逆相分を検出するための演算は、3相の各相の電流にベクトル演算子a[=exp{j(2π/3)}]及びa2 を乗じることにより逆相分を求める対称座標法によってもよい。
【0024】
但し、対称座標法により3相不平衡電流の逆相分を求めるためには、ベクトル演算子a,a2 を乗じるための移相演算と、各相電流の平均化処理とを必要とするため、演算に要する時間が長くなり、逆相分を検出するまでに時間がかかるのを避けられない。
【0025】
これに対し、上記のように、座標変換法により逆相分を求めるようにすれば、演算を比較的短い時間で終えることができるため、逆相分の検出を高速で行なうことができ、逆相分電流の時々刻々の変化を容易かつ迅速に検出することができる。
【0026】
本発明において、第2の回転座標変換部から得られる2相交流電流の基本波逆相分を基本波逆相分検出部の検出出力として用いるようにした場合には、3相不平衡電流の様相を検証することはできない。しかし、高圧配電線側の回路で地絡事故が生じたことの検出のみを行なうのであれば、第2の回転座標変換部から得られる2相交流電流の基本波逆相分を基本波逆相分検出部の検出出力として用いてもなんら問題はない。
【0027】
第2の回転座標変換部から得られる2相交流電流の基本波逆相分を2相/3相変換することにより得た基本波3相交流の逆相分を基本波逆相分検出部の検出出力として用いるようにした場合には、高圧配電線側の回路で地絡事故が生じた場合に、その地絡事故を検出することができるだけでなく、受電用変圧器を流れる3相不平衡電流の様相の検証をも行なうことができる。
【0028】
上記3相交流検出部は、例えば受電用変圧器の低圧側回路に取り付けた変流器により構成できるが、通常、ネットワーク受配電設備などの受配電設備では、受電用変圧器の低圧側の回路に変流器が設けられているので、その既設の変流器を利用して上記3相交流検出部を構成することができる。
【0029】
本発明に係わる受配電設備は、電源変電所から引き出された高圧配電線に高圧側が接続された絶縁変圧器からなる受電用変圧器と該受電用変圧器の高圧側の回路または低圧側の回路を開閉する遮断器とを備えたもので、受電用変圧器の低圧側の回路に設けられて該受電用変圧器を通して流れる3相交流電流を検出する変流器と、変流器により検出された3相交流電流の基本波の逆相分を検出する基本波逆相分検出部と、基本波逆相分検出部により検出された逆相分から受電用変圧器につながる高圧配電線側の回路で地絡事故が発生したか否かを判定する地絡判定部と、該地絡判定部により地絡事故が発生したと判定した時に遮断器に遮断指令を与える遮断器制御部とを備えたことを特徴とする。
【0030】
上記受配電設備としては、電源変電所から引き出された複数の高圧配電線にそれぞれ高圧側が接続された絶縁変圧器からなる複数のネットワーク変圧器と、該複数のネットワーク変圧器に対して共通に設けられたネットワーク母線と、各ネットワーク変圧器の低圧側とネットワーク母線との間に設けられたネットワークプロテクタとを備えたネットワーク受配電設備が多く用いられている。ネットワークプロテクタは、対応するネットワーク変圧器の低圧側とネットワーク母線との間に設けられたプロテクタ遮断器と、対応するネットワーク変圧器の低圧側の回路を流れる電流を検出する変流器と、対応するネットワーク変圧器の低圧側から高圧側に逆電力の潮流が生じたことを検出したときにプロテクタ遮断器に遮断指令を与えるネットワーク継電器とを備えていて、ネットワーク継電器が逆電力の潮流を検出したときにプロテクタ遮断器を遮断する。
【0031】
このようなネットワーク受配電設備に本発明を適用する場合には、上記変流器が検出した3相交流電流の基本波の逆相分を検出する基本波逆相分検出部と、該基本波逆相分検出部が検出した逆相分から対応するネットワーク変圧器につながる回路で地絡事故が発生したか否かを判定する地絡判定部と、地絡判定部が地絡事故が発生したと判定したときにプロテクタ遮断器に遮断指令を与える遮断器制御部とをネットワークプロテクタに設ける。
【0032】
上記のようにネットワーク受配電設備に地絡検出装置を設けておくと、受配電設備内で高圧配電線側の回路の地絡事故を検出することができるため、地絡事故が検出された高圧配電線につながる受電用変圧器の高圧側の回路と低圧側の回路とを切り離して、事故が生じた高圧配電線への給電を停止するなどの措置を迅速に講じることができるようになる。
【0033】
【発明の実施の形態】
以下図面を参照して本発明に係わる地絡検出装置の構成例を説明する。
【0034】
図4は本発明を適用する配電系統の構成例を示したもので、同図において1は発電所2に送電線を通して高圧側が接続された変圧器1A1〜1A3と、変圧器1A1〜1A3のそれぞれの低圧側に接続された母線1B1〜1B3とを備えた電源側変電所である。
【0035】
変電所1の母線1B1〜1B3にはそれぞれ遮断器1C1〜1C3を介して高圧配電線3a〜3cが接続されている。母線1B3には更に遮断器1C4を通して高圧配電線3dが接続されている。この例では、変圧器1A1〜1A3から母線1B1〜1B3と遮断器1C1〜1C4とを通して配電線3a〜3dに20KV級の特別高圧の電圧が印加されている。
【0036】
図示してないが、電源変電所1には配電線3a〜3dを流れる電流が制限値を超えた時に遮断器1C1〜1c4をトリップする過電流継電器(OC)と、高圧配電線3a〜3cで地絡事故が発生した時に遮断器1c1〜1C3をトリップする地絡継電器(GR)とが設けられている。
【0037】
図示の例では、本発明に係わるネットワーク受配電設備4が高圧配電線3a〜3cに接続されている。この受配電設備は、高圧配電線3a〜3cにそれぞれ断路器4Aa〜4Acを通して高圧側が接続されたネットワーク変圧器4Ba〜4Bcと、変圧器4Ba〜4Bcの低圧側にそれぞれプロテクタヒューズ4Ca〜4Ccを通して一端が接続されたプロテクタ遮断器4Da〜4Dcと、遮断器4Da〜4Dcの他端に接続されたネットワーク母線BUS1 と、遮断器4Da〜4Dcを制御する遮断器制御部4Ea〜4Ecとを備えている。変圧器4Ba〜4Bcの低圧側の回路には変流器4Fa〜4Fcが取り付けられていて、これらの変流器により検出された3相交流の信号が遮断器制御部4Ea〜4Ecに与えられている。遮断器制御部4Ea〜4Ecにはまたネットワーク変圧器4Ba〜4Bcの低圧側の電圧が与えられている。
【0038】
遮断器制御部4Ea〜4Ecはそれぞれ、ネットワーク継電器を備えていて、ネットワーク変圧器4Ba〜4Bcの低圧側から高圧側に(ネットワーク母線側BUS1 から高圧配電線3a〜3c側に)しきい値以上の逆電力の潮流が生じた時に、プロテクタ遮断器4Da〜4Dcをトリップするようになっている。
【0039】
ネットワーク母線BUS1 には、高圧配電線3a〜3cの特別高圧の電圧(22KV)をネットワーク変圧器4Ba〜4Bcにより降圧して得た電圧(例えば400V)が印加されている。
【0040】
図示の例では、プロテクタヒューズ4Ca、プロテクタ遮断器4Da、変流器4Fa及び遮断器制御部4Eaにより、ネットワークプロテクタ4Gaが構成され、プロテクタヒューズ4Cb、プロテクタ遮断器4Db、変流器4Fb及び遮断器制御部4Ebにより、ネットワークプロテクタ4Gbが構成されている。またプロテクタ遮断器4Dc、変流器4Fc及び遮断器制御部4Ecにより、ネットワークプロテクタ4Gcが構成されている。
【0041】
また、図示の例では、本発明に係わるネットワーク受配電設備以外に、本発明に係わる地絡検出装置を用いた受配電設備として、低圧側に分散型電源を連系した常用予備受配電設備5が高圧配電線3a及び3bに接続されている。この受配電設備は、配電線3a及び3bにそれぞれ遮断器5Aa及び5Abを介して高圧側が接続された受電用変圧器5Bと、受電用変圧器5Bの低圧側に遮断器5Cを通して接続された母線BUS2 と、変圧器5Bの低圧側の回路に取り付けられた変流器5Dと、変流器5Dの出力及び変圧器5Bの低圧側の電圧を入力として、変圧器5Bの低圧側から高圧側に逆電力の潮流が生じたことが検出されたときに遮断器5Cをトリップする継電器を有する遮断器制御部5Eとを備えている。母線BUS2 には、特別高圧の電圧を変圧器5Bにより降圧して得た電圧(例えば6000V)が印加されている。
【0042】
図示の例では、ネットワーク母線BUS1 に開閉器SW0 を通して配電線用変圧器Tr の高圧側が接続されるとともに、開閉器SW1 〜SW4 を通して負荷A1 〜A4 が接続されている。また常用予備受配電設備5の母線BUS2 には負荷A5 及びA6 が接続され、高圧配電線3dには、22[KV]の負荷A7 が接続されている。
【0043】
更に、ネットワーク母線BUS1 及び常用予備受配電設備の母線BUS2 にそれぞれ分散型電源G1 及びG2 が接続されている。
【0044】
図4には図示してないが、配電系統には更に配電塔などの各種の受配電設備や分散型電源が接続されることがある。
【0045】
図4に示したような配電系統において、例えば高圧配電線3aのX点で地絡事故が発生した場合には、変電所1に設けられている地絡保護継電器が変圧器1A1と事故が生じた高圧配電線3aとの間に設けられた遮断器1c1に遮断動作を行なわせて、地絡事故が生じた配電線3aを変電所の変圧器1A1から切り離す。このとき、健全な高圧配電線3b及び3c側から、ネットワーク受配電設備4内の回路(断路器4Ab−ネットワーク変圧器4Bb−遮断器4Dbの回路及び断路器4Ac−ネットワーク変圧器4Bc−遮断器4Dcの回路)とネットワーク母線BUS1 とを通して事故が起きた高圧配電線3aにつながるネットワーク変圧器4Baに電流が流れ込み、該変圧器4Baの低圧側から高圧側に逆電力の潮流が生じる。このとき、遮断器制御部4Ea に設けられたネットワーク継電器は、変圧器4Baの励磁電流と、ネットワーク母線BUS1 側から変圧器4Baを通して高圧配電線3aの対地静電容量Cに流れる充電電流との合成電流及び変圧器4Ba の低圧側の電圧を検出して逆電力の潮流を検出し、プロテクタ遮断器4Daを開く。
【0046】
図4に示したネットワーク受配電設備4において、逆電力に対するネットワーク継電器のしきい値を低くしておくと、高圧配電線3a〜3cに地絡事故が生じていない状態で、分散型電源G1 からネットワーク母線BUS1 とネットワーク変圧器4Ba〜4Bcとを通して配電線3a〜3c側に逆電力の潮流が生じたときにもプロテクタ遮断器4Da〜4Dcが遮断動作を行ってしまう。
【0047】
上記のように定常時の逆電力の潮流に応答してネットワーク受配電設備4内の遮断器が遮断動作を行なうことは避ける必要がある。従って、図4に示したように系統に分散型電源が連系している場合には、受配電設備4内で逆電力の潮流を検出している継電器のしきい値を高く設定して、該受配電設備内の遮断器の動作に抑制をかける必要があり、高圧配電線3a〜3c側で地絡事故が生じた時に、事故が生じた高圧配電線につながる回線を切り離すことができなくなることがある。このような事態が生じないようにするためには、ネットワーク受配電設備4内に高圧配電線の地絡事故を検出する地絡検出装置を設けて、該地絡検出装置により高圧配電線の地絡事故が検出された時にネットワーク変圧器の高圧側の回路と低圧側の回路とを切り離すようにしておけばよい。
【0048】
図1は、本発明に係わる地絡検出装置の全体的な構成を示したもので、同図において、10u〜10wは配電系統に接続されている絶縁変圧器(図4の例では、ネットワーク変圧器4Ba〜4Bc)の低圧側のU,V,W3相の回路であり、これらの回路には、変流器CTau,CTav及びCTawが取り付けられている。ネットワーク受配電設備のように、絶縁変圧器の低圧側の回路に既に変流器(例えば図4の変流器4Fa〜4Fc)が設けられている場合には、その既設の変流器を変流器CTau〜CTawとして利用することができる。図1に示した例では、変流器CTau,CTav及びCTawにより、絶縁変圧器の低圧側の回路を流れる3相交流電流を検出する3相交流検出部11が構成され、この3相交流検出部11から得られる3相交流電流の検出値が基本波逆相分検出部12に与えられている。
【0049】
基本波逆相分検出部12は、座標変換法により不平衡3相交流電流の逆相分を検出する部分で、この基本波逆相分検出部は、3相交流検出部11により検出された3相交流を3軸静止座標系におけるベクトル量として扱って該3軸静止座標系における3相交流電流を2軸が互いに直交する2軸静止座標系における2相交流電流に変換する3相/2相変換部13と、2軸静止座標系を2相交流電流の基本波正相分の相回転方向または基本波逆相分の相回転方向に回転する第1の2軸回転座標系に変換することにより3相/2相変換部13が求めた2相交流電流の基本波正相分及び基本波逆相分の一方を直流電流に変換し、他方を基本波周波数の2倍の周波数の交流電流に変換する第1の回転座標変換部14と、該第1の回転座標変換部14の出力から2相交流電流の基本波正相分を除去して基本波逆相分を抽出するフィルタ手段15と、第1の2軸回転座標系を該第1の2軸回転座標系と逆方向に回転する第2の2軸回転座標系に変換することにより、フィルタ手段15により抽出された2相交流電流の基本波逆相分を2軸静止座標系における2軸静止座標系における2相交流電流の基本波逆相分に逆変換する第2の回転座標変換部16と、該基本波2相交流を2相/3相変換することにより3相交流電流の基本波逆相分を得る2相/3相変換部17とからなっている。2相/3相変換部17から得られる3相交流電流の基本波逆相分は、地絡事故の発生の有無を判定する地絡判定部18に与えられている。基本波逆相分検出部12及び地絡判定部18は、マイクロコンピュータと該マイクロコンピュータに実行させる所定のプログラムとにより実現される。
