JP3879586B2 - Manufacturing method of fiber reinforced plastic gears - Google Patents

Manufacturing method of fiber reinforced plastic gears Download PDF

Info

Publication number
JP3879586B2
JP3879586B2 JP2002141786A JP2002141786A JP3879586B2 JP 3879586 B2 JP3879586 B2 JP 3879586B2 JP 2002141786 A JP2002141786 A JP 2002141786A JP 2002141786 A JP2002141786 A JP 2002141786A JP 3879586 B2 JP3879586 B2 JP 3879586B2
Authority
JP
Japan
Prior art keywords
resin
reinforcing fiber
liquid resin
ring
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002141786A
Other languages
Japanese (ja)
Other versions
JP2003327847A (en
Inventor
康行 橋本
直巳 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2002141786A priority Critical patent/JP3879586B2/en
Publication of JP2003327847A publication Critical patent/JP2003327847A/en
Application granted granted Critical
Publication of JP3879586B2 publication Critical patent/JP3879586B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Gears, Cams (AREA)
  • Reinforced Plastic Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車部品、工作機械等に適した繊維強化樹脂製歯車(例えば、平歯歯車、ハス歯歯車、ウォーム、ウォームホイール、歯付きプーリ等)の製造法に関する。
【0002】
【従来の技術】
樹脂製歯車は、歯の噛み合い時の騒音発生を抑えるために、金属製歯車に噛み合う相手歯車として用いられ、耐摩耗性と高強度が要求される。従来、樹脂製歯車として、リング状補強繊維基材に樹脂を含浸した成形体に歯を加工したものが提案されている。例えば、次のような技術である。
【0003】
補強繊維を束ねて或いは撚って構成した糸を使用し、これを織った又は編んだ筒状体を準備する。この筒状体を端部から軸方向に巻き上げてリング状補強繊維基材とする。そして、リング状補強繊維基材とその中央に位置する金属製ブッシュとを成形金型に収容する。成形金型は、リング状補強繊維基材の厚さ方向に開閉動作するものであり、成形金型を閉じる動作によりリング状補強繊維基材を圧縮して、面方向に広がったリング状補強繊維基材を金属製ブッシュの周囲に圧接してその形状になじませる。次に、閉じた成形金型に液状樹脂を注入し、リング状補強繊維基材に浸透させた液状樹脂を加熱硬化して金属製ブッシュをインサートとする円板を成形する。そして、この成形体の周囲に切削加工により歯を形成する(特開平8−156124号公報)。
【0004】
【発明が解決しようとする課題】
繊維強化樹脂製歯車は、高強度、高耐久性を付与するために、樹脂と複合する繊維に高強度繊維を用いている。前記成形体の切削加工性は、高強度繊維を含有することが原因で悪化することがある。加工性が悪いと、加工した歯面の粗度は大きくなる。この粗度は、金属製歯車に比べて劣る。歯面の粗度は、歯車全体の耐久性、耐摩耗性に影響を与えるので、できるだけ小さいことが望まれる。
【0005】
本発明が解決しようとする課題は、成形金型に収容した補強繊維基材に液状樹脂を浸透させ、液状樹脂を加熱硬化させた成形体に切削加工により歯を形成する樹脂製歯車の製造において、歯の切削加工性を良くして粗度の小さい歯面を得、歯車の耐久性を向上させることである。
【0006】
【課題を解決するための手段】
上記課題を解決するために、本発明に係る製造法は、上記成形体の成形に際し補強繊維基材に浸透させる液状樹脂に、(a)脂肪酸高級アルコールエステル、(b)モンタン酸エステル、(c)高級脂肪酸アミド、(d)酸化ポリエチレンワックスのうち、(b)モ ンタン酸エステル、(d)酸化ポリエチレンワックスから選ばれる滑剤を0.2〜1.3質量%配合しておくことを特徴とする。好ましくは、(b)モンタン酸エステルを配合しておく。
【0007】
これら(a)〜(d)のうち、(b)、(d)の滑剤の配合は、歯車切削時の摩擦低減の働きをし、上記課題を達成することができる。滑剤の配合が、上記範囲より少ないと滑剤配合の効果が発揮されず歯面粗度が大きくなる。また、滑剤の配合が、上記範囲より多いと、樹脂と繊維の界面接着が阻害され、これによっても歯面粗度が大きくなる。
【0008】
液状樹脂に配合した(a)〜(d)のうち、(b)、(d)の滑剤は、成形時の離型剤としても作用する。従って、成形金型に離型剤を塗布せずとも、成形体の取出しを容易に行なうことが可能となる。成形金型に離型剤を塗布する作業が不要になるので、成形作業の効率化を図れるとともに、離型剤塗布時に発生していた油煙もなくなり作業環境が良好となる。(b)モンタン酸エステルの配合は、離型性と歯車の耐久性を確保する上で特に好ましい。
