JP2013127282A - Resin gear - Google Patents

Resin gear Download PDF

Info

Publication number
JP2013127282A
JP2013127282A JP2011276563A JP2011276563A JP2013127282A JP 2013127282 A JP2013127282 A JP 2013127282A JP 2011276563 A JP2011276563 A JP 2011276563A JP 2011276563 A JP2011276563 A JP 2011276563A JP 2013127282 A JP2013127282 A JP 2013127282A
Authority
JP
Japan
Prior art keywords
reinforcing fiber
fiber
fibers
resin
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011276563A
Other languages
Japanese (ja)
Inventor
Takashi Kimura
隆 木村
Yoichi Morio
洋一 森尾
Masaya Ozawa
昌也 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2011276563A priority Critical patent/JP2013127282A/en
Publication of JP2013127282A publication Critical patent/JP2013127282A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gears, Cams (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin gear prevented from shortening its life by coping with various phenomena such as the occurrence of a deviation in tooth trace due to a temperature change from an ordinary temperature range to a high temperature range, for example.SOLUTION: The resin gear includes a resin cured product held to a reinforcing fiber base material formed of a plurality of reinforcing fiber layers 20, 21 laminated in a tooth width direction. In the resin gear, the adjacent reinforcing fiber layers 20, 21 are formed of mutually different kinds of fibers or of mutually different fiber compositions. Desired characteristics can be imparted to predetermined parts in the tooth width direction by selecting the mutually different kinds of fibers or the mutually different fiber compositions. "The different kinds of fibers" means a case, for example, that an organic fiber and an inorganic fiber are combined. "The different fiber composition" means a case that two or more kinds of fibers are mixed and used.

Description

本発明は、樹脂製歯車に関する。   The present invention relates to a resin gear.

従来、自動車で使用される歯車の多くは、強度及び耐熱性の面より金属部品が多く使用されていたが、近年では、環境対応自動車開発が進み、燃費向上やCO削減に対応する軽量化、更には、金属製歯車同士の噛み合い音の静粛性の観点から、樹脂製歯車を用いることが提言されている。 Conventionally, many gears used in automobiles have used metal parts in terms of strength and heat resistance. However, in recent years, environmentally-friendly automobile development has progressed, and the weight has been reduced to improve fuel economy and reduce CO 2 emissions. Furthermore, from the viewpoint of quietness of the meshing sound between the metal gears, it is suggested to use a resin gear.

樹脂製歯車の具体的構成としては、補強繊維基材としてアラミド繊維を使用するものがあり、図1に示すようにドーナツ状に形成した補強繊維基材1を金属製ブッシュ2にはめ込み、補強繊維基材1に樹脂を含浸・硬化させ、円形素材3を作製する。この円形素材3の周囲に歯切り加工を行い、樹脂製歯車を作製する方法が特許文献1に記載されている。   As a specific configuration of the resin gear, there is one using an aramid fiber as a reinforcing fiber base, and a reinforcing fiber base 1 formed in a donut shape as shown in FIG. The base material 1 is impregnated with resin and cured to produce a circular material 3. Patent Document 1 describes a method of cutting a gear around the circular material 3 to produce a resin gear.

しかしこの従来技術では、ドーナツ状に形成した補強繊維基材1を、金属製ブッシュ2に対して2個用いることで挟み込み、金属製ブッシュ2の抜け止めを行っているが、補強繊維基材の界面では繊維の絡み合いは弱く、使用用途によっては樹脂製歯車の耐久性が不足する場合がある。これらの問題解決のために、短繊維を用いた抄造法による繊維の集積体を作製し、補強繊維基材を作製する方法が特許文献2に記載されている。
また、樹脂製歯車は、静粛性改善のため歯車形態として斜歯歯車を用いることが多く、噛み合い率を向上させることで静粛性を向上させている。
However, in this prior art, two reinforcing fiber bases 1 formed in a donut shape are sandwiched by using two metal bushes 2 to prevent the metal bushes 2 from coming off. The fiber entanglement is weak at the interface, and the durability of the resin gear may be insufficient depending on the intended use. In order to solve these problems, Patent Document 2 discloses a method of producing a fiber aggregate by a papermaking method using short fibers and producing a reinforcing fiber substrate.
In addition, the resin gear often uses an inclined gear as a gear form for improving the quietness, and the quietness is improved by improving the meshing rate.

特開2001−295913号公報JP 2001-295913 A 特開2009−250364号公報JP 2009-250364 A

しかしながら、自動車部品として使用する場合、使用環境下の雰囲気温度は、100℃付近まで上昇することが多くなるため、温度変化による寸法変化が生じる。
より具体的に述べると、図2は、樹脂製の斜歯歯車を歯先から垂直視した側面図を示すが、常温(25℃)域での歯筋4(実線)と、高温域での歯筋5(破線)では変化が生じている。
However, when used as an automobile part, the ambient temperature in the usage environment often increases to around 100 ° C., so that a dimensional change due to a temperature change occurs.
More specifically, FIG. 2 shows a side view of a resin bevel gear viewed vertically from the tooth tip. The tooth trace 4 (solid line) in the normal temperature (25 ° C.) region and the high temperature region There is a change in the tooth trace 5 (broken line).

前述した温度変化による歯筋の変移は、樹脂製歯車単独で見ると、あまり大きな問題とは思えないが、歯車は、相手歯車があって始めて機能するものであり、この温度変化による変移は、無視できないものとなっている。   The transition of the tooth trace due to the temperature change described above does not seem to be a big problem when the resin gear alone is seen, but the gear functions only when there is a counter gear, and the change due to this temperature change is It cannot be ignored.

樹脂製歯車と噛み合う相手側歯車は、金属製である場合が多く、樹脂と金属では、線膨張係数が異なり、各歯車の歯の変移量が異なる。
図3に常温(25℃)域での噛み合い概要図を示すが、相手歯車である金属製歯車6と、樹脂製歯車7とを噛み合わせた場合、金属製歯車の歯筋8と、樹脂製歯車の歯筋9は、一致するような噛み合い範囲となるように設計される。
次に、図4に高温域での噛み合い概要図を示すが、温度による寸法変化のため、噛み合いの歯当りが常温(25℃)とは変化し、金属製歯車の歯筋8と樹脂製歯車の歯筋9の片側だけで噛み合う片当りが発生する。そのため噛み合い率が低下し、樹脂製歯車に対しては不利に働き、歯車破損が早期に発生する可能性が生ずる。
The mating gear that meshes with the resin gear is often made of metal, and the resin and metal have different linear expansion coefficients and different amounts of gear teeth.
FIG. 3 shows a schematic diagram of meshing in the normal temperature (25 ° C.) region. When the metal gear 6 that is the counterpart gear and the resin gear 7 are meshed with each other, the tooth trace 8 of the metal gear and the resin gear The tooth trace 9 of the gear is designed to have a meshing range that matches.
Next, FIG. 4 shows a schematic diagram of meshing in a high temperature range. Due to the dimensional change due to temperature, the meshing tooth contact changes from normal temperature (25 ° C.), and the tooth trace 8 of the metal gear and the resin gear. One-sided engagement occurs only on one side of the tooth muscle 9. As a result, the meshing rate is lowered, which is disadvantageous for resin gears, and there is a possibility that gear breakage may occur at an early stage.