【0050】
3相/2相変換部13は、3相交流検出部11により検出された3軸静止座標系の3相交流電流を2軸が互いに直交する2軸静止座標系における2相交流電流に変換する部分で、図2に示したように、U,V,Wの3軸が平面上で互いに120度の角度間隔をもって交差する3軸静止座標系をα及びβの2軸が直交する2軸静止座標系に変換する演算(3相/2相変換)を行なって、3軸静止座標系の3相交流Iu,Iv及びIw(文章中ではベクトル量を示すドットの表示を省略する。)の信号を、2軸静止座標系の2相交流電流Iα及びIβの信号に変換する。図2に示したように、3軸静止座標と2軸静止座標とがなす角をδとした場合、3相/2相変換の演算は下記の式[数1]の通りである。
【0051】
【数1】

Figure 0003879792
ここでδ=0となるように、α軸及びβ軸を定めると、上記の式は次の式[数2]のようになる。
【0052】
【数2】
Figure 0003879792
また[数2]の式の電流(Iu,Iv,Iw)は、対称座標法により、対称分である零相分電流I0 、正相分電流I1 及び逆相分電流I2 とベクトル演算子a及びa2 とを用いて、下記の[数3]のように表される。
【0053】
【数3】
Figure 0003879792
ここで、零相分電流を無視すると、I0 =0となるため、[数3]の式は下記の[数4]のようになる。
【0054】
【数4】
Figure 0003879792
[数4]の式を[数2]の式に代入すると、Iα及びIβを求める式は下記の[数5]のようになる。
【0055】
【数5】
Figure 0003879792
ここで[数5]の行列式を展開してIαを演算する式を求めると、下記の[数6]のようになる。
【0056】
【数6】
Figure 0003879792
ベクトル演算子a及びa2 はそれぞれ下記の[数7]及び[数8]の通りである。
【0057】
【数7】
Figure 0003879792
【数8】
Figure 0003879792
[数7]及び[数8]の式を[数6]の式に代入すると、電流Iαは下記の式[数9]で与えられる。
【0058】
【数9】
Figure 0003879792
図3に示すように、基準電圧V1 と正相分電流I1 とがなす角度をΦとし、基準電圧V1 と逆相分電流I2 がなす角度をθとすると、I1 (ベクトル)=I1 εj(ωt+Φ)、I2 (ベクトル)=I2 εj(ωt+θ)と表示できるため、電流Iαは、下記の[数10]で与えられる。
【0059】
【数10】
Figure 0003879792
同様にして、電流Iβは、下記の式[数11]から求められる。
【0060】
【数11】
Figure 0003879792
上記の式[数10]及び[数11]の演算をコンピュータに行なわせることにより、3相/2相変換を行い、2軸静止座標系における2相交流Iα及びIβを求める。
【0061】
次に第1の回転座標変換部14は、α,βの2軸静止座標系を2相交流電流の基本波正相分の相回転方向または基本波逆相分の相回転方向に相回転の速度と同速度で回転する第1の2軸回転座標系に変換することにより3相/2相変換部13が求めた2相交流電流Iα及びIβの基本波正相分及び基本波逆相分の一方を直流成分に変換し、他方を基本波周波数の2倍の周波数成分に変換する。ここで、第1の2軸回転座標系を基本波正相分の相回転方向と同方向に該基本波正相分と同速度で回転させると、基本波正相分は直流分として現れ、基本波逆相分は基本波の周波数の2倍の周波数の成分として現れる。また第1の2軸回転座標系を基本波逆相分の相回転方向と同方向に該逆相分と同速度で回転させると、基本波正相分は基本波周波数の2倍の周波数の成分として現れ、基本波逆相分は直流分として現れる。
【0062】
第1の2軸回転座標系の回転方向はいずれの方向としてもよいが、以下の説明では、第1の2軸回転座標系の回転方向が、基本波逆相分の相回転方向と同方向(配電系統の電圧ベクトルの回転方向と逆方向)であるとする。
【0063】
すなわち、2相変換した2相電流Iα及びIβ(いずれもベクトル量)のα,β直交2軸静止座標系を、配電系統の電圧ベクトルと逆方向に、該電圧ベクトルと同速度で回転する直交2軸回転座標系の2相電流Ip及びIq(ベクトル量)に変換する。直交2軸静止座標系から直交2軸回転座標系への変換式は下記の式[数12]の通りである。
【0064】
【数12】
Figure 0003879792
この行列式を開いて回転座標系の電流Ipを求めると下記の[数13]のようになる。
【0065】
【数13】
Figure 0003879792
同様にして、回転座標系の電流Iqは、下記の[数14]から求められる。
【0066】
【数14】
Figure 0003879792
回転座標系の電流Ip及びIqの第1項は正相分電流I1 であり、角速度2ωtの交流成分となる。また第2項は逆相分電流I2 であり、この逆相分電流I2 は時間的要素がないので直流成分となる。
【0067】
図1のフィルタ手段15は、ローパスフィルタからなっていて、上記Ip及びIqから交流成分(正相分電流)を除去することにより、p,q2軸回転座標系における逆相分電流を抽出する。
【0068】
p,q2軸回転座標系における逆相分電流のp軸成分Ip-DCは下記の式[数15]のようになる。
【0069】
【数15】
Figure 0003879792
またp,q2軸回転座標系における逆相分電流のq軸成分Iq-DCは下記の式[数16]のようになる。
【0070】
【数16】
Figure 0003879792
第2の回転座標変換部16は、第1の回転座標変換部14により行った演算処理と逆の手順でp,q2軸回転座標系(第1の2軸回転座標系)を該第1の2軸回転座標系と逆方向に、該第1の2軸回転座標系と同速度で回転する第2の2軸回転座標系に変換することによって、フィルタ手段15により抽出された2相逆相分電流(上記[数15]及び[数16]の逆相成分Ip-DC及びIq-DCを有する2相交流)を、α,β2軸静止座標系における2相交流電流の基本波逆相分に逆変換する。
【0071】
2相/3相変換部17は、第2の回転座標変換部16から得られる2相交流電流の基本波逆相分を、3相/2相変換部13で行った処理と逆の手順で3軸静止座標系における3相交流電流の基本波逆相分(受電用変圧器の低圧側の回路から検出された3相交流電流Iu,Iv,Iwに含まれる逆相分電流)に変換する。
地絡判定部18は、基本波逆相分検出部12により検出された逆相分から地絡事故の発生の有無を判定する。基本波逆相分検出部12により検出された逆相分から地絡事故の有無を判定するには、例えば、一定の時間毎に逆相分を検出するようにしておいて、各検出時刻において検出された逆相分と前回検出された逆相分との差をとることにより逆相分の変化量を検出し、検出された逆相分の変化量が所定の判定値以上になったときに地絡事故が発生したと判定するようにすればよい。
【0072】
また随時検出される逆相分に対して所定の判定基準を定めておいて、検出された逆相分が判定基準以上になったときに地絡事故が発生したと判定するようにしてもよい。
【0073】
上記の例では、第1の回転座標変換部14で、2軸回転座標系を系統電圧に含まれる逆相分の相回転方向と同方向に回転させたが、該2軸回転座標系を系統電圧に含まれる正相分の相回転方向と同方向に回転させるようにしてもよい。この場合には、逆相分電流が基本波周波数の2倍の周波数の信号として得られるので、フィルタ手段15はハイパスフィルタにより構成する。
【0074】
上記の例では、基本波逆相分検出部12において、第2の回転座標変換部16により得た2相交流電流の逆相分を2相/3相変換部により3相交流電流の逆相分に変換するようにしたが、このように構成すると、外部回路で地絡事故が生じた場合に、その地絡事故を検出することができるだけでなく、受電用変圧器を流れる3相不平衡電流の様相の検証をも行なうことができる。
【0075】
なお外部回路で地絡事故が生じたことの検出のみを行なうのであれば、第2の回転座標変換部16から得られる2相交流電流の基本波逆相分を基本波逆相分検出部の検出出力として用いてもなんら問題はないので、2相/3相変換部17は省略することもできる。
【0076】
図1に示した例では、3相交流検出部11と、基本波逆相分検出部12と、地絡判定部18とにより、本発明に係わる地絡検出装置が構成されている。
【0077】
図4に示した配電系統に本発明を適用する場合には、図1に示した基本波逆相分検出部12と地絡判定部18とをネットワークプロテクタ4Ga〜4Gcのそれぞれに設けるとともに、ネットワークプロテクタ4Ga〜4Gcにそれぞれに設けられた地絡判定部18により高圧配電線3a〜3cで地絡事故が発生したと判定されたときに、遮断器制御部4Ea〜4Ecがそれぞれ遮断器4Da〜4Dcに遮断指令を与えるようにしておく。
【0078】
同様に、常用予備受配電設備5にも基本波逆相分検出部12と地絡判定部18とを設けるとともに、地絡判定部18により高圧配電線側で地絡事故が発生したと判定されたときに、遮断器制御部5Eが遮断器5Cに遮断指令を与えるように構成しておく。また遮断器5Cに代えて、遮断器5Aaまたは5Abに遮断指令を与えるようにしてもよい。
【0079】
上記のように構成すると、例えば図4のX点で地絡事故が生じて、高圧配電線3aが変電所1の母線1B1から切り離されたときに、ネットワーク受配電設備では、遮断器制御部4Eaに設けられた地絡判定部が高圧配電線3aで地絡事故が発生したことを検出するため、プロテクタ遮断器4Daが開いて、変圧器4Baの高圧側回路と低圧側回路とを切り離す。これにより、他の健全な配電線3b及び3c側から変圧器4Bb及び4Bcとネットワーク母線BUS1 と変圧器4Baとを通して高圧配電線3a側に逆電力の潮流が生じるのを防止することができる。
【0080】
また常用予備受配電設備でも、上記のように構成すると、例えば図4のX点で地絡事故が生じて、高圧配電線3aが変電所1の母線1B1から切り離されたときに、遮断器制御部5Eに設けられた地絡判定部が高圧配電線3aで地絡事故が発生したことを検出するため、遮断器5Cが開いて、変圧器5Bの高圧側回路と低圧側回路とを切り離す。これにより、分散型電源G2 から母線BUS2 と変圧器5Bとを通して高圧配電線3a側に逆電力の潮流が生じるのを防止することができる。
【0081】
本発明に係わる地絡検出装置は、低圧側に例えば分散型電源を連系している受配電設備または他の配電系統と連系している受配電設備に適用できる。
【0082】
【発明の効果】
以上のように、本発明によれば、配電系統に設けられている各受電用変圧器の低圧側の回路でその回路がつながる高圧配電線で地絡事故が発生したことを検出することができるため、受電用変圧器と高圧配電線との間の回路の構成を簡素にするという要請に応えつつ、各受配電設備で高圧配電線の地絡事故を検出して、事故が生じた高圧配電線につながる回線を該高圧配電線から切り離すなどの措置を講じることができる利点がある。
【0083】
また本発明のように受配電設備を構成すれば、該受配電設備内で高圧配電線側の回路の地絡事故を検出することができるため、地絡事故が検出された高圧配電線につながる受電用変圧器の高圧側の回路と低圧側の回路とを切り離して、事故が生じた高圧配電線への給電を停止するなどの措置を迅速に講じることができる。
【図面の簡単な説明】
【図1】本発明に係わる地絡検出装置の構成例を示したブロック図である。
【図2】本発明に係わる地絡検出装置を説明するために用いるベクトル図である。
【図3】本発明に係わる地絡検出装置を説明するために用いるベクトル図である。
【図4】本発明を適用する配電系統の構成例を示した回路図である。
【符号の説明】
1 電源変電所
3a〜3d 配電線
4 ネットワーク受配電設備
4Aa〜4Ac 断路器
4Ba〜4Bc ネットワーク変圧器
4Da〜4Dc プロテクタ遮断器
4Ea〜4Ec 遮断器制御部
BUS1 ネットワーク母線
11 3相交流検出部
12 基本波逆相分検出部
18 地絡判定部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ground fault detection device used for detecting a ground fault in a high voltage distribution line in a power distribution facility, and a power distribution facility using the ground fault detection device.
