JP3878325B2 - Cold water equipment for ventilation and air conditioning in nuclear facilities - Google Patents

Cold water equipment for ventilation and air conditioning in nuclear facilities Download PDF

Info

Publication number
JP3878325B2
JP3878325B2 JP11085798A JP11085798A JP3878325B2 JP 3878325 B2 JP3878325 B2 JP 3878325B2 JP 11085798 A JP11085798 A JP 11085798A JP 11085798 A JP11085798 A JP 11085798A JP 3878325 B2 JP3878325 B2 JP 3878325B2
Authority
JP
Japan
Prior art keywords
cold water
cooling
refrigerator
air conditioning
ventilation air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11085798A
Other languages
Japanese (ja)
Other versions
JPH11304990A (en
Inventor
谷 利 明 菅
川 武 仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Corp
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Plant Systems and Services Corp filed Critical Toshiba Corp
Priority to JP11085798A priority Critical patent/JP3878325B2/en
Publication of JPH11304990A publication Critical patent/JPH11304990A/en
Application granted granted Critical
Publication of JP3878325B2 publication Critical patent/JP3878325B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、原子力施設の換気空調用冷水設備に係わり、特に、複数のプラントを備えた原子力施設の換気空調用冷水設備に関する。
【0002】
【従来の技術】
一般に原子力施設では、施設内の環境を保つために換気空調設備が設けられており、この換気空調設備の一つとして換気空調用冷水設備がある。この換気空調用冷水設備は空気を冷却するための複数の冷却コイルを備えており、これらの冷却コイルは原子力施設の主給気部もしくは各室に設置されている。
【0003】
各冷却コイルには冷水配管が接続されており、冷凍機からの冷水が冷水配管を通して冷却コイルに供給されている。
【0004】
通常、原子力施設の換気空調用冷水設備は複数の冷凍機を備えており、複数の冷凍機の合計容量は、原子力施設内の冷却に必要な夏期の冷房容量から決められている。また一般に、予備のために1台の冷凍機が追加設置されている。
【0005】
原子力施設の内部は冬期においても冷房が必要であり、換気空調用冷水設備の冷凍機は季節を問わず連続で運転されている。
【0006】
図5は、従来の原子力施設の換気空調用冷水設備の一例を示した概略系統図である。この従来例においては合計3台の冷凍機1が原子力施設内に設置されており、3台のうちの1台が予備のための冷凍機である。つまり、夏期冷房に必要な冷房容量を100%とした場合に、3台の冷凍機1はそれぞれ50%の冷房容量を備えており、冷房容量の合計が150%となっている。
【0007】
なお、冷凍機の設置台数は3台に限られるものではなく、4台設置(うち1台が予備)でも、5台設置(うち1台が予備)でも可能である。
【0008】
冷凍機1の容量に合わせた冷水ポンプ2が各冷凍機1ごと一台設置されており、冷凍機1と冷水ポンプ2とが一対一で運転されている。冷凍機1で冷却された水は冷水ポンプ2の圧力によって、冷水配管3を通って冷却コイル4に供給される。
【0009】
冷却コイル4は、主給気部もしくは各室に設置されており、冷却コイル4内を流れる冷水によって冷却コイル4の周辺の空気が冷却される。なお、図5に示した冷却コイル4は、原子力施設内に設置された複数の冷却コイルを総括的に表示したものである。
【0010】
冷却コイル4にて周辺の空気と熱交換を行った冷水は、冷水配管3を通って冷凍機1に戻る。また、各冷凍機1には冷却水配管5がそれぞれ接続されており、冷却水配管5より供給される水によって冷凍機1の排熱が行われる。さらに、冷凍機1及び冷水ポンプ2の制御は、制御盤6によって行われる。
【0011】
【発明が解決しようとする課題】
ところが、従来の原子力施設の換気空調用冷水設備は、冬期に外気温度が低下した場合、施設内の冷却コイル4による冷房負荷が低下し、その結果、冷房容量が冷凍機1の最低容量制御範囲外となってしまうことがあった。
【0012】
例えば、冬期における冷却コイル4の冷房負荷が10%(夏期の冷房負荷を100%とする。)まで低下した場合、3台の冷凍機1のうちの2台を停止状態として1台の冷凍機1のみを運転させたとしても、1台の冷凍機1の容量制御範囲の下限値が10%冷房負荷時の冷房容量よりも小さければ、要求される冷房容量は冷凍機1の最低容量制御範囲を下回ってしまう。
【0013】
冷房容量が冷凍機1の最低容量制御範囲を下回ると、冷凍機1の冷水出口温度が許容限度を超えて低下してしまい、冷凍機1の自動停止及び再起動が繰り返されるという問題がある。
【0014】
そこで、本発明は、冬期においても安定運転を行うことができる原子力施設の換気空調用冷水設備を提供することを目的とする。
【0015】
【課題を解決するための手段】
本発明による原子力施設の換気空調用冷水設備は、複数のプラントを備えた原子力施設の換気空調用冷水設備において、複数の冷凍機によって構成された冷凍装置と、前記冷凍装置にて生成された冷水を前記各プラントの各負荷先に送るための冷水配管と、前記各冷凍機ごとに前記冷水配管の途中に設置された各冷水ポンプと、を備え、前記冷凍機は、前記複数のプラントの間で共用され、容量制御範囲内の冷房容量での運転状態あるいは停止状態であることを特徴とする。
【0016】
また、本発明による原子力施設の換気空調用冷水設備は、前記冷水配管は、前記各冷凍機に接続された複数の支流配管と、前記複数の支流配管が接続された主流配管と、を備え、前記冷水ポンプは前記支流配管の途中に設置されており、弁を有するバイパス配管によって前記支流配管同士を連結したことを特徴とする。
【0017】
また、本発明による原子力施設の換気空調用冷水設備は、前記プラントは、ドライウエルを有する原子炉格納容器と、前記ドライウエル内に設置されたドライウエル内ガス冷却用コイルと、を備え、前記冷凍装置にて生成された冷水を前記ドライウエル内ガス冷却コイルにも流通させるようにしたことを特徴とする。
【0018】
また、本発明による原子力施設の換気空調用冷水設備は、前記冷凍機からの排熱を除去する冷却水を前記冷凍機に供給するための冷却水ポンプと、前記冷却水によって除去された排熱を環境中に放出するための冷却塔と、をさらに備え、前記冷凍機、前記冷水ポンプ、前記冷却水ポンプ、及び前記冷却塔を集中配置したことを特徴とする。
【0019】
【発明の実施の形態】
第1実施形態
以下、本発明の第1実施形態による原子力施設の換気空調用冷水設備について図1を参照して説明する。なお、図5に示した従来例と同一部材には同一符号を付して説明する。
【0020】
図1は、本実施形態による原子力施設の換気空調用冷水設備の概略系統図である。この換気空調用冷水設備は、複数プラント立地の原子力施設にて使用されるものであり、図1には、2基の原子力プラントの2つの冷却コイル(負荷先)4が示されている。なお、図1に示した冷却コイル4は、原子力施設内に設置された個々の冷却コイル4を総括的に表示したものである。
【0021】
合計5台の冷凍機1によって冷凍装置12が構成されており、これらの冷凍機1は2基の原子力プラントの間で共用されている。なお、本実施形態による原子力施設の換気空調用冷水設備は、例えば軽水炉(沸騰水型原子炉、加圧水型原子炉)に使用することができる。
【0022】
5台の冷凍機1のうちの1台は予備のための冷凍機である。つまり、夏期冷房に必要な冷房容量を、各プラントあたり100%とした場合、プラント2基合計で200%の冷房容量が必要となるが、冷凍機1はそれぞれ50%の冷房容量を備えており、5台の冷凍機1の合計容量は250%である。
【0023】
なお、本実施形態においては計5台の冷凍機1によって冷凍装置12を構成し、また、プラントの数を2基としているが、冷凍機1の設置台数は5台に限られるものではなく、また、プラント数も2基に限られるものではない。要するに、複数の冷凍機の合計容量が、複数のプラントの夏期の合計冷房容量を満たしていれば良い。なお、少なくとも1台の冷凍機を予備として設けることが好ましい。
【0024】
冷凍装置12にて生成された冷水は、冷水配管3を経由して各プラントの各冷却コイル(負荷先)4に送られる。冷水配管3は、各冷凍機1に接続された複数の冷水供給側の支流配管13a及び冷水還流側の支流配管13bと、これらの支流配管13a、13bが接続された冷水供給側の主流配管14a及び冷水還流側の主流配管14bと、を備えている。
【0025】
各冷凍機1ごとに1台の冷水ポンプ2が設けられており、各冷水ポンプ2は冷水還流側の各支流配管13bの途中に配置されている。冷水ポンプ2の一台の容量は、冷凍機1の一台の容量に合わせて選択され、設定されている。冷凍機1で冷却された水は冷水ポンプ2の圧力よって、冷水供給側の支流配管13a及び主流配管14aを通って各冷却コイル4に供給される。
【0026】