本発明は、例えば、常温域から高温域への温度変化により、歯筋の変移が生じた場合等、種々の現象に対応して、歯車の寿命を短くすることのない樹脂製歯車を、提供することを目的とする。   The present invention provides a resin gear that does not shorten the life of the gear in response to various phenomena, for example, when a tooth trace shifts due to a temperature change from a normal temperature range to a high temperature range. The purpose is to do.

上記課題を解決するために、本発明に係る樹脂製歯車は、以下の構成を採用する。
(1)歯幅方向に積層された複数の補強繊維層からなる補強繊維基材に樹脂硬化物が保持されている。そして、隣り合う補強繊維層が互いに異なる種類の繊維又は互いに異なる繊維組成からなっている樹脂製歯車である。前記の互いに異なる種類の繊維又は互いに異なる繊維組成の選択により、歯幅方向の所定の部位に所望の特性を付与することができる。
(2)項(1)において、補強繊維基材を構成する繊維の全てを有機繊維とした樹脂製歯車である。
(3)項(1)において、複数の補強繊維層の少なくとも一つは有機繊維と無機繊維の双方を含有したものとする樹脂製歯車である。
(4)項(1)において、補強繊維層に保持されている樹脂硬化物と当該補強繊維層の繊維質量の割合が、隣り合う補強繊維層の間で異ならせた樹脂製歯車である。
(5)項(1)乃至(4)の何れかにおいて、補強繊維基材が異なる厚みの補強繊維層の積層で構成されている樹脂製歯車である。これは、以下の場合を含む。すなわち、補強繊維基材を構成する補強繊維層が三層である場合、各補強繊維層の厚みが異なっていてもよいし一層だけが異なっていてもよい。補強繊維基材を構成する補強繊維層が四層以上ある場合は、各補強繊維層の厚みが異なっていてもよいし一部の層だけが異なっていてもよい。
(6)項(1)乃至(5)の何れかにおいて、補強繊維層が三層以上の奇数層であり、中央の補強繊維層を挟んで対称配置される補強繊維層は繊維の種類又は繊維組成を同じくする樹脂製歯車である。
In order to solve the above problems, the resin gear according to the present invention employs the following configuration.
(1) A cured resin product is held on a reinforcing fiber base composed of a plurality of reinforcing fiber layers laminated in the tooth width direction. The adjacent reinforcing fiber layers are resin gears made of different types of fibers or different fiber compositions. By selecting different types of fibers or different fiber compositions, desired characteristics can be imparted to predetermined portions in the tooth width direction.
(2) In the item (1), a resin gear in which all of the fibers constituting the reinforcing fiber base material are organic fibers.
(3) In item (1), at least one of the plurality of reinforcing fiber layers is a resin gear including both organic fibers and inorganic fibers.
(4) In the item (1), a resin gear in which the ratio of the fiber mass of the resin cured product held in the reinforcing fiber layer and the reinforcing fiber layer is different between adjacent reinforcing fiber layers.
(5) In any one of the items (1) to (4), the reinforcing fiber base material is a resin gear configured by stacking reinforcing fiber layers having different thicknesses. This includes the following cases. That is, when the reinforcing fiber layers constituting the reinforcing fiber base are three layers, the thickness of each reinforcing fiber layer may be different or only one layer may be different. When there are four or more reinforcing fiber layers constituting the reinforcing fiber base, the thickness of each reinforcing fiber layer may be different or only a part of the layers may be different.
(6) In any one of items (1) to (5), the reinforcing fiber layer is an odd number layer of three or more layers, and the reinforcing fiber layer symmetrically arranged with the central reinforcing fiber layer interposed therebetween is a fiber type or a fiber It is a resin gear having the same composition.

本発明によれば、歯幅方向に対して、隣り合う補強繊維層を互いに異なる種類の繊維又は互いに異なる繊維組成とするので、例えば、片当りが生ずる層に対し、繊維の材質又は組成を異ならせ、強度を上げることで、片当りによる樹脂製歯車の寿命低下を抑制できる。   According to the present invention, adjacent reinforcing fiber layers have different types of fibers or different fiber compositions with respect to the tooth width direction. By increasing the strength, it is possible to suppress a decrease in the service life of the resin gear due to contact with one piece.

複数の補強繊維層を全て有機繊維で構成し、その材質又は組成を変化させたものは、当該部位の強度や耐摩耗性、弾性率の物性を変更させることができ、例えば、片当りが生ずる層に対して局部的に強度向上が可能となる。
複数の補強繊維層の中で、少なくともその一層に有機繊維と無機繊維の双方を含有した層を設ける場合は、弾性特性に優位である有機繊維と強度・硬度で優位である無機繊維の含有割合を変化させることで、所期の目的に合わせた樹脂製歯車を設計することができる。
A structure in which a plurality of reinforcing fiber layers are all composed of organic fibers and the material or composition thereof is changed can change the physical properties of the part, such as strength, wear resistance, and elastic modulus. The strength can be improved locally with respect to the layer.
In the case of providing a layer containing both organic fibers and inorganic fibers in at least one of the plurality of reinforcing fiber layers, the content ratio of organic fibers superior in elastic properties and inorganic fibers superior in strength and hardness By changing, it is possible to design a resin gear that meets the intended purpose.

補強繊維層に保持されている樹脂硬化物と当該補強繊維層の繊維質量の割合を、隣り合う補強繊維層の間で異ならせた場合は、繊維量の割合が多ければ当該部位の強度が向上するため、樹脂製歯車の寿命を向上させることができる。
補強繊維基材を異なる厚みの補強繊維層の積層で構成する場合は、負荷が強く発生し片当りとなる部位の補強繊維層の厚みを増すことで、片当りとなる部位から補強繊維層の層間を遠ざけることができ、層間破壊を抑制できるため、樹脂製歯車の強度を向上させることができる。
When the ratio of the fiber mass of the resin cured product and the reinforcing fiber layer held in the reinforcing fiber layer is different between adjacent reinforcing fiber layers, the strength of the part is improved if the ratio of the fiber amount is large. Therefore, the life of the resin gear can be improved.
When the reinforcing fiber base is formed by laminating reinforcing fiber layers having different thicknesses, by increasing the thickness of the reinforcing fiber layer at the part where the load is strongly generated and per piece, the reinforcing fiber layer is changed from the part per piece. Since the interlayer can be kept away and interlayer breakdown can be suppressed, the strength of the resin gear can be improved.