[0002]
[Prior art]
In a power distribution system, various power distribution facilities such as a network power distribution facility and a regular standby power distribution facility are connected to a plurality of high-voltage distribution lines drawn from a power substation. Recently, since a distributed power source such as a private power generation facility or a solar power generation facility is connected to the power distribution system, it is necessary to connect the distributed power source to the power distribution system.
[0003]
In the distribution system, if a ground fault occurs in any of the high-voltage distribution lines, the circuit breaker provided between the transformer in the power supply substation and the high-voltage distribution line in which the accident has occurred must be cut off. Therefore, the high-voltage distribution line where the ground fault occurred is disconnected from the transformer of the power substation.
[0004]
When a ground fault occurs, it is necessary to immediately restore the high-voltage distribution line where the accident has occurred to a no-voltage state and to recover from the accident. However, when network distribution / distribution equipment is provided in the distribution system, the multiple high-voltage distribution lines are connected to each other through the circuits in the network distribution / distribution equipment. Even if it is disconnected from the transformer at the substation, the reverse power flow will occur in the high voltage distribution line where the accident occurred through the network transformer from other healthy high voltage distribution lines.
[0005]
In the network power distribution facility, the reverse power is calculated from the combined current of the exciting current of the network transformer (power receiving transformer) connected to the distribution line where the accident occurred and the charging current flowing through the ground capacitance of the distribution line where the accident occurred. A network relay that detects the occurrence of power flow on the low voltage side of each network transformer is provided for each network transformer, and a reverse power flow exceeding a predetermined phase and threshold is detected by the network relay. When this happens, the protector breaker provided on the low-voltage side of the network transformer is opened to immediately disconnect the line from the high-voltage distribution line where the accident occurred and to block the reverse power flow.
[0006]
[Problems to be solved by the invention]
When a distributed power source is connected to a power distribution system with various power receiving / distribution facilities such as network power distribution facilities and regular standby power distribution facilities, the load balance status of the system and the power generation status of the distributed power source Even in a steady state where there is no ground fault, the power flow situation of the network changes from the network bus side of the network power distribution facility to the high voltage distribution line side through the network transformer Sometimes. Since it is necessary to avoid that the circuit breaker in the network power distribution facility responds to such a reverse power flow during steady state, such as when a distributed power source is connected to the system, etc. Under system conditions where reverse power flow is likely to occur, the threshold of the relay that detects reverse power flow in the network power distribution facility is set high, and the protector breaker in the power distribution facility It is necessary to control the shut-off operation.
[0007]
However, when a ground fault occurs on the high-voltage distribution line and the circuit breaker on the substation opens, the combined current of the excitation current of the network transformer and the charging current flowing through the ground capacitance of the high-voltage distribution line is If the threshold value of the relay for detecting reverse power in each network power distribution facility is set high, the reverse power flow that occurs when a ground fault occurs in the high-voltage distribution line cannot be detected. The line in the network power distribution facility connected to the generated high voltage distribution line cannot be disconnected from the high voltage distribution line. As a result, power is continuously supplied from another healthy high-voltage distribution line to the high-voltage distribution line in which the accident has occurred, and it becomes impossible to perform inspection, repair work, etc. for recovery from the accident.
[0008]
In order to avoid the above situation, a ground fault detection device for detecting a ground fault in a high-voltage distribution line is provided in the network power distribution facility, and network transformation is immediately performed when the ground fault detection device detects a ground fault. It is necessary to open the protector circuit breaker connected in series with the power supply so that the line in the network power receiving / distributing facility connected to the high voltage distribution line where the accident has occurred can be disconnected from the high voltage distribution line.
[0009]
Many ground fault detection devices conventionally used in distribution systems are designed to detect the zero-phase component that flows when a ground fault occurs using a zero-phase current transformer. In order to detect a ground fault in a high-voltage distribution line in a distribution facility, it is necessary to connect a ground fault detection device to the circuit on the high voltage side of the network transformer.