冷却コイル4にて周辺の空気と熱交換を行った冷水は、冷水還流側の支流配管13b及び主流配管14bを通って冷凍機1に戻る。
【0027】
各冷凍機1には冷却水配管5がそれぞれ接続されており、冷却水配管5より供給される水によって冷凍機1の排熱が行われる。また、すべての冷凍機1及びすべての冷水ポンプ2の制御は、単一の制御盤6によって行われる。
【0028】
そして、各プラントの夏期の冷房容量を100%とすると、原子力施設全体の夏期の冷房容量は200%になる。本実施形態による原子力施設の換気空調用冷水設備においては、冷凍装置12を構成する複数の冷凍機1は2基のプラントの間で共用されているので、冷凍装置12に要求される冷房容量は200%である。したがって、冷凍機1の合計設置台数は、1プラントを対象とする従来の場合に比べて増加する。
【0029】
また、本実施形態においては、冬期の冷房負荷が、1プラントを対象とする従来の場合に比べて増加する。つまり、1プラントあたりの冬期の冷房負荷が10%(夏期の冷房負荷を100%とする。)の場合、2プラント合計の冬期の冷房負荷は20%になる。したがって、5台の冷凍機1のうちの4台を停止状態として1台の冷凍機1のみを運転させた場合、運転状態にある1台の冷凍機1に要求される冷房負荷は20%となる。
【0030】
このように本実施形態による原子力施設の換気空調用冷水設備によれば、冷凍機1の設置台数の増加によって、冷凍機1の一台あたりの容量制御の容量が低下し、また、冬期の冷房負荷が増加して十分な冷房負荷が維持される。
【0031】
このため、冬期においても冷房容量が冷凍機1の容量制御範囲内となり、冷凍機1の冷水出口温度が許容限度を超えて低下することを防止し、ひいては冷凍機1の自動停止が防止され、これによって冷凍機1の安定運転を確保し、冷凍機1の信頼性の向上を図ることができる。
【0032】
また、従来のように各プラントごとに換気空調用冷水設備を設置する場合には、冷凍機1、冷水ポンプ2などを含む予備の系統及び制御盤6を各プラントごとに設置する必要があるが、本実施形態のように複数プラントで冷凍機1を共用することによって、予備の系統及び制御盤を削減することができる。
【0033】
さらに、従来のように各プラントごとに換気空調用冷水設備を設置した場合には、冷房負荷の小さい冬期においても、各プラントごとに少なくとも1台の冷凍機1及び冷水ポンプ2を運転させる必要がある(この運転が不安定になってしまうことは既述の通り)。一方、本実施形態のように複数プラントで冷凍機1を共用することによって、冷房負荷が小さい冬期においては、複数のプラントに対して1台の冷凍機1及び冷水ポンプ2を運転するだけで済み、必要電力の低減を図ることができる。
【0034】
第2実施形態
次に、本発明の第2実施形態による原子力施設の換気空調用冷水設備について図2を参照して説明する。なお、本実施形態は上述した第1実施形態に対して構成を一部追加したものであるので、以下では、第1実施形態と同一の構成要素については同一符号を付して詳細な説明は省略する。
【0035】
図2に示したように、本実施形態による原子力施設の換気空調用冷却設備においては、隣接する冷水還流側の支流配管13b同士がバイパス配管7にて連結されており、各バイパス配管7の途中には仕切弁8がそれぞれ設けられている。また、冷水還流側の支流配管13bの、バイパス配管7の接続部の上流側及び下流側に仕切弁9が設けられている。
【0036】
このように本実施形態による原子力施設の換気空調用冷却設備は、バイパス配管7及び仕切弁8、9を設けたので、冷凍機1と冷水ポンプ2のいわゆるたすき運転が可能である。例えば、定期検査の際に、自身の系統の冷水ポンプ2が点検中の場合、仕切弁8、9の開閉状態を変更することによって、隣の系統の冷水ポンプ2を使用して冷凍機1を運転することができる。
【0037】
第3実施形態
次に、本発明の第3実施形態による原子力施設の換気空調用冷水設備について図3を参照して説明する。なお、本実施形態は上述した第1実施形態に対して構成を一部追加したものであるので、以下では、第1実施形態と同一の構成要素については同一符号を付して詳細な説明は省略する。
【0038】
本実施形態による換気空調用冷水設備が使用される原子力設備は、原子炉格納容器を有する沸騰水型原子炉を2基備えており、それぞれの原子炉格納容器の内部のドライウエルには、図3に示したドライウエル内ガス冷却コイル16が設置されている。
【0039】
そして、本実施形態においては、主流配管14a、14bとドライウエル内ガス冷却コイル16とがドライウエル用配管15を介して連結されており、冷凍装置12にて生成された冷水を、冷却コイル4のみならず、各ドライウエル内ガス冷却コイル16にも流通させるようになっている。
【0040】
このように本実施形態による原子力施設の換気空調用冷水設備においては、ドライウエル内ガス冷却コイル16にも冷水を流通させるようにしたので、冷凍装置12に対する冷房負荷が増大し、冬期における冷凍機1の安定運転の確保及び冷凍機1の信頼性の向上をより確実に達成することができる。
【0041】
なお、本実施形態においても、上述した第2実施形態と同様にしてバイパス配管7、仕切弁8、9を追加設置することができる。
【0042】
第4実施形態
次に、本発明の第4実施形態による原子力施設の換気空調用冷水設備について図4を参照して説明する。なお、本実施形態は上述した第1実施形態の構成を一部変更したものであるので、以下では、第1実施形態と同一の構成要素については同一符号を付して詳細な説明は省略する。
【0043】
図4に示したように、冷却水配管5の途中には、冷凍機1からの排熱を除去する冷却水を冷凍機1に供給するための冷却水ポンプ11が設けられている。また、各冷却水配管5は、冷却水によって除去された排熱を環境中に放出するための各冷却塔10に接続されている。
【0044】
そして、本実施形態による原子力施設の換気空調用冷水設備においては、冷凍機1、冷水ポンプ2、冷却水ポンプ11、及び冷却塔10が互いに近接して集中配置されている。
【0045】
このように本実施形態においては、冷凍機1、冷水ポンプ2などの複数の機器が集中配置されているので、これらの機器のメンテナンスを実施しやすくなる。
【0046】
【発明の効果】
以上述べたように本発明による原子力施設の換気空調用冷水設備によれば、複数のプラントで冷凍機を共用するようにしたので、冬期においても、冷凍機の安定運転を確保し、冷凍機の信頼性の向上を図ることができ、必要電力の低減を図ることができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態による原子力施設の換気空調用冷水設備の概略系統図。
【図2】本発明の第2実施形態による原子力施設の換気空調用冷水設備の概略系統図。
【図3】本発明の第3実施形態による原子力施設の換気空調用冷水設備の概略系統図。
【図4】本発明の第4実施形態による原子力施設の換気空調用冷水設備の概略系統図。
【図5】従来の原子力施設の換気空調用冷水設備の概略系統図。
【符号の説明】
1 冷凍機
2 冷水ポンプ
3 冷水配管
4 冷却コイル
5 冷却水配管
6 制御盤
7 バイパス配管
8、9 仕切弁
10 冷却塔
11 冷却水ポンプ
12 冷凍装置
13 支流配管
14 主流配管
15 ドライウエル用配管
16 ドライウエル内ガス冷却コイル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cooling water facility for ventilation air conditioning in a nuclear facility, and particularly relates to a cooling water facility for ventilation air conditioning in a nuclear facility including a plurality of plants.
[0002]
[Prior art]
In general, in a nuclear facility, a ventilation air conditioner is provided in order to maintain the environment in the facility, and one of the ventilating air conditioners is a cold water facility for ventilating air conditioning. This cooling water facility for ventilation air conditioning is provided with a plurality of cooling coils for cooling air, and these cooling coils are installed in a main air supply section or each room of a nuclear facility.
[0003]
Cold water piping is connected to each cooling coil, and cold water from the refrigerator is supplied to the cooling coil through the cold water piping.
[0004]
Usually, the cooling water equipment for ventilation air conditioning in a nuclear facility is provided with a plurality of refrigerators, and the total capacity of the plurality of refrigerators is determined from the cooling capacity in summer required for cooling in the nuclear facility. In general, a single refrigerator is additionally installed as a spare.
[0005]