【0009】
【発明の実施の形態】
本発明を実施する当たり、補強繊維基材を構成する繊維は、高強度の有機繊維であるアラミド繊維、全芳香族ポリエステル繊維、ポリ−P−フェニレンベンズビスオキサゾール繊維等が好ましい。これら繊維を用いて、フェルト、不織布、織布、編み布等を作製し、これを補強繊維基材とする。
【0010】
成形体が円板である場合、補強繊維基材は、次のような種々の形態が考えられる。
(1)シート状にした補強繊維基材を端縁から巻き込んで棒状にし、これを輪にして両端を重ね合せたリング状のもの。
(2)シート状にした補強繊維基材を巻いて又は巻き重ねて円筒にし、これを軸方向に蛇腹に折り畳んだリング状のもの。
(3)織って又は編んで筒状にした補強繊維基材を端部から裏返しつつ軸方向に巻き上げたリング状のもの。
(4)上記筒状の補強繊維基材を軸方向に蛇腹に折り畳んだリング状のもの。
(5)中央を刳り貫いた円形の補強繊維基材を所定厚さに積層したリング状のもの。
【0011】
上記各種リング状補強繊維基材を成形金型に配置し、型締めした成形空間に液状樹脂を注入して補強繊維基材に浸透させ、これを加熱硬化させる。成形に当たっては、リング状補強繊維基材の中央に、金属製ブッシュをインサートとして配置し、一体に成形する。必要に応じて、液状樹脂を注入する前に、成形空間を減圧状態にしておく。
ウォームを製造する場合は、シート状にした補強繊維基材を端縁から巻き込んで棒状にし、これを成形金型に配置して、同様に成形することになる。前記巻き込みの巻き芯として、インサートなる金属棒を用いることもできる。
【0012】
液状樹脂は、エポキシ樹脂、フェノール樹脂、架橋ポリアミノアミド樹脂等である。(a)〜(d)のうち、(b)、(d)の滑剤は、液状樹脂を成形金型に注入する直前に液状樹脂へ添加するとよい。
架橋ポリアミノアミド樹脂は、ビス(2−オキサゾリン)化合物と分子内に少なくとも2つのアミノ基を有する芳香族アミンの架橋樹脂であり、これら成分を加熱溶融して液状にし硬化触媒と滑剤を添加して、成形金型に注入する。前記ビス(2−オキサゾリン)化合物と芳香族アミンは、例えば、特開平6−306169号公報に具体的に開示されたものである。
【0013】
【実施例】
以下の例では、次のリング状補強繊維基材と架橋ポリアミノアミド樹脂を用いて歯車を製造するための円板を成形した。
【0014】
[リング状補強繊維基材]
パラ系アラミド繊維(帝人製「テクノーラ」)とメタ系アラミド繊維(帝人製「コーネックス」)を、質量比50/50の割合で混紡した糸を丸編みして筒状体を構成する。この筒状体を端部から裏返しつつ軸方向に巻き上げて、外径82mm,内径60mm,厚さ20mmのリング状補強繊維基材とする。
【0015】
[架橋ポリアミノアミド樹脂]
1,3−ビス(2−オキサゾリン−2−イル)ベンゼンと4,4'−メチレンビスアニリンの架橋樹脂である。これら成分を140℃で加熱溶融して液状にしたところへ硬化触媒としてn−オクチルブロマイドを添加する。
【0016】
[円板の成形]
2個積み重ねた上記リング状補強繊維基材とその中央に位置する金属製ブッシュとを200℃の成形金型に収容する。成形金型は、リング状補強繊維基材の厚さ方向に開閉動作するものであり、成形金型を閉じる動作によりリング状補強繊維基材を圧縮して、面方向に広がったリング状補強繊維基材を金属製ブッシュの周囲に圧接してその形状になじませる。次に、閉じた成形金型に上記液状樹脂を注入し、リング状補強繊維基材に浸透させた液状樹脂を加熱硬化して金属製ブッシュをインサートとする円板を成形する。
【0017】
参考例1〜5、比較例1
上記成形において、液状樹脂に(a)脂肪酸高級アルコールエステル(東亜化成品製「微粉カルナバワックス」)を0.2〜2質量%の範囲で配合した。
【0018】
実施例1〜5、比較例2
上記成形において、液状樹脂に(b)モンタン酸エステル(コグニスジャパン製「ロキシオールVPN 882−200」)を0.2〜2質量%の範囲で配合した。
【0019】
参考例6〜10、比較例3
上記成形において、液状樹脂に(c)高級脂肪酸アミド(クラリアントジャパン製「LICOWAX C MICRO PDR」)を0.2〜2質量%の範囲で配合した。
【0020】
実施例6〜10、比較例4
上記成形において、液状樹脂に(d)酸化ポリエチレンワックス(クラリアントジャパン製「LICOWAX PED 136 FLAKES」)を0.2〜2質量%の範囲で配合した。
【0021】
従来例
上記成形において、液状樹脂には滑剤を添加しなかった。成形金型には、離型剤として鉱物油を吹付けて、成形を実施した。
【0022】
上記各例における円板の成形体中に占める補強繊維の含有量はいずれも同じである。そして、成形した円板の周囲に切削加工により歯を形成して樹脂製歯車とした。
【0023】
上記各実施例比較例、参考例ならびに従来例において製造した樹脂製歯車の歯面粗度を、図1(参考例1〜5、比較例1)、図2(実施例1〜5、比較例2)、図3(参考例6〜10、比較例3)、図4(実施例6〜10、比較例4)に、それぞれ示す。各図において、滑剤配合量0の場合が、従来例である。
歯面粗度の測定は、測定歯面が水平になるように樹脂製歯車を固定し、表面粗さ計により行なった。
【0024】
また、上記各実施例比較例、参考例ならびに従来例において製造した樹脂製歯車の耐久性を評価した耐久時間を表1に示す。
耐久時間は、各樹脂製歯車を加速評価試験(回転数:6000rpm,油温130℃,歯元負荷応力160MPa)に供し、歯車が破壊するまでの時間を測定するものである。5個の試料の測定値の平均値を示す。
【0025】
【表1】