[0010]
However, since a high voltage is applied to the circuit on the high voltage side of the network transformer, it is not preferable to attach a detector such as a zero-phase current transformer to this circuit. In network power distribution facilities, there is a need to simplify the configuration between the network transformer and the high-voltage distribution line as much as possible, so it is necessary to avoid connecting extra equipment to the high-voltage circuit of the network transformer. There is.
[0011]
Therefore, it is desirable that the ground fault accident that occurred on the high voltage distribution line side should be detected by the circuit on the low voltage side of the network transformer, but the zero-phase current that flows when a ground fault occurs on the high voltage distribution line side. Does not pass through a network transformer composed of an insulation transformer, and therefore, even if a conventional ground fault detector is connected to a circuit on the low voltage side of the network transformer, a ground fault on the high voltage distribution line side cannot be detected.
[0012]
For the same reason, in power receiving / distributing equipment other than network power receiving / distributing equipment provided with a power receiving transformer connected to the high voltage distribution line, for example, power receiving / distributing equipment linked to a distributed power source on the low voltage side, It is not possible to detect a ground fault in the circuit on the high voltage distribution line side with the circuit on the low voltage side of the power receiving transformer using the conventional ground fault detection device.
[0013]
An object of the present invention is to provide a ground fault detection device for a distribution system that can detect a ground fault on the high voltage distribution line side with a low voltage side circuit of a power receiving transformer provided in the distribution system. There is.
[0014]
Another object of the present invention is to detect a ground fault in a high voltage distribution line with a low voltage side circuit of the power receiving transformer by detecting the accident in the low voltage side circuit of the power receiving transformer. An object of the present invention is to provide a power receiving / distributing facility in which power supply to a high-voltage distribution line in which an accident has occurred is stopped by separating the circuit.
[0015]
[Means for Solving the Problems]
According to the present invention, a ground fault occurs in a high-voltage distribution line of a distribution system in which a plurality of high-voltage distribution lines drawn from a power substation are connected to a power distribution facility including a power receiving transformer composed of an insulating transformer. A three-phase AC detection unit for detecting a three-phase AC current flowing in a circuit on the low-voltage side of the power receiving transformer, and a three-phase detected by the three-phase AC detection unit. A fundamental wave antiphase component detecting unit for detecting the antiphase component of the fundamental wave of the alternating current, and a ground fault determining unit for determining the occurrence of a ground fault from the antiphase component detected by the fundamental wave antiphase component detecting unit. It is characterized by comprising.
[0016]
In a distribution system in which multiple high-voltage distribution lines are drawn from a power substation, if a ground fault occurs in any of the high-voltage distribution lines, the circuit breaker in the substation will operate and the high-voltage distribution line will be transformed. Disconnect from the transformer. At this time, for example, when power is supplied to the low voltage side of the power receiving transformer connected to the high voltage power distribution line where the accident occurred from another healthy high voltage distribution line side, the low voltage coil of the power receiving transformer is excited. As current flows, a charging current for charging the ground capacitance of the high-voltage distribution line flows to the high-voltage distribution line side where the ground fault has occurred through the power receiving transformer. The charging current flowing through the high-voltage distribution line in which a ground fault has occurred becomes an unbalanced three-phase AC current. Among the components included in the unbalanced three-phase current, the normal phase component and the reverse phase component are connected to the receiving transformer from the low voltage side. Since it passes to the high voltage side, a significant change in the reverse phase current occurs in the circuit on the low voltage side of the power receiving transformer connected to the high voltage distribution line where the accident occurred.
[0017]
Therefore, as described above, when the negative phase component of the fundamental wave is detected from the three-phase alternating current flowing through the low-voltage side circuit of the insulation transformer provided in the power distribution facility, the detected negative phase current is By comparing with a predetermined criterion, it is possible to detect whether or not a ground fault has occurred in the high-voltage distribution line to which each transformer of the power distribution facility is connected.
[0018]
In order to determine the presence or absence of a ground fault from the reverse phase component, for example, the reverse phase component is detected at regular intervals, and the reverse phase component detected at the detection time and the previously detected reverse phase component are detected. The amount of change in the reverse phase is detected by taking the difference from the phase, and it is determined that a ground fault has occurred when the detected amount of change in the reverse phase is equal to or greater than a predetermined criterion value. You can do it.
[0019]
In addition, a predetermined determination criterion may be set for the negative phase component detected at any time, and it may be determined that a ground fault has occurred when the negative phase component detected at any time exceeds the determination criterion. Good.
[0020]
As described above, according to the present invention, it is possible to detect that a ground fault has occurred in a high-voltage distribution line connected to a low-voltage side circuit of each power receiving transformer provided in the distribution system. Therefore, while responding to the request to simplify the circuit configuration between the power receiving transformer and the high voltage distribution line, each power distribution facility detects a ground fault in the high voltage distribution line and It is possible to take measures such as disconnecting the line connected to the electric wire from the high-voltage distribution line.
[0021]
The fundamental wave anti-phase component detection unit treats, for example, the three-phase alternating current detected by the three-phase alternating current detection unit as a vector quantity in the three-axis stationary coordinate system, and converts the three-phase alternating current in the three-axis stationary coordinate system to 2 A three-phase / two-phase converter for converting into a two-phase alternating current in a biaxial stationary coordinate system whose axes are orthogonal to each other, and a phase rotation direction or a fundamental wave of the two-phase stationary coordinate system for the fundamental positive phase of the two-phase alternating current By converting to the first two-axis rotating coordinate system that rotates in the phase rotation direction of the reverse phase, one of the fundamental wave positive phase component and the fundamental wave reverse phase component of the two-phase AC current is converted to DC current, and the other A first rotation coordinate conversion unit that converts to an alternating current having a frequency that is twice the fundamental wave frequency, and the fundamental wave reverse phase by removing the normal phase of the two-phase alternating current from the output of the first rotation coordinate conversion unit. Filter means for extracting phase components, and the first two-axis rotational coordinate system and the first two-axis rotational coordinate system By converting the second biaxial rotating coordinate system rotating in the direction, the fundamental wave antiphase of the two phase alternating current extracted by the filter means is converted into the fundamental antiphase of the two phase alternating current in the biaxial stationary coordinate system. It can comprise by providing the 2nd rotation coordinate transformation part reversely converted into minute. In this case, the fundamental wave reverse phase component of the two-phase alternating current obtained from the second rotational coordinate conversion unit may be used as the detection output of the fundamental wave antiphase component detection unit. You may make it use the fundamental wave antiphase part of the three-phase alternating current obtained by carrying out 2 phase / 3 phase conversion of an antiphase part as a detection output of a fundamental wave antiphase part detection part.
[0022]
The three-phase / two-phase conversion unit, the first rotation coordinate conversion unit, the filter means, the second rotation coordinate conversion unit, and the ground fault determination unit are a computer and a predetermined program to be executed by the computer And can be realized.
[0023]
In the present invention, the calculation for detecting the antiphase component of the three-phase unbalanced current is performed by calculating the vector operators a [= exp {j (2π / 3)}] and a on the currents of the three phases. 2 It is also possible to use a symmetric coordinate method for obtaining an antiphase component by multiplying by.
[0024]
However, in order to obtain the antiphase component of the three-phase unbalanced current by the symmetric coordinate method, the vector operators a and a 2 Since the phase shift calculation for multiplying and the averaging process of each phase current are required, the time required for the calculation becomes long, and it is inevitable that it takes time to detect the reverse phase.
[0025]
On the other hand, as described above, if the antiphase component is obtained by the coordinate transformation method, the calculation can be completed in a relatively short time, and therefore the antiphase component can be detected at high speed. It is possible to easily and quickly detect the change of the phase current every moment.
[0026]
In the present invention, when the fundamental wave antiphase component of the two-phase alternating current obtained from the second rotational coordinate converter is used as the detection output of the fundamental wave antiphase component detector, the three-phase unbalanced current The aspect cannot be verified. However, if only the detection of the occurrence of a ground fault in the circuit on the high voltage distribution line side is performed, the fundamental wave antiphase component of the two-phase alternating current obtained from the second rotating coordinate conversion unit is converted to the fundamental wave antiphase component. There is no problem even if it is used as the detection output of the minute detection unit.
[0027]
The fundamental phase of the three-phase alternating current obtained by performing the two-phase / three-phase transformation of the fundamental phase of the two-phase alternating current obtained from the second rotational coordinate transformation unit When used as a detection output, when a ground fault occurs in the circuit on the high-voltage distribution line side, not only can the ground fault be detected, but also a three-phase imbalance flowing through the power receiving transformer. It is also possible to verify the current mode.
[0028]
The three-phase AC detection unit can be configured by a current transformer attached to a low-voltage circuit of a power receiving transformer, for example. Usually, in a power receiving / distributing facility such as a network power receiving / distributing facility, a circuit on a low voltage side of the power receiving transformer Since the current transformer is provided, the above-described three-phase alternating current detection unit can be configured using the existing current transformer.
[0029]
The power distribution facility according to the present invention includes a power receiving transformer composed of an insulating transformer in which a high voltage side is connected to a high voltage distribution line drawn from a power substation, and a high voltage side circuit or a low voltage side circuit of the power receiving transformer. A circuit breaker that opens and closes the circuit, and is provided in a circuit on the low voltage side of the power receiving transformer to detect a three-phase alternating current flowing through the power receiving transformer, and is detected by the current transformer. In addition, a fundamental wave antiphase component detecting unit for detecting the antiphase component of the fundamental wave of the three-phase AC current, and a circuit on the high voltage distribution line side connected to the receiving transformer from the antiphase component detected by the fundamental wave antiphase component detecting unit A ground fault determination unit that determines whether or not a ground fault has occurred, and a circuit breaker control unit that gives a circuit breaker command to the circuit breaker when the ground fault determination unit determines that a ground fault has occurred. It is characterized by that.