The inside of nuclear facilities needs to be cooled even in the winter, and the refrigerators for chilled water for ventilation and air conditioning are operated continuously regardless of the season.
[0006]
FIG. 5 is a schematic system diagram showing an example of a conventional cold water facility for ventilation air conditioning in a nuclear facility. In this conventional example, a total of three refrigerators 1 are installed in the nuclear facility, and one of the three refrigerators is a spare refrigerator. That is, assuming that the cooling capacity required for the summer cooling is 100%, the three refrigerators 1 each have a cooling capacity of 50%, and the total cooling capacity is 150%.
[0007]
Note that the number of refrigerators installed is not limited to three, and can be four (one is spare) or five (one is spare).
[0008]
One chilled water pump 2 corresponding to the capacity of the refrigerator 1 is installed for each refrigerator 1, and the refrigerator 1 and the cold water pump 2 are operated one-on-one. The water cooled by the refrigerator 1 is supplied to the cooling coil 4 through the cold water pipe 3 by the pressure of the cold water pump 2.
[0009]
The cooling coil 4 is installed in the main air supply section or each chamber, and the air around the cooling coil 4 is cooled by the cold water flowing in the cooling coil 4. The cooling coil 4 shown in FIG. 5 is a comprehensive display of a plurality of cooling coils installed in the nuclear facility.
[0010]
The cold water that has exchanged heat with the surrounding air in the cooling coil 4 returns to the refrigerator 1 through the cold water pipe 3. In addition, a cooling water pipe 5 is connected to each refrigerator 1, and the exhaust heat of the refrigerator 1 is performed by water supplied from the cooling water pipe 5. Further, the control of the refrigerator 1 and the cold water pump 2 is performed by the control panel 6.
[0011]
[Problems to be solved by the invention]
However, in the conventional cooling water facility for air conditioning in nuclear facilities, when the outside air temperature decreases in winter, the cooling load by the cooling coil 4 in the facility decreases, and as a result, the cooling capacity is within the minimum capacity control range of the refrigerator 1. Sometimes it was outside.
[0012]
For example, when the cooling load of the cooling coil 4 in winter decreases to 10% (the cooling load in summer is 100%), two of the three refrigerators 1 are stopped and one refrigerator Even if only one is operated, if the lower limit value of the capacity control range of one refrigerator 1 is smaller than the cooling capacity at the time of 10% cooling load, the required cooling capacity is the minimum capacity control range of the refrigerator 1 Will fall below.
[0013]
When the cooling capacity falls below the minimum capacity control range of the refrigerator 1, the cold water outlet temperature of the refrigerator 1 decreases beyond the allowable limit, and there is a problem that the automatic stop and restart of the refrigerator 1 are repeated.
[0014]
Then, an object of this invention is to provide the cold water equipment for ventilation air conditioning of the nuclear facility which can perform a stable operation also in winter.
[0015]
[Means for Solving the Problems]
The cold water equipment for ventilation air conditioning of a nuclear facility according to the present invention is a cold water equipment for ventilation air conditioning of a nuclear facility equipped with a plurality of plants, a refrigeration apparatus constituted by a plurality of refrigerators, and cold water generated by the refrigeration apparatus A chilled water pipe for sending to each load destination of each plant, and each chilled water pump installed in the middle of the chilled water pipe for each of the refrigerators, the refrigerator between the plurality of plants And is in an operating state or a stopped state at a cooling capacity within a capacity control range .
[0016]
Moreover, the cold water facility for ventilation air conditioning of a nuclear facility according to the present invention, the cold water pipe comprises a plurality of branch pipes connected to the respective refrigerators, and a main pipe connected to the plurality of branch pipes, The cold water pump is installed in the middle of the branch pipe, and the branch pipes are connected to each other by a bypass pipe having a valve.
[0017]