補強繊維層が三層以上の奇数層であり、中央の補強繊維層を挟んで対称配置される補強繊維層は繊維の種類又は繊維組成を同じくする場合は、中央の補強繊維層を挟んだ両側の層の反り又は温度変化による変形の差異が少なく、形状変化による歯車精度悪化を抑制することができる。   When the reinforcing fiber layers are odd layers of three or more layers and the reinforcing fiber layers arranged symmetrically with the central reinforcing fiber layer in between are the same type or fiber composition, both sides with the central reinforcing fiber layer in between There is little difference in deformation due to warpage of the layer or temperature change, and deterioration of gear accuracy due to shape change can be suppressed.

従来例である樹脂製歯車の製造工程を示す。The manufacturing process of the resin gear which is a prior art example is shown. 温度変化による歯筋変化を示す。It shows changes in tooth muscles due to temperature changes. 常温域での噛み合い概要図を示す。A schematic diagram of meshing at room temperature is shown. 高温域での噛み合い概要図を示す。The meshing outline figure in a high temperature range is shown. 複数の補強繊維層を持つ補強繊維基材の作製の概要図を示す。The schematic diagram of preparation of the reinforcement fiber base material which has a some reinforcement fiber layer is shown. 二層の補強繊維層を備えた樹脂製歯車の実施例を示す。The Example of the resin gear provided with the two-layer reinforcing fiber layer is shown. 成形金型の概要図を示す。A schematic diagram of a molding die is shown. 三層の補強繊維層を備えた樹脂製歯車の実施例を示す。The Example of the resin gear provided with the three-layer reinforcing fiber layer is shown.

<繊維>
本発明に用いる繊維は、特に限定されるものではないが、綿や麻等の天然繊維、アラミド繊維(芳香族ポリアミド繊維)、ポリアミド繊維等の有機繊維や、炭素繊維、ガラス繊維、金属繊維等の無機繊維を使用用途により適宜用いることができる。これらの繊維は、用途により単独及び複数種類を用いても良い。中でも有機繊維ではパラ系アラミド繊維とメタ系アラミド繊維を混合したものを、無機繊維ではガラス短繊維を用いると、加工性及び切削性、耐熱性、歯車強度面で優勢であり、特に好ましい。
<Fiber>
The fibers used in the present invention are not particularly limited, but natural fibers such as cotton and hemp, organic fibers such as aramid fibers (aromatic polyamide fibers) and polyamide fibers, carbon fibers, glass fibers, metal fibers, etc. These inorganic fibers can be appropriately used depending on the intended use. These fibers may be used alone or in a plurality of types depending on the application. Among them, it is particularly preferable to use a mixture of para-aramid fiber and meta-aramid fiber as the organic fiber and short glass fiber as the inorganic fiber, which is superior in terms of workability, machinability, heat resistance, and gear strength.

本発明の樹脂製歯車においては、歯幅方向に対して、複数の補強繊維層を有し、この複数の補強繊維層が、各々繊維を含有し、隣り合う補強繊維層が互いに異なる種類の繊維又は互いに異なる繊維組成からなっている。   The resin gear of the present invention has a plurality of reinforcing fiber layers in the tooth width direction, the plurality of reinforcing fiber layers each containing fibers, and adjacent reinforcing fiber layers of different types. Or it consists of a mutually different fiber composition.

より詳細に述べると、有機繊維のみを用いる場合は、例えば、少なくとも補強繊維層の一層を有機繊維Aで構成した場合に、他の補強繊維層を有機繊維B又は有機繊維Aと有機繊維Bの混合組成にすることができる。
無機繊維のみを用いる場合には、例えば、少なくとも補強繊維層の一層を無機繊維イで構成した場合に、他の補強繊維層を無機繊維ロ又は無機繊維イと無機繊維ロの混合組成にすることができる。
More specifically, when only organic fibers are used, for example, when at least one of the reinforcing fiber layers is composed of organic fibers A, the other reinforcing fiber layers are formed of organic fibers B or organic fibers A and organic fibers B. It can be a mixed composition.
When using only inorganic fibers, for example, when at least one of the reinforcing fiber layers is composed of inorganic fibers, the other reinforcing fiber layer is made of inorganic fibers or a mixed composition of inorganic fibers and inorganic fibers. Can do.

有機繊維と無機繊維とを併用する場合は、例えば、少なくとも補強繊維層の一層を有機繊維又は無機繊維となし、他の補強繊維層を前記有機繊維又は無機繊維とは異なる繊維とする。複数の補強繊維層のそれぞれに有機繊維と無機繊維とを含有させるのであれば、少なくとも一層を有機繊維Aと無機繊維イの混合組成となし、他の補強繊維層を、「有機繊維Bに、又は有機繊維Aと有機繊維Bに、無機繊維イを配合した混合組成」、「有機繊維Bに、又は有機繊維Aと有機繊維Bに、無機繊維ロを配合した混合組成」、「有機繊維Bに、又は有機繊維Aと有機繊維Bに、無機繊維イと無機繊維ロを配合した混合組成」、又は、「無機繊維ロに、又は無機繊維イと無機繊維ロに、有機繊維Aを配合した混合組成」とすることができる。   When organic fibers and inorganic fibers are used in combination, for example, at least one of the reinforcing fiber layers is made of organic fibers or inorganic fibers, and the other reinforcing fiber layer is made of a fiber different from the organic fibers or inorganic fibers. If each of the plurality of reinforcing fiber layers contains an organic fiber and an inorganic fiber, at least one layer has a mixed composition of the organic fiber A and the inorganic fiber A, and the other reinforcing fiber layer is made into “organic fiber B, "Organic fiber A and organic fiber B mixed with inorganic fiber A", "Organic fiber B or organic fiber A and organic fiber B mixed with inorganic fiber B", "Organic fiber B Or mixed with organic fiber A and organic fiber B mixed with inorganic fiber A and inorganic fiber B "or" mixed composition with inorganic fiber B or inorganic fiber B and inorganic fiber B with organic fiber A. Mixed composition ”.

前述した「少なくとも一層」と述べる層は、例えば、高温雰囲気下にて片当りする等、好ましくない現象が現れる層であり、強度を高めるために、有機繊維であればパラ系アラミド繊維とメタ系アラミド繊維を混合したものを用いることが好ましく、無機繊維であれば、ガラス短繊維を用いることが好ましい。   The layer described as “at least one layer” described above is a layer in which an undesired phenomenon occurs, for example, contact with each other in a high-temperature atmosphere. In order to increase the strength, para-aramid fibers and meta-based fibers are used. It is preferable to use a mixture of aramid fibers, and it is preferable to use short glass fibers if they are inorganic fibers.