Figure 0003879586
【0026】
図1〜図4から、(a)〜(d)のうち、(b)、(d)の滑剤を0.2〜1.3質量%の割合で液状樹脂に配合することにより、切削加工で形成した歯面の粗度を小さくできることを理解できる。その結果、表1に示したように、歯車の使用耐久性を向上させることができる。
【0027】
上記各実施例比較例、参考例ならびに従来例において成形した円板の成形体の離型性を評価した結果を図5に示した。この評価は、便宜的に、図6に示すような方法で実施した。すなわち、表面を有機溶剤で洗浄したボルトを深さ10mmの容器に立て、ここに、140℃で溶融した液状上樹脂を流し込んで満たし、200℃のオーブン中で硬化させる。その後、ボルトをトルクレンチで捻じり、ボルトが回転するときの力の大きさを測定する。
図5から、(b)モンタン酸エステルを配合した場合が最も離型性に優れていることを理解でき、表1から耐久性についても最も優れていることが分かる。(c)高級脂肪酸アミドを配合した場合の離型性も、支障のないレベルである。
【0028】
【発明の効果】
上述のように、本発明に係る方法によれば、歯面粗度の小さい樹脂製歯車を製造することができ、その結果、樹脂製歯車の耐久性を向上させることができる。
また、本発明に係る方法によれば、成形金型に離型剤を塗布せずとも、成形体の十分な離型性を確保することができ、成形作業を高効率化することができる。
【図面の簡単な説明】
【図1】 参考例における脂肪酸高級アルコールエステル配合量と樹脂製歯車の歯面粗度の関係を示す曲線図である。
【図2】 本発明に係る実施例におけるモンタン酸エステル配合量と樹脂製歯車の歯面粗度の関係を示す曲線図である。
【図3】 参考例における高級脂肪酸アミド配合量と樹脂製歯車の歯面粗度の関係を示す曲線図である。
【図4】 本発明に係る実施例における酸化ポリエチレンワックス配合量と樹脂製歯車の歯面粗度の関係を示す曲線図である。
【図5】 本発明に係る実施例における成形体の離型性評価結果を示す曲線図である。
【図6】 成形体の離型性を評価するための方法を示す斜視図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a fiber reinforced resin gear (for example, a spur gear, a helical gear, a worm, a worm wheel, a toothed pulley, etc.) suitable for automobile parts, machine tools and the like.
[0002]
[Prior art]
Resin gears are used as mating gears that mesh with metal gears in order to suppress the generation of noise during meshing of teeth, and are required to have wear resistance and high strength. 2. Description of the Related Art Conventionally, a resin gear has been proposed in which teeth are processed into a molded body in which a ring-shaped reinforcing fiber base material is impregnated with resin. For example, the following technique is used.
[0003]
A thread formed by bundling or twisting reinforcing fibers is used to prepare a tubular body woven or knitted. This cylindrical body is wound up in the axial direction from the end portion to form a ring-shaped reinforcing fiber base material. And a ring-shaped reinforcement fiber base material and the metal bush located in the center are accommodated in a shaping die. The molding die opens and closes in the thickness direction of the ring-shaped reinforcing fiber base material, and the ring-shaped reinforcing fiber spreads in the surface direction by compressing the ring-shaped reinforcing fiber base material by closing the molding die. The substrate is pressed around the metal bush to conform to its shape. Next, a liquid resin is injected into the closed molding die, and the liquid resin infiltrated into the ring-shaped reinforcing fiber base is heat-cured to form a disk having a metal bush as an insert. Then, teeth are formed around the molded body by cutting (JP-A-8-156124).
[0004]
[Problems to be solved by the invention]
The fiber-reinforced resin gear uses high-strength fibers for fibers combined with resin in order to impart high strength and high durability. The machinability of the molded body may deteriorate due to the inclusion of high-strength fibers. If the processability is poor, the roughness of the processed tooth surface increases. This roughness is inferior to metal gears. Since the roughness of the tooth surface affects the durability and wear resistance of the entire gear, it is desired to be as small as possible.
[0005]
The problem to be solved by the present invention is to manufacture a resin gear in which a liquid resin is infiltrated into a reinforcing fiber base housed in a molding die, and teeth are formed by cutting in a molded body obtained by heat-curing the liquid resin. It is to improve the durability of the gear by improving the tooth machinability to obtain a tooth surface having a low roughness.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the production method according to the present invention comprises: (a) a fatty acid higher alcohol ester, (b) a montanic acid ester, (c) ) higher fatty acid amides, of (d) oxidized polyethylene wax, and characterized in that keep lubricant blending 0.2 to 1.3 wt% selected from (b) Mo pentane ester, (d) an oxidized polyethylene wax To do. Preferably, (b) montanic acid ester is blended.
[0007]
Among these (a) to (d) , the blending of the lubricants (b) and (d) serves to reduce friction during gear cutting and can achieve the above-described problems. When the blending of the lubricant is less than the above range, the effect of blending the lubricant is not exhibited and the tooth surface roughness is increased. Moreover, when there are more compounding of a lubricant than the said range, the interface adhesion | attachment of resin and a fiber will be inhibited, and tooth surface roughness will also become large by this.
[0008]