Further, according to the present invention, there is provided a chilled water facility for ventilation air conditioning of a nuclear facility, wherein the plant includes a reactor containment vessel having a dry well, and a gas cooling coil in the dry well installed in the dry well, The cold water generated by the refrigeration apparatus is also circulated through the gas cooling coil in the dry well.
[0018]
Further, the cold water facility for ventilation air conditioning of a nuclear facility according to the present invention includes a cooling water pump for supplying cooling water for removing exhaust heat from the refrigerator to the refrigerator, and exhaust heat removed by the cooling water. And a cooling tower for releasing the water into the environment, wherein the refrigerator, the cold water pump, the cooling water pump, and the cooling tower are arranged in a concentrated manner.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
First Embodiment Hereinafter, a cold water facility for ventilation air conditioning of a nuclear facility according to a first embodiment of the present invention will be described with reference to FIG. Note that the same members as those in the conventional example shown in FIG.
[0020]
FIG. 1 is a schematic system diagram of a cold water facility for ventilation air conditioning of a nuclear facility according to the present embodiment. This cooling air-conditioning equipment for ventilation air conditioning is used in a nuclear facility located in a plurality of plants. FIG. 1 shows two cooling coils (load destinations) 4 of two nuclear power plants. The cooling coil 4 shown in FIG. 1 is a comprehensive display of the individual cooling coils 4 installed in the nuclear facility.
[0021]
A total of five refrigerators 1 constitute a refrigeration apparatus 12, and these refrigerators 1 are shared between two nuclear power plants. In addition, the cold water equipment for ventilation air conditioning of the nuclear facility according to the present embodiment can be used for, for example, a light water reactor (boiling water reactor, pressurized water reactor).
[0022]
One of the five refrigerators 1 is a spare refrigerator. In other words, if the cooling capacity required for summer cooling is 100% for each plant, a total of two plants requires 200% cooling capacity, but the refrigerator 1 has a cooling capacity of 50%. The total capacity of the five refrigerators 1 is 250%.
[0023]
In the present embodiment, the refrigeration apparatus 12 is configured by a total of five refrigerators 1 and the number of plants is two, but the number of refrigerators 1 installed is not limited to five, Also, the number of plants is not limited to two. In short, it is only necessary that the total capacity of the plurality of refrigerators satisfies the summer total cooling capacity of the plurality of plants. In addition, it is preferable to provide at least one refrigerator as a spare.
[0024]
The cold water generated by the refrigeration apparatus 12 is sent to each cooling coil (load destination) 4 of each plant via the cold water pipe 3. The chilled water pipe 3 includes a plurality of chilled water supply side branch pipes 13 a and a chilled water return side branch pipe 13 b connected to each refrigerator 1, and a chilled water supply side mainstream pipe 14 a to which these branch pipes 13 a and 13 b are connected. And a main flow pipe 14b on the cold water reflux side.
[0025]
One chilled water pump 2 is provided for each refrigerator 1, and each chilled water pump 2 is disposed in the middle of each branch pipe 13 b on the chilled water recirculation side. The capacity of one cold water pump 2 is selected and set according to the capacity of one refrigerator 1. The water cooled by the refrigerator 1 is supplied to each cooling coil 4 by the pressure of the cold water pump 2 through the branch water supply pipe 13a and the main flow pipe 14a on the cold water supply side.
[0026]
The cold water that has exchanged heat with ambient air in the cooling coil 4 returns to the refrigerator 1 through the branch pipe 13b and the main flow pipe 14b on the cold water recirculation side.
[0027]
A cooling water pipe 5 is connected to each refrigerator 1, and the exhaust heat of the refrigerator 1 is performed by water supplied from the cooling water pipe 5. Further, all the refrigerators 1 and all the cold water pumps 2 are controlled by a single control panel 6.
[0028]