<繊維長さ>
本発明に用いる繊維の長さは、特に制限されるものではないが、2〜6mmであることが好ましい。繊維長さが短くなると、繊維同士のからみ合いが弱くなり、機械的強度が低下する。繊維長さが長くなると、補強繊維層を作製するときに繊維の分散がうまくいかず、複数の補強繊維層で構成される補強繊維基材1の製造が困難になる。繊維長さが前記の範囲であれば、機械的強度を確保することができ、繊維の分散も十分できる。
<Fiber length>
The length of the fiber used in the present invention is not particularly limited, but is preferably 2 to 6 mm. When the fiber length is shortened, the entanglement between the fibers is weakened and the mechanical strength is lowered. When the fiber length is long, the fiber dispersion is not successful when the reinforcing fiber layer is produced, and it becomes difficult to manufacture the reinforcing fiber base 1 composed of a plurality of reinforcing fiber layers. When the fiber length is within the above range, the mechanical strength can be ensured and the fiber can be sufficiently dispersed.

<繊維の含有割合>
繊維の含有割合は、特に制限されるものではなく、補強繊維層に樹脂硬化物が保持された全質量に占める繊維の質量比を、各補強繊維層の全てにて同じにしても、異ならせても良い。
<Fiber content>
The content ratio of the fiber is not particularly limited, and the fiber mass ratio in the total mass of the cured resin held in the reinforcing fiber layer is the same in all the reinforcing fiber layers, but is different. May be.

質量比を異ならせる場合は、この異なる層が、片当り等の不具合が現れる部位であり、繊維の割合を増やすようにする。具体的には、異ならせる層の繊維の質量比を40〜60%とすることが好ましく、他の層の繊維の質量比を35〜50%とすることが好ましい。
尚、繊維の質量比が35%未満になると、徐々に強度が低下する傾向があり、60%を超えると、補強繊維層に樹脂硬化物を保持させるための樹脂含浸作業を徐々にしにくくなる。
When different mass ratios are used, this different layer is a part where defects such as per piece appear, and the proportion of fibers is increased. Specifically, it is preferable that the mass ratio of the fibers in the layers to be varied is 40 to 60%, and the mass ratio of the fibers in the other layers is preferably 35 to 50%.
In addition, when the mass ratio of the fibers is less than 35%, the strength tends to gradually decrease, and when it exceeds 60%, it is difficult to gradually perform the resin impregnation work for holding the cured resin in the reinforcing fiber layer.

<補強繊維層の厚み>
各補強繊維層の歯幅方向での厚みは、特に制限されるものではなく、全ての層にて同じ厚みにしても、少なくとも一層の厚みを他の層に比べて変化させても良い。
補強繊維層の厚みを異ならせる場合は、厚みの異なる層が、片当り等の不具合が現れる部位であり、補強繊維層の厚みを他の層に比べ厚くすることができる。
補強繊維層の厚みは、樹脂製歯車の歯幅により、適宜選択される。具体的には、歯幅全体の厚みを100%となし、不具合が現れるであろう補強繊維層の厚みを30〜50%とすることができる。
<Thickness of reinforcing fiber layer>
The thickness in the tooth width direction of each reinforcing fiber layer is not particularly limited, and all layers may have the same thickness, or at least one layer thickness may be changed as compared with other layers.
When the thicknesses of the reinforcing fiber layers are different, the layers having different thicknesses are portions where defects such as per piece appear, and the reinforcing fiber layer can be made thicker than the other layers.
The thickness of the reinforcing fiber layer is appropriately selected depending on the tooth width of the resin gear. Specifically, the thickness of the entire tooth width can be set to 100%, and the thickness of the reinforcing fiber layer where a defect may appear can be set to 30 to 50%.

<補強繊維層の構成>
各補強繊維層の構成は、特に制限されるものではないが、奇数層となし、中央の補強繊維層を挟んで対称に同じ補強繊維層を設けることが、樹脂製歯車の反りを防止する意味で好ましい。
<Configuration of reinforcing fiber layer>
The structure of each reinforcing fiber layer is not particularly limited, but it is an odd layer, and the same reinforcing fiber layer is provided symmetrically across the central reinforcing fiber layer, meaning that the resin gear is prevented from warping. Is preferable.

<樹脂>
本発明に用いる樹脂は、ポリアミノアミド樹脂、エポキシ樹脂、ポリイミド樹脂、フェノール樹脂等の液状樹脂を使用することができる。中でも樹脂製歯車の製造性、耐熱性、強度等の物性面から、ポリアミノアミド樹脂を使用することが、特に好ましい。
<Resin>
The resin used in the present invention may be a liquid resin such as a polyaminoamide resin, an epoxy resin, a polyimide resin, or a phenol resin. Among these, it is particularly preferable to use a polyaminoamide resin from the viewpoint of physical properties such as manufacturability, heat resistance, and strength of the resin gear.

前述した樹脂には、添加剤及び硬化剤を用いることができる。
添加剤としては、成形時、樹脂と金型の離型性を向上させるために、モンタン酸エステルを使用することができる。モンタン酸エステルの使用量は、樹脂質量に対して0.7〜1質量%程度が望ましい。0.7質量%未満になると樹脂と金型の離型性が悪化する可能性があり、1質量%を超えると樹脂部が、硬化しにくくなる可能性がある。
An additive and a curing agent can be used for the resin described above.
As an additive, a montanic acid ester can be used in order to improve the releasability between the resin and the mold during molding. As for the usage-amount of a montanic acid ester, about 0.7-1 mass% is desirable with respect to resin mass. If it is less than 0.7% by mass, the releasability between the resin and the mold may be deteriorated, and if it exceeds 1% by mass, the resin part may be difficult to be cured.

硬化剤としては、ポリアミノアミド樹脂であれば、n−オクチルブロマイドを使用することができる。n−オクチルブロマイドの使用量は、樹脂質量に対して1〜1.3質量%程度が望ましい。1質量%未満になると樹脂の硬化が不十分になる可能性があり、1.3質量%を超えると樹脂の硬化が早くなるため、補強繊維基材への樹脂の含浸が不十分になる可能性がある。   As the curing agent, n-octyl bromide can be used as long as it is a polyaminoamide resin. The amount of n-octyl bromide used is desirably about 1 to 1.3% by mass relative to the resin mass. If it is less than 1% by mass, the resin may be insufficiently cured, and if it exceeds 1.3% by mass, the resin may be cured quickly, so that the reinforcing fiber base material may not be sufficiently impregnated with the resin. There is sex.

<樹脂製歯車の製造方法>
本発明にて述べる樹脂製歯車の製造方法は、特に限定するものでは無いが、図5に示すような機能を有する装置を用いることができる。樹脂製歯車の製造工程は、補強繊維基材製造工程、樹脂製歯車作成工程の2つに分類される。
<Production method of resin gear>
The manufacturing method of the resin gear described in the present invention is not particularly limited, but an apparatus having a function as shown in FIG. 5 can be used. The manufacturing process of the resin gear is classified into two, a reinforcing fiber base manufacturing process and a resin gear creating process.