Among (a) to (d) blended in the liquid resin, the lubricants (b) and (d) also act as mold release agents during molding. Therefore, it is possible to easily remove the molded body without applying a release agent to the molding die. Since the operation of applying the release agent to the molding die is not required, the efficiency of the molding operation can be improved, and the working environment is improved because the oily smoke generated at the time of applying the release agent is eliminated. The blending of (b) montanic acid ester is particularly preferable for securing mold release properties and gear durability.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In carrying out the present invention, the fibers constituting the reinforcing fiber substrate are preferably aramid fibers, wholly aromatic polyester fibers, poly-P-phenylene benzbisoxazole fibers or the like, which are high-strength organic fibers. Using these fibers, felt, non-woven fabric, woven fabric, knitted fabric and the like are produced and used as a reinforcing fiber base material.
[0010]
When the molded body is a disk, the reinforcing fiber base material may have the following various forms.
(1) A ring-shaped product in which a reinforcing fiber base material made into a sheet shape is rolled up from the edge to form a rod shape, and this is used as a ring and the both ends are overlapped.
(2) A ring-shaped product in which a reinforcing fiber base material in the form of a sheet is wound or overlapped to form a cylinder, and this is folded into a bellows in the axial direction.
(3) A ring-shaped one in which a reinforcing fiber base material woven or knitted into a cylindrical shape is wound up in the axial direction while turning over from the end.
(4) The ring-shaped thing which folded the said cylindrical reinforcement fiber base material into the bellows in the axial direction.
(5) A ring-shaped product in which circular reinforcing fiber base materials that are pierced through the center are laminated to a predetermined thickness.
[0011]
The above-mentioned various ring-shaped reinforcing fiber base materials are placed in a molding die, a liquid resin is injected into the clamped molding space to infiltrate the reinforcing fiber base material, and this is heat-cured. In molding, a metal bush is disposed as an insert in the center of the ring-shaped reinforcing fiber base material and molded integrally. If necessary, the molding space is kept in a reduced pressure state before the liquid resin is injected.
When manufacturing the worm, the reinforcing fiber base material in the form of a sheet is wound around from the edge to form a rod, which is placed in a molding die and molded in the same manner. As the winding core, a metal rod serving as an insert can also be used.
[0012]
The liquid resin is an epoxy resin, a phenol resin, a cross-linked polyaminoamide resin, or the like. Of (a) to (d) , the lubricants (b) and (d) may be added to the liquid resin immediately before the liquid resin is injected into the molding die.
The cross-linked polyaminoamide resin is a cross-linked resin of a bis (2-oxazoline) compound and an aromatic amine having at least two amino groups in the molecule, and these components are heated and melted to form a liquid, and a curing catalyst and a lubricant are added. Inject into the mold. The bis (2-oxazoline) compound and the aromatic amine are specifically disclosed, for example, in JP-A-6-306169.
[0013]
【Example】
In the following example, a disk for manufacturing a gear was formed using the following ring-shaped reinforcing fiber base material and a crosslinked polyaminoamide resin.
[0014]
[Ring-shaped reinforcing fiber substrate]
A cylindrical body is formed by circularly knitting a yarn obtained by blending para-aramid fibers (“Technola” manufactured by Teijin) and meta-aramid fibers (“Conex” manufactured by Teijin) at a mass ratio of 50/50. The tubular body is rolled up in the axial direction while turning over from the end portion to obtain a ring-shaped reinforcing fiber substrate having an outer diameter of 82 mm, an inner diameter of 60 mm, and a thickness of 20 mm.
[0015]
[Crosslinked polyaminoamide resin]
It is a crosslinked resin of 1,3-bis (2-oxazolin-2-yl) benzene and 4,4′-methylenebisaniline. N-octyl bromide is added as a curing catalyst to these components which are heated and melted at 140 ° C. to form a liquid.
[0016]
[Shaping of disk]
The two ring-shaped reinforcing fiber bases stacked and the metal bush located at the center thereof are accommodated in a 200 ° C. molding die. The molding die opens and closes in the thickness direction of the ring-shaped reinforcing fiber base material, and the ring-shaped reinforcing fiber spreads in the surface direction by compressing the ring-shaped reinforcing fiber base material by closing the molding die. The substrate is pressed around the metal bush to conform to its shape. Next, the liquid resin is poured into a closed molding die, and the liquid resin infiltrated into the ring-shaped reinforcing fiber base is heat-cured to form a disk having a metal bush as an insert.
[0017]
Reference Examples 1-5, Comparative Example 1
In the above molding, (a) fatty acid higher alcohol ester (“Fine Powdered Carnauba Wax” manufactured by Toa Kasei) was blended in the liquid resin in the range of 0.2 to 2% by mass.