And if the cooling capacity in summer of each plant is 100%, the cooling capacity in summer of the whole nuclear facility is 200%. In the cooling water facility for ventilation air conditioning of the nuclear facility according to the present embodiment, since the plurality of refrigerators 1 constituting the refrigeration apparatus 12 are shared between two plants, the cooling capacity required for the refrigeration apparatus 12 is 200%. Therefore, the total number of installed refrigerators 1 is increased as compared with the conventional case targeting one plant.
[0029]
Moreover, in this embodiment, the cooling load in winter increases compared with the conventional case for one plant. In other words, if the cooling load in winter per plant is 10% (the cooling load in summer is 100%), the cooling load in winter for the total of the two plants is 20%. Accordingly, when only one refrigerator 1 is operated with four of the five refrigerators 1 being stopped, the cooling load required for one refrigerator 1 in the operating state is 20%. Become.
[0030]
As described above, according to the cooling water facility for ventilation air conditioning of the nuclear facility according to the present embodiment, the capacity control capacity per unit of the refrigerator 1 is reduced due to an increase in the number of installed refrigerators 1, and cooling in winter is performed. The load increases and a sufficient cooling load is maintained.
[0031]
For this reason, even in winter, the cooling capacity is within the capacity control range of the refrigerator 1, preventing the chilled water outlet temperature of the refrigerator 1 from falling below an allowable limit, and thus preventing the automatic stop of the refrigerator 1. As a result, stable operation of the refrigerator 1 can be secured and the reliability of the refrigerator 1 can be improved.
[0032]
Moreover, when installing the cooling water equipment for ventilation air conditioning for every plant like before, it is necessary to install the spare system | strain and the control panel 6 containing the refrigerator 1, the cold water pump 2, etc. for every plant. By sharing the refrigerator 1 in a plurality of plants as in this embodiment, it is possible to reduce spare systems and control panels.
[0033]
Further, when a cooling water facility for ventilation and air conditioning is installed for each plant as in the prior art, it is necessary to operate at least one refrigerator 1 and chilled water pump 2 for each plant even in winter when the cooling load is small. Yes (as described above, this operation becomes unstable). On the other hand, by sharing the refrigerator 1 in a plurality of plants as in this embodiment, in the winter season when the cooling load is small, it is only necessary to operate one refrigerator 1 and the cold water pump 2 for a plurality of plants. The required power can be reduced.
[0034]
Second Embodiment Next, a cold water facility for ventilation air conditioning of a nuclear facility according to a second embodiment of the present invention will be described with reference to FIG. In addition, since this embodiment adds a part of structure with respect to 1st Embodiment mentioned above, below, the same code | symbol is attached | subjected about the component same as 1st Embodiment, and detailed description is not carried out. Omitted.
[0035]
As shown in FIG. 2, in the cooling facility for ventilation air conditioning of the nuclear facility according to the present embodiment, the adjacent branch water pipes 13 b on the cold water return side are connected by the bypass pipes 7. Each is provided with a gate valve 8. Further, gate valves 9 are provided on the upstream side and the downstream side of the connecting portion of the bypass pipe 7 in the branch pipe 13b on the cold water recirculation side.
[0036]
As described above, the cooling facility for ventilation air conditioning of the nuclear facility according to the present embodiment is provided with the bypass pipe 7 and the gate valves 8 and 9, so that the so-called dry operation of the refrigerator 1 and the cold water pump 2 is possible. For example, when the chilled water pump 2 of its own system is under inspection during the periodic inspection, the refrigerator 1 can be installed using the chilled water pump 2 of the adjacent system by changing the open / close state of the gate valves 8 and 9. You can drive.
[0037]