先ず、補強繊維基材製造工程に関して、最初に複数の補強繊維層のそれぞれに必要な繊維を準備し、一層毎に必要な繊維の質量を測定し、繊維を準備する。一層分の繊維を規定量の水に入れて繊維を攪拌し、スラリーを調製する。繊維の集積体を作製するため、予め金属製ブッシュ2をセットした予備成形金型に調製したスラリーを流し込み、繊維を予備成形金型内に堆積させ、一層目の補強繊維層10を作製する。続いて次の補強繊維層に必要な繊維を準備し、同様の手順でスラリーを調製し、再度先の予備成形金型に流し込んで繊維を堆積させて二層目の補強繊維層11を作製する。この作業を必要な補強繊維層の層分繰り返して行う。   First, regarding the reinforcing fiber substrate manufacturing process, first, necessary fibers are prepared for each of the plurality of reinforcing fiber layers, and the mass of necessary fibers is measured for each layer to prepare the fibers. One layer of fiber is placed in a specified amount of water and the fiber is stirred to prepare a slurry. In order to produce a fiber assembly, the prepared slurry is poured into a preforming mold in which the metal bush 2 is set in advance, and the fibers are deposited in the preforming mold to produce the first reinforcing fiber layer 10. Subsequently, necessary fibers for the next reinforcing fiber layer are prepared, a slurry is prepared in the same procedure, and the fibers are deposited again by pouring into the previous preforming mold to produce the second reinforcing fiber layer 11. . This operation is repeated for the necessary reinforcing fiber layers.

予備成形金型は、補強繊維基材の外径寸法を決めるための筒状金型12と、筒状金型の内側に金属製ブッシュ2を固定するためのブッシュ支持部13、14及び集積した繊維を圧縮するための圧縮用金型15、16を有している装置とする。尚、圧縮用金型16には、スラリーの水分のみを排水するための貫通穴17を設けておき、圧縮用金型16の上には繊維が貫通穴17から抜けなくするためのメッシュ18を置いておき、メッシュ18上に繊維を堆積させながら水分のみを排水していく。
必要な補強繊維層を予備成形金型内に堆積させた後に、予備成形金型に搭載されている圧縮用金型15、16で補強繊維層を圧縮して脱水及び形状形成を行い、複数の補強繊維層を有した補強繊維基材19を作製する。
The preforming mold is a cylindrical mold 12 for determining the outer diameter size of the reinforcing fiber base, and bush support portions 13 and 14 for fixing the metal bush 2 inside the cylindrical mold and integrated. The apparatus has compression molds 15 and 16 for compressing fibers. The compression mold 16 is provided with a through hole 17 for draining only the slurry water, and a mesh 18 for preventing fibers from coming out of the through hole 17 is provided on the compression mold 16. Then, only moisture is drained while the fibers are deposited on the mesh 18.
After the necessary reinforcing fiber layer is deposited in the preforming mold, the reinforcing fiber layer is compressed by the compression molds 15 and 16 mounted on the preforming mold to perform dehydration and shape formation, A reinforcing fiber base 19 having a reinforcing fiber layer is produced.

次に、作製した補強繊維基材19を成形用金型にセットし、樹脂を補強繊維基材に含浸させて加熱加圧成形を行い、円形素材を作製する。この円形素材の周囲に切削により加工を行って歯を形成し、樹脂製歯車を作製する。   Next, the produced reinforcing fiber base 19 is set in a molding die, and the reinforcing fiber base is impregnated with a resin and subjected to heat and pressure molding to produce a circular material. The circular material is machined by cutting to form teeth, thereby producing a resin gear.

以下、本発明の実施例について、図面を用いて説明を行う。   Embodiments of the present invention will be described below with reference to the drawings.

(実施例1)
本実施例1においては、図6に示すような同じ厚みの二層の補強繊維層を有する樹脂製歯車を作製する。
即ち、補強繊維基材19を構成する補強繊維層20を、有機繊維であるメタ系アラミド繊維とパラ系アラミド繊維を含有したものとする。
補強繊維層20は、メタ系アラミド繊維A(繊維長:3mm、繊維径:10μm)を50質量%、パラ系アラミド繊維B(繊維長:3mm、繊維径:10μm)を45質量%、パラ系アラミド繊維C(繊維長:6mm、繊維径:10μm)を5質量%、混合して用いた。
補強繊維層20に使用する前記各繊維を水に入れて攪拌し、スラリーを作製する。このときのスラリー濃度は繊維質量に対して4g/リットルとなるように水量を調整した。
Example 1
In Example 1, a resin gear having two reinforcing fiber layers having the same thickness as shown in FIG. 6 is produced.
That is, it is assumed that the reinforcing fiber layer 20 constituting the reinforcing fiber base 19 contains a meta-aramid fiber and a para-aramid fiber that are organic fibers.
The reinforcing fiber layer 20 is composed of 50% by mass of meta-aramid fiber A (fiber length: 3 mm, fiber diameter: 10 μm), 45% by mass of para-aramid fiber B (fiber length: 3 mm, fiber diameter: 10 μm), para-type Aramid fiber C (fiber length: 6 mm, fiber diameter: 10 μm) was mixed and used in an amount of 5% by mass.
Each said fiber used for the reinforcing fiber layer 20 is put into water and stirred to prepare a slurry. The amount of water was adjusted so that the slurry concentration at this time was 4 g / liter with respect to the fiber mass.

次に、図5に示す予備成形金型のブッシュ支持部14に金属製ブッシュ2をセットし、上記のスラリーを予備成形金型内に投入する。予備成形金型を構成している筒状金型12とブッシュ支持部13及び14は、補強繊維層の外径及び内径形状を構成するもので、本実施例においては筒状金型12の内径部を直径:82mm、ブッシュ支持部13及び14の外径を直径:55mmとした。また、貫通穴17の下側から真空吸引を行い、水分を排水して繊維と水分を分離させ、補強繊維層20の基となる繊維堆積体を作製する。   Next, the metal bush 2 is set on the bush support 14 of the preforming mold shown in FIG. 5, and the slurry is put into the preforming mold. The cylindrical mold 12 and the bush support portions 13 and 14 constituting the preform mold constitute the outer diameter and inner diameter shape of the reinforcing fiber layer. In this embodiment, the inner diameter of the cylindrical mold 12 is used. The diameter was 82 mm, and the outer diameters of the bush support portions 13 and 14 were 55 mm. Further, vacuum suction is performed from the lower side of the through hole 17 to drain the water and separate the fiber and the water, thereby producing a fiber deposit body that is the basis of the reinforcing fiber layer 20.

次に、補強繊維層21(図6参照)として、有機繊維であるメタ系アラミド繊維とパラ系アラミド繊維及び強度向上のために無機繊維であるガラス繊維を含有したものとする。
補強繊維層21は、メタ系アラミド繊維Aを50質量%、パラ系アラミド繊維Bを40質量%、パラ系アラミド繊維Cを5質量%、無機繊維としてガラス繊維D(繊維長:0.12mm、繊維径:12μm)を5質量%、混合して用いた。
Next, it is assumed that the reinforcing fiber layer 21 (see FIG. 6) contains meta-aramid fibers and para-aramid fibers that are organic fibers, and glass fibers that are inorganic fibers for improving strength.
The reinforcing fiber layer 21 is composed of 50% by mass of meta-aramid fiber A, 40% by mass of para-aramid fiber B, 5% by mass of para-aramid fiber C, and glass fiber D (fiber length: 0.12 mm, inorganic fiber). 5% by mass of fiber diameter: 12 μm) was used as a mixture.