[0018]
Examples 1-5 , Comparative Example 2
In the said shaping | molding, (b) montanic acid ester ("Roxyol VPN 882-200" by Cognis Japan) was mix | blended with 0.2-2 mass% in liquid resin.
[0019]
Reference Examples 6-10 , Comparative Example 3
In the above molding, (c) higher fatty acid amide (“LICOWAX C MICRO PDR” manufactured by Clariant Japan) was blended in the liquid resin in the range of 0.2 to 2 mass%.
[0020]
Examples 6 to 10 and Comparative Example 4
In the above molding, (d) oxidized polyethylene wax (“LICOWAX PED 136 FLAKES” manufactured by Clariant Japan) was blended in the liquid resin in the range of 0.2 to 2 mass%.
[0021]
Conventional Example In the above molding, no lubricant was added to the liquid resin. The molding die was molded by spraying mineral oil as a mold release agent.
[0022]
In each of the above examples, the content of the reinforcing fibers in the disk shaped body is the same. And the tooth | gear was formed by the cutting process around the shape | molded disk, and it was set as the resin gear.
[0023]
Above Examples, Comparative Examples, the tooth surface roughness of resin gear prepared in reference example and the conventional example, FIG. 1 (Reference Example 1-5, Comparative Example 1), 2 (Examples 1-5, Comparative Example 2), FIG. 3 ( Reference Examples 6 to 10 , Comparative Example 3), and FIG. 4 (Examples 6 to 10 and Comparative Example 4) are shown respectively. In each figure, the case where the lubricant content is 0 is a conventional example.
Tooth surface roughness was measured with a surface roughness meter with a resin gear fixed so that the measuring tooth surface was horizontal.
[0024]
In addition, Table 1 shows durability times for evaluating the durability of the resin gears manufactured in each of the above examples , comparative examples , reference examples, and conventional examples.
The endurance time is measured by subjecting each resin gear to an accelerated evaluation test (rotation speed: 6000 rpm, oil temperature 130 ° C., tooth load stress 160 MPa) and measuring the time until the gear breaks. The average value of the measured values of five samples is shown.
[0025]
[Table 1]
Figure 0003879586
[0026]
From FIG. 1 to FIG. 4, among (a) to (d) , by blending the lubricant of (b) and (d) in a liquid resin at a ratio of 0.2 to 1.3% by mass, It can be understood that the roughness of the formed tooth surface can be reduced. As a result, as shown in Table 1, the use durability of the gear can be improved.
[0027]
FIG. 5 shows the results of evaluating the releasability of the molded bodies of the disks formed in the above Examples , Comparative Examples , Reference Examples and Conventional Examples. For the sake of convenience, this evaluation was performed by a method as shown in FIG. That is, a bolt whose surface is washed with an organic solvent is placed in a container having a depth of 10 mm, and a liquid upper resin melted at 140 ° C. is poured into the container to be filled and cured in an oven at 200 ° C. Then, the bolt is twisted with a torque wrench, and the magnitude of the force when the bolt rotates is measured.
From FIG. 5, it can be understood that the case where (b) the montanic acid ester is blended is most excellent in releasability, and Table 1 shows that the durability is also most excellent. (C) The releasability when a higher fatty acid amide is blended is also at a level that does not hinder.
[0028]
【The invention's effect】
As described above, according to the method of the present invention, a resin gear having a small tooth surface roughness can be manufactured, and as a result, the durability of the resin gear can be improved.
In addition, according to the method of the present invention, sufficient mold releasability of the molded body can be ensured without applying a release agent to the molding die, and the molding operation can be made highly efficient.
[Brief description of the drawings]
FIG. 1 is a curve diagram showing the relationship between the amount of a fatty acid higher alcohol ester compounded in a reference example and the tooth surface roughness of a resin gear.
FIG. 2 is a curve diagram showing the relationship between the amount of montanic acid ester compounded and the tooth surface roughness of a resin gear in an embodiment according to the present invention.
FIG. 3 is a curve diagram showing the relationship between the higher fatty acid amide blending amount and the tooth surface roughness of a resin gear in a reference example.
FIG. 4 is a curve diagram showing the relationship between the blended amount of oxidized polyethylene wax and the tooth surface roughness of a resin gear in an example according to the present invention.
FIG. 5 is a curve diagram showing the results of evaluation of releasability of molded articles in examples according to the present invention.
FIG. 6 is a perspective view showing a method for evaluating the releasability of a molded body.