Third Embodiment Next, a cold water facility for ventilation air conditioning in a nuclear facility according to a third embodiment of the present invention will be described with reference to FIG. In addition, since this embodiment adds a part of structure with respect to 1st Embodiment mentioned above, below, the same code | symbol is attached | subjected about the component same as 1st Embodiment, and detailed description is not carried out. Omitted.
[0038]
The nuclear power plant in which the cooling water facility for ventilation air conditioning according to the present embodiment is used includes two boiling water reactors each having a reactor containment vessel. The gas cooling coil 16 in the dry well shown in 3 is installed.
[0039]
In the present embodiment, the mainstream pipes 14 a and 14 b and the dry well gas cooling coil 16 are connected via the dry well pipe 15, and the cold water generated by the refrigeration apparatus 12 is supplied to the cooling coil 4. In addition, the gas is passed through each dry well gas cooling coil 16.
[0040]
As described above, in the cold water facility for ventilation air conditioning of the nuclear facility according to the present embodiment, since the cold water is also circulated through the gas cooling coil 16 in the dry well, the cooling load on the refrigeration apparatus 12 increases, and the refrigerator in the winter season. 1 can be ensured more reliably and the reliability of the refrigerator 1 can be improved more reliably.
[0041]
Also in this embodiment, the bypass pipe 7 and the gate valves 8 and 9 can be additionally installed in the same manner as in the second embodiment described above.
[0042]
4. Fourth Embodiment Next, a cold water facility for ventilation air conditioning of a nuclear facility according to a fourth embodiment of the present invention will be described with reference to FIG. In addition, since this embodiment changes a part of structure of 1st Embodiment mentioned above, below, the same code | symbol is attached | subjected about the same component as 1st Embodiment, and detailed description is abbreviate | omitted. .
[0043]
As shown in FIG. 4, a cooling water pump 11 for supplying cooling water for removing exhaust heat from the refrigerator 1 to the refrigerator 1 is provided in the middle of the cooling water pipe 5. Moreover, each cooling water piping 5 is connected to each cooling tower 10 for releasing the exhaust heat removed by the cooling water into the environment.
[0044]
And in the cold water equipment for ventilation air conditioning of the nuclear facility by this embodiment, the refrigerator 1, the cold water pump 2, the cooling water pump 11, and the cooling tower 10 are concentrated and arrange | positioned mutually close.
[0045]
Thus, in this embodiment, since several apparatus, such as the refrigerator 1 and the cold water pump 2, are concentrated, it becomes easy to implement maintenance of these apparatuses.
[0046]
【The invention's effect】
As described above, according to the cold water facility for ventilation air conditioning of a nuclear facility according to the present invention, since the refrigerator is shared by a plurality of plants, the stable operation of the refrigerator can be ensured even in the winter season. it is possible to improve the reliability, Ru can be reduced power needs.
[Brief description of the drawings]
FIG. 1 is a schematic system diagram of a cold water facility for ventilation air conditioning of a nuclear facility according to a first embodiment of the present invention.
FIG. 2 is a schematic system diagram of a cold water facility for ventilation air conditioning in a nuclear facility according to a second embodiment of the present invention.
FIG. 3 is a schematic system diagram of a cold water facility for ventilation air conditioning of a nuclear facility according to a third embodiment of the present invention.
FIG. 4 is a schematic system diagram of a cold water facility for ventilation air conditioning of a nuclear facility according to a fourth embodiment of the present invention.
FIG. 5 is a schematic system diagram of a conventional cold water facility for ventilation air conditioning in a nuclear facility.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Refrigerator 2 Chilled water pump 3 Chilled water piping 4 Cooling coil 5 Cooling water piping 6 Control panel 7 Bypass piping 8, 9 Gate valve 10 Cooling tower 11 Cooling water pump 12 Refrigeration apparatus 13 Branch flow piping 14 Main flow piping 15 Dry well piping 16 Dry Gas cooling coil in well