このとき、補強繊維層20、21を同じ厚みにするため、補強繊維層21の繊維堆積は、補強繊維層20と同等になるように質量調節を行い、補強繊維層20の基となる繊維堆積体の作製手順と同様にして補強繊維層21の基となる繊維堆積体を作製する。   At this time, in order to make the reinforcing fiber layers 20 and 21 have the same thickness, the fiber deposition of the reinforcing fiber layer 21 is adjusted so as to be the same as that of the reinforcing fiber layer 20, and the fiber deposition as the basis of the reinforcing fiber layer 20 is performed. In the same manner as the body production procedure, a fiber deposit body that is the basis of the reinforcing fiber layer 21 is produced.

二層の繊維堆積体を作製後、金属用ブッシュ2の軸方向に、150℃に加熱した圧縮用金型15、16を、その間隔が10mmとなるまで、上側の圧縮用金型15を下降させる。このとき、ブッシュ支持部13、14は連動して動き、金属用ブッシュ2の中心部が、圧縮用金型15、16の中央となるように維持させる。加熱・加圧状態を2分間継続させることで、補強繊維層20、21で構成された補強繊維基材19(図5参照)を作製する。   After producing the two-layer fiber deposit, in the axial direction of the metal bush 2, the compression molds 15 and 16 heated to 150 ° C. are moved down until the interval becomes 10 mm. Let At this time, the bush support portions 13 and 14 move in conjunction with each other, and the center portion of the metal bush 2 is maintained to be the center of the compression molds 15 and 16. By continuing the heating and pressurizing state for 2 minutes, the reinforcing fiber base 19 (see FIG. 5) composed of the reinforcing fiber layers 20 and 21 is produced.

次に、図7(A)に示す200℃に加熱した成形金型22内に、補強繊維基材19を配置し、図7(B)のように成形金型22を閉じ、金型内圧力を1.3kPa以下に減圧させるために真空吸引を5分間行う。減圧完了後、2,2’−(1,3フェニレン)ビス2−オキサゾリン:69質量%、4,4’−ジアミノジフェニルメタン:31質量%を混合した樹脂を、温度:140℃で溶解し、オクチルブロマイド:1質量%(外数)を加えて撹拌した樹脂を、金型内部に注入して補強繊維基材19に含浸させ、成形金型22内で3分間加熱硬化し、円形素材を得る。この円形素材を、ホブ盤を用いて切削加工し、歯を形成することにより樹脂製歯車を得た。
補強繊維基材19とこれに保持させた硬化樹脂の全質量に占める補強繊維基材19の質量を49%となるように調整した。
Next, the reinforcing fiber base 19 is placed in the molding die 22 heated to 200 ° C. shown in FIG. 7A, and the molding die 22 is closed as shown in FIG. For 5 minutes to reduce the pressure to 1.3 kPa or less. After completion of the decompression, a resin in which 2,2 ′-(1,3-phenylene) bis-2-oxazoline: 69% by mass and 4,4′-diaminodiphenylmethane: 31% by mass was dissolved at a temperature of 140 ° C. and octyl was dissolved. Bromide: 1% by mass (outside number) of agitated resin is injected into the mold, impregnated into the reinforcing fiber base 19, and heated and cured in the molding mold 22 for 3 minutes to obtain a circular material. This circular material was cut using a hobbing machine to form teeth, thereby obtaining a resin gear.
The mass of the reinforcing fiber substrate 19 and the total mass of the cured resin held by the reinforcing fiber substrate 19 was adjusted to 49%.

(実施例2)
実施例1において、補強繊維層21の繊維配合質量比(繊維組成)を、A/B/C=55/40/5と変更した補強繊維層23を用いたこと以外は、実施例1と同様にして、樹脂製歯車を得た。
(Example 2)
In Example 1, the same as Example 1 except that the reinforcing fiber layer 23 in which the fiber blending mass ratio (fiber composition) of the reinforcing fiber layer 21 was changed to A / B / C = 55/40/5 was used. Thus, a resin gear was obtained.

(実施例3)
実施例1において、補強繊維層20に使用する繊維を、炭素繊維E(繊維長:3mm、繊維径:18μm)のみとした補強繊維層24と、補強繊維層21に使用する繊維を、炭素繊維Eとガラス繊維Dとの質量配合比を60/40とした混合組成とした補強繊維層25を用いたこと以外は、実施例1と同様にして、樹脂製歯車を得た。
(Example 3)
In Example 1, the fiber used for the reinforcing fiber layer 20 is only the carbon fiber E (fiber length: 3 mm, fiber diameter: 18 μm), and the fiber used for the reinforcing fiber layer 21 is carbon fiber. A resin gear was obtained in the same manner as in Example 1 except that the reinforcing fiber layer 25 having a mixed composition in which the mass blending ratio of E and glass fiber D was 60/40 was used.

(実施例4)
本実施例4においては図8に示すような三層の補強繊維層を有し、中央の補強繊維層を挟んで両側の補強繊維層が同じ繊維組成で構成されている樹脂製歯車を用いて行う。
作製方法は実施例1と同様の手順とし、用いる補強繊維層として、上記に示した実施例1にて用いた有機繊維で構成された補強繊維層20を一層目及び三層目として用い、二層目として実施例3にて用いた無機繊維で構成された補強繊維層25を用いる。
本実施例4においては、補強繊維層20とこれに保持させた硬化樹脂の全質量に占める補強繊維層20の質量を50%となるように調整した。また、補強繊維層25とこれに保持させた硬化樹脂の全質量に占める補強繊維層25の質量を40%となるように調整した。
Example 4
In Example 4, a resin gear having three reinforcing fiber layers as shown in FIG. 8 and having reinforcing fiber layers on both sides of the same fiber composition sandwiching the central reinforcing fiber layer is used. Do.
The manufacturing method is the same as that in Example 1. As the reinforcing fiber layer to be used, the reinforcing fiber layer 20 composed of the organic fibers used in Example 1 described above is used as the first layer and the third layer. As the layer, the reinforcing fiber layer 25 composed of the inorganic fibers used in Example 3 is used.
In Example 4, the mass of the reinforcing fiber layer 20 and the mass of the reinforcing fiber layer 20 in the total mass of the cured resin held by the reinforcing fiber layer 20 was adjusted to 50%. In addition, the mass of the reinforcing fiber layer 25 and the mass of the reinforcing fiber layer 25 in the total mass of the cured resin held by the reinforcing fiber layer 25 was adjusted to 40%.