[0030]
The power distribution facility is provided in common with a plurality of network transformers composed of insulation transformers each having a high voltage side connected to a plurality of high voltage distribution lines drawn from a power substation, and the plurality of network transformers. A network power receiving / distribution facility including a network bus provided and a network protector provided between the low voltage side of each network transformer and the network bus is widely used. The network protector corresponds to a protector breaker provided between the low-voltage side of the corresponding network transformer and the network bus, and a current transformer that detects the current flowing through the circuit on the low-voltage side of the corresponding network transformer. When a network relay is provided that gives a breaker command to the protector breaker when it detects that a reverse power flow has occurred from the low voltage side to the high voltage side of the network transformer, and the network relay detects a reverse power flow Shut off the protector circuit breaker.
[0031]
When the present invention is applied to such a network power receiving / distributing facility, a fundamental wave antiphase component detecting unit for detecting an antiphase component of the fundamental wave of the three-phase alternating current detected by the current transformer, and the fundamental wave A ground fault determination unit that determines whether or not a ground fault has occurred in the circuit connected to the corresponding network transformer from the reverse phase detected by the reverse phase detection unit, and the ground fault determination unit has a ground fault The network protector is provided with a circuit breaker control unit that gives a break command to the protector circuit breaker when it is determined.
[0032]
If a ground fault detector is installed in the network power distribution facility as described above, it is possible to detect a ground fault in the circuit on the high voltage distribution line in the power distribution facility. By disconnecting the high voltage side circuit and the low voltage side circuit of the power receiving transformer connected to the distribution line, it becomes possible to quickly take measures such as stopping the power supply to the high voltage distribution line where the accident occurred.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
A configuration example of a ground fault detection apparatus according to the present invention will be described below with reference to the drawings.
[0034]
FIG. 4 shows an example of the configuration of a distribution system to which the present invention is applied. In FIG. 4, reference numeral 1 denotes a transformer 1A1 to 1A3 and a transformer 1A1 to 1A3 each having a high voltage side connected to a power plant 2 through a transmission line. It is a power supply side substation provided with bus-bar 1B1-1B3 connected to the low voltage | pressure side of this.
[0035]
High voltage distribution lines 3a to 3c are connected to the buses 1B1 to 1B3 of the substation 1 through circuit breakers 1C1 to 1C3, respectively. A high-voltage distribution line 3d is further connected to the bus 1B3 through a circuit breaker 1C4. In this example, an extra high voltage of 20 KV class is applied to the distribution lines 3a to 3d from the transformers 1A1 to 1A3 through the buses 1B1 to 1B3 and the circuit breakers 1C1 to 1C4.
[0036]
Although not shown, the power substation 1 has an overcurrent relay (OC) that trips the circuit breakers 1C1 to 1c4 when the current flowing through the distribution lines 3a to 3d exceeds the limit value, and the high voltage distribution lines 3a to 3c. A ground fault relay (GR) that trips the circuit breakers 1c1 to 1C3 when a ground fault occurs is provided.
[0037]
In the illustrated example, the network power distribution facility 4 according to the present invention is connected to the high voltage distribution lines 3a to 3c. This power distribution facility includes network transformers 4Ba to 4Bc whose high voltage side is connected to high voltage distribution lines 3a to 3c through disconnectors 4Aa to 4Ac, respectively, and one end through protector fuses 4Ca to 4Cc on the low voltage side of transformers 4Ba to 4Bc. Are connected to the other ends of the circuit breakers 4Da to 4Dc, and circuit breaker control units 4Ea to 4Ec for controlling the circuit breakers 4Da to 4Dc. Current transformers 4Fa-4Fc are attached to the low voltage side circuits of the transformers 4Ba-4Bc, and the three-phase AC signals detected by these current transformers are given to the circuit breaker controllers 4Ea-4Ec. Yes. The circuit breaker controllers 4Ea to 4Ec are also supplied with the low-voltage side voltages of the network transformers 4Ba to 4Bc.
[0038]
Each of the circuit breaker control units 4Ea to 4Ec is provided with a network relay, and the network transformers 4Ba to 4Bc are more than a threshold value from the low voltage side to the high voltage side (from the network bus side BUS1 to the high voltage distribution lines 3a to 3c side). When reverse power flow occurs, the protector breakers 4Da to 4Dc are tripped.
[0039]
A voltage (for example, 400 V) obtained by stepping down the extra high voltage (22 KV) of the high-voltage distribution lines 3a to 3c by the network transformers 4Ba to 4Bc is applied to the network bus BUS1.
[0040]
In the illustrated example, the protector fuse 4Ca, the protector circuit breaker 4Da, the current transformer 4Fa, and the circuit breaker control unit 4Ea constitute the network protector 4Ga, and the protector fuse 4Cb, the protector circuit breaker 4Db, the current transformer 4Fb, and the circuit breaker control. The network protector 4Gb is configured by the unit 4Eb. The protector circuit breaker 4Dc, the current transformer 4Fc, and the circuit breaker control unit 4Ec constitute a network protector 4Gc.
[0041]
In the illustrated example, in addition to the network power distribution facility according to the present invention, as a power distribution facility using the ground fault detection device according to the present invention, a common standby power distribution facility 5 in which a distributed power source is connected to the low voltage side. Is connected to the high voltage distribution lines 3a and 3b. This power distribution facility includes a power receiving transformer 5B whose high voltage side is connected to distribution lines 3a and 3b via circuit breakers 5Aa and 5Ab, respectively, and a busbar connected to the low voltage side of power receiving transformer 5B through circuit breaker 5C. BUS2, current transformer 5D attached to the circuit on the low voltage side of transformer 5B, and the output of current transformer 5D and the voltage on the low voltage side of transformer 5B as inputs, from the low voltage side of transformer 5B to the high voltage side And a circuit breaker control unit 5E having a relay that trips the circuit breaker 5C when it is detected that a reverse power flow has occurred. A voltage (for example, 6000 V) obtained by stepping down an extra high voltage with the transformer 5B is applied to the bus BUS2.
[0042]
In the illustrated example, the high-voltage side of the distribution line transformer Tr is connected to the network bus BUS1 through the switch SW0, and the loads A1 to A4 are connected through the switches SW1 to SW4. Loads A5 and A6 are connected to the bus BUS2 of the standby standby power distribution facility 5, and a load A7 of 22 [KV] is connected to the high voltage distribution line 3d.
[0043]
Further, distributed power sources G1 and G2 are connected to the network bus BUS1 and the bus BUS2 of the regular standby power distribution facility, respectively.
[0044]
Although not shown in FIG. 4, various power receiving / distribution facilities such as a power distribution tower and a distributed power source may be further connected to the power distribution system.
[0045]
In the distribution system as shown in FIG. 4, for example, when a ground fault occurs at point X of the high-voltage distribution line 3a, the ground fault protective relay provided at the substation 1 causes an accident with the transformer 1A1. The circuit breaker 1c1 provided between the high voltage distribution line 3a and the high voltage distribution line 3a performs a breaking operation, and the distribution line 3a in which the ground fault has occurred is disconnected from the transformer 1A1 of the substation. At this time, from the healthy high-voltage distribution line 3b and 3c side, the circuit in the network power distribution facility 4 (disconnector 4Ab-network transformer 4Bb-breaker 4Db circuit and disconnector 4Ac-network transformer 4Bc-breaker 4Dc Circuit) and the network bus BUS1, current flows into the network transformer 4Ba connected to the high voltage distribution line 3a where the accident occurred, and a reverse power flow is generated from the low voltage side to the high voltage side of the transformer 4Ba. At this time, the network relay provided in the circuit breaker control unit 4Ea combines the exciting current of the transformer 4Ba and the charging current flowing from the network bus BUS1 side through the transformer 4Ba to the ground capacitance C of the high-voltage distribution line 3a. The current and the voltage on the low voltage side of the transformer 4Ba are detected to detect the reverse power flow, and the protector breaker 4Da is opened.
[0046]
In the network power receiving / distributing facility 4 shown in FIG. 4, if the threshold value of the network relay with respect to the reverse power is set low, the distributed power source G1 is connected to the high voltage distribution lines 3a to 3c in a state where no ground fault has occurred. The protector circuit breakers 4Da to 4Dc also perform a breaking operation when a reverse power flow occurs on the distribution lines 3a to 3c through the network bus BUS1 and the network transformers 4Ba to 4Bc.
[0047]
As described above, it is necessary to avoid the circuit breaker in the network power distribution / distribution equipment 4 from performing a shut-off operation in response to a reverse power flow in a steady state. Therefore, as shown in FIG. 4, when the distributed power supply is connected to the system, the threshold value of the relay that detects the reverse power flow in the power distribution facility 4 is set high, It is necessary to suppress the operation of the circuit breaker in the power distribution facility, and when a ground fault occurs on the high voltage distribution lines 3a to 3c, it becomes impossible to disconnect the line connected to the high voltage distribution line where the accident occurred. Sometimes. In order to prevent such a situation from occurring, a ground fault detection device for detecting a ground fault in the high voltage distribution line is provided in the network power distribution facility 4, and the ground of the high voltage distribution line is detected by the ground fault detection device. What is necessary is just to isolate | separate the high voltage side circuit and low voltage side circuit of a network transformer when a fault is detected.
[0048]
FIG. 1 shows an overall configuration of a ground fault detection apparatus according to the present invention. In FIG. 1, 10u to 10w are isolation transformers (in the example of FIG. 4B to 4Bc) are U, V, W three-phase circuits on the low-pressure side, and current transformers CTau, CTav, and CTaw are attached to these circuits. When a current transformer (for example, current transformers 4Fa to 4Fc in FIG. 4) is already provided in the circuit on the low voltage side of the insulation transformer as in the network power distribution facility, the existing current transformer is changed. It can be used as the flow devices CTau to CTaw. In the example shown in FIG. 1, the current transformers CTau, CTav, and CTaw constitute a three-phase alternating current detection unit 11 that detects a three-phase alternating current flowing through a circuit on the low voltage side of the insulation transformer. The detected value of the three-phase alternating current obtained from the unit 11 is given to the fundamental wave reverse phase detection unit 12.