Claims (4)

複数のプラントを備えた原子力施設の換気空調用冷水設備において、
複数の冷凍機によって構成された冷凍装置と、
前記冷凍装置にて生成された冷水を前記各プラントの各負荷先に送るための冷水配管と、
前記各冷凍機ごとに前記冷水配管の途中に設置された各冷水ポンプと、を備え、
前記冷凍機は、前記複数のプラントの間で共用され、容量制御範囲内の冷房容量での運転状態あるいは停止状態であることを特徴とする原子力施設の換気空調用冷水設備。
In the cold water equipment for ventilation air conditioning in nuclear facilities equipped with multiple plants,
A refrigeration apparatus constituted by a plurality of refrigerators;
Cold water piping for sending the cold water generated in the refrigeration apparatus to each load destination of each plant;
Each cold water pump installed in the middle of the cold water pipe for each of the refrigerators,
The chiller is shared between the plurality of plants and is in an operating state or a stopped state with a cooling capacity within a capacity control range .
前記冷水配管は、前記各冷凍機に接続された複数の支流配管と、前記複数の支流配管が接続された主流配管と、を備え、前記冷水ポンプは前記支流配管の途中に設置されており、弁を有するバイパス配管によって前記支流配管同士を連結したことを特徴とする請求項1記載の原子力施設の換気空調用冷水設備。The cold water pipe includes a plurality of branch pipes connected to the respective refrigerators, and a main flow pipe to which the plurality of branch pipes are connected, and the cold water pump is installed in the middle of the branch pipe, The cold water equipment for ventilation air conditioning of a nuclear facility according to claim 1, wherein the branch pipes are connected by a bypass pipe having a valve. 前記プラントは、ドライウエルを有する原子炉格納容器と、前記ドライウエル内に設置されたドライウエル内ガス冷却用コイルと、を備え、
前記冷凍装置にて生成された冷水を前記ドライウエル内ガス冷却コイルにも流通させるようにしたことを特徴とする請求項1又は請求項2に記載の原子力施設の換気空調用冷水設備。
The plant includes a reactor containment vessel having a dry well, and a gas cooling coil in the dry well installed in the dry well,
The cold water equipment for ventilation air conditioning in a nuclear facility according to claim 1 or 2, wherein the cold water generated by the refrigeration apparatus is also circulated through the gas cooling coil in the dry well.
前記冷凍機からの排熱を除去する冷却水を前記冷凍機に供給するための冷却水ポンプと、前記冷却水によって除去された排熱を環境中に放出するための冷却塔と、をさらに備え、
前記冷凍機、前記冷水ポンプ、前記冷却水ポンプ、及び前記冷却塔を集中配置したことを特徴とする請求項1乃至請求項3のいずれか一項に記載の原子力施設の換気空調用冷水設備。
A cooling water pump for supplying cooling water to remove the exhaust heat from the refrigerator to the refrigerator; and a cooling tower for releasing the exhaust heat removed by the cooling water into the environment. ,
The cold water equipment for ventilation air conditioning of a nuclear facility according to any one of claims 1 to 3, wherein the refrigerator, the cold water pump, the cooling water pump, and the cooling tower are centrally arranged.
JP11085798A 1998-04-21 1998-04-21 Cold water equipment for ventilation and air conditioning in nuclear facilities Expired - Lifetime JP3878325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11085798A JP3878325B2 (en) 1998-04-21 1998-04-21 Cold water equipment for ventilation and air conditioning in nuclear facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11085798A JP3878325B2 (en) 1998-04-21 1998-04-21 Cold water equipment for ventilation and air conditioning in nuclear facilities