(耐久試験評価)
実施例1、実施例2、実施例3及び実施例4で得た樹脂製歯車において、耐久試験機を用いて樹脂製歯車の寿命評価を行った。方法として加速評価条件(相手歯車:金属製歯車、油温:130℃、回転数:6000rpm、歯元応力:160MPa)で連続回転試験を行い、樹脂製歯車が破損するまでの時間を評価した。
試験結果は、以下の表1のように得られ、補強繊維層の積層構造を有さない(補強繊維層20の単層からなる。以下同)樹脂製歯車の結果を1として相対評価した場合、実施例1では1.4倍、実施例2では1.1倍、実施例3では1.2倍、実施例4では2.3倍となった。実施例4が優位であるのは、有機繊維の優位点である低弾性(衝撃の吸収)と無機繊維の優位点である強度の保持を両立させているからであると推測される。
(Durability test evaluation)
In the resin gears obtained in Example 1, Example 2, Example 3 and Example 4, the life of the resin gears was evaluated using an endurance tester. As a method, a continuous rotation test was performed under acceleration evaluation conditions (mating gear: metal gear, oil temperature: 130 ° C., rotation speed: 6000 rpm, tooth root stress: 160 MPa), and the time until the resin gear was damaged was evaluated.
The test results are obtained as shown in Table 1 below, and have a laminated structure of the reinforcing fiber layer (consisting of a single layer of the reinforcing fiber layer 20. The same applies hereinafter) When the relative evaluation is made with the result of the resin gear as 1. Example 1 was 1.4 times, Example 2 was 1.1 times, Example 3 was 1.2 times, and Example 4 was 2.3 times. It is presumed that the reason why Example 4 is superior is that low elasticity (impact absorption), which is an advantage of organic fibers, and strength retention, which is an advantage of inorganic fibers, are compatible.

Figure 2013127282
Figure 2013127282

(歯車強度評価)
実施例1、実施例2、実施例3及び実施例4で得た樹脂製歯車において、歯車強度の確認を行った。方法として、樹脂製歯車を固定された金属製歯車と噛み合わせた状態で、基準ピッチ円上の周速が毎分0.33mmとなるように樹脂製歯車を回転させて、歯部が破壊する荷重を測定した。
試験結果は、以下の表2のように得られ、積層構造を有さない樹脂製歯車の結果を1として相対評価した場合、実施例1では1.2倍、実施例2では1.1倍、実施例3では1.6倍、実施例4では1.4倍となった。これは強度及び硬度で優位である無機繊維の含有割合が多いことが要因であると推測できる。
(Gear strength evaluation)
The gear strength of the resin gears obtained in Example 1, Example 2, Example 3 and Example 4 was confirmed. As a method, with the resin gear meshed with a fixed metal gear, the resin gear is rotated so that the peripheral speed on the reference pitch circle is 0.33 mm / min, and the tooth portion is destroyed. The load was measured.
The test results are obtained as shown in Table 2 below, and when the relative evaluation is made assuming that the result of the resin gear not having a laminated structure is 1, it is 1.2 times in Example 1 and 1.1 times in Example 2. In Example 3, it was 1.6 times, and in Example 4, it was 1.4 times. It can be presumed that this is due to a large content of inorganic fibers that are superior in strength and hardness.

Figure 2013127282
Figure 2013127282

1…補強繊維基材、2…金属製ブッシュ、3…円形素材、4…常温域での歯筋、5…高温域での歯筋、6…金属製歯車、7…樹脂製歯車、8…金属製歯車の歯筋、9…樹脂製歯車の歯筋、10…一層目の補強繊維層、11…二層目の補強繊維層、12…筒状金型、13、14…ブッシュ支持部、15、16…圧縮用金型、17…貫通穴、18…メッシュ、19…補強繊維基材、20…補強繊維層、21…補強繊維層、22…成形金型、23…補強繊維層、24…補強繊維層、25…補強繊維層 DESCRIPTION OF SYMBOLS 1 ... Reinforcing fiber base material, 2 ... Metal bush, 3 ... Circular material, 4 ... Tooth trace in normal temperature range, 5 ... Tooth trace in high temperature range, 6 ... Metal gear, 7 ... Resin gear, 8 ... Metal gear teeth, 9 ... resin gear teeth, 10 ... first reinforcing fiber layer, 11 ... second reinforcing fiber layer, 12 ... cylindrical mold, 13, 14 ... bush support, DESCRIPTION OF SYMBOLS 15, 16 ... Mold for compression, 17 ... Through-hole, 18 ... Mesh, 19 ... Reinforcement fiber base material, 20 ... Reinforcement fiber layer, 21 ... Reinforcement fiber layer, 22 ... Molding die, 23 ... Reinforcement fiber layer, 24 ... reinforcing fiber layer, 25 ... reinforcing fiber layer

Claims (6)

歯幅方向に積層された複数の補強繊維層からなる補強繊維基材に樹脂硬化物が保持されており、隣り合う補強繊維層が互いに異なる種類の繊維又は互いに異なる繊維組成からなっていることを特徴とする樹脂製歯車。   The cured resin is held on a reinforcing fiber base composed of a plurality of reinforcing fiber layers laminated in the tooth width direction, and adjacent reinforcing fiber layers are made of different types of fibers or different fiber compositions. Characteristic resin gear. 補強繊維基材を構成する繊維の全てが有機繊維である請求項1記載の樹脂製歯車。   The resin gear according to claim 1, wherein all of the fibers constituting the reinforcing fiber base are organic fibers. 複数の補強繊維層の少なくとも一つは有機繊維と無機繊維の双方を含有している請求項1記載の樹脂製歯車。   The resin gear according to claim 1, wherein at least one of the plurality of reinforcing fiber layers contains both an organic fiber and an inorganic fiber. 補強繊維層に保持されている樹脂硬化物と当該補強繊維層の繊維質量の割合が、隣り合う補強繊維層の間で異なっている請求項1記載の樹脂製歯車。   The resin gear according to claim 1, wherein a ratio of the fiber mass of the resin cured product held in the reinforcing fiber layer and the reinforcing fiber layer is different between adjacent reinforcing fiber layers. 補強繊維基材が異なる厚みの補強繊維層の積層で構成されている請求項1〜4のいずれかに記載の樹脂製歯車。   The resin gear according to any one of claims 1 to 4, wherein the reinforcing fiber base is composed of laminated reinforcing fiber layers having different thicknesses. 補強繊維層が三層以上の奇数層であり、中央の補強繊維層を挟んで対称配置される補強繊維層は繊維の種類又は繊維組成を同じくすることを特徴とする請求項1〜5のいずれかに記載の樹脂製歯車。   The reinforcing fiber layer is an odd number layer of three or more layers, and the reinforcing fiber layers arranged symmetrically across the central reinforcing fiber layer have the same fiber type or fiber composition. The resin gear described in the crab.
JP2011276563A 2011-12-19 2011-12-19 Resin gear Pending JP2013127282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011276563A JP2013127282A (en) 2011-12-19 2011-12-19 Resin gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011276563A JP2013127282A (en) 2011-12-19 2011-12-19 Resin gear