[0049]
The fundamental wave anti-phase component detection unit 12 is a part that detects the anti-phase component of the unbalanced three-phase AC current by the coordinate transformation method. The fundamental wave anti-phase component detection unit 12 is detected by the three-phase AC detection unit 11. Three-phase / 2 that treats a three-phase alternating current as a vector quantity in a three-axis stationary coordinate system and converts the three-phase alternating current in the three-axis stationary coordinate system into a two-phase alternating current in a two-axis stationary coordinate system in which the two axes are orthogonal to each other The phase converter 13 and the biaxial stationary coordinate system are transformed into a first biaxial rotational coordinate system that rotates in the phase rotation direction of the fundamental wave normal phase or the phase rotation direction of the fundamental wave antiphase of the two-phase alternating current. Thus, one of the fundamental wave positive phase component and the fundamental wave antiphase component of the two-phase alternating current obtained by the three-phase / two-phase conversion unit 13 is converted into a direct current, and the other is an alternating current having a frequency twice the fundamental wave frequency. A first rotation coordinate conversion unit 14 for converting into an electric current and an output of the first rotation coordinate conversion unit 14; Filter means 15 for extracting the fundamental wave anti-phase component by removing the fundamental wave normal phase component of the two-phase alternating current from the first biaxial rotational coordinate system in the opposite direction to the first biaxial rotational coordinate system By converting to the rotating second biaxial rotating coordinate system, the two-phase alternating current in the biaxial stationary coordinate system in the biaxial stationary coordinate system is converted from the fundamental wave antiphase component of the two-phase alternating current extracted by the filter means 15. A second rotating coordinate conversion unit 16 that performs reverse conversion to the fundamental wave anti-phase component of the two-phase, and two-phase to obtain the fundamental wave anti-phase component of the three-phase alternating current by performing two-phase / three-phase conversion of the fundamental two-phase alternating current / 3-phase converter 17. The fundamental phase reverse phase portion of the three-phase alternating current obtained from the two-phase / three-phase converter 17 is given to the ground fault determination unit 18 that determines whether or not a ground fault has occurred. The fundamental antiphase component detection unit 12 and the ground fault determination unit 18 are realized by a microcomputer and a predetermined program to be executed by the microcomputer.
[0050]
The three-phase / two-phase conversion unit 13 converts the three-phase alternating current in the three-axis stationary coordinate system detected by the three-phase alternating current detection unit 11 into the two-phase alternating current in the two-axis stationary coordinate system in which the two axes are orthogonal to each other. As shown in FIG. 2, in the three-axis stationary coordinate system in which the three axes U, V, and W intersect with each other at an angular interval of 120 degrees on the plane, the two-axis stationary where the two axes α and β are orthogonal Signals of three-phase alternating currents Iu, Iv, and Iw (a dot indicating a vector amount is omitted in the text) of a three-axis stationary coordinate system are performed by performing a conversion to the coordinate system (three-phase / two-phase conversion). Is converted into signals of two-phase alternating currents Iα and Iβ in a biaxial stationary coordinate system. As shown in FIG. 2, when the angle formed by the three-axis stationary coordinate and the two-axis stationary coordinate is δ, the calculation of the three-phase / two-phase conversion is as follows:
[0051]
[Expression 1]
Figure 0003879792
Here, when the α axis and the β axis are determined so that δ = 0, the above equation is expressed by the following equation [Equation 2].
[0052]
[Expression 2]
Figure 0003879792
Further, the current (Iu, Iv, Iw) of the formula [Equation 2] is obtained by a symmetric coordinate method using a zero-phase current I0, a positive-phase current I1, a negative-phase current I2, and a vector operator a and a 2 And [Expression 3] below.
[0053]
[Equation 3]
Figure 0003879792
Here, if the zero-phase current is ignored, I0 = 0, so the equation of [Equation 3] becomes the following [Equation 4].
[0054]
[Expression 4]
Figure 0003879792
Substituting the equation of [Equation 4] into the equation of [Equation 2], the equation for obtaining Iα and Iβ is as shown in the following [Equation 5].
[0055]
[Equation 5]
Figure 0003879792
Here, when the determinant of [Equation 5] is expanded to obtain an equation for calculating Iα, the following [Equation 6] is obtained.
[0056]
[Formula 6]
Figure 0003879792
Vector operators a and a 2 Are the following [Equation 7] and [Equation 8], respectively.
[0057]
[Expression 7]
Figure 0003879792
[Equation 8]
Figure 0003879792
Substituting the equations of [Equation 7] and [Equation 8] into the equation of [Equation 6], the current Iα is given by the following equation [Equation 9].
[0058]
[Equation 9]
Figure 0003879792
As shown in FIG. 3, if the angle formed by the reference voltage V1 and the positive phase current I1 is Φ and the angle formed by the reference voltage V1 and the negative phase current I2 is θ, then I1 (vector) = I1 ε j (ωt + Φ) , I2 (vector) = I2 ε j (ωt + θ) The current Iα is given by the following [Equation 10].
[0059]
[Expression 10]
Figure 0003879792
Similarly, the current Iβ is obtained from the following equation [Equation 11].
[0060]
[Expression 11]
Figure 0003879792
By causing the computer to perform the calculations of the above equations [Equation 10] and [Equation 11], three-phase / two-phase conversion is performed to obtain two-phase alternating currents Iα and Iβ in the two-axis stationary coordinate system.
[0061]
Next, the first rotating coordinate conversion unit 14 performs phase rotation in the biaxial stationary coordinate system of α and β in the phase rotation direction of the fundamental wave normal phase or the phase rotation direction of the fundamental wave reverse phase of the two-phase alternating current. The fundamental wave positive phase component and the fundamental wave antiphase component of the two-phase alternating currents Iα and Iβ obtained by the three-phase / two-phase conversion unit 13 by converting the first two-axis rotating coordinate system that rotates at the same speed as the velocity. Is converted into a DC component, and the other is converted into a frequency component twice the fundamental frequency. Here, when the first biaxial rotating coordinate system is rotated in the same direction as the phase rotation direction of the fundamental wave positive phase at the same speed as the fundamental wave positive phase component, the fundamental wave positive phase component appears as a DC component, The fundamental wave anti-phase component appears as a component having a frequency twice that of the fundamental wave. When the first biaxial rotating coordinate system is rotated in the same direction as the phase rotation direction of the fundamental wave anti-phase and at the same speed as the anti-phase component, the fundamental wave normal phase component has a frequency twice the fundamental wave frequency. It appears as a component, and the fundamental wave antiphase component appears as a direct current component.
[0062]
The rotation direction of the first biaxial rotational coordinate system may be any direction, but in the following description, the rotational direction of the first biaxial rotational coordinate system is the same as the phase rotational direction of the fundamental wave anti-phase component. It is assumed that (the direction opposite to the rotation direction of the voltage vector of the distribution system).
[0063]
In other words, an α, β orthogonal two-axis stationary coordinate system of two-phase currents Iα and Iβ (both vector quantities) converted in two phases is orthogonally rotated in the opposite direction to the voltage vector of the distribution system at the same speed as the voltage vector. Conversion into two-phase currents Ip and Iq (vector quantities) in a biaxial rotating coordinate system. The conversion formula from the orthogonal two-axis stationary coordinate system to the orthogonal two-axis rotational coordinate system is as follows:
[0064]
[Expression 12]
Figure 0003879792
When this determinant is opened to obtain the current Ip of the rotating coordinate system, the following [Equation 13] is obtained.
[0065]
[Formula 13]
Figure 0003879792
Similarly, the current Iq of the rotating coordinate system is obtained from the following [Equation 14].
[0066]
[Expression 14]
Figure 0003879792
The first term of the currents Ip and Iq in the rotating coordinate system is the positive phase current I1, which is an AC component of the angular velocity 2ωt. The second term is the reverse-phase component current I2, and this reverse-phase component current I2 has no time factor and thus becomes a direct current component.
[0067]
The filter means 15 of FIG. 1 is composed of a low-pass filter, and extracts an antiphase component current in the p, q2 axis rotation coordinate system by removing an alternating current component (positive phase current) from the Ip and Iq.
[0068]
The p-axis component Ip-DC of the reversed-phase component current in the p, q2 axis rotation coordinate system is expressed by the following equation [Equation 15].
[0069]
[Expression 15]
Figure 0003879792
Further, the q-axis component Iq-DC of the reversed-phase component current in the p, q2-axis rotating coordinate system is expressed by the following equation [Equation 16].
[0070]
[Expression 16]
Figure 0003879792
The second rotational coordinate conversion unit 16 converts the p and q two-axis rotational coordinate system (first two-axis rotational coordinate system) into the first procedure by a procedure reverse to the arithmetic processing performed by the first rotational coordinate conversion unit 14. The two-phase reversed phase extracted by the filter means 15 is converted into a second two-axis rotating coordinate system that rotates in the opposite direction to the two-axis rotating coordinate system at the same speed as the first two-axis rotating coordinate system. The divided current (two-phase alternating current having the antiphase components Ip-DC and Iq-DC in [Equation 15] and [Equation 16] above) is converted into the fundamental antiphase component of the two-phase alternating current in the α, β2 axis stationary coordinate system. Convert back to.
[0071]
The two-phase / three-phase converter 17 converts the fundamental phase of the two-phase alternating current obtained from the second rotational coordinate converter 16 in the reverse order of the process performed by the three-phase / 2-phase converter 13. Converts to the three-phase AC current in the three-axis stationary coordinate system with the opposite phase of the fundamental wave (the three-phase AC currents Iu, Iv, and Iw detected from the low-voltage circuit of the power receiving transformer). .
The ground fault determination unit 18 determines whether or not a ground fault has occurred from the negative phase detected by the fundamental wave negative phase detection unit 12. In order to determine the presence or absence of a ground fault from the negative phase component detected by the fundamental wave negative phase component detection unit 12, for example, the negative phase component is detected at regular intervals and detected at each detection time. The amount of change in the reverse phase is detected by taking the difference between the detected reverse phase and the previously detected reverse phase, and when the detected amount of change in the reverse phase exceeds the predetermined judgment value It may be determined that a ground fault has occurred.