Publications (2)

Publication Number Publication Date
JPH11304990A JPH11304990A (en) 1999-11-05
JP3878325B2 true JP3878325B2 (en) 2007-02-07

Family

ID=14546440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11085798A Expired - Lifetime JP3878325B2 (en) 1998-04-21 1998-04-21 Cold water equipment for ventilation and air conditioning in nuclear facilities

Country Status (1)

Country Link
JP (1) JP3878325B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7052147B2 (en) * 2003-02-20 2006-05-30 Seiko Epson Corporation Light source, and projector provided with the light source

Also Published As

Publication number Publication date
JPH11304990A (en) 1999-11-05

Similar Documents

Publication Publication Date Title
EP3567996B1 (en) Modular chiller for data centers
EP0612394A1 (en) Air-conditioning installation for room spaces.
WO2021116731A1 (en) Compressor wall
JP3878325B2 (en) Cold water equipment for ventilation and air conditioning in nuclear facilities
JP2008224155A (en) Ice heat storage type heat source machine device and its control method
JP2009063190A (en) Heat medium supply system and modification method of heat medium supply system
US4360496A (en) Cooling system for auxiliary systems of a nuclear installation
CN211345648U (en) Cold and hot water system of stack cabin air conditioner
CN114060979A (en) Passive ventilation cooling system
JP5584052B2 (en) High efficiency heat transfer device in air conditioning system
CN110671767A (en) Cold and hot water system of stack cabin air conditioner
JPS61165532A (en) Air conditioning device
CN216557404U (en) Air conditioning equipment
CN109405160A (en) A kind of Containment for PWR Nuclear Power Plant ventilating system
JP2001188094A (en) Cooling facility for reactor and the like
CN110972448B (en) Heat exchange system
JP2533097B2 (en) Auxiliary equipment cooling facility for nuclear power plants
NITA et al. CONCEPTUAL DESIGN AND LAYOUT OF THE COOLING TOWERS NECESSARY TO REMOVE HEAT FROM THE CONDENSER SECONDARY CIRCUIT OF THE ALFRED DEMONSTRATOR REACTOR.
JPS6052796A (en) Cooling dehumidifying device for primary container of nuclear reactor
JP2003167089A (en) Nuclear energy facility internal cooling system
JPH02240598A (en) Auxiliary machinery cooling equipment of atomic power plant
JP3889607B2 (en) Cooling water distribution system for ventilation air conditioning equipment in nuclear power plants
JPH05126990A (en) Temperature control device for cooling water
EP2486333A1 (en) Independent system for dehumidifying air
JPH0236198B2 (en)

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

EXPY Cancellation because of completion of term