Claims (3)

成形金型に収容した補強繊維基材に液状樹脂を浸透させ、液状樹脂を加熱硬化させた成形体に切削加工により歯を形成する樹脂製歯車の製造において、
補強繊維基材に浸透させる液状樹脂に、モンタン酸エステル、酸化ポリエチレンワックスから選ばれる滑剤を0.2〜1.3質量%配合しておくことを特徴とする繊維強化樹脂製歯車の製造法。
In the production of resin gears, in which liquid resin is infiltrated into a reinforcing fiber base housed in a molding die and teeth are formed by cutting on a molded body obtained by heat-curing the liquid resin,
The liquid resin impregnating the reinforcing fiber substrate, Mo lanthanum acid esters, production of fiber reinforced resin gear, characterized in that to be blended 0.2 to 1.3 mass% of lubricant selected from acid polyethylene wax Law.
滑剤が、モンタン酸エステルであることを特徴とする請求項1記載の繊維強化樹脂製歯車の製造法。The method for producing a fiber-reinforced resin gear according to claim 1, wherein the lubricant is a montanic acid ester. 液状樹脂が架橋ポリアミノアミドである請求項1又は2記載の繊維強化樹脂製歯車の製造法。The method for producing a fiber-reinforced resin gear according to claim 1 or 2, wherein the liquid resin is a crosslinked polyaminoamide.
JP2002141786A 2002-05-16 2002-05-16 Manufacturing method of fiber reinforced plastic gears Expired - Lifetime JP3879586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002141786A JP3879586B2 (en) 2002-05-16 2002-05-16 Manufacturing method of fiber reinforced plastic gears