[0072]
Further, a predetermined determination criterion may be set for the reverse phase component detected at any time, and it may be determined that a ground fault has occurred when the detected reverse phase component is equal to or greater than the determination criterion. .
[0073]
In the above example, the first rotating coordinate conversion unit 14 rotates the biaxial rotating coordinate system in the same direction as the phase rotating direction of the reverse phase included in the system voltage. You may make it rotate in the same direction as the phase rotation direction for the positive phase contained in a voltage. In this case, since the reverse phase current is obtained as a signal having a frequency twice as high as the fundamental wave frequency, the filter means 15 is constituted by a high-pass filter.
[0074]
In the above example, in the fundamental wave antiphase component detection unit 12, the antiphase component of the two phase AC current obtained by the second rotational coordinate conversion unit 16 is converted into the antiphase of the three phase AC current by the two phase / 3 phase conversion unit. In this way, when a ground fault occurs in the external circuit, not only can the ground fault be detected, but also the three-phase unbalance flowing through the power receiving transformer. It is also possible to verify the current mode.
[0075]
If only the detection of the occurrence of the ground fault in the external circuit is performed, the fundamental wave antiphase component of the two-phase alternating current obtained from the second rotating coordinate converter 16 is converted into the fundamental wave antiphase component detector. Since there is no problem even if it is used as a detection output, the 2-phase / 3-phase converter 17 can be omitted.
[0076]
In the example shown in FIG. 1, a ground fault detection device according to the present invention is configured by the three-phase AC detection unit 11, the fundamental wave antiphase component detection unit 12, and the ground fault determination unit 18.
[0077]
When the present invention is applied to the power distribution system shown in FIG. 4, the fundamental wave antiphase component detection unit 12 and the ground fault determination unit 18 shown in FIG. 1 are provided in each of the network protectors 4Ga to 4Gc, and the network When it is determined that a ground fault has occurred in the high voltage distribution lines 3a to 3c by the ground fault determination unit 18 provided in each of the protectors 4Ga to 4Gc, the circuit breaker control units 4Ea to 4Ec are respectively connected to the circuit breakers 4Da to 4Dc. A shutoff command is given to.
[0078]
Similarly, the basic standby anti-distribution facility 5 is also provided with a fundamental antiphase component detection unit 12 and a ground fault determination unit 18, and the ground fault determination unit 18 determines that a ground fault has occurred on the high voltage distribution line side. The circuit breaker control unit 5E is configured to give a circuit break command to the circuit breaker 5C. In place of the circuit breaker 5C, a circuit break command may be given to the circuit breaker 5Aa or 5Ab.
[0079]
With the above configuration, for example, when a ground fault occurs at the point X in FIG. 4 and the high-voltage distribution line 3a is disconnected from the bus 1B1 of the substation 1, the network power distribution facility has the circuit breaker control unit 4Ea. In order to detect that a ground fault has occurred in the high-voltage distribution line 3a, the protector circuit breaker 4Da is opened, and the high-voltage side circuit and the low-voltage side circuit of the transformer 4Ba are disconnected. Thereby, it is possible to prevent a reverse power flow from occurring on the high voltage distribution line 3a side from the other healthy distribution lines 3b and 3c side through the transformers 4Bb and 4Bc, the network bus BUS1 and the transformer 4Ba.
[0080]
In the case of the construction of the standby standby power distribution facility as described above, for example, when a ground fault occurs at point X in FIG. 4 and the high voltage distribution line 3a is disconnected from the bus 1B1 of the substation 1, the circuit breaker control is performed. In order for the ground fault determination part provided in the part 5E to detect that a ground fault has occurred in the high voltage distribution line 3a, the circuit breaker 5C is opened, and the high voltage side circuit and the low voltage side circuit of the transformer 5B are disconnected. As a result, it is possible to prevent a reverse power flow from occurring on the high-voltage distribution line 3a side from the distributed power source G2 through the bus BUS2 and the transformer 5B.
[0081]
The ground fault detection apparatus according to the present invention can be applied to, for example, a power receiving / distributing facility connected to a distributed power source on the low voltage side, or a power receiving / distributing facility connected to another power distribution system.
[0082]
【The invention's effect】
As described above, according to the present invention, it is possible to detect that a ground fault has occurred in the high-voltage distribution line connected to the low-voltage circuit of each power receiving transformer provided in the distribution system. Therefore, while responding to the request to simplify the circuit configuration between the power receiving transformer and the high voltage distribution line, each power distribution facility detects a ground fault in the high voltage distribution line and There is an advantage that measures such as disconnecting the line connected to the electric wire from the high-voltage distribution line can be taken.
[0083]
If the power distribution facility is configured as in the present invention, a ground fault in the circuit on the high voltage distribution line side can be detected in the power distribution facility, which leads to the high voltage distribution line in which the ground fault is detected. The high voltage side circuit and the low voltage side circuit of the power receiving transformer can be separated to quickly take measures such as stopping the power supply to the high voltage distribution line where the accident occurred.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration example of a ground fault detection apparatus according to the present invention.
FIG. 2 is a vector diagram used for explaining a ground fault detection apparatus according to the present invention.
FIG. 3 is a vector diagram used to explain a ground fault detection apparatus according to the present invention.
FIG. 4 is a circuit diagram showing a configuration example of a power distribution system to which the present invention is applied.
[Explanation of symbols]
1 Power substation
3a-3d Distribution line
4 Network power distribution facilities
4Aa ~ 4Ac Disconnector
4Ba-4Bc network transformer
4Da ~ 4Dc protector circuit breaker
4Ea ~ 4Ec Circuit breaker controller
BUS1 network bus
11 Three-phase AC detector
12 Fundamental phase detector
18 Ground fault judgment part

Claims (5)

電源変電所から引き出された高圧配電線に絶縁変圧器からなる受電用変圧器を備えた受配電設備が接続されている配電系統の前記高圧配電線で地絡事故が生じたことを前記受配電設備で検出する地絡検出装置において、
前記受電用変圧器の低圧側の回路を流れる3相交流電流を検出する3相交流検出部と、
前記3相交流検出部により検出された3相交流電流の基本波の逆相分を検出する基本波逆相分検出部と、
前記基本波逆相分検出部により検出された逆相分から地絡事故の発生の有無を判定する地絡判定部と、
を具備したことを特徴とする配電系統の地絡検出装置。
The fact that a ground fault has occurred in the high-voltage distribution line of the distribution system in which the high-voltage distribution line drawn from the power supply substation is connected to the distribution system equipped with a power receiving transformer consisting of an insulating transformer. In the ground fault detection device to detect with equipment,
A three-phase alternating current detecting unit for detecting a three-phase alternating current flowing through a circuit on the low voltage side of the power receiving transformer;
A fundamental wave antiphase component detection unit for detecting an antiphase component of the fundamental wave of the three phase AC current detected by the three phase AC detector;
A ground fault determination unit that determines whether or not a ground fault has occurred from the negative phase component detected by the fundamental phase detection unit;
A ground fault detection device for a power distribution system.
前記基本波逆相分検出部は、
前記3相交流検出部により検出された3相交流電流を3軸静止座標系におけるベクトル量として扱って該3軸静止座標系における3相交流電流を、2軸が互いに直交する2軸静止座標系における2相交流電流に変換する3相/2相変換部と、
前記2軸静止座標系を前記2相交流電流の基本波正相分の相回転方向または基本波逆相分の相回転方向に回転する第1の2軸回転座標系に変換することにより前記2相交流電流の基本波正相分及び基本波逆相分の一方を直流電流に変換し、他方を基本波周波数の2倍の周波数の交流電流に変換する第1の回転座標変換部と、
前記第1の回転座標変換部の出力から2相交流電流の基本波正相分を除去して基本波逆相分を抽出するフィルタ手段と、
前記第1の2軸回転座標系を該第1の2軸回転座標系と逆方向に回転する第2の2軸回転座標系に変換することにより、前記フィルタ手段により抽出された2相交流電流の基本波逆相分を2軸静止座標系における2相交流電流の基本波逆相分に逆変換する第2の回転座標変換部とを備え、
前記第2の回転座標変換部から得られる2相交流電流の基本波逆相分、または該2相交流電流の基本波逆相分を2相/3相変換することにより得た3相交流電流の基本波逆相分を前記基本波逆相分検出部の検出出力として用いることを特徴とする請求項1に記載の地絡検出装置。
The fundamental wave antiphase component detecting unit is
A three-phase alternating current detected by the three-phase alternating current detection unit is treated as a vector quantity in a three-axis stationary coordinate system, and a three-phase alternating current in the three-axis stationary coordinate system is converted into a two-axis stationary coordinate system in which two axes are orthogonal to each other. A three-phase / two-phase converter for converting into a two-phase alternating current in
By converting the biaxial stationary coordinate system into a first biaxial rotational coordinate system that rotates in the phase rotation direction of the fundamental wave normal phase or the phase rotation direction of the fundamental wave antiphase of the two-phase alternating current. A first rotating coordinate conversion unit that converts one of the fundamental phase and the fundamental phase of the phase alternating current into a direct current and the other into an alternating current having a frequency twice the fundamental frequency;
Filter means for extracting a fundamental wave anti-phase component by removing a fundamental wave normal phase component of a two-phase alternating current from an output of the first rotational coordinate converter;
The two-phase alternating current extracted by the filter means by converting the first two-axis rotating coordinate system into a second two-axis rotating coordinate system that rotates in the opposite direction to the first two-axis rotating coordinate system. A second rotating coordinate conversion unit that reversely converts the fundamental wave anti-phase component of the fundamental wave to the fundamental wave anti-phase component of the two-phase alternating current in the biaxial stationary coordinate system,
A three-phase alternating current obtained by performing a two-phase / three-phase conversion on the fundamental wave anti-phase portion of the two-phase alternating current obtained from the second rotational coordinate conversion unit or the fundamental wave anti-phase portion of the two-phase alternating current. The ground fault detection device according to claim 1, wherein the fundamental wave negative phase component is used as a detection output of the fundamental wave negative phase detection unit.