Publications (1)

Publication Number Publication Date
JP2013127282A true JP2013127282A (en) 2013-06-27

Family

ID=48777925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011276563A Pending JP2013127282A (en) 2011-12-19 2011-12-19 Resin gear

Country Status (1)

Country Link
JP (1) JP2013127282A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014240163A (en) * 2013-06-12 2014-12-25 新神戸電機株式会社 Method of producing resin molding and method of producing resin-made gear
WO2015097867A1 (en) * 2013-12-27 2015-07-02 新神戸電機株式会社 Molding material manufacturing apparatus and resin gear manufacturing method
WO2015097866A1 (en) * 2013-12-27 2015-07-02 新神戸電機株式会社 Molding material manufacturing method, molding material manufacturing apparatus, and method for manufacturing resin gear

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5787860U (en) * 1980-11-20 1982-05-31
JPS5859820A (en) * 1981-10-07 1983-04-09 Mitsubishi Rayon Co Ltd Gear
JPS60206630A (en) * 1984-03-30 1985-10-18 Mitsubishi Rayon Co Ltd Manufacture of gear
JPH01141031A (en) * 1987-11-27 1989-06-02 Ube Nitto Kasei Co Ltd Manufacture of fiber reinforced composite material
JPH0642608A (en) * 1992-07-21 1994-02-18 Toyota Motor Corp Resin gear reinforced with fiber
JPH0691770A (en) * 1992-02-28 1994-04-05 Toyota Motor Corp Fiber-reinforced resin gear
JPH08174689A (en) * 1994-12-22 1996-07-09 Toyota Motor Corp Fiber-reinforced resin composite material
JPH11227061A (en) * 1998-02-13 1999-08-24 Thermo Setta:Kk Manufacture of resin gear
JP2001182803A (en) * 1999-12-24 2001-07-06 Shin Kobe Electric Mach Co Ltd Reinforcement fiber base material for resin gear, resin gear, and manufacturing method thereof
JP2005221067A (en) * 2004-02-06 2005-08-18 Kosuke Nagaya Lubrication-free composite gear
JP2009097642A (en) * 2007-10-17 2009-05-07 Jtekt Corp Gear device
JP2011220463A (en) * 2010-04-12 2011-11-04 Shin Kobe Electric Mach Co Ltd Resin gear

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5787860U (en) * 1980-11-20 1982-05-31
JPS5859820A (en) * 1981-10-07 1983-04-09 Mitsubishi Rayon Co Ltd Gear
JPS60206630A (en) * 1984-03-30 1985-10-18 Mitsubishi Rayon Co Ltd Manufacture of gear
JPH01141031A (en) * 1987-11-27 1989-06-02 Ube Nitto Kasei Co Ltd Manufacture of fiber reinforced composite material
JPH0691770A (en) * 1992-02-28 1994-04-05 Toyota Motor Corp Fiber-reinforced resin gear
JPH0642608A (en) * 1992-07-21 1994-02-18 Toyota Motor Corp Resin gear reinforced with fiber
JPH08174689A (en) * 1994-12-22 1996-07-09 Toyota Motor Corp Fiber-reinforced resin composite material
JPH11227061A (en) * 1998-02-13 1999-08-24 Thermo Setta:Kk Manufacture of resin gear
JP2001182803A (en) * 1999-12-24 2001-07-06 Shin Kobe Electric Mach Co Ltd Reinforcement fiber base material for resin gear, resin gear, and manufacturing method thereof
JP2005221067A (en) * 2004-02-06 2005-08-18 Kosuke Nagaya Lubrication-free composite gear
JP2009097642A (en) * 2007-10-17 2009-05-07 Jtekt Corp Gear device
JP2011220463A (en) * 2010-04-12 2011-11-04 Shin Kobe Electric Mach Co Ltd Resin gear

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014240163A (en) * 2013-06-12 2014-12-25 新神戸電機株式会社 Method of producing resin molding and method of producing resin-made gear
WO2015097867A1 (en) * 2013-12-27 2015-07-02 新神戸電機株式会社 Molding material manufacturing apparatus and resin gear manufacturing method
WO2015097866A1 (en) * 2013-12-27 2015-07-02 新神戸電機株式会社 Molding material manufacturing method, molding material manufacturing apparatus, and method for manufacturing resin gear
CN105492178A (en) * 2013-12-27 2016-04-13 日立化成株式会社 Molding material manufacturing apparatus and resin gear manufacturing method
JP6007979B2 (en) * 2013-12-27 2016-10-19 日立化成株式会社 Molding material manufacturing method, molding material manufacturing apparatus, and resin gear manufacturing method
JP6065004B2 (en) * 2013-12-27 2017-01-25 日立化成株式会社 Molding material manufacturing apparatus and resin gear manufacturing method
US9925700B2 (en) 2013-12-27 2018-03-27 Hitachi Chemical Company, Ltd. Method and apparatus of manufacturing molding material, and method of manufacturing resin gear
US10307972B2 (en) 2013-12-27 2019-06-04 Hitachi Chemical Company, Ltd. Apparatus of manufacturing molding material and method of manufacturing resin gear

Similar Documents

Publication Publication Date Title
JP6275585B2 (en) Toothed belt
JP2013127282A (en) Resin gear
JP2001295913A (en) Resin gear and method of manufacturing the same
JP7007630B2 (en) Carbon fiber reinforced plastic containing cellulose nanofibers
JP5163105B2 (en) Resin rotating body and manufacturing method thereof, semi-processed product for resin rotating body molding and manufacturing method thereof, and mold for molding fiber base material for reinforcement
JP5315917B2 (en) Manufacturing method of resin rotating body, resin gear, and manufacturing method of semi-processed part for molding resin rotating body
JP6103299B2 (en) Manufacturing method of resin molded body and manufacturing method of resin gear
JP5556477B2 (en) Manufacturing method of resin gears
JP6086234B2 (en) Manufacturing method of resin gears
JP2011106575A (en) Resin gear
JP2017061059A (en) Manufacturing method of toothed gear semi-finished body and manufacturing method of toothed gear using the semi-finished body
JP2012145161A (en) Resin gear
EP3189124B1 (en) Composite bearing with enhanced wear and machinability
JP6156695B2 (en) Gear device
JP2011220463A (en) Resin gear
JP5560663B2 (en) Manufacturing method of fiber substrate and manufacturing method of resin gear
US1223216A (en) Gear.
JP5458587B2 (en) Resin gear
JP2010210088A (en) Toothed belt
KR20180007020A (en) Composite piston pin and manufacturing method of the same
JP4337795B2 (en) Bevel gear device
JP2959905B2 (en) Fiber reinforced resin gear
JP4513697B2 (en) Manufacturing method of resin metal composite bevel gear
JPH07113458A (en) Phenol resin gear and manufacture thereof
JP2959907B2 (en) Fiber reinforced resin gear

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150311

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151224

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160602