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002141786A JP3879586B2 (en) 2002-05-16 2002-05-16 Manufacturing method of fiber reinforced plastic gears

Publications (2)

Publication Number Publication Date
JP2003327847A JP2003327847A (en) 2003-11-19
JP3879586B2 true JP3879586B2 (en) 2007-02-14

Family

ID=29702275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002141786A Expired - Lifetime JP3879586B2 (en) 2002-05-16 2002-05-16 Manufacturing method of fiber reinforced plastic gears

Country Status (1)

Country Link
JP (1) JP3879586B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328365A (en) * 2005-04-28 2006-12-07 Sanyo Chem Ind Ltd Filling agent for model material
EP1884540B1 (en) * 2005-05-25 2014-12-31 Asahi Organic Chemicals Industry Co., Ltd. Resin gear for electric power steering system and electric power steering system comprising same

Also Published As

Publication number Publication date
JP2003327847A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
JP2001295913A (en) Resin gear and method of manufacturing the same
JP4448288B2 (en) V-ribbed belt
CN101144505A (en) Pivot bearing with plastic outer ring and method for its manufacture
JP2008069971A (en) Spherical slide bearing with plastic outer ring and method for its manufacture
JP2008069971A6 (en) Spherical plain bearing having plastic outer ring and method for manufacturing the same
JP3879586B2 (en) Manufacturing method of fiber reinforced plastic gears
JPH064299B2 (en) Phenolic resin gear and its manufacturing method
JP2007070599A (en) Method for producing crosslinked resin and fiber-reinforced resin molded article
JP4214105B2 (en) Toothed belt and manufacturing method thereof
JP2001173755A (en) Reinforcing fiber base material for resin gear and resin gear
JP2002273729A (en) Reinforcing material for molding fiber-reinforced resin composite, fiber-reinforced resin composite and its manufacturing method
JP6719251B2 (en) Sliding member
JP2013127282A (en) Resin gear
JP3980239B2 (en) Resin gear and manufacturing method thereof
JP4013537B2 (en) Fiber reinforced resin screw rotor
JP2850722B2 (en) Phenolic resin gear and its manufacturing method
JP6103299B2 (en) Manufacturing method of resin molded body and manufacturing method of resin gear
JP2959905B2 (en) Fiber reinforced resin gear
JP2001165216A (en) Friction material
JP4218217B2 (en) Manufacturing method of resin gears
JP3385904B2 (en) Manufacturing method of phenolic resin gears
JP2959907B2 (en) Fiber reinforced resin gear
JP3991613B2 (en) Manufacturing method of resin gears
JP2953203B2 (en) Fiber reinforced resin gear
JP2005121237A (en) Resin gear

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061030

R150 Certificate of patent or registration of utility model

Ref document number: 3879586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

EXPY Cancellation because of completion of term