電源変電所から引き出された高圧配電線に高圧側が接続された絶縁変圧器からなる受電用変圧器と該受電用変圧器の高圧側の回路または低圧側の回路を開閉する遮断器とを備えた受配電設備において、
前記受電用変圧器の低圧側の回路に設けられて該受電用変圧器を通して流れる3相交流電流を検出する変流器と、
前記変流器により検出された3相交流電流の基本波の逆相分を検出する基本波逆相分検出部と、
前記基本波逆相分検出部により検出された逆相分から前記受電用変圧器につながる前記高圧配電線側の回路で地絡事故が発生したか否かを判定する地絡判定部と、
前記地絡判定部が地絡事故が発生したと判定した時に前記遮断器に遮断指令を与える遮断器制御部と、
を具備したことを特徴とする受配電設備。
A power receiving transformer comprising an insulating transformer having a high voltage side connected to a high voltage distribution line drawn from a power substation, and a circuit breaker for opening and closing the high voltage side circuit or the low voltage side circuit of the power receiving transformer. In power distribution facilities
A current transformer provided in a circuit on a low-voltage side of the power receiving transformer to detect a three-phase alternating current flowing through the power receiving transformer;
A fundamental antiphase component detector for detecting the antiphase component of the fundamental wave of the three-phase alternating current detected by the current transformer;
A ground fault determination unit that determines whether a ground fault has occurred in the circuit on the high-voltage distribution line side connected to the power receiving transformer from the negative phase component detected by the fundamental wave negative phase detection unit;
A circuit breaker control unit that gives a circuit break command to the circuit breaker when the ground fault determination unit determines that a ground fault has occurred;
A power distribution facility characterized by comprising:
電源変電所から引き出された複数の高圧配電線にそれぞれ高圧側が接続された絶縁変圧器からなる複数のネットワーク変圧器と、前記複数のネットワーク変圧器に対して共通に設けられたネットワーク母線と、各ネットワーク変圧器の低圧側と前記ネットワーク母線との間に設けられたネットワークプロテクタとを備え、
前記ネットワークプロテクタは、対応するネットワーク変圧器の低圧側と前記ネットワーク母線との間に設けられたプロテクタ遮断器と、対応するネットワーク変圧器の低圧側の回路を流れる電流を検出する変流器と、対応するネットワーク変圧器の低圧側から高圧側に逆電力の潮流が生じたことを検出した時に前記プロテクタ遮断器を開くネットワーク継電器とを備えている受配電設備において、
前記ネットワークプロテクタは、
前記変流器が検出した3相交流電流の基本波の逆相分を検出する基本波逆相分検出部と、
前記基本波逆相分検出部が検出した逆相分から対応するネットワーク変圧器につながる前記高圧配電線側の回路で地絡事故が発生したか否かを判定する地絡判定部と、
前記地絡判定部が地絡事故が発生したと判定したときに前記プロテクタ遮断器に遮断指令を与える遮断器制御部と、
を具備したことを特徴とする受配電設備。
A plurality of network transformers composed of insulating transformers each having a high voltage side connected to a plurality of high voltage distribution lines drawn out from a power substation; a network bus provided in common to the plurality of network transformers; and A network protector provided between the low-voltage side of the network transformer and the network bus;
The network protector includes a protector breaker provided between a low voltage side of a corresponding network transformer and the network bus, a current transformer that detects a current flowing through a circuit on the low voltage side of the corresponding network transformer, In a power distribution facility comprising a network relay that opens the protector breaker when detecting that a reverse power flow has occurred from the low voltage side to the high voltage side of the corresponding network transformer,
The network protector
A fundamental wave anti-phase component detector for detecting the anti-phase component of the fundamental wave of the three-phase alternating current detected by the current transformer;
A ground fault determination unit that determines whether or not a ground fault has occurred in the circuit on the high-voltage distribution line side connected to the corresponding network transformer from the negative phase component detected by the fundamental wave negative phase detection unit;
A circuit breaker control unit that gives a break command to the protector breaker when the ground fault determination unit determines that a ground fault has occurred;
A power distribution facility characterized by comprising:
前記基本波逆相分検出部は、
前記変流器により検出された3相交流電流を3軸静止座標系におけるベクトル量として扱って該3軸静止座標系の3相交流電流を、2軸が互いに直交する2軸静止座標系における2相交流電流に変換する3相/2相変換部と、
前記2軸静止座標系を前記2相交流電流の基本波正相分の相回転方向または基本波逆相分の相回転方向に回転する第1の2軸回転座標系に変換することにより前記2相交流電流の基本波正相分及び基本波逆相分の一方を直流電流に変換し、他方を基本波周波数の2倍の周波数の交流電流に変換する第1の回転座標変換部と、
前記第1の回転座標変換部の出力から2相交流電流の基本波正相分を除去して基本波逆相分を抽出するフィルタ手段と、
前記第1の2軸回転座標系を該第1の2軸回転座標系と逆方向に回転する第2の2軸回転座標系に変換することにより、前記フィルタ手段により抽出された2相交流電流の基本波逆相分を2軸静止座標系における2相交流電流の基本波逆相分に逆変換する第2の回転座標変換部とを備え、
前記第2の回転座標変換部から得られる2相交流電流の基本波逆相分、または該2相交流電流の基本波逆相分を2相/3相変換することにより得た3相交流電流の基本波逆相分を前記基本波逆相分検出部の検出出力として用いることを特徴とする請求項3または4に記載の受配電設備。
The fundamental wave antiphase component detecting unit is
The three-phase alternating current detected by the current transformer is treated as a vector quantity in the three-axis stationary coordinate system, and the three-phase alternating current in the three-axis stationary coordinate system is converted to 2 in the two-axis stationary coordinate system in which the two axes are orthogonal to each other. A three-phase / two-phase converter for converting into a phase alternating current;
By converting the biaxial stationary coordinate system into a first biaxial rotational coordinate system that rotates in the phase rotation direction of the fundamental wave normal phase or the phase rotation direction of the fundamental wave antiphase of the two-phase alternating current. A first rotating coordinate conversion unit that converts one of the fundamental phase and the fundamental phase of the phase alternating current into a direct current and the other into an alternating current having a frequency twice the fundamental frequency;
Filter means for extracting a fundamental wave anti-phase component by removing a fundamental wave normal phase component of a two-phase alternating current from an output of the first rotational coordinate converter;
The two-phase alternating current extracted by the filter means by converting the first two-axis rotating coordinate system into a second two-axis rotating coordinate system that rotates in the opposite direction to the first two-axis rotating coordinate system. A second rotating coordinate conversion unit that reversely converts the fundamental wave anti-phase component of the fundamental wave to the fundamental wave anti-phase component of the two-phase alternating current in the biaxial stationary coordinate system,
A three-phase alternating current obtained by performing a two-phase / three-phase conversion on the fundamental wave anti-phase portion of the two-phase alternating current obtained from the second rotational coordinate conversion unit or the fundamental wave anti-phase portion of the two-phase alternating current. 5. The power receiving and distributing equipment according to claim 3, wherein the fundamental wave negative phase component is used as a detection output of the fundamental wave negative phase detection unit.
JP01536598A 1998-01-28 1998-01-28 Distribution system ground fault detection device and power distribution equipment using the ground fault detection device Expired - Fee Related JP3879792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01536598A JP3879792B2 (en) 1998-01-28 1998-01-28 Distribution system ground fault detection device and power distribution equipment using the ground fault detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01536598A JP3879792B2 (en) 1998-01-28 1998-01-28 Distribution system ground fault detection device and power distribution equipment using the ground fault detection device

Publications (2)

Publication Number Publication Date
JPH11215688A JPH11215688A (en) 1999-08-06
JP3879792B2 true JP3879792B2 (en) 2007-02-14

Family

ID=11886780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01536598A Expired - Fee Related JP3879792B2 (en) 1998-01-28 1998-01-28 Distribution system ground fault detection device and power distribution equipment using the ground fault detection device

Country Status (1)

Country Link
JP (1) JP3879792B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105954675B (en) * 2016-07-15 2018-10-16 江苏现代电力科技股份有限公司 The outdoor type high-voltage intelligent circuit breaker and its control method precisely judged based on ground connection
AT520063A1 (en) 2017-06-02 2018-12-15 Omicron Energy Solutions Gmbh Checking a power transmission network and locating a fault in a power transmission cable

Also Published As

Publication number Publication date
JPH11215688A (en) 1999-08-06

Similar Documents

Publication Publication Date Title
JP3184459B2 (en) Power receiving protection device
CN110320432B (en) Single-phase line-breaking fault detection and protection method and system
KR20130030757A (en) Electrical leakage detection apparatus with unexpected motion blocking function
JP2003087978A (en) Generating unit, panel board and power supply system using the same
JPH11308757A (en) Monitoring control device for power system
JP4199065B2 (en) Protective relay device
JPH0970112A (en) Gas insulation switchgear
JP3879792B2 (en) Distribution system ground fault detection device and power distribution equipment using the ground fault detection device
JP2000014017A (en) Substation breaker release detection method, substation breaker release detection device and reception/ distribution facility equipped with the detection device
JP2004096871A (en) Linkage protection system for distributed power supply equipment
JP2000253566A (en) Transformer station circuit breaker cutoff detector
CN103944151A (en) Ungrounded system multi-circuit parallel line different-phase two-point grounding protection method
CN108616110A (en) A kind of protective device of AC/DC interconnected system
JP2001258145A (en) Protective relay system
JPH0217808A (en) Gas insulated switchgear with single phase auxiliary bus bar
JP3272350B2 (en) Distribution line phase detector
CN109004531A (en) A kind of neutral resistance complexes
CN216598970U (en) Current monitoring circuit and current monitoring system
JP2620916B2 (en) Grid connection protection device
JP5247164B2 (en) Protective relay device
JPH08265980A (en) Phase switcher for high voltage distribution line
JPH03218229A (en) Incoming line switch for underground power distribution line and switching method for uninterruptible power supply
JPH06276686A (en) Changing-over apparatus for phase of high voltage 3-phase power distribution line
JP2624532B2 (en) Power system operation method
JP2024030631A (en) Transmission/distribution system and neutral point grounding